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Abstract

Extracting finite state automata (FSAs) from
black-box models offers a powerful approach
to gaining interpretable insights into complex
model behaviors. To support this pursuit, we
present a weighted variant of Angluin’s (1987)
L˚ algorithm for learning FSAs. We stay faith-
ful to the original formulation, devising a way
to exactly learn deterministic weighted FSAs
whose weights support division. Furthermore,
we formulate the learning process in a manner
that highlights the connection with FSA min-
imization, showing how L˚ directly learns a
minimal automaton for the target language.

github.com/rycolab/weighted-angluin

1 Introduction

Learning formal languages from data is a classic
problem in computer science. Unfortunately, learn-
ing only from positive examples is impossible, as
shown by Gold (1978). However, by granting the
learner access to more than just positive examples,
Angluin (1987) introduced the active learning
scheme L˚, where the learner interacts with an
oracle by asking it queries. Concretely, Angluin’s
(1987) L˚ algorithm learns regular languages in
the form of deterministic finite-state automata
(DFSAs) from membership queries (analogous to
asking for a ground truth label of a string in the
training dataset) and equivalence queries (analo-
gous to asking whether a hypothesis is correct).

Weighted formal languages, where strings are
assigned weights such as probabilities or costs,
naturally generalize membership-based (boolean)
formal languages. Weighted languages, especially
probabilistic languages, serve as a cornerstone in
the conceptual framework of many NLP problems
(Mohri, 1997). Their significance is twofold: first,
in practical applications, where they underpin algo-
rithms for tasks such as parsing (Goodman, 1996)
and machine translation (Mohri, 1997), and second,
as an analytical framework for better understanding

modern language models (Weiss et al., 2018;
Jumelet and Zuidema, 2023; Nowak et al., 2024,
inter alia). The practical applications in NLP, cou-
pled with theoretical interests in formal language
theory, have motivated the development of various
weighted extensions of Angluin’s (1987) L˚. For
instance, Weiss et al. (2019) describes a generaliza-
tion of L˚ that (approximately) learns a probabilis-
tic DFSA by querying a neural language model
to interpret it. Additionally, and less faithfully to
the original L˚ algorithm, multiple algorithms for
learning non-deterministic weighted FSAs have
been proposed (Bergadano and Varricchio, 1996;
Beimel et al., 2000; Balle and Mohri, 2012; Balle
et al., 2014; Daviaud and Johnson, 2024).

In this paper, we present a novel weighted gener-
alization of the L˚ algorithm that learns semifield-
weighted deterministic FSAs with membership and
equivalence queries. In contrast to other algorithms
inspired by L˚, ours is a true generalization, i.e.,
we generalize Angluin’s (1987) original algorithm,
resulting in a familiar procedure that, just like the
original, learns a deterministic FSA exactly in
a finite number of steps if the automata can be
determinized.1 Additionally, we loosen the require-
ment for field-weighted FSAs made by spectral
algorithms, e.g., Balle and Mohri’s (2012) algo-
rithm, that learn non-deterministic automata; our
algorithm only requires a semifield-weighted FSA.
Interestingly, our exposition further illuminates
the connection between three important algorithms
for weighted FSAs: minimization (Hopcroft and
Ullman, 1979; Mohri, 1997), weight pushing
(Mohri, 1997; Mohri and Riley, 2001) and L˚.

2 Weighted Regular Languages

Semirings and Semifields. A monoid is a 3-
tuple pK, ‚,1q, where K is a set, ‚ : K ˆ K Ñ K
is an associative operator, and 1 P K is
a distinguished identity element such that

1All boolean-weighted FSA can be determinized, which is
why Angluin’s (1987) L˚ always halts.
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1 ‚ w “ w ‚ 1 “ w for any w P K. A monoid is
commutative if ‚ is a commutative operator. A
group is a monoid pK, ‚,1q where every element
has an inverse: for every w P K there exists a
w´1 P K such that w ‚ w´1 “ w´1 ‚ w “ 1; we
use the notation w1{w2 as an alias for w´1

2 b w1.
A semiring pK,‘,b,0,1q is a 5-tuple where
pK,‘,0q is a commutative monoid, pK,b,1q is a
monoid, b distributes over ‘ and 0 is an annihila-
tor for b. A semifield is a semiring pK,‘,b,0,1q
where pKzt0u,b,1q is a commutative group.

Strings and Languages. An alphabet Σ is a
non-empty, finite set of symbols. A string is a
finite sequence of symbols from an alphabet. We
write xy to denote the concatenation of the strings
x and y. Let Σn`1 def“ tya | y P Σn, a P Σu and
Σ0 def“ tεu, where ε is the empty string. The Kleene
closure Σ˚ def“ Ť8

n“0Σ
n of Σ is the set containing

all strings made with symbols of Σ. We further
introduce the set Σďk “ Ťk

n“0Σ
k. Given an alpha-

bet Σ and a semiring xK,‘,b,0,1y, a weighted
formal language is a function L : Σ˚ Ñ K that
assigns weights w P K to strings y P Σ˚. Unless
differently specified, in this paper we will assume
that all weighted languages are semifield-weighted.

