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Abstract

While recent advances in Text-to-Speech (TTS)
technology produce natural and expressive
speech, they lack the option for users to se-
lect emotion and control intensity. We propose
EmoKnob, a framework that allows fine-grained
emotion control in speech synthesis with few-
shot demonstrative samples of arbitrary emo-
tion. Our framework leverages the expressive
speaker representation space made possible by
recent advances in foundation voice cloning
models. Based on the few-shot capability of
our emotion control framework, we propose
two methods to apply emotion control on emo-
tions described by open-ended text, enabling
an intuitive interface for controlling a diverse
array of nuanced emotions. To facilitate a more
systematic emotional speech synthesis field, we
introduce a set of evaluation metrics designed
to rigorously assess the faithfulness and rec-
ognizability of emotion control frameworks.
Through objective and subjective evaluations,
we show that our emotion control framework
effectively embeds emotions into speech and
surpasses emotion expressiveness of commer-
cial TTS services.1

1 Introduction

The complexity of human communication extends
far beyond mere verbal exchange. Vocal inflections
and emotional undertones play pivotal roles in con-
veying meaning. While text alone can be ambigu-
ous in meaning (Jenkins, 2020), different emotions
in voices can articulate different messages in the
same piece of text (Nygaard and Lunders, 2002).
Consider Shakespeare’s iconic phrase, To be or not
to be. This line can express despair, contemplation,
defiance, or resignation, depending on the speaker’s
emotional delivery, illustrating the profound impact
of vocal emotions in communication.

1See audio samples, code, and live demo at
emoknob.cs.columbia.edu.

The ultimate objective in the field of conversa-
tional systems is to develop intelligent agents capa-
ble of comprehending, deciding, and synthesizing
speech with nuanced emotional undertones. While
recent advances in Text-to-Speech (TTS) technol-
ogy have achieved remarkable naturalness and
expressiveness in synthesized voices(ElevenLabs;
OpenAI, 2024b; Microsoft), these systems lack the
capability for users to select and control the emo-
tional tone and intensity. The emotion conveyed in
the generated speech is solely determined by the
text, without allowing for variability or intensity
control.

Previous works on emotion control in speech
synthesis primarily focus on a few simple emotion
categories (Lei et al., 2022; Lorenzo-Trueba et al.,
2018; Kang et al., 2023; Qin et al., 2024). These
methods do not allow control of a more diverse
array of emotions. Synthesis for more complex and
heterogeneous emotions like charisma (Yang et al.,
2020) and empathy (Chen et al., 2024) is not well
studied.

Our work leverages recent breakthroughs in
foundation models for voice cloning (MetaVoice;
Anastassiou et al., 2024; suno.ai, 2023; Casanova
et al., 2024; Shen et al., 2018). By exploring the
rich expressiveness in these models’ latent embed-
ding spaces, we develop methods to extract a rep-
resentation for any emotion with just a few demon-
strative samples. These representations are inher-
ently synergistic with the speech generation ca-
pabilities of rapidly advancing voice cloning/TTS
models, enabling us to generate high quality speech
while applying fine-grained emotion controls. This
approach proves effective for both simple and com-
plex emotions and includes mechanisms to adjust
emotional intensity with a scalar knob.

Our framework’s capability of applying fine-
grained emotion control for any emotion with a
few demonstrative examples enables us to propose
two methods for applying emotion control based
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Figure 1: Fine-grained emotion control with EmoKnob. While existing TTS and voice cloning frameworks lack
the option for users to control emotions in speech, our framework allows users to embed arbitrary emotion with
a specified intensity in speech with few-shot samples. This framework allows us to propose two methods for
controlling emotions based on open-ended text descriptions of emotions.

on arbitrary text descriptions of emotions. We use a
synthetic-data-based and a retrieval-based method
to leverage recent advances in Large Language
Models (LLMs) and text embedding models (Ope-
nAI; Meng et al., 2024), in conjunction with our
few-shot emotion control framework, to address
a lack of open-ended captioned emotional speech
dataset.

We recognize that emotion control in speech
synthesis is still at its early stage, and traditional
evaluation metrics for TTS systems cannot com-
prehensively evaluate emotion control frameworks.
We therefore introduce a set of rigorous evalua-
tion metrics designed to systematically measure
the effectiveness of an emotion control framework
at faithfully conveying recognizable emotions.

