
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 8052–8062
November 12-16, 2024 ©2024 Association for Computational Linguistics

ADASWITCH: Adaptive Switching between Small and Large Agents for
Effective Cloud-Local Collaborative Learning

Hao Sun1,2, Jiayi Wu3, Hengyi Cai4, Xiaochi Wei5

Yue Feng7, Bo Wang6, Shuaiqiang Wang5, Yan Zhang1,2, Dawei Yin5

1State Key Laboratory of General Artificial Intelligence, Peking University, Beijing, China
2School of Intelligence Science and Technology, Peking University

3East China Normal University, 4Chinese Academy of Sciences
5Baidu Inc, 6Beijing Institute of Technology, 7University of Birmingham

sunhao@stu.pku.edu.cn

Abstract

Recent advancements in large language models
(LLMs) have been remarkable. Users face a
choice between using cloud-based LLMs for
generation quality and deploying local-based
LLMs for lower computational cost. The for-
mer option is typically costly and inefficient,
while the latter usually fails to deliver satisfac-
tory performance for reasoning steps requiring
deliberate thought processes. In this work, we
propose a novel LLM utilization paradigm that
facilitates the collaborative operation of large
cloud-based LLMs and smaller local-deployed
LLMs. Our framework comprises two primary
modules: the local agent instantiated with a
relatively smaller LLM, handling less complex
reasoning steps, and the cloud agent equipped
with a larger LLM, managing more intricate
reasoning steps. This collaborative process-
ing is enabled through an adaptive mechanism
where the local agent introspectively identifies
errors and proactively seeks assistance from the
cloud agent, thereby effectively integrating the
strengths of both locally-deployed and cloud-
based LLMs, resulting in significant enhance-
ments in task completion performance and ef-
ficiency. We evaluate ADASWITCH across 7
benchmarks, ranging from mathematical rea-
soning and complex question answering, using
various types of LLMs to instantiate the local
and cloud agents. The empirical results show
that ADASWITCH effectively improves the per-
formance of the local agent, and sometimes
achieves competitive results compared to the
cloud agent while utilizing much less computa-
tional overhead.

1 Introduction

Recently, the advent of large language models
(LLMs) has garnered substantial attention from
the public, industry, and academia, attributed to
their advanced language comprehension and gen-
eration capabilities. These LLMs, such as Ope-
nAI’s GPT-4 (Achiam et al., 2023) and Google’s

Question: In a cage, there are chickens and rabbits.
There are 10 heads and 24 legs in total. How many
more legs do chickens have compared to rabbits?

Step 1: Thought: Calculate the number of chickens.
Action: R1 = Calculate(10 – 24 / 4)
Observation: 4
Reflection: Is previous step wrong: Yes

Step 2: Thought: Set up an equation to represent
the total number of heads and legs.
Action: R1 = SetEquation(x+y= 10,2x+4y=24)
Observation: x = 8, y = 2

Step 3: Thought: Calculate the difference between
rabbits and chickens.
Action: R2 = Calculate(2*8 – 2*4)
Observation: 4
Reflection: Is previous step wrong: No

Step 4:

Local Agent Cloud Agent

Thought: The reasoning process is over.
Action: R3 = Finish(8)
Observation: 8

Figure 1: A brief illustration of ADASWITCH frame-
work, in which local agent and cloud agent alternate to
collaboratively fulfill the given question.

PALM (Anil et al., 2023), are characterized by their
massive scale, both in terms of the colossal number
of parameters and the substantial volume of data
utilized during their training process. Due to their
large number of parameters, LLMs are typically de-
ployed on cloud servers. However, the reliance on
cloud computing makes LLM utilization consider-
ably costly and inefficient, owing to the substantial
bandwidth consumption, considerable strain on the
network architecture and the need for extensive
computational resources.

A promising solution is to reduce the high com-
putational demand of LLMs through techniques
such as knowledge distillation (Liang et al., 2020;
Gu et al., 2023) or model quantization (Frantar

8052

et al., 2022; Lin et al., 2023; Xiao et al., 2023), and
to deploy LLMs directly on local devices. Though
effective, small-sized LLMs are prone to severe per-
formance degradation when confronted with com-
plex and demanding situations, and usually fail
to deliver satisfactory performance for reasoning
steps requiring deliberate thought processes.

To harness the strong capabilities of large-sized
LLMs with the convenience of small-sized LLMs,
we propose ADASWITCH, a novel framework en-
abling these two types of LLMs to collaboratively
solve complex open-world tasks. This framework
is inspired by human behavior in similar scenar-
ios: when faced with complex tasks, people often
seek assistance from more knowledgeable individ-
uals for challenging components and learn from
their guidance to complete the tasks. This ability
to proactively seek assistance and apply acquired
knowledge is a critical aspect of human intelligence.
Similarly, ADASWITCH comprises two primary
modules: the local agent and the cloud agent. The
local agent, instantiated with a relatively smaller
LLM, is capable of handling less complex reason-
ing steps. In contrast, the cloud agent, responsible
for more deliberate reasoning, utilizes larger LLMs,
such as Llama-30B. Our proposed approach is de-
signed to enable both efficient inference with local
smaller LLMs and resource-intensive cloud LLM
executions for task steps requiring higher cognitive
capabilities. It effectively integrates the strengths
of both locally-deployed and cloud-based LLMs,
resulting in significant enhancements in task com-
pletion performance and efficiency.