Weighted Finite-state Automata. A weighted
finite-state automaton (WFSA) A over a semifield
xK,‘,b,0,1y is a 5-tuple pΣ, Q, δ, λ, ρq where
Σ is an alphabet, Q is a finite set of states, δ is

a set of weighted arcs rendered as p
a{wÝÝÑ q with

p, q P Q, a P Σ, and w P K,2 and λ : Q Ñ K and
ρ : Q Ñ K are the initial and final weight function,
respectively. A path π in A is a finite sequence of
contiguous arcs, denoted as

q0
a1{w1ÝÝÝÑ q1, ¨ ¨ ¨ , qN´1

aN {wNÝÝÝÝÑ qN . (1)

We call i pπq “ q0 the initial state of the path, and
f pπq “ qN the final state of the path. The weight
of π is w pπq “ w1 b ¨ ¨ ¨ b wN and its yield is
σ pπq “ a1 ¨ ¨ ¨ aN . With ΠA, we denote the set
of all paths in A, and with ΠAppq the subset of
all paths in A with yield p. We say that a WFSA
A “ pΣ, Q, δ, λ, ρq is deterministic (a WDFSA)
if, for every p P Q, a P Σ, there is at most one

q P Q such that p
a{wÝÝÑ q P δ with w ą 0, and

there is a single state qI with λ pqIq ‰ 0. In such

2We do not consider ε-transitions. This is without loss
of generality; any regular language can be represented by an
ε-free automaton (Mohri, 2009, Theorem 7.1).

case, we refer to qI as the initial state. Naturally,
a WDFSA can have at most one path yielding a
string y P Σ˚ from the initial state qI .

Weighted Regular Languages. Every WFSA A
generates the weighted language

LAppq def“ à

πPΠAppq
λpi pπqq bw pπq bρpf pπqq (2)

for p P Σ˚. We define the set supppLq “ tp P
Σ˚ | Lppq ‰ 0u to be the support of L. A
weighted language is said to be regular if there
exists a WFSA that generates it. If two WFSAs
generate the same language, they are said to be
equivalent. Finally, a weighted regular language is
said to be deterministic if there exists a WDFSA
that generates it. In contrast to the boolean case,
not every weighted regular language can be
generated by a deterministic WFSA (Allauzen
and Mohri, 2003), and, therefore, weighted
deterministic regular languages are a strict subset
of weighted regular languages. This distinction
plays a critical role in our exposition—we develop
a generalization of Angluin’s (1987) algorithm that
learns weighted deterministic regular languages.

3 Minimal Deterministic Automata

We now introduce the notion of right language
equivalence between two strings. It provides
the basis for active learning (Biermann and
Feldman, 1972; Angluin, 1987) and minimization
algorithms (Hopcroft and Ullman, 1979; Mohri,
1997), and with it, our weighted extension of L˚.
We begin by defining a notion of equivalence
between two languages L1 and L2 with weights
on the same semifield xK,‘,b,0,1y. We write
L1 ” L2 if there exists a k P Kzt0u such that
L1ppq “ kbL2ppq for every p P Σ˚ .3 Next, given
a weighted language L and y P Σ˚, we define y’s
right language y´1Lppq def“ Lpypq for p P Σ˚.
The definition of right language naturally induces
on Σ˚ the right language equivalence relation
y „L x ðñ y´1L ” x´1L, x,y P Σ˚ (Mohri,
1997).4 The core intuition behind both minimiza-
tion (Hopcroft and Ullman, 1979; Mohri, 1997)
and active learning algorithms (Angluin, 1987) is
that of building a DFSA whose states correspond
to the right language equivalence classes of L.

3” is an equivalence relation; see App. A.
4The fact that „L is an equivalence relation follows di-

rectly from the fact that ” is an equivalence relation.
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Minimality. We say that a WDFSA is minimal
if no other equivalent WDFSA has fewer states
(Mohri, 1997). The Myhill–Nerode theorem binds
right-equivalence classes of a regular language to
the states of the minimal DFSA (Hopcroft and Ull-
man, 1979). We state its weighted version:

Theorem 1 (Myhill–Nerode). Let A be a semifield-
weighted DFSA and LA its weighted language.
Then, „LA induces a finite number of equivalence
classes on Σ˚, which equals the number of states
of a minimal automaton for LA.

Proof. See App. C.1. ■

In a DFSA A, every state q can be uniquely iden-
tified as qp,5 where p is the string that is read by
traversing the non-zero-weight path from the initial
state to q. Therefore, it is straightforward to ex-
tend the notion of right language equivalence from
strings to states of A as qp „LA py ðñ p „LA
y. Minimization algorithms for unweighted DF-
SAs are based on merging states that are right-
equivalent (Hopcroft and Ullman, 1979). This strat-
egy can be adapted to WDFSAs after canonicaliz-
ing the distribution of the weights over the WDFSA
transitions with weight pushing (Mohri, 1997). 6

4 A Weighted L˚ Algorithm

We now present our weighted L˚ algorithm. Let
xK,‘,b,0,1y be a semifield and L‹ : Σ˚ Ñ K a
deterministic regular language. As Angluin (1987),
we assume that we have access to an oracle that
can answer the following queries about L‹:
(1) Membership query: What is the weight

L‹ ppq of the string p P Σ˚?
(2) Equivalence query: Does an hypothesis au-

tomaton H generate L‹? If it does not, the
oracle provides a counterexample, which is
a string t such that LHptq ‰ L‹ptq.

Our algorithm reduces to Angluin’s (1987) in the
case of the boolean semifield.

5More precisely, this holds for DFSAs where every state is
accessible—a condition we will assume throughout the paper
without loss of generality.