With a set of subjective and objective evalua-
tions, we show that our framework produces faith-
ful and recognizable emotion control on speech.
We find that 83% of the participants consider that
speech with emotion enhancement by our frame-
work surpasses leading commercial TTS services
at conveying these emotions.

Expressive
Emotion
Control

Few-Shot
Emotion
Control

Open-Ended
Emotion
Control

Synergetic with
TTS Model
Advances

Classifier-Based
Style Transfer1 ✓ ✗ ✗ ✗

Domain
Adversarial
Training 2

✓ ✓ ✗ ✗

Voice Text
Descriptions3 ✗ ✗ ✓ ✗

Ours ✓ ✓ ✓ ✓

Table 1: Comparison between our framework and prior
works on emotion control in speech synthesis. Our
framework allows few-shot emotion control of arbitrary
emotions and is synergetic with rapidly advancing text-
to-speech models. We also propose two frameworks
that allow users to control emotions with open-ended
text emotion description. 1Lei et al. (2022); Lorenzo-Trueba et al.
(2018); Kang et al. (2023); Qin et al. (2024). 2 Jo et al. (2023). 3Guo et al.
(2022); Yang et al. (2023); Lacombe et al. (2024); Lyth and King (2024).

2 Related Work

2.1 Foundational Model for TTS and Voice
Cloning

Large foundational models have become the basis
of many machine learning fields such as text (Ope-
nAI et al., 2024) and images (Radford et al., 2021).
These large foundational models are trained in an
unsupervised manner with massive datasets and
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learn high quality representations of data, which
are commonly used directly or through fine-tuning
for downstream tasks.

The TTS domain also sees a rising trend in large,
foundational models. These end-to-end models
trained on large corpora provide natural speech
rendering from text. MetaVoice trains a 1.2B pa-
rameter model with 100K hours of speech for TTS;
Lajszczak et al. (2024) trains a 1B parameter model
on 100K open-domain speech data. Many of these
models are capable of replicating a speaker’s voice
in zero-shot or few-shots (MetaVoice; Anastassiou
et al., 2024; suno.ai, 2023; Casanova et al., 2024;
Shen et al., 2018). Our work explores how to
leverage the high quality speaker representation
learned by these foundational models to enhance
voice cloning with few-shot fine-grained emotion
control. In particular, we focus on manipulating
the latent speaker embedding in MetaVoice.

2.2 Emotion and Style Control in Speech
Synthesis

While models discussed in Section 2.1 and ex-
isting commercial services (OpenAI, 2024b; Mi-
crosoft; ElevenLabs) produce natural sounding
speech, their speech output’s emotions are primar-
ily decided by input text, and the emotion strength
cannot be controlled. Users thus cannot select
arbitrary emotions for a piece of text. However,
emotions expressed through acoustic-prosody serve
an important additional channel for conveying in-
formation (Gobl and Chasaide, 2003; Patel et al.,
2011; Laukkanen et al., 1997).

Previous work trains latent speech style space
on small corpora and cannot generalize to style
transfer beyond the training corpus (Zhang et al.,
2019). In addition, existing labeled emotional
speech datasets (Martinez-Lucas et al.; Poria et al.,
2019) are limited to a few categories of basic emo-
tions. Previous work thus commonly bases emotion
controls on categorical emotion label inputs and is
limited in types of emotions that can be controlled
(Lei et al., 2022; Lorenzo-Trueba et al., 2018; Kang
et al., 2023; Qin et al., 2024). Extending these
methods to control new emotions require extensive
retraining of models, preventing expressive emo-
tion control over many emotions. These methods’
requirement on large labeled datasets also prevents
emotional control on more complex, nuanced emo-
tions represented by more specialized, heteroge-
neous datasets such as charisma (Yang et al., 2020)
and empathy (Chen et al., 2024).

While Jo et al. (2023) uses domain adversarial
training to achieve few-shot emotion transfer, their
method requires training a style encoder built from
scratch and is not compatible with existing and fu-
ture large foundational models. Thus, it is unable to
improve naturalness and expressiveness in current
and future TTS model developments. Our work
provides a training-free framework that leverages a
foundation model’s TTS capability for single/few-
shot emotion control and is inherently synergetic
with growing foundation speech models.