As depicted in Figure 1, given the question “how
many more legs do chickens have compared to
rabbits?”, ADASWITCH interleaves its generation
by first composing the sub-solution “calculate the
number of chickens”, then reflecting on the prior
failing step, and offloading this challenging step
to the cloud agent. The local agent thus is able to
form an improved action to finally accomplish the
task. Using the cloud agent as an assistant allows
the local agent to make effective use of a larger
knowledge base and focus its efforts on learning
the task steps appropriate for the model’s current
competence.

The main idea behind ADASWITCH is to allow
the local agent to adaptively activate the cloud
agent when it introspectively judges the current
step as incorrect. To this end, we enhance the lo-
cal agent’s self-checking capabilities by meticu-
lously collecting inaccurate reasoning paths to con-

struct the mistake-checking dataset. Specifically,
we ask the local agent to undertake an exam during
which the cloud agent dynamically corrects the lo-
cal agent’s mistakes, incentivizing the local agent
to learn from mistakes, determine when to ask for
assistance, and how to utilize feedback to correct
the mistake. Finally, the resultant local agent can
introspectively judge the running steps, proactively
seek assistance, and apply acquired feedback to
improve its subsequent actions.

We conduct experiments on mathematical
reasoning and complex reasoning benchmarks.
ADASWITCH consistently improves the perfor-
mance across various LLMs and tasks. For in-
stance, the performance of the local model in-
stantiated with the DeepSeek-Coder-1.3B can
be improved from 29.3% to 53.9%, requiring
3x fewer computational costs for LLM inference
than competitor system while achieving similar
results. Notably, our proposed framework even en-
ables StarCoder2-3B to achieve comparable per-
formance against Llama-30B, with 5x less compu-
tational overhead for LLM inference. The effec-
tiveness of the proposed method is also verified by
ablation experiments and analytical experiments.

2 Methodology

2.1 Preliminary
In the agent framework, the agents usually follow
the interaction paradigm, where the agent predicts
a thought and an action, and the environment gives
feedback. Specifically, the backbone of the agent is
an LLM denoted as M. In the t-th step, the LLM
M generates a thought st and an action at based on
the instruction and the current state of the system:

st, at = M(τt−1), (1)

ot = Execution(at) (2)

where τt−1 = {s1, a1, o1, ..., st−1, at−1, ot−1} de-
notes the previous interaction trajectory. Here, ot
denotes the observation returned by tools when the
action at is executed. The tool list used in this
paper is shown in Table 6.

2.2 ADASWITCH Framework
We propose a multi-stage learning paradigm that
enables the local agent to introspectively judge the
running steps, proactively seek assistance, and ap-
ply acquired feedback to improve its subsequent
actions. Specifically, as shown in Figure 2, the
learning of our framework can be divided into three

8053

Question: Joy is 2 years older than twice the age of
Tom. If Tom is 10 years old, how old is Joy?

Thought: Calculate twice the age of Tom.
Action: R1 = Calculator(2 * 2)
Observation: 4
Reflection: Is previous step wrong: Yes

Thought: Calculate twice the age of Tom who is 10.
Action: R1 = Calculator(10 * 2)
Observation: 20
Reflection: Is previous step wrong: No

Thought: Calculate the age of Joy.
Action: R2 = Calculator(R1 + 2)
Observation: 22
Reflection: Is previous step wrong: No

Thought: The reasoning process is over.
Action: Finish(22)
Observation: 22

An Example of the Training Data in Stage 3 Stage 1: Self-Practicing

Finetuning

Conversion

Local Agent

Question: If 12 bags of
oranges weigh 24 pounds,
how much do 8 bags weigh?
Rationale: Each bag of
oranges weighs 2 pounds,
so 8 bags of oranges would
weigh a total of 16 pounds.
Answer: 16

Training Data Annotated Data

Question: If 12 bags of
oranges weigh 24 pounds,
how much do 8 bags weigh?
…
Step 𝒊:
Thought: Calculate weight...
Action: R2=Calculator(R1*8)
Observation: 18
…

Stage 2: Collaborative Examination

Training Data

Question: Joy is 2 years older than twice the age of Tom. If
Tom is 10 years old, how old is Joy?
Step 𝒊:
Thought: Calculate twice the age of Tom who is 2.
Action: R1 = Calculator(2 * 2)
Observation: 4
Step 𝒊+1:
Thought: Calculate twice the age of Tom who is 10.
Action: R1 = Calculator(10 * 2)
Observation: 20

Local Agent

Sampling

Cloud Agent

Masked During Training

——
——
——
——

Stage 3: Reflective Learning

Making Plans Invoking Tools Asking for Help

Finetuning

Generated Data

——
——
——
——

Local Agent

Unmasked During Training

Figure 2: The illustration of ADASWITCH. 1) Self-Practicing: The local agent practices on the training dataset to
brain the basic reasoning ability. 2) Collaborative Examination: The local agent undertakes an exam to expose its
weakness, during which the cloud agent will be utilized to correct the mistakes. 3) Reflective Learning: The local
agent is trained on the mistake-correction trajectories generated in the second stage.

stages: (1) firstly, the local agent is trained on the
training set to build a basic reasoning ability; (2)
then, the local agent undertakes an exam to ex-
pose its weakness in accomplishing the challenging
steps, during which the cloud agents are utilized to
correct the local agents’ mistakes; (3) finally, the
local agents are trained on the mistake-checking
and mistake-correction trajectories generated in the
second stage.