6In the weighted case, equivalent automata with the same
topology but different weight distribution along the transi-
tions and the initial and final weights exist. Weight pushing
(Mohri, 1997) re-distributes the weights while preserving the
language generated by the automaton. It can be used to obtain
a canonical weight distribution, which facilitates, for instance,
WDFSA equivalence testing. In essence, our algorithm learns
a minimal WDFSA of a weighted regular language.

4.1 The Hankel Matrix

Let L be a weighted language as above. L’s Han-
kel matrix H is a bi-infinite matrix indexed by
elements of Σ˚ defined entry-wise as Hpp, sq def“
Lppsq for p, s P Σ˚. Additionally, for every
p P Σ˚, we define the function Hp : Σ˚ Ñ K
as Hppsq def“ Hpp, sq “ p´1Lpsq for s P Σ˚.

The L˚ algorithm learns from an empirical
Hankel matrix. Let rP Ď Σ˚ be a prefix-closed set
of prefixes and let rS Ď Σ˚ be a suffix-closed set
of suffixes.7 The empirical Hankel matrix rH is
a matrix of size |rP ˝ Σď1| ˆ |rS| defined entry-wise
as rHpp, sq def“ Lppsq for p P rP ˝ Σď1, s P rS.
Analogously to the Hankel matrix, we define the
function rHp : rS Ñ K as rHppsq def“ rHpp, sq for
every s P rS. Note that rHp is a restriction of Hp to
a finite domain. We define the equivalence relation
” on the set t rHp | p P rP ˝ Σď1u as we did for
weighted languages p§3q. We say that rH is:
(1) closed if, for every p P rP and a P Σ, there

exists p1 P rP such that rHpa ” rHp1 ;
(2) consistent if, for every p,p1 P rP and a P Σ

we have that rHp ” rHp1 ùñ rHpa ” rHp1a.
Given a closed and consistent empirical Hankel

matrix rH : rP ˝ Σď1 ˆ rS Ñ K, we define the
following equivalence relation on rP ˝ Σď1:

p„ rHp1 ðñ rHp ” rHp1 . (3)

We note the similarity to the right language equiv-
alence relation on Σ˚ induced by a weighted lan-
guage (cf. §3). Because rP is finite by assumption,
the relation „ rH induces a finite number of equiva-
lence classes rP ˝ Σď1{„ rH. We denote each equiv-
alence class as rps “ tp1 P rP ˝ Σď1 | p1 „ rH pu.

4.2 The Empirical Hankel Automaton

We now introduce the conversion of an empirical
Hankel matrix into a WDFSA, the empirical Han-
kel automaton H “ pΣ, Q, δ, λ, ρq. We first detail
how to construct H’s states, transitions, and initial
and final weights:
(1) States. We define the states Q to be in a

one-to-one correspondence with rP{„ rH: Each
state qrps P Q corresponds to an equivalence
class rps P rP{„ rH. Here, p P rP is a repre-
sentative of the class, which we assume to be
fixed throughout the construction of H. We

7A set of strings is prefix-closed (suffix-closed) if it con-
tains all prefixes (suffixes) of each of its elements.
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also define the map r : rP ˝ Σď1 Ñ rP that as-
signs to each prefix the representative of its
equivalence class; rpp1q “ p ðñ p1 P rps.

(2) Transitions. For every state qrps P Q,
and every symbol a P Σ, let the transition

qrps
a{wÝÝÑ qrrppaqs be in δ, where

w
def“

À
sPrS

rHppa, sq
À

sPrS
rHpp, sq (4)

if
À

sPrS
rHpp, sq is non-zero, and w

def“ 0 else.
(3) Initial weight. For every state qrps P Q, we

define the initial weighting function as

λpqpq def“
#À

sPrS
rHpε, sq p “ ε

0 p ‰ ε
(5)

(4) Final weights. For every state qrps, we define
the final weight

ρpqrpsq def“
rHpp, εq

À
sPrS

rHpp, sq (6)

if
À

sPrS
rHpp, sq is non-zero, and ρpqrpsq def“ 0

else.

Theorem 2 (The empirical Hankel Automaton).
Let rH : rP˝Σď1ˆrS Ñ K be a closed and consistent
empirical Hankel matrix and let H be the empirical
Hankel automaton induced by rH. Then:
(1) H is a well-defined WDFSA.
(2) LHppsq “ rHpp, sq for all p P rP and s P rS,

meaning that H is consistent with rH.
(3) H is minimal.

Proof. See App. C.2. ■

4.3 The Learning Algorithm

Our weighted L˚ algorithm, with its main loop
detailed in Alg. 1, employs the subroutines
outlined in Alg. 2.

Initialization. The prefix and suffix sets rP and
rS are initialized as tεu and the empirical Hankel
matrix to the zero matrix.

Handling inconsistencies. The subroutine
MAKECONSISTENT in (Line 7,Alg. 1, and Alg. 2)
looks for rows p,p1 P rP that make rH non-
consistent: rHp ” rHp1 , but rHpa ı rHp1a for some
a P Σ. To find the column(s) that make the relation
rHpa ” rHp1a not true, we normalize over the sum
of row entries and compare each entry pair-wise

Algorithm 1 The Weighted L˚ algorithm. Initially,
the empirical Hankel matrix rH is set to the zero
matrix and the sets rP, rS to the empty string ε.