2.3 Open-ended Text Prompt Control on
Voice

A recent strand of works use text description to con-
trol voices. Guo et al. (2022); Yang et al. (2023);
Lacombe et al. (2024); Lyth and King (2024) allow
users to describe qualities such as tone, pitch, gen-
der, and emotions of a voice before synthesizing
speech with the described voice. While existing
speech datasets lack text descriptions of voices,
this work bypasses this obstacle by creating syn-
thetic text captions based on acoustic-prosodic fea-
tures and speaker metadata. These methods do not
generalize well to text descriptions beyond the for-
mat and the scope of the synthetic captions. The
emotion control with these methods is limited to
the categorical emotion labels in speaker metadata.
These methods also do not allow voice cloning and
emotion variation on an unseen speaker. Based on
our method’s capability to enhance voice cloning
with single/few samples, we propose retrieval and
synthetic data based frameworks for synthesizing
expressive emotions with open-ended text descrip-
tions.

3 Methods

We apply fine-grained emotion controls by manip-
ulating the speaker embedding space of pre-trained
foundation voice cloning models. This framework
allows us to apply emotion control with few-shot
emotional speech samples. The few-shot capability
enables us to design two frameworks for applying
control with emotion specified by arbitrary text
descriptions.

3.1 Preliminaries: Pre-Trained Foundational
Voice Cloning Model

Existing voice cloning models (MetaVoice; Anas-
tassiou et al., 2024; suno.ai, 2023; Casanova et al.,
2024; Shen et al., 2018) can be abstracted into a
two-stage architecture with a speaker encoder E
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Figure 2: EmoKnob’s few-shot emotion control pipeline. EmoKnob first extracts an emotion direction vector in speaker
embedding space of pre-trained foundation voice cloning models with a pair of neutral and emotional sample. Then,
EmoKnob manipulates the reference speaker’s embedding with the obtained emotion direction vector and a specified
emotion strength to embed the emotion into speech.
that takes in a speaker reference clip xs and out-
puts a speaker embedding us. A conditional text-
to-speech decoder D then takes in input text I to
output speech audio ys,I = D(us, I) that utters I
replicating speaker’s voice. We will manipulate the
speaker embedding space (output space of E and
conditional input space of D) to obtain an emo-
tion representation and obtain few-shot emotion
control.
3.2 Few-Shot Fine-Grained Emotion Control
We hypothesize that a pre-trained foundation voice
cloning model’s speaker embedding provides ex-
pressive representations for acoustic-prosodic qual-
ities. Our framework disentangles how an speaker
embedding represents speaker-specific qualities
and speaker-independent emotions. We then use
the speaker-independent emotions obtained to ap-
ply fine-grained emotion control on an arbitrary
speaker representation. We show this process for
few-shot fine-grained emotion control in Figure 2.

We disentangle speaker-specific qualities and
speaker-independent emotion representations by
using paired samples of emotional speech xie and
neutral speech xin from the same speaker. We en-
code representations uie, u

i
n for these i-th pairs of

samples in a speaker embedding space with the
pre-trained speaker encoder E: uie = E(xie), u

i
n =

E(xin).
We hypothesize that taking their difference re-

sults in a speaker-independent emotion direction
vector vie. In addition, we normalize vie for conve-
nient fine-grained emotion strength control later:
vie =

ui
e−ui

n

||ui
e−ui

n||
We can obtain the emotion direction vector by

averaging over many pairs of samples. We will
show in experiments that single-shot (N = 1) suf-
fices to produce high-quality emotion control in
many cases:

ve =
1

N

N∑

i=1

uie − uin
||uie − uin||

Given a new speaker reference sample xs, we
hope to replicate the speaker’s voice qualities while
controlling emotions in an utterance. We first ob-
tain the reference speaker’s speaker embedding
with us = E(xs). Then, we apply emotion control
with

us,e = us + α · ve
where emotion control strength α is a scalar that
enables fine-grained control of emotion intensity.
We hypothesize that larger α values lead to more
intense emotions in the speech produced.