Self-Practicing Given a training dataset
Dtrain = {⟨xi, ri, yi⟩}ki=1, where xi denotes
the question, ri represents the ground-truth
intermediate reasoning steps and yi is the answer,
we follow Yin et al. (2023) and employ LLM to
transform the reasoning steps r into interaction
trajectories. Specifically, we provide the LLM
with the question, ground-truth intermediate
reasoning steps, and defined action space, then the
LLM is able to generate high-level thoughts and
corresponding actions accordingly. Subsequently,
we can obtain the interaction trajectories in the
format of τ = {s1, a1, o1, ..., sn, an, on}. To
enable the local agent to focus on the reasoning
part, we feed the entire interaction trajectories to
the LLMs while merely calculating the decoding
loss on the tokens of the subgoals and action by
applying binary masking on observation tokens.

Collaborative Examination After training on
the annotated dataset, the local agent can solve the
question interactively. To detect the weakness of
the local agent, we ask the local agent to undertake
an exam on the training set Dtrain. For each ques-
tion, we collect up to four interaction trajectories
through decoding with the Top-K sampling strategy.
During the interaction, we follow Li et al. (2022)
and adopt a rule-based method to dynamically ex-
amine whether each reasoning step is wrong. For
mathematical reasoning tasks, we gather interme-
diate results from the correct trajectories and ver-
ify whether each step’s execution result matches
any of the intermediate results in the correct tra-
jectories. If there is a match, the step is deemed
correct; otherwise, it is considered incorrect. In
the case of textual reasoning tasks, we can simi-
larly verify the correctness of each step by utilizing
roberta-large-mnli (Liu et al., 2019) to check
whether the thought and action of each step are se-
mantically equivalent to any of the reasoning steps
in the correct trajectories.

When a mistake is detected, the cloud agent will
be activated to correct the mistake by erasing the
wrong step in the prompt and regenerating the step.
Then the local agent will continue based on the
cloud agent’s corrected step. This process will
continue until the local agent finally reaches the

8054

answer. If the answer is true, we incorporate the
interaction trajectory into the training set.

Reflective Learning After obtaining the mistake-
checking and mistake-correction data, we ask the
local agent to train on the revised trajectories. It
is worth mentioning that the revised trajectories
contain wrong steps that have wrong thoughts and
actions. Therefore, we mask these parts during
loss calculations so that the local agent will not be
confused by these steps.

Collaborative Inference After training on the
mistake-checking and mistake-correction dataset,
the local agent can detect and correct errors. We
introduce two modes for task inference. The first
mode is SELF-REFLECTION, where the local agent
will rely on itself to correct the mistake when it
finds an error. However, due to the limited ability
of the local agent, it might not be able to correct
the mistake accurately. Therefore, we further intro-
duce the second mode where the cloud agent will
be activated to correct the mistake, which we call
ADASWITCH. Specifically, the local agent predicts
a probability that the previous step is wrong, and
the cloud agent will be activated when the proba-
bility is larger than an activation threshold p.

3 Experiment

3.1 Tasks & Datasets
Mathematical Task We adopt five math word
problem datasets to evaluate the mathematical rea-
soning ability. GSM8K is a primary school-level
mathematical dataset (Cobbe et al., 2021). G_Hard
is a harder version of GSM8K (Gao et al., 2022).
MultiArith is a multi-step arithmetic reasoning
dataset (Roy and Roth, 2016). SVAMP is cre-
ated by applying chosen variations over examples
sampled from existing datasets (Patel et al., 2021).
ASDIV is a math word problem dataset that con-
tains examples with diverse language patterns and
problem types (Miao et al., 2021).

Complex QA Task We use two open-domain
question-answering datasets to evaluate the com-
plex reasoning ability. HotpotQA dataset (Yang
et al., 2018) is a multi-hop question-answering
dataset. MuSiQue dataset (Trivedi et al., 2022)
is a multi-hop reasoning dataset.

3.2 Experimental Setup
For mathematical tasks, we use GSM8K as the
training dataset. For the complex QA task, we

use MuSiQue as the training dataset. The detailed
statistics of these datasets are shown in Table 5.
Moreover, the cloud agent undergoes only the self-
practicing stage to build basic reasoning ability
before deployment, while the local agent undergoes
the full learning stages.

3.3 Models

The candidate local agents include
DeepSeek-Coder-1.3B1 and StarCoder2-3B2.
And the candidate cloud agents include
CodeLlama-13B 3, Llama-30B 4, Qwen1.5-32B 5,
and Llama-2-70B 6.

3.4 Main Results

In this section, we conduct experiments on seven
challenging reasoning tasks utilizing the 1.3B and
3B local agents and the 30B cloud agent. The result
is shown in Table 1. Based on the result, several
observations can be made:

First, our method, ADASWITCH, greatly im-
proves the performance of the local agent,
achieving up to 86.9% relative improvement us-
ing the 1.3B model as the local agent and up to
39.1% relative improvement using the 3B model
as the local agent. This is primarily because, after
collaborative learning, ADASWITCH enables the
local agent to seek help from the cloud agent when
it detects potential mistakes. By doing so, the lo-
cal agent can handle the easier steps independently
while leveraging the cloud agent for more difficult
steps, thereby enhancing its overall performance.