1. def L˚ (O):
2. while true :
3. while true :
4. if rH is not consistent :
5. MAKECONSISTENTpO, rHq
6. else if rH is not closed :
7. MAKECLOSEDpO, rHq
8. else : break
9. H Ð MAKEAUTOMATONp rHq

10. if EQUIVALENTpO,Hq : return H
11. else :
12. p Ð COUNTEREXAMPLEpO,Hq
13. for t “ 1 to |p| ` 1 :
14. rP Ð rP Y tpătu
15. COMPLETEpO, rHq

(Alg. 2, Line 7).8 If a column indexed by s P rS
is found to make the empirical Hankel matrix not
consistent, as is added to rS. This results in the new
equivalence classes rps and rp1s because rHp and
rHp1 do not match anymore on the column indexed
by as. See Lemma 5 in App. C for more details.

Closing rH. MAKECLOSED (Alg. 1, Line 7;
Alg. 2) adds to rP the missing prefixes required
to make the empirical Hankel matrix closed. It
searches for p P rP, a P Σ such that rHpa ı rHp1

for every p1 P rP, and adds pa to rP. This results in
the new equivalence class rpas. See Lemma 5 in
App. C for more details.

Filling out rH. Finally, COMPLETE fills the
empty entries of rH by asking membership queries
of the oracle.

Handling inconsistencies, closing rH, and filling
rH is carried out by the inner while loop (Lines
3 to 8) of Alg. 1, which continues until rH is both
closed and consistent.

Generating the hypothesis automaton. When
rH is closed and consistent, Alg. 1 generates the
hypothesis automaton H ( Line 9) and submits an
equivalence query to the oracle (Line 10). If the
oracle answers positively, Alg. 1 halts and returns
H. Otherwise, the oracle provides a counterexam-

8Indeed, rHpa ” rHp1a iff rHpapsq“kb rHp1apsq for every
sPrS and for some kPKzt0u. Therefore rHpa ” rHp1a entails

that
ĂHppa,sqÀ

s1PrS
ĂHppa,s1q “ �kbĂHpp1a,sq

�kbÀ
s1PrS

ĂHpp1a,s1q for every s P rS.
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Algorithm 2 Subroutines of Alg. 1.

1. def MAKECONSISTENTpO, rHq:
2. for xp,p1y P rP ˆ rP :
3. if rHp ” rHp1 :
4. for xa, sy P Σ ˆ rS :
5. Zpa Ð À

s1PrS
rHppa, s1q

6. Zp1a Ð À
s1PrS

rHpp1a, s1q
7. if rHppa, sq{Zpa‰ rHpp1a, sq{Zp1a :

8. rS Ð rS Y tasu
9. COMPLETEpO, rHq

10. def MAKECLOSEDpO, rHq:
11. for xp, ay P rP ˆ Σ :
12. if Dp1 P rP s.t. rHpa ı rHp1 :
13. rP Ð rP Y tpau
14. COMPLETEpO, rHq
15. def COMPLETEpO, rHq:
16. for p P rP ˝ Σď1 :
17. for s P rS :
18. rHpp, sq Ð MEMBERSHIPpO,psq

ple t, which is added to rP along with its prefixes.
rH is then updated through membership queries
(Lines 12 to 15). The algorithm continues until rH
is closed and consistent again.

The correctness of Alg. 1 is shown by the fol-
lowing theorem.

Theorem 3. Let xK,‘,b,0,1y be a semifield and
Σ an alphabet. Let O be an oracle for the deter-
ministic regular language L‹ : Σ˚ Ñ K, whose
minimal WDFSA has N states. Then, Alg. 1 re-
turns a minimal WDFSA H generating L‹ in
time O

`
N4M2|Σ|˘, where M is the length of the

longest counterexample provided by O.

Proof. See App. C.3. ■

Relationship Angluin’s (1987) algorithm. We
strive to keep the weighted L˚ algorithm as faith-
ful as possible to Angluin’s (1987). This brings
with it the advantages of familiarity and ease of
analysis. A closer look at the pseudocode in Alg. 1
and the proofs of Thms. 2 and 3 reveals that our
algorithm should be familiar to anyone acquainted
with the unweighted version: The learner uses the
same learning loop, procedures of closing and com-
pleting the observation table, the same set of calls
to the oracle, and an analogous construction of the
hypothesis automaton.

L˚ and Minimization. Building an automaton
whose states correspond to right language equiv-
alence classes (cf. §3) provides the basis for both
minimization (Hopcroft and Ullman, 1979; Mohri,
1997) as well as the L˚ algorithm. Both algorithms
also rely on some sort of weight normalization
to identify equivalent states—weight pushing
(Mohri, 1997) normalizes the outgoing transition
weights in minimization, while the L˚ algorithm
normalizes the rows of the empirical Hankel matrix
to compute the transition weights (Eqs. (4) and (6)).
The key distinction between the two algorithms lies
in their utilization of the discovered equivalence
classes: minimization merges equivalent states,
whereas L˚ incrementally adds states to the
automaton as it identifies new equivalence classes
until termination.

5 Conclusion

We introduce a weighted L˚ algorithm, an oracle-
based algorithm for learning weighted regular lan-
guages, building upon the paradigm pioneered by
Angluin (1987). While similar methods have been
proposed before, our method is novel in that it
learns an exact deterministic WFSA, akin to the
original Angluin’s (1987) unweighted version. We
highlight language model analysis as a possible
application, given that language models describe
probability distributions over strings (Icard, 2020;
Nowak et al., 2023), i.e., weighted languages.