Finally, we use pre-trained decoder D to synthe-
size ys,I,e, a speech utterance of text I replicating
speaker s’s voice while conveying emotion e.

3.3 Towards Open-Ended Text Prompted
Emotion Control

Our framework’s ability to apply emotion con-
trols with the few-shot demonstration allows us
to design two frameworks that take in open-ended
text description of an emotion and apply fine-
grained control on output speech for the specified
emotion. These frameworks allow synthesis of
speech with emotions such as Romantic, full of de-
sire and Grateful, appreciative, thankful, indebted,
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Figure 3: EmoKnob enables emotion control with open-ended text descriptions of emotion. Based on recent advances
in LLMs and EmoKnob’s capability of applying emotion control with few-shot samples, we propose two methods
that bypass the data insuffiency problem in emotional speech and embed emotions described by open-ended text
descriptions into speech.

blessed that are nuanced in details and lack exist-
ing datasets. Both frameworks take advantage of
recent development in LLMs to overcome the lack
of a labeled emotional speech dataset.

3.3.1 Synthetic Data-Based Method

While existing TTS models and services do not al-
low emotion control, they produce expressive and
accurate emotions for texts that obviously convey
the emotions (OpenAI, 2024b; Microsoft; Eleven-
Labs). We leverage this quality to generate syn-
thetic emotional samples that can be used for emo-
tion control with our framework. We show this
process in Figure 3(a).

Given a text description T of an emotion e, we
prompt an LLM to generate N text samples I1,··· ,Ne ,
that obviously convey the emotion: I1,··· ,Ne =
LLM(T ). Prompted with prompts such as Gen-
erate 10 sentences that someone would say when
feeling [emotion], LLM generates emotional texts
that conveys emotion e. Then, we use expressive
commercial TTS services to obtain an emotional
speech sample x1···ie : xie = TTS(xie).

We can obtain neutral audio samples with the
same procedure by first prompting LLM with
prompts such as Generate 10 simple fact statements
to generate neutral texts. Then, we can obtain the
neutral audio samples xin with the TTS services.

We can then use the emotional speech samples
obtained xie and xin with our few-shot emotion con-
trol framework to apply fine-grained emotion con-
trol on new speakers.

3.3.2 Transcript Retrieval-Based Method
While a synthetic-data-based method enables open-
ended emotion control while bypassing the lack
of captioned emotion datasets, the high cost of ex-
pressive TTS services limits the framework’s wide
usage. In this section, we hypothesize that in exist-
ing datasets with speech-transcript pairs, transcripts
that obviously convey an emotion are matched with
audio clips that convey the emotion. We leverage
recent developments of text embedding models and
document retrieval pipeline to find emotional au-
dio samples that we can use for few-shot emotion
control. We show this pipeline in Figure 3(b).

Given a text description T of an emotion e and
a text embedding model M , we retrieve transcript-
audio pairs (Ije , x

j
e) in a dataset such that the tran-

script Ije best matches the emotion description:
j = argmaxj M(Ije )TM(T ).

We can find neutral samples xn either with the
same retrieval pipeline or neutral labels in the
dataset, which are more widely available than di-
verse emotion labels.

4 Experiments

4.1 Evaluation Metrics

4.1.1 Subjective Evaluations
Given the novelty of fine-grained emotion con-
trol in text-to-speech synthesis, there is not an
established paradigm for examining this capability.
To rigorously test the objective of providing
fine-grained, faithful emotion control, we proposed
the following subjective evaluation metrics:
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Emotion Selection Accuracy (ESA): Par-
ticipants compare audio samples with and without
control generated from emotion-neutral text,
selecting which better conveys the emotion. ESA
measures the percentage choosing the controlled
audio and tests the system’s ability to embed any
emotions to any text.
Emotion Enhancement Accuracy (EEA): Partic-
ipants compare audio samples with and without
control generated from emotion-matching text,
selecting which better conveys the emotion. EEA
measures the percentage choosing the controlled
audio and tests the method’s ability to amplify
text’s emotions.
Emotion Discrimination Test (EDT): Participants
compare two audio samples generated from the
same neutral text and controlled with different
emotions, selecting the one matching a given
emotion. EDT evaluates the distinguishability and
faithfulness of emotion control.
Emotion Identification Test (EIT): Participants
identify the emotion in a controlled audio sample
from neutral text, choosing between two emotion
labels. EIT measures the accuracy of emotion
identification and verifies the recognizability of
emotions resulted from emotion control.
Emotion Selection Comparison (ESC): Partic-
ipants compare our emotion-controlled audio to
commercial TTS audio with neutral text, selecting
which conveys more specified emotion. ESC
measures percentage of selecting our controlled
audio and evaluates system advantage over existing
TTS services to embed any emotion into any text.
Emotion Enhancement Comparison (EEC):
Similar to ESC, but with emotion-matching text.
EEC evaluates emotion expressiveness after
control compared to commercial TTS without
emotion control functionality.
Emotion Strength Test (EST): Participants
compare two audio samples controlled with the
same emotion but different emotion strengths
α, selecting which conveys more emotion. EST
measures correct response percentage and evalu-
ates our framework’s effectiveness at fine-grained
control over emotion intensity.