Second, the improvement is more pronounced
on difficult datasets, as evidenced by an 86.9% rel-
ative improvement on G_Hard dataset and a 22.3%
relative improvement on MultiArith dataset. This
is mainly because the local agent learns to request
assistance when necessary, and when faced with
more challenging datasets, the local agent will call
for help more frequently, leading to significant per-
formance gains. However, the cost associated with
these difficult datasets will also increase. To bal-
ance between cost and effectiveness, we can adjust
the predefined activation threshold p, which is dis-
cussed in Table 2.

1
https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-instruct

2
https://huggingface.co/bigcode/starcoder2-3b

3
https://huggingface.co/codellama/CodeLlama-13b-hf

4
https://huggingface.co/huggyllama/llama-30b

5
https://huggingface.co/Qwen/Qwen1.5-32B-Chat

6
https://huggingface.co/meta-llama/Llama-2-70b-hf

8055

https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-instruct
https://huggingface.co/bigcode/starcoder2-3b
https://huggingface.co/codellama/CodeLlama-13b-hf
https://huggingface.co/huggyllama/llama-30b
https://huggingface.co/Qwen/Qwen1.5-32B-Chat
https://huggingface.co/meta-llama/Llama-2-70b-hf

Method # Para

Mathematical Reasoning Complex QA Reasoning

GSM8K G_Hard SVAMP ASDIV MultiArith MuSiQue HotpotQA

Using 1.3B Local Agent
Local Agent 1.3B 29.30 25.20 26.60 43.90 77.22 29.80 25.80
+ADASWITCH 1.3B 53.90 (+24.6) 47.10 (+21.9) 46.90 (+20.3) 61.90 (+18.0) 94.44 (+17.2) 36.80 (+7.0) 32.50 (+6.7)

Using 3B Local Agent
Local Agent 3B 48.80 40.10 37.80 52.50 87.22 31.50 29.50
+ADASWITCH 3B 60.60 (+11.8) 50.60 (+10.5) 52.60 (+14.8) 66.20 (+13.7) 96.11 (+8.9) 37.80 (+6.3) 31.80 (+2.3)

Cloud Agent 30B 63.20 55.00 52.10 63.80 98.89 41.80 35.50

Table 1: Our main experimental results (%) on five mathematical reasoning tasks and two complex question-
answering tasks. Local agent refers to the agent after the self-practicing while ADASWITCH refers to undergoing
the full learning paradigm and then collaborating with the cloud agent during inference.

(a) Using 1.3B Local Agent (b) Using 3B Local Agent

A
C
C

Figure 3: We conduct an ablation study by removing
the cloud agent, self-reflection, and reflective learning.

3.5 Ablation Study
In this section, we assess the performance of differ-
ent inference modes using DeepSeek-Coder-1.3B
and StarCoder2-3B as local agents, which is
shown in Figure 3. Specifically, w/o cloud agent
refers to utilizing the local agent to self-correct the
mistakes without asking for help from the cloud
agent. w/o reflection refers to continuing the in-
ference processes without identifying or correcting
errors in previous steps. w/o RL refers to removing
the reflective learning.

As we can see, after removing the cloud agent.
the performance degrades dramatically, which is
reasonable because the local agent cannot solve
the difficult steps due to its limited reasoning abil-
ity. However, by conducting self-reflection, the
performance of w/o cloud is still higher than the
performance of w/o reflection, which demonstrates
that the local agent can correctly detect and correct
mistakes on its own. Moreover, the performance of
w/o reflection is higher than w/o RL, demonstrat-
ing that after reflective learning, the local agent’s
reasoning ability gets improved.

3.6 Hyper-parameter Analysis
In our method, ADASWITCH, the decision for the
local agent to seek assistance from the cloud agent
is controlled by an activation threshold, denoted
as p. To evaluate the impact of different threshold

GSM8K SVAMP ASDIV

p Acc Cost Acc Cost Acc Cost

0.1 57.60 121.80 62.40 75.53 69.30 49.39
0.3 57.30 62.95 58.40 53.21 67.40 36.39
0.5 57.40 77.61 55.40 46.48 66.60 31.59
0.7 53.10 49.18 51.60 29.93 65.50 26.70
0.9 48.50 37.90 45.20 21.07 63.40 23.49

Table 2: Results (%) of ADASWITCH using differ-
ent activation threshold. As the threshold increases,
ADASWITCH activates the cloud agent more frequently,
leading to improved performance but at a higher infer-
ence cost. The unit of the cost is FLOPs.

values, we conducted experiments using p values
of {0.1, 0.3, 0.5, 0.7, 0.9} with a 1.3B local agent
and a 70B cloud agent on the subset of three math-
ematical reasoning datasets.

As illustrated in Table 2, lowering the threshold
p results in the local agent requesting help more fre-
quently, which generally leads to enhanced model
performance. However, this increased reliance on
the cloud agent also incurs higher computational
costs. For instance, on the GSM8K dataset, the
cost escalates from 37.90 FLOPs to 121.80 FLOPs
as the threshold decreases from 0.9 to 0.1. More-
over, we observe a saturation effect in performance
improvement as the threshold value is further re-
duced. While a decrease in threshold from 0.9 to
0.7 results in a 9.4% increase in accuracy, a fur-
ther reduction from 0.3 to 0.1 yields only a 0.5%
improvement. This diminishing return is primarily
because, after a certain point, the local agent’s per-
formance closely approximates that of the cloud
agent. Consequently, further reducing the threshold
may result in the local agent seeking assistance on
steps where the cloud agent is also prone to errors,
thereby minimally impacting overall accuracy.