Limitations

One of the limitations of weighted L˚ is that it re-
quires an oracle capable of answering membership
and equivalence queries. However, in the case we
want to use L˚ to study a language model, this is
the ideal setting, as we can use the language model
itself as the oracle (Weiss et al., 2018; Okudono
et al., 2019; Weiss et al., 2019). Another limitation
to the applications of our work is that not every
language model is efficiently representable as a
finite-state machine. For instance, Merrill (2019)
shows that LSTMs are strictly more powerful than
FSAs. Therefore, in practice, one may have to use
a simplified abstraction of the model one aims to
learn (Weiss et al., 2021), inevitably reducing the
model’s expressivity. Lastly, we note that L˚ is
not capable of learning non-deterministic regular
languages, which, in the weighted case, can be a
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strict subset of weighted regular languages.9
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A Language Equivalence

Lemma 1. Let L1 and L1 be two languages with weights on the same semifield xK,‘,b,0,1y. Further,
let us write L1 ” L2 iff supppL1q “ supppL2q and there exists a k P Kzt0u such that L1ppq “ kbL2ppq
for every p P supppL1q. Then ” is an equivalence relation.

Proof. We show that ” is:

(1) symmetric, since if supppL1q “ supppL2q and there exists k P Kzt0u such that L1ppq “ k b L2ppq
for every p P supppL1q, then supppL2q “ supppL1q and we can write L2ppq “ k´1 b L1ppq, for
every p P supppL2q.

(2) transitive, since if supppL1q “ supppL2q and L1ppq “ k1 b L2ppq for every p P supppL1q and for
some k1 P Kzt0u; and supppL2q “ supppL3q, L2ppq “ k2 b L2ppq for every p P supppL2q and for
some k P Kzt0u then supppL1q “ supppL2q and L1ppq “ k1 b k2 b L3ppq.

(3) reflexive, since supppL1q “ supppL1q and L1ppq “ 1 b L1ppq.

Note that if xK,‘,b,0,1y is a generic semiring that does not satisfy the semifield axioms, then ” may
not be symmetric, since an inverse for k may not be defined. ■

B Learning WDFSAs in a Semifields of Fractions

The algorithm presented in the main text learns a weighted deterministic finite-state automaton (WDFSA)
over a semifield xK,‘,b,0,1y. This is done mainly to allow for a more concise and approachable
presentation of the algorithm. In this section, we present another framework that allows for learning
WDFSAs over semirings that can be lifted into a semifield of fractions.

Definition 1. A semi-integral domain is a semiring xK,‘,b,0,1y where pK,b,1q is a commutative
cancellative monoid: for all x, y P K, if x b y “ 0, then x “ 0 or y “ 0.

A semi-integral domain allows us to define a semifield of fractions as follows.

Definition 2. Let xK,‘,b,0,1y be a semi-integral domain. Its semifield of fractions is the tuple
xS,‘,b,0,1y where

S “
"
x

y
| x, y P K, y ‰ 0

*
(7)

equipped with the operations

x1
y1

‘ x2
y2

def“ x1 b y2 ‘ x2 b y1
y1 b y2

(8a)

x1
y1

b x2
y2

def“ x1 b x2
y1 b y2

(8b)

0
def“ 0

1
(8c)

1
def“ 1

1
(8d)

where ‘ and b are the operations of the semi-integral domain.

This definition induces a natural equivalence relation on the semifield of fractions:

x1
y1

„ x2
y2

ðñ x1 b y2 “ x2 b y1. (9)

We can then define the equivalence class of x
y as rxy s “

!
x1
y1 | x1

y1 „ x
y

)
. The canonical form of a fraction

x
y is the equivalence class rxy s.

Alg. 1 generalizes over a semifield of fractions in the following sense.
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1. We lift the weights of the semifield-weighted learned language to the semifield of fractions. This
simply entails interpreting the string weights L‹ pyq P K as L‹pyq

1 .

2. The WDFSA is then learned as in the semifield case, but with the weights in the semifield of fractions.

The initial, final, and transition weights of the automaton learned in this manner naturally fall in the
semifield of fractions, and thus do not necessarily correspond to any specific element of the original
semiring. However, the string weights defined by the learned automaton—and therefore its language—will
be the same as in the ground-truth semiring-weighted WFSA.

Theorem 4. Let L‹ be a weighted regular language over a semi-integral domain xK,‘,b,0,1y. Let H
be the WDFSA learned by Alg. 1 over the corresponding semifield of fractions over K, xS,‘,b,0,1y.
Then, LH pyq „ L‹pyq

1 for all y P Σ˚.

Proof. The semifield of fractions is a semifield. Furthermore, since lifting the string weights does not
affect the determinism of the language, the lifted language L‹satisfies the requirements for Alg. 1, which
then correctly learns the field-of-fractions-weighted language: LH pyq „ L‹pyq

1 . ■

C Proofs

C.1 Proof of Thm. 1

Theorem 1 (Myhill–Nerode). Let A be a semifield-weighted DFSA and LA its weighted language. Then,
„LA induces a finite number of equivalence classes on Σ˚, which equals the number of states of a minimal
automaton for LA.

Proof. Let A “ pΣ, Q, δ, λ, ρq be a semifield-weighted DFSA. Since A is deterministic, there is at most
one initial state qI . Every string s P Σ˚ can be mapped to at most one non-zero-weight path πs starting in
qI and yielding s. Set qs “ npπsq.