Since all metrics are calculated from binary
choice questions, 50% serves as the random guess
baseline to all metrics. We asked one question
for each emotion and each metric to 23 university
student volunteers from our lab and recruited on
campus. Participants are told that responses are
used to evaluate a new emotional text-to-speech

framework. This study is approved by IRB. We
anonymized the participant response. We pro-
vided the full subjective evaluation survey we
used at https://frolicking-baklava-af4770.
netlify.app/. For EEC and ESC, we compared
speech generated from our framework with speech
generated with ElevenLabs (ElevenLabs).

4.1.2 Objective Evaluation
Since our goal is to preserve source speaker iden-
tity and maintain accurate text-to-speech synthesis
while conducting emotion control, we follow previ-
ous voice cloning work (Anastassiou et al., 2024;
Shah et al., 2023) on measuring word error rate
(WER) and speaker similarity (SIM). We use 100
texts from Common Voice dataset (Ardila et al.,
2020) to calculate WER and SIM.

For WER, we first transcribe the generated clips
with Whisper-large-v3 (Radford et al., 2022) and
calculate WER with jiwer library (nikvaessen). We
use the WER of audio generated without any emo-
tion control (original voice cloning model) as a
baseline of comparison. Similar WER between
emotion-controlled audio and baseline suggests
that our framework preserves the high quality TTS
in base voice cloning models.

For SIM, we used spkrec-ecapa-voxceleb (Ra-
vanelli et al., 2021) to measure the similarity be-
tween generated audio and a reference speaker
clip. We use SIM between audio generated with-
out any emotion control and a reference speaker
clip as baseline. Similar SIM between the base-
line and using emotion-controlled audio suggests
our framework’s faithful replication of reference
speaker while applying emotion control.

4.2 Experiment Details

We use MetaVoice-1B (MetaVoice) as the base
voice cloning model, while our framework can
be easily extended to any embedding-conditioned
voice cloning model. We conduct speech gen-
eration on a single NVIDIA L40 GPU. We use
an additional NVIDIA L40 GPU for text re-
trieval in text-retrieval based open-ended emotion
control. We provide an audio sample page at
emoknob.cs.columbia.edu.

4.3 Single-Shot Control of Simple Emotions

We first show our framework’s effectiveness on
fine-grained emotion control with simple emotion
categories: Happy, Surprise, Angry, Sad, Disgust,
Contempt. We obtain an emotion direction vector
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in single-shot (one pair of same-speaker emotional
and neutral speech clips) from the MSP Podcast
dataset (Lotfian and Busso, 2019). We fix emotion
strength α to be 0.4 for all samples in evaluation.

We report the subjective evaluation results in
Table 2 and the objective evaluate results with a
standard deviation in Table 3. High ESA and ESC
values shows that our emotion control framework
is capable of embedding arbitrary emotion in any
text, surpassing commercial TTS services without
emotion control option. High EEA and EEC val-
ues show that our framework enhances emotions
into emotion-matching text, surpassing emotion ut-
terances of commercial TTS services. High EDT
and EIT values show that our framework produces
recognizable emotions in speech. High EST val-
ues show that the emotion strength α option in our
framework faithfully produces different strengths
of emotions specified by corresponding values.