8056

3.7 Analysis

Switching Analysis To demonstrate the effective-
ness of various switching strategies, we compare
it with the following variants: Random Switch:
The local agent switches to the cloud agent with
a probability of p. Sequential Switch: The local
agent switches to the cloud agent every consecu-
tive k steps. Confidence Switch: The local agent
switches to the cloud agent when the probability
of its generated tokens is lower than a predefined
threshold p. To ensure a fair comparison, we tune
these corresponding hyperparameters to keep all
methods at a similar cost level.

As shown in Table 4, all methods improve the
performance of the local agent after collaborating
with the cloud agent. Among the variants, the Con-
fidence Switch improves the performance higher
than others. This is mainly because the token proba-
bility distribution can reflect the local agent’s capa-
bility in solving the question to some extent, mak-
ing the cost quota be distributed properly. How-
ever, the overconfidence phenomenon (Yang et al.,
2024; Groot and Valdenegro-Toro, 2024; Xiong
et al., 2023) makes the probability distribution an
unstable metric, leading to inferior performance
compared with our method.

Capability of Self-checking During the collab-
orative examination, we assess the correctness of
each step using predefined rules. We first analyze
the accuracy of the labeling process and then an-
alyze if the local agent can correctly predict label
accuracy. We randomly selected 100 questions
and manually checked the rule-based labels. Each
step’s ground truth label is positive if correct and
negative otherwise. The True Positive Rate (TPR)
is the proportion of correct steps identified cor-
rectly, and the True Negative Rate (TNR) is the
proportion of incorrect steps identified correctly.
Our analysis showed that the rule-based method
achieved a TPR of 92% and a TNR of 61%. The
high TPR indicates the rule labeling process effec-
tively identifies correct steps, while the low TNR
suggests some steps are wrong though the result
of the step has appeared in the correct trajectories.
Such corner cases need human intervention to fur-
ther verify the correctness of each step.

To verify if the local agent can learn to pre-
dict the correctness of each step, we randomly se-
lected 100 inference trajectories of ADASWITCH

and Confidence Switch. Our analysis showed that
ADASWITCH achieved a TPR of 82% and a TNR

Method GSM8K G_Hard SVAMP MultiArith

13B 61.70 57.10 49.80 98.89
32B 70.40 59.80 67.90 100.00
70B 74.90 64.00 74.70 97.78

Using 1.3B Local Agent
Local 29.30 25.20 26.60 77.22
+ 13B 54.24 48.89 44.58 97.51
+ 32B 58.80 51.60 52.67 96.65
+ 70B 58.96 52.51 55.81 97.92

Using 3B Local Agent
Local 48.80 40.10 37.80 87.22
+ 13B 61.23 49.95 50.30 97.56
+ 32B 64.49 52.40 59.14 98.67
+ 70B 65.43 53.66 61.36 98.28

Table 3: Results (%) using different cloud agent models,
where +13B refers to collaborating the local agent with
the 13B cloud agent.

of 52%, while Confidence Switch achieved a TPR
of 73% and a TNR of 27%. These results con-
firm the effectiveness of our method. Notably,
ADASWITCH’s TPR and TNR closely match the la-
bel data, showing it effectively utilizes training data
to improve its ability to detect mistakes. Higher
performance could be achieved with better training
data, such as using LLMs as data labelers, which
is suggested for future work.

Generalization Ability In this section, we aim
to analyze whether the local agent can collaborate
with different cloud agents without further retrain-
ing. Specifically, we utilize both the 1.3B and 3B
local agents trained under the supervision of the
30B cloud agent and ask the local agent to ask for
help from other cloud agents when it thinks it has
made a mistake. We choose cloud agents of differ-
ent parameter sizes, which include 13B, 32B, and
70B. Based on the result shown in Table 3, we can
have the following conclusions:

First, when switching to unknown cloud agents,
the local agent’s performance can still be improved
significantly, which demonstrates the generaliza-
tion ability of our method. Moreover, the im-
provement ratio is higher when switching to larger
cloud agents with better model capability. For ex-
ample, the relative improvement of ADASWITCH

achieves surprising 101% and 109% on GSM8K
and SVAMP when the 1.3B local agent collabo-
rates with the 70B cloud agent. This is important
because we can only deploy one local agent on the
local device while deploying multiple cloud agents
remotely. During inference, the users can dynam-

8057

Method # Para

Mathematical Reasoning Complex QA Reasoning

GSM8K G_Hard SVAMP ASDIV MultiArith MuSiQue HotpotQA

Using 1.3B Local Agent
Random Switch 1.3B 36.50 29.90 35.60 50.60 85.56 31.00 24.80
Sequential Switch 1.3B 36.00 29.90 31.80 47.90 82.78 26.80 28.80
Confidence Switch 1.3B 38.70 33.40 35.60 53.40 89.44 29.80 29.50

ADASWITCH 1.3B 53.90 47.10 46.90 61.90 94.44 36.80 32.50

Using 3B Local Agent
Random Switch 3B 54.40 49.80 45.40 60.40 94.44 35.50 26.80
Sequential Switch 3B 52.70 48.80 43.00 60.40 93.33 34.50 30.50
Confidence Switch 3B 54.70 48.90 47.60 63.20 95.00 35.80 31.00

ADASWITCH 3B 60.60 50.60 52.60 66.20 96.11 37.80 31.80

Table 4: Results (%) of different switching strategies. We conduct the experiment by using 1.3B and 3B as the local
agents to dynamically activate the 30B cloud agent.