We claim that

x´1LA ” y´1LA ðñ1 @z P Σ˚,xz P supppLAq iff

yz P supppLAq ðñ2 pqx “ qy and w pπxq b w pπyq ‰ 0q or pw pπxq “ w pπyq “ 0q (10)

ñq1&2 Both are straightforward. ðq If qx “ qy. Accordingly, for any z P Σ˚, we have

x´1LApzq “ LApxzq
“ λpqIq b w pπxq b w pπzq b ρpq zq
“ w pπxq

w pπyq b y´1LApzq.

And this shows that x´1LA ” y´1LA. In conclusion, the claim proves that |A{ „LA | ď |Q|. This
shows that the equivalence classes induced by LA are finite. The proof that their number is equal to |QM|,
where QM is the set of states of a minimal automaton for LA is done by construction, for which we refer
the reader to (Mohri, 1997, section 3.7). ■

C.2 Proof of Thm. 2

Theorem 2 (The empirical Hankel Automaton). Let rH : rP ˝ Σď1 ˆ rS Ñ K be a closed and consistent
empirical Hankel matrix and let H be the empirical Hankel automaton induced by rH. Then:
(1) H is a well-defined WDFSA.
(2) LHppsq “ rHpp, sq for all p P rP and s P rS, meaning that H is consistent with rH.
(3) H is minimal.

Proof. Let rH : Σ˚ ˆ Σ˚ Ñ K be a closed and consistent empirical Hankel matrix and let H be rH’s
induced WDFSA.
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(1) The set of states Q is a well-defined finite set since, by assumption, the prefixes rP are a finite set
and „ rH is a well-defined equivalence relation on rP. The set of transitions (Eq. (4)) is well-defined
since for any qrps and every symbol a P Σ: iq qrrppaqs is uniquely defined iiq qrrppaqs is in Q since
the empirical Hankel matrix is closed. Regarding the initial and final states, we just note that since rP
and rS are respectively prefix and suffix closed, they always contain the empty string ε.

Determinism: To see that H is deterministic, note that:

(a) There is at most one state qrεs with non-zero initial weight (Eq. (5)).
(b) Following Eq. (4), for every state qrps and for every input symbol a P Σ, there is exactly one

state qrrppaqs such that the transition qrps
a{wÝÝÑ qrrppaqs is in the set of transitions δ. We further,

consistency ensures that the next state is independent of the specific choice of representatives
for the equivalence classes.

(2) We begin by showing the following lemmata.

Lemma 2. Let rH be a closed and consistent empirical Hankel matrix, with rows rP ˝ Σď1 and
columns rS. Then, for every two p,p1 P rP such that rHpp, sq “ k b rHpp1, sq @s P rS, we also have
that rHppa, sq “ k b rHpp1a, sq, @s P rS and for a P Σ.

Proof. Since the table is consistent, we know that if for two p,p1 P rP, rHpp, sq “ k1 b rHpp1, sq for
every s P rS and for some k1 P Kzt0u, then rHppa, sq “ k2 b rHpp1a, sq for s P rS, a P Σ and for
some k2 P Kzt0u. Now, since rS is suffix closed, we can chose s P rS such that we can write s “ as1
for some s1 in rS, and therefore:

rHpp, sq “ k1 b rHpp1, sq (11a, By hypotheis)
rHpp, as1q “ k1 b rHpp1, as1q (11b, Rewriting s as as1)
rHppa, s1q “ k1 b rHpp1a, s1q (11c, Skew diagonals of the Hankel matrix are constant)

and hence k1 “ k2. ■

Lemma 3. Let rH be a closed and consistent empirical Hankel matrix with rows rP˝Σď1 and columns
rS, and let H be the empirical hankel automaton generated from rH. Then for every pP rP let us denote
with πp the path in H with initial state qrεs and yield p. The following equation holds:

λ
`
qrεs

˘ b wpπpq “ à

sPrS

rHpp, sq (12)

Proof. We proceed by induction on the string length.

Base Case. Let p “ ε. Then

λ
`
qrεs

˘ “ à

sPrS

rHpε, sq (13)

by the definition of initial weight.

Induction Step. Recall that rP is prefix-closed. Let p P rP be a string with length i ě 1 so that we
can write p “ păia for some a P Σ and some p P rP. Then our induction hypothesis is that:

λ
`
qrεs

˘ b wpπpăi
q “ à

sPrS

rHppăi, sq (14)
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And then we can write

λ
`
qrεs

˘ b wpπpq “ λ
`
qrεs

˘ b wpπpăi
q b

À
s1PrS

rHprppăiqa, sq
À

sPrS
rHprppăiq, sq (15a)

“ à

sPrS

rHppăi, sq b
À

s1PrS
rHprppăiqa, sq

À
sPrS

rHprppăiq, sq (15b, Induction Hypothesis)

“ à

sPrS

rHppăi, sq b
�k b

´À
s1PrS

rHppăia, sq
¯

�k b
´À

sPrS
rHppăi, sq

¯ (15c, Lemma 2)

“
�������à

sPrS

rHppăi, sq b
À

s1PrS
rHppăia, sq

((((((((À
sPrS

rHppăi, sq (15d, Lemma 2)

“ à

s1PrS

rHppăia, sq (15e)

“ à

s1PrS

rHpp, sq (15f)

■

Lemma 4. Let rH be a closed and consistent empirical Hankel matrix with rows rP˝Σď1 and columns
rS, and let H be the empirical hankel automaton generated from rH. Then for every pP rP and s P rS,
let us denote with πps the path in H with initial state qrεs and yield ps. The following equation
holds:

λ
`
qrεs

˘ b wpπpq b ρpnpπpsqq “ rHpp, sq (16)

where we recall that ρpnpπpsqq denotes the final state of πps.