Speech produced from emotion control shows
similar WER within uncertainty as a baseline of
no emotion control and thus preserves high quality
TTS of the base model. Emotion-controlled speech
also shows similar SIM within uncertainty as the
baseline, showing that our framework preserves
speaker identity well while conducting emotion
control.

ESA↑ EEA↑ EDT↑ EIT↑ ESC↑ EEC↑ EST↑

Happy 100% 100% 100% 100% 100% 100% 83%
Surprise 100% 100% 91% 44% 100% 61% 91%
Angry 82% 100% 82% 74% 100% 100% 100%
Sad 100% 83% 91% 100% 100% 83% 74%
Disgust 74% 91% 91% 74% 61% 83% 91%
Contempt 61% 83% 13% 52% 74% 74% 74%

Averages 86% 93% 78% 74% 89% 83% 86%
Baseline 50% 50% 50% 50% 50% 50% 50%

Table 2: Subjective evaluation results for emotion con-
trols with simple emotions.

WER ↓ SIM ↑

Happy 0.143 ± 0.349 0.662 ± 0.087
Surprise 0.061 ± 0.107 0.703 ± 0.076
Angry 0.082 ± 0.211 0.712 ± 0.060
Sad 0.113 ± 0.297 0.719 ± 0.059
Disgust 0.05 ± 0.139 0.719 ± 0.063
Contempt 0.053 ± 0.098 0.712 ± 0.069
Average 0.085 ± 0.208 0.705 ± 0.077
w/o Emotion Control 0.079± 0.160 0.719 ± 0.071

Table 3: Objective evaluation results for controls with
simple emotions.

4.4 Two-Shot Control of Complex Emotion
Our framework allows a few-shot transfer of emo-
tion onto new speakers and bases such transfer
on expressive representation of foundation voice

cloning models. We show that these features en-
able previously not studied controls on more com-
plex, composite, and nuanced emotions. Our exper-
iments focus on two emotions with corresponding
datasets: (1) charisma defined as conveying the
personality of leadership and persuasiveness (Yang
et al., 2020); and (2) compassionate empathy de-
fined as understanding another’s pain as if we are
having it ourselves and taking action to mitigate
problems producing it (Chen et al., 2024). For each
emotion, we use two pairs of emotional and neutral
speech from two speakers. We fix emotion strength
α = 0.4 for all samples.

We report the subjective and objective evalua-
tion results in 4. Subjective evaluation results show
that our framework produces recognizable, faith-
ful emotion selection and enhancement, surpassing
commercial TTS on uttering specified emotions.
Speech produced from emotion control shows sim-
ilar WER and SIM within uncertainty as the base-
line of no emotion control, showing that our frame-
work preserves accurate TTS of the base model and
speaker identity while conducting emotion control.

ESA↑ EEA↑ ESC↑ EEC↑ WER↓ SIM↑

Empathy 74% 83% 100% 22% 0.074± 0.07 0.712± 0.06
Charisma 83% 91% 74% 74% 0.031± 0.08 0.680 ± 0.07
Baseline 50% 50% 50% 50% 0.079 ± 0.16 0.719 ± 0.07

Table 4: Subjective and objective evaluation results for
controls with complex emotions

4.5 Synthetic Data-Based Open-Ended
Emotion Control

ESA↑ EEA↑ ESC↑ EEC↑ WER↓ SIM↑

Desire 61% 61% 61% 83% 0.066± 0.13 0.713 ± 0.07
Envy 83% 74% 61% 74% 0.085± 0.13 0.704± 0.07
Romance 61% 91% 52% 91% 0.076± 0.12 0.713± 0.06
Sarcasm 61% 61% 74% 74% 0.120± 0.20 0.717± 0.07
Baseline 50% 50% 50% 50% 0.079 ± 0.16 0.719± 0.07

Table 5: Subjective and objective evaluation results
for open-ended controls with emotion text descriptions
through a synthetic data-based method.

We experiment with our synthetic-data based
framework for emotion control on arbitrary text
emotion description with emotions that do not have
previously collected labeled datasets for emotional
speech synthesis: Desire, enviousness, romance,
sarcasm. We use GPT4-o (OpenAI) to generate
emotional and neutral speech texts. We use Eleven-
Labs (ElevenLabs) to generate 10 pairs of samples
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(10 speakers) for each emotion. We fix emotion
strength of α = 0.4 for all samples.