3B (Ours)
3B (Confidence)

3B

1.3B (Ours)

1.3B(Random)

1.3B

1.3B(Confidence)

1.3B(Sequential)

3B(Random)

3B(Sequential)

30B

Figure 4: Cost-Effectiveness Analysis. We conduct
experiments on the GSM8K dataset. From left to right,
the cost of the methods gradually increases. From the
bottom to the top, the accuracy of the method increases.

ically decide which cloud agents to use based on
the quota of computational resources.

Cost-Effectiveness Analysis In this section, we
analyze the cost and effectiveness of existing meth-
ods. Specifically, we take GSM8K as our test bed
and calculate the average FLOPs cost per query uti-
lizing different inference modes, such as Random
Switch, Sequential Switch, and Confidence Switch.

As shown in Figure 4, the 30B local agent
achieves the highest performance with the largest
computational cost, and the 1.3B local agent
achieves the lowest performance with the lowest
cost. As a comparison, ADASWITCH balances cost
and effectiveness and achieves a similar cost with
30B agent with 3x fewer computational costs.

3.8 Case Study

In this section, we examine examples from Math-
ematical Reasoning and Complex QA Reasoning

tasks to illustrate the performance of ADASWITCH.
For instance, in a mathematical reasoning task

involving a question about piano practice time, the
local agent correctly calculates the total daily prac-
tice time for the violin but fails to compute the
total practice time for the piano. However, due
to its strong reflection capability, the local agent
recognizes the error. At this point, a robust cloud
agent intervenes and successfully corrects the mis-
take. The local agent then resumes the generation
process based on the corrected input. Similarly,
in a complex QA reasoning task, the local agent
initially fails to decompose the questions correctly
but soon realizes the mistake. The cloud agent in-
tervenes, accurately predicting the next step, and
allowing the local agent to continue the inference
process until it reaches the correct answer. Through
these examples, we can find that the local agent can
successfully finish most easy steps while needing
intervention from the cloud agent in rare cases,
making ADASWITCH meaningful and necessary.

4 Related Work

4.1 Multi-Agent Colloboration
Enabling multiple models with different charac-
teristics to collaborate can lead to stronger perfor-
mance or lower computational costs than a sin-
gle model. α-UMi (Shen et al., 2024b) divides a
tool learning task that is challenging for a single
small LLM into three subtasks, which are dele-
gated to three small LLMs to collaborate on. In
some scenarios, choosing the appropriate agent
presents a challenge, and Co-LLM (Shen et al.,
2024a) achieves token-level agent selection during
inference by learning latent variables. AutoMix

8058

Step 1: Thought: Calculate the total practice time for the violin each day.
Action: R1 = Calculator(20 * 3)
Observation: 60
Reflection: Is previous step wrong: No

Step 2: Thought: Calculate the total practice time for the piano each day.
Action: R2 = Calculator(20 * 6)
Observation: 120
Reflection: Is previous step wrong: Yes

Step 3: Thought: Calculate the total practice time for both each day.
Action: R2 = Calculator(20 + R1)
Observation: 80

Step 4: Thought: Calculate the total practice time per month.
Action: R3 = Calculator(4 * 6 * R2)
Observation: 1920
Reflection: Is previous step wrong: No

Step 5: Thought: The reasoning process is over.
Action: Finish(1920)
Observation: 192

Question: What organization does the agency which
pioneered DNA testing share jurisdiction with?

Step 1: Thought: Understand how DNA testing started
Action: R1 = KnowledgeQuery(DNA testing);
R2 = Retrieve(R1, Query: When did DNA testing start?);
R3 = QA([R2], Question: When did DNA testing start?)
Observation: Genetic testing began in the 1950s.
Reflection: Is previous step wrong: Yes

Step 2: Thought: Identify the agency that pioneered DNA testing.
Action:R1 = KnowledgeQuery(DNA testing);
R2 = Retrieve(R1, Query: What agency pioneered DNA testing?);
R3 = QA([R2], Question: What agency pioneered DNA testing?)
Observation: FBI.

Step 3: Thought: Identify the organization FBI shares jurisdiction with.
Action:R4 = KnowledgeQuery(FBI);
R5 = Retrieve(R4, Query: Who does FBI share jurisdiction with?);
R6 = QA([R5], Question: Who does FBI share jurisdiction with?)
Observation: DEA
Reflection: Is previous step wrong: No

Step 4: Thought: The reasoning process is over.
Action: R3 = Finish(DEA)
Observation: DEA

Complex QA ReasoningMathematical Reasoning
Question: Carolyn practices piano for 20 minutes daily and violin for three
times that. If she practice six days a week, how many minutes does she
practice per month with four weeks?

Figure 5: Case studies of solving Mathematical Reasoning and Complex QA Reasoning problems. Blue text
indicates the generation from the local agent while Red text indicates the generation from the cloud agent

(Madaan et al., 2023) uses an external meta-verifier
to assess the correctness of small model outputs and
decides whether to route to a large model, achiev-
ing query-level agent selection. SwiftSage (Lin
et al., 2024) makes rule-based judgments based
on feedback from the external environment to
determine whether to switch from Fast mode to
Slow mode, achieving action-level agent selection.
Corex (Sun et al., 2023) introduces a suite of strate-
gies designed to enhance the capabilities of LLMs
in complex task-solving, with a pivotal focus on
advancing multi-model collaboration.