Proof. Base Case: for every p P rP we can write.

λ
`
qrεs

˘ b wpπpq b ρpqrppqq “ λ
`
qrεs

˘ b wpπpq b
rHprppq, εq

À
sPrS

rHprppq, sq (17a)

“ λ
`
qrεs

˘ b wpπpq b
rHpp, εq

À
sPrS

rHpp, sq (17b, Since p „ĂH rppq:)

“ à

sPrS

rHpp, sq b
rHpp, εq

À
sPrS

rHpp, sq (17c, By Lemma 3:)

“ rHpp, εq (17d)

Induction Step: Assume that:

λ
`
qrεs

˘ b wpπps1q b ρpnpπps1qq “ rHpp, s1q (18)

@p P rP and forall s1 P rS, such that |s1| ă k. Now , let us assume that s P rS is a suffix with |s| “ k;
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since rS is suffix closed, we can always write s “ as1 for some a P Σ and s1 P rS. Then, we write:

λ
`
qrεs

˘ bwpπpsq b ρpnpπpsqq (19a)

“ λ
`
qrεs

˘ b wpπpas1q b ρpnpπpas1qq (19b)

“ λ
`
qrεs

˘ b wpπpaq b wpπs1q b ρpnpπpas1qq
(19c, where πs1 is the path with initial state qrrppaqs and yield s1)

“ λ
`
qrεs

˘ b wpπpaq
λ

`
qrεs

˘ b wpπrppaqq
b wpπrppaqq b wpπs1q b ρpnpπpas1qq (19d, Since rH is closed)

“ λ
`
qrεs

˘ b wpπpaq
λ

`
qrεs

˘ b wpπrppaqq
b rHprppaq, s1q (19e, By induction hypothesis)

“
À

siPrS
rHppa, siq

À
siPrS

rHprppaq, siq
b rHprppaq, s1q (19f, By Lemma 3)

“
rHppa, s1q

rHprppaq, s1q b rHprppaq, s1q (19g, Since pa P rrppaqs)

“ rHppa, s1q “ rHpp, as1q (19h, The emprical Hankel matrix is Skew diagnoal)

■

This lemma entails the proof of the second point of the theorem.

(3) By 2q of this theorem, we know that rHpp, sq “ LHppsq for every p P rP and s P rS. Hence
rHp : rS Ñ K is a restriction of LH : Σ˚ Ñ K from Σ˚ to rS, and following the definition of the
relations „ rH and „LH , we have that |rP{ „ rH | ď |Σ˚{ „LH |.
Now, let us denote by N the number of states of H, which by construction we know is equal to
|rP{ „ rH |. Therefore we can write |Σ{ „LH | ě |rP{ „ rH | “ N . Then by the Myhill–Nerode
theorem (Thm. 1), we have the number of states of the minimal automaton for LH is at least N . But
H has N states and hence H is minimal.

■

C.3 Proof of Thm. 3
In order to prove Thm. 3, we first give the following sequence of lemmata. Throughout the section, L‹

denotes an unknown deterministic semifield-weighted regular language. Further, we write A‹ to denote
an arbitrary, but fixed, minimal WFSA generating L‹ with N states.

Lemma 5 (Equivalence classes increase #1). Let rP be a prefix-closed set of prefixes and rS a suffix-closed
set of suffixes. Let rH be the empirical Hankel matrix of L‹, whose rows and columns are indexed with
rP ˝ Σď1 and rS respectively. Then, the following statements hold:

(1) If rH is not consistent, Alg. 1 adds a suffix to rS and the number of equivalence classes of rP increases.

(2) If rH is not closed, Alg. 1 adds a prefix to rP and the number of equivalence classes of rP increases.

Proof. We prove each of the statements in turn.

(1) If the empirical Hankel matrix is not consistent, MAKECONSISTENT (Alg. 1, Line 5) finds two
prefixes p,p1 P rP such that rHp ” rHp1 but rHppasq ı rHp1pasq for some a P Σ and s P rS, and adds
as to rS. After adding the suffix s to rS, we have that rHp ı rHp1 , and therefore an equivalence class
has been divided in two.

(2) If rH is not closed, MAKECLOSED (Alg. 1, Line 7) finds p P rP and a P Σ such that rHpa ı rHp1 for
every p1 P rP and adds pa to rP. Since there is no p1 ‰ pa in rP, such that p1 „ rH pa, it follows that a
new equivalence class rpas is added to rP{ „ rH.
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■

Lemma 6 (Equivalence classes increase #2). Let rP be a prefix-closed set of prefixes and rS a suffix-closed
set of suffixes. Let rH be the empirical Hankel matrix of L‹, whose rows and columns are indexed with
rP ˝ Σď1 and rS respectively. Then, each time the oracle replies with a counterexample t, the number of
equivalence classes of rP increases.

Proof. When we add the counterexample t and its prefixes to rP (Alg. 1, Line 13) three outcomes are
possible:

(1) The new empirical Hankel matrix rH1
is not closed and/or consistent. In this case, new rows or

columns are added, which, as shown by Lemma 5, increases the number of equivalence classes in rP.

(2) The new empirical Hankel matrix rH1
is closed and consistent and rP has at least one more equivalence

class than in rH.