We report the subjective and objective evaluation
results in Table 5. Subjective evaluations indicate
our recognizable and faithful emotion control in
speech, outperforming commercial TTS in express-
ing specific emotions. Additionally, speech from
our emotion control maintains similar WER and
SIM to the baseline, confirming that our framework
effectively preserves the base model’s accuracy and
speaker identity while controlling emotions.

4.6 Retrieval-Based Open-Ended Emotion
Control

Since a text retrieval model works best with descrip-
tive, detailed texts, we focus on longer emotion
descriptions of three emotions that lack established
labeled datasets shown in Table 6. We prefix the
emotion descriptions with the retrieval prompt of
Given a description, retrieve relevant transcript
lines whose overall style/emotions matches the de-
scription to enable retrieval models focused on the
overall emotion of the transcript and avoid keyword
matching. We use SFR-Embedding-Mistral (Meng
et al., 2024) as the text embedding model. We use
10 pairs of emotional and neutral samples for each
emotion. We fix emotion strength α = 0.5 for all
samples.

We report the subjective evaluation results and
objective evaluate results with a standard deviation
in Table 6. The evaluation results show that our
framework produces recognizable, faithful emotion
selection and enhancement while preserving base
model accuracy and reference speaker identity.

ESA↑EEA↑ ESC↑ EEC↑ WER↓ SIM↑

Grateful ... 1 83% 83% 83% 61% 0.146± 0.38 0.650± 0.07
Curious, ... 2 61% 100% 61% 22% 0.124± 0.29 0.655± 0.06
Blaming 65% 69% 74% 74% 0.112± 0.21 0.630± 0.06
Desire ... 3 78% 100% 100% 91% 0.062± 0.14 0.664± 0.09
Baseline 50% 50% 50% 50% 0.079 ± 0.16 0.719± 0.07

Table 6: Subjective and objective evaluation results
for open-ended controls with emotion text descriptions
through retrieval-based methods. 1 Grateful, appreciative, thank-
ful, indebted, blessed. 2 Curious intrigued. 2 Desire and excitement.

5 Ablation Studies

In this section, we conduct ablation studies that
vary the shot (sample) number when obtaining the
emotion direction vector and the emotion control
strength α when applying emotion control. These
ablation studies help users decide how to select
these hyper-parameters. We report in Table 4 SIM
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Figure 4: Ablation results measuring SIM and WER
with varying shot number and emotion strength.

and WER with audio generated with 100 Common
Voice texts while applying emotion control of sim-
ple emotions with varying shot numbers and emo-
tion strengths. We observe that both SIM and WER
are insensitive to shot number and degrades as emo-
tion control strength increases. Users thus need to
trade off between generating more emotional clip
with higher emotion strength and accurate TTS and
voice clone. However, a larger number of samples
make the method more robust in larger emotion
control strength. Users thus could employ a larger
number of samples to compensate the TTS quality
decrease while obtaining more emotional speech.

6 Conclusion and Future Works

We proposed EmoKnob, a framework that enables
fine-grained emotion control in voice cloning with
few-shot samples. We also propose a synthetic-
data-based and a retrieval-based method to em-
bed emotions described by open-ended text into
speech synthesis. Given novelty of the emotion
control domain, we proposed a set of metrics to
rigorously evaluate faithfulness and recognizabil-
ity of emotion control. Our method establishes a
new way of extracting emotion representation in
foundation speech models thus bypassing data lim-
itations. Future works can further explore emotion
control paradigms such as synthesizing emotions in
conversation turns based on these representations.
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Limitations

Naturalness and expressiveness of speech created
by our framework is constrained by base voice
cloning model. However, since we are seeing
rapid advances in foundation speech models, and
our method is inherently synergetic with these ad-
vances, speech produced by EmoKnob will naturally
improve as voice cloning models scale up and im-
prove.

Potential Risks

Risks in speech identity theft in voice cloning apply
to our work. Practices such as voice cloning de-
tection (Malik, 2019) and phasing out voice-based
authentication systems (OpenAI, 2024a) help miti-
gate risks of our works.
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