In ADASWITCH, through self-reflection of local
agents and spontaneous collaboration with cloud
agents, achieves a better balance between cost and
performance.

4.2 Learning from Mistakes

The methods of learning from mistakes are mainly
categorized into two types: prompt-based and
finetune-based. For prompt-based methods, TRAN
(Yang et al., 2023) summarizes the reasons for past
errors of the LLM as rules, forming a set of rules.
During the inference stage, the model retrieves
rules from the rule set as part of the prompt to
assist in model reasoning. LEAP (Zhang et al.,
2024) improves the few-shot prompt by intention-
ally making the model make mistakes when solving
few-shot examples, allowing the model to reflect on
errors and acquire task-specific principles, which
help prevent making similar mistakes in the future.

RICP (Sun et al., 2024) proposes to retrieve the
relevant insights from previous mistakes and apply
hierarchical clustering to the reasons and insights.

For finetune-based methods, LEMA (An et al.,
2023) corrects model errors with GPT-4 and uses
the correction process as a new dataset for the
model to learn self-correction. By adding posi-
tive and negative prefixes to correct and incorrect
rationals in the training data, mistake tuning (Tong
et al., 2024) and NAT (Wang et al., 2024) can en-
hance model performance in the inference stage us-
ing positive prefixes. Wang et al. (2023) proposed
method enhances the model’s reasoning ability by
allowing the model to learn from self-reflection and
customized feedback.

In ADASWITCH, we utilize a finetune-based ap-
proach to enable the model to self-assess errors,
thereby allowing for self-correction or switching to
a more powerful LLM for assistance.

5 Conclusion

In this work, we advocate ADASWITCH, a novel
multi-agent collaboration framework that effec-
tively integrates the strengths of both locally de-
ployed and cloud-based LLMs. The local agent is
responsible for less complex reasoning steps, and
the cloud agent is dedicated to intricate reasoning
steps. Experimental results and in-depth analysis
demonstrate that ADASWITCH is able to bring sig-
nificant improvements in task performance while
using much less computational overhead.

8059

Limitations

In this work, we evaluate our proposed framework
on mathematical reasoning and complex question
answering tasks, and it remains to be investigated
in future work how to extend our approach to a
wider range of reasoning tasks. Besides, due to
constraints on computational resources and fund-
ing, we do not conduct experiments on larger scale
language models (>100B). Thus the performance
of larger LLMs remains undetermined. We will
further explore the performance of our framework
on larger scale language models in future research.

Acknowledgement

This work is supported in part by Ucap Cloud and
the State Key Laboratory of General Artificial In-
telligence.

Ethics Statement

This work was conducted in strict compliance with
the ACL Ethics Policy. All datasets and large lan-
guage models (LLMs) used for evaluation are pub-
licly available. Furthermore, our work aims to ex-
plore a multi-agent collaboration framework. We
do not foresee any negative ethical impacts arising
from our work.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng,
Jian-Guang Lou, and Weizhu Chen. 2023. Learn-
ing from mistakes makes llm better reasoner. arXiv
preprint arXiv:2310.20689.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. Gptq: Accurate post-training
quantization for generative pre-trained transformers.
arXiv preprint arXiv:2210.17323.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2022. Pal: Program-aided language
models. arXiv preprint arXiv:2211.10435.

Tobias Groot and Matias Valdenegro-Toro. 2024. Over-
confidence is key: Verbalized uncertainty evaluation
in large language and vision-language models. arXiv
preprint arXiv:2405.02917.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. 2023.
Minillm: Knowledge distillation of large language
models. In The Twelfth International Conference on
Learning Representations.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,
Jian-Guang Lou, and Weizhu Chen. 2022. Making
large language models better reasoners with step-
aware verifier. arXiv preprint arXiv:2206.02336.

Kevin J Liang, Weituo Hao, Dinghan Shen, Yufan
Zhou, Weizhu Chen, Changyou Chen, and Lawrence
Carin. 2020. Mixkd: Towards efficient distilla-
tion of large-scale language models. arXiv preprint
arXiv:2011.00593.

Bill Yuchen Lin, Yicheng Fu, Karina Yang, Faeze Brah-
man, Shiyu Huang, Chandra Bhagavatula, Prithviraj
Ammanabrolu, Yejin Choi, and Xiang Ren. 2024.
Swiftsage: A generative agent with fast and slow
thinking for complex interactive tasks. Advances in
Neural Information Processing Systems, 36.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-
Ming Chen, Wei-Chen Wang, Guangxuan Xiao,
Xingyu Dang, Chuang Gan, and Song Han. 2023.
Awq: Activation-aware weight quantization for
llm compression and acceleration. arXiv preprint
arXiv:2306.00978.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

Aman Madaan, Pranjal Aggarwal, Ankit Anand, Sriv-
idya Pranavi Potharaju, Swaroop Mishra, Pei Zhou,
Aditya Gupta, Dheeraj Rajagopal, Karthik Kappa-
ganthu, Yiming Yang, et al. 2023. Automix: Auto-
matically mixing language models. arXiv preprint
arXiv:2310.12963.

Shen-Yun Miao, Chao-Chun Liang, and Keh-Yih Su.
2021. A diverse corpus for evaluating and developing
english math word problem solvers. arXiv preprint
arXiv:2106.15772.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are nlp models really able to solve
simple math word problems? arXiv preprint
arXiv:2103.07191.