(3) The new empirical Hankel matrix rH1
is closed and consistent and rP has the same number of

equivalence classes as in rH. This implies that tr1:is P rpis for i “ 1, . . . , |t|, and for some pi P rP,
that was already in rP before the counterexample and its prefixes were added. Since the choice
of representatives for the construction of the hypothesis automaton is fixed, this entails that the
automaton H1 generated from rH1

is equal to the automaton H generated from rH. However, this
implies that LH “ LH1 and therefore t was not a counterexample.

Therefore, both in case 1q and 2q, the number of equivalence classes of rP increases, and case 3q cannot
occur, as it would contradict the hypothesis that t is a counterexample. ■

Lemma 7 (Upper bound on the number of equivalence classes). Let L be a semifield-weighted determin-
istic regular language, and let rH be an empirical Hankel matrix with prefixes rP and suffixes rS, containing
observations from L. Then the number of equivalence classes induced by „L on Σ˚ upper bounds the
number of equivalence classes induced by „ rH on rP.

Proof. For every p1,p2 P rP, we show that that p1 „L p2 ùñ p1 „ rH p2. Indeed p1 „L p2 means
that p´1

1 L ” p´1
2 L and supppp´1

1 Lq “ supppp´1
2 Lq. Following the definition of the relation ” between

weighted languages (cf. §3), we then have that:

suppp rHp1
q “ supppp´1

1 Lq X rS since rHp1
: rS Ñ K and rHp1

“ p´1
1 Lpsq,@s P rS (20a)

“ supppp´1
2 Lq X rS since supppp´1

1 Lq “ supppp´1
2 Lq (20b)

“ suppp rHp2
q (20c)

and further, @s P suppp rHp1
q

rHp1
psq “ p´1

1 Lpsq (21a)

“ k b p´1
2 Lpsq since p´1

1 Lpsq “ k b p´1
2 Lpsq for some k P Kzt0u, @s P supppp´1

1 Lq
(21b)

“ k b rHp2
psq (21c)

For a fixed k P K{t0u. Therefore rHp1
” rHp2

and p1 „ rH p2. Since p1 „L p2 ùñ p1 „ rH p2, it
follows that |rP{ „ rH | ď |Σ˚{ „L | ■

Theorem 3. Let xK,‘,b,0,1y be a semifield and Σ an alphabet. Let O be an oracle for the deterministic
regular language L‹ : Σ˚ Ñ K, whose minimal WDFSA has N states. Then, Alg. 1 returns a minimal
WDFSA H generating L‹ in time O

`
N4M2|Σ|˘, where M is the length of the longest counterexample

provided by O.

Proof. We split the remainder of the proof into the proof of termination and the runtime analysis.
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Termination. We will show that, at any iteration of the loop on Line 2 in Alg. 1, the algorithm either
terminates or gets strictly closer to termination. Concretely, at each execution of the loop, three events can
occur:

(1) The empirical Hankel matrix rH is not consistent and/or closed, resulting in the execution of the inner
while loop (Alg. 1, Line 3).

(2) The oracle O replies positively to the equivalence query positively on Line 10, halting the execution.

(3) The oracle O replies with a counterexample.

Clearly, events (2) and (3) do not occur at the same time. By Lemmata 5 and 6, we know that (1) and (3)
result an increase of the number of equivalence classes of rP.

Assume that after some number of iterations of the outer while loop, the prefixes rP are partitioned into
N equivalence classes and that the algorithm has not terminated yet. In the next iteration, events (1) and
(3) would increase the number of equivalence classes of rP to at least N `1. Let H be the empirical Hankel
automaton constructed during this iteration of the algorithm and let LH be its language. By Thm. 2, we
know that the H is consistent with the empirical Hankel matrix rH, meaning that „ rH and „LH induce
isomorphic equivalence classes. Now, by Lemma 7 we know that

N ` 1 ď |Σ˚{ „LH | “ |rP{ „ rH | ď |Σ˚{L‹| “ N. (23)

Another execution therefore brings us to a contradiction with the Myhill–Nerode theorem (Thm. 1) since
the number of states of the minimal automaton for L‹ is N . To summarize, since event (3) results in a
contradiction, event (2) must occur, meaning that the algorithm halts and return an automaton generating
L‹ after at most N iterations of the outer loop. The minimality of the returned automaton follows from
Thm. 2.

Note that the same argument can be applied to show that the inner while loop (Alg. 1, Line 3) can be
executed at most N times throughout the entire execution of L˚, since by Lemma 5 at each iteration, the
number of equivalence classes increases.

Runtime Analysis. First, we analyze the sizes of rP and rS. The size of rP is upper bounded by
|rP| ď N ` MN : The empirical Hankel matrix can be found to be not closed at most N times—and in
such case one string is added to rP—and the oracle can reply with a counterexample at most N times—and
in any such case, at most M strings are added to the matrix. The size of rS is at most N , since the empirical
Hankel matrix can be found to be not consistent at most N times.

Now, we know that the outer while loop of Alg. 1 (Line 2) can be repeated at most N times, and
similarly the inner while loop (Line 3) can be repeated at most N times during the entire execution of the
outer loop. Of all the operations performed during the execution of the outer loop, the most expensive is
MAKECLOSED, as it requires a double pass over rP to check if the table is consistent. Therefore the total
runtime is:

O
´´

pN ` MNq2 |Σ|N
¯
N

¯
“ O

`
N4M2|Σ|˘ (24)

Where O
´

pN ` MNq2 |Σ|N
¯

is the cost of MAKECLOSED, and N is the maximum number of calls to
MAKECLOSED.

■

8210