Subhro Roy and Dan Roth. 2016. Solving gen-
eral arithmetic word problems. arXiv preprint
arXiv:1608.01413.

8060

https://arxiv.org/pdf/2211.10435
https://arxiv.org/pdf/2211.10435
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692

Shannon Zejiang Shen, Hunter Lang, Bailin Wang,
Yoon Kim, and David Sontag. 2024a. Learning to de-
code collaboratively with multiple language models.
arXiv preprint arXiv:2403.03870.

Weizhou Shen, Chenliang Li, Hongzhan Chen, Ming
Yan, Xiaojun Quan, Hehong Chen, Ji Zhang, and Fei
Huang. 2024b. Small llms are weak tool learners: A
multi-llm agent. arXiv preprint arXiv:2401.07324.

Hao Sun, Yong Jiang, Bo Wang, Yingyan Hou, Yan
Zhang, Pengjun Xie, and Fei Huang. 2024. Retrieved
in-context principles from previous mistakes. arXiv
preprint arXiv:2407.05682.

Qiushi Sun, Zhangyue Yin, Xiang Li, Zhiyong Wu,
Xipeng Qiu, and Lingpeng Kong. 2023. Corex:
Pushing the boundaries of complex reasoning
through multi-model collaboration. arXiv preprint
arXiv:2310.00280.

Yongqi Tong, Dawei Li, Sizhe Wang, Yujia Wang, Fei
Teng, and Jingbo Shang. 2024. Can llms learn from
previous mistakes? investigating llms’ errors to boost
for reasoning. arXiv preprint arXiv:2403.20046.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2022. Musique: Multi-
hop questions via single-hop question composition.
Transactions of the Association for Computational
Linguistics, 10:539–554.

Renxi Wang, Haonan Li, Xudong Han, Yixuan Zhang,
and Timothy Baldwin. 2024. Learning from fail-
ure: Integrating negative examples when fine-tuning
large language models as agents. arXiv preprint
arXiv:2402.11651.

Zhaoyang Wang, Shaohan Huang, Yuxuan Liu, Jia-
hai Wang, Minghui Song, Zihan Zhang, Haizhen
Huang, Furu Wei, Weiwei Deng, Feng Sun, et al.
2023. Democratizing reasoning ability: Tailored
learning from large language model. arXiv preprint
arXiv:2310.13332.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,
Julien Demouth, and Song Han. 2023. Smoothquant:
Accurate and efficient post-training quantization for
large language models. In International Conference
on Machine Learning, pages 38087–38099. PMLR.

Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie
Fu, Junxian He, and Bryan Hooi. 2023. Can llms
express their uncertainty? an empirical evaluation
of confidence elicitation in llms. arXiv preprint
arXiv:2306.13063.

Haoyan Yang, Yixuan Wang, Xingyin Xu, Hanyuan
Zhang, and Yirong Bian. 2024. Can we trust llms?
mitigate overconfidence bias in llms through knowl-
edge transfer. arXiv preprint arXiv:2405.16856.

Zeyuan Yang, Peng Li, and Yang Liu. 2023. Fail-
ures pave the way: Enhancing large language mod-
els through tuning-free rule accumulation. arXiv
preprint arXiv:2310.15746.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W Cohen, Ruslan Salakhutdinov, and
Christopher D Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. arXiv preprint arXiv:1809.09600.

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khy-
athi Chandu, Kai-Wei Chang, Yejin Choi, and
Bill Yuchen Lin. 2023. Lumos: Learning agents
with unified data, modular design, and open-source
llms. arXiv preprint arXiv:2311.05657.

Tianjun Zhang, Aman Madaan, Luyu Gao, Steven
Zheng, Swaroop Mishra, Yiming Yang, Niket Tan-
don, and Uri Alon. 2024. In-context principle learn-
ing from mistakes. arXiv preprint arXiv:2402.05403.

8061

A Dataset Statistics

The dataset statistics used in this paper is shown in Table 5.

B Tool Definition

The tool definition is listed in Table 6.

Method Mathematical Reasoning Complex QA Reasoning

GSM8K G_Hard SVAMP ASDIV MultiArith MuSiQue HotpotQA

Train Data 7,500 instances from GSM8K 10,000 instances from MuSiQue
Test Data 1,000 1,000 1,000 1,000 1,000 500 500

Table 5: Datasets Statistics.

Task Type Action Types Function Descriptions Tools

QA

KnowledgeQuery(Entity) -> Knowledge Query the entity knowledge Wikipedia, Google Search

ParagraphRetrieval(Knowledge, Query)
-> Paragraphs

Retrieve relevant paragraphs
according to the query

dpr-reader-multiset-base

QA(Context, Query) -> Answer
Answer the query based on

the given context
GPT-series/open LLMs

Calculator(Expression) -> Value Calculate given math expressions WolframAlpha

(a) Actions used in Complex QA Tasks.

Task Type Action Types Function Descriptions Implementation

Math

Calculator(Expression) -> Value Calculate given math expressions

WolframAlpha
SetEquation(Expression) -> Equation Set equations based on given expressions

SolveEquation(Equation) -> Solutions Solve the set equations

Define(Variable) -> Variable Define a variable

SolveInequality(Inequality) -> Solutions Solve the given inequality

Code(Function_Description) -> Code Generate codes for math functions gpt-3.5-turbo

Count(List) -> Number Count the element number in a list Python

(b) Actions used in Mathematical Tasks.

Table 6: Action interfaces and execution module used in this paper.

8062

