
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 8268–8282
November 12-16, 2024 ©2024 Association for Computational Linguistics

RealVul: Can We Detect Vulnerabilities in Web Applications with LLM?

Di Cao1, Yong Liao1*, Xiuwei Shang1

1School of Cyber Science and Technology, University of Science and Technology of China
{ishgard, shangxw}@mail.ustc.edu.cn, yliao@ustc.edu.cn

Abstract

The latest advancements in large language mod-
els (LLMs) have sparked interest in their poten-
tial for software vulnerability detection. How-
ever, there is currently a lack of research specif-
ically focused on vulnerabilities in the PHP
language, and challenges in extracting samples
and processing persist, hindering the model’s
ability to effectively capture the characteristics
of specific vulnerabilities. In this paper, we
present RealVul, the first LLM-based frame-
work designed for PHP vulnerability detection,
addressing these issues. By vulnerability can-
didate detection methods and employing tech-
niques such as normalization, we can isolate po-
tential vulnerability triggers while streamlining
the code and eliminating unnecessary seman-
tic information, enabling the model to better
understand and learn from the generated vul-
nerability samples. We also address the issue
of insufficient PHP vulnerability samples by
improving data synthesis methods. To evaluate
RealVul’s performance, we conduct an exten-
sive analysis using five distinct code LLMs on
vulnerability data from 180 PHP projects. The
results demonstrate a significant improvement
in both effectiveness and generalization com-
pared to existing methods, effectively boosting
the vulnerability detection capabilities of these
models.

1 Introduction

Software vulnerabilities present substantial risks
to the security and integrity of computer systems,
networks, and data(Sausalito). In 2023, a stagger-
ing 28,902 vulnerabilities were publicly reported in
the Common Vulnerabilities and Exposures (CVE)
database(MITRE). PHP, recognized as the most
prevalent and extensively utilized language in web
applications, powers nearly 80% of the top ten
million websites(W3Techs). This includes widely
adopted platforms such as Facebook, Wikipedia,

* Corresponding authors.

Flickr, and WordPress. Moreover, it has been in-
strumental in the development of over 3.3 million
open-source projects on GitHub(Git). However,
PHP is susceptible to common web security vul-
nerabilities, including SQL injection and cross-site
scripting (XSS). Consequently, the imperative to
effectively detect PHP software vulnerabilities has
never been more pressing.

Traditional vulnerability detection methods,
such as Static Application Security Testing
(SAST) tools including CodeQL(Cod), RIPS(RIP),
SonarQube(Son), Fortify SCA(for), and Check-
marx(che), are often constrained by the comprehen-
siveness and precision of their rule libraries. This
limitation frequently results in a high incidence of
false positives and negatives. And as a popular
framework, CodeQL does not yet support PHP lan-
guage. To address these issues, researchers have be-
gun to explore the application of deep learning for
vulnerability detection(Li et al., 2018; Zhou et al.,
2019; Zou et al., 2019; Wang et al., 2020; Li et al.,
2021; Chakraborty et al., 2020; Mirsky et al., 2023).
These approaches extract code structure informa-
tion in the form of Data Flow Graph (DFG) and
Control Flow Graph (CFG), and input vulnerabil-
ity samples into deep learning models for training.
Concurrently, with the advancement of Large Lan-
guage Modeling (LLM), studies focusing on the
application of LLM to code vulnerability detection
have started to surface(Fu and Tantithamthavorn,
2022; Wang et al., 2023a; Sun et al., 2024).

After reviewing the current research on applying
deep learning or LLMs to vulnerability detection,
we discovered: (1) As shown in Appendix A, ex-
isting LLM-based methods predominantly rely on
vulnerability datasets in C/C++ languages for anal-
ysis, leaving a research gap in other language; (2)
The majority of vulnerability datasets are collected
through vulnerability fixes on GitHub(Chakraborty
et al., 2020; Zhou et al., 2019; Nikitopoulos et al.,
2021), which presents certain challenges in data

8268

collection. Our practical experience has shown
that the samples in these datasets may not correlate
appropriately with vulnerabilities; (3) Vulnerable
code requires suitable preprocessing before being
inputted into the model to reduce noise and high-
light vulnerability features, but this aspect is often
overlooked in existing research.

To address these issues, we propose RealVul,
a new snippet-level PHP vulnerability analysis
framework. First of all, RealVul extracts the real-
world vulnerability dataset by identifying poten-
tial vulnerability trigger points from real-world
projects, analyzing control flow and data flow,
and proper data preprocessing methods. Then Re-
alVul generates large semi-synthetic vulnerabil-
ity dataset from real-world vulnerability dataset
and projects. RealVul use this semi-synthetic
dataset to fine-tune different LLMs including
CodeT5(Wang et al., 2021), CodeT5+(Wang et al.,
2023b), StarCoder2(Lozhkov et al., 2024), and
CodeLlama(Roziere et al., 2023).

We evaluate RealVul on CWE-79 (XSS) and
CWE-89 (SQL Injection), comparing RealVul with
existing approaches. The results demonstrate that
RealVul achieves reliable generalization perfor-
mance while ensuring effectiveness, making our
framework suitable for detecting PHP vulnerabili-
ties in real-world projects.

Our main contributions are as follows:

• LLM-based PHP Vulnerability Detection
Framework. To the best of our knowledge,
RealVul is the first LLM-based framework to
extract vulnerability dataset and detect PHP
software vulnerabilities. It significantly en-
hances the ability of LLMs to detect vulnera-
bilities and implements scalable vulnerability
detection based on robust generalization per-
formance. (sec.3)

• Dataset Collection and Preprocessing. Dif-
ferent from previous dataset collection meth-
ods based on vulnerability repair, we ex-
tracted our new RealVul dataset from real-
world projects by localizing potential vulnera-
bility and program slicing, and we performed
appropriate data preprocessing on it. This al-
lows the model to perform better in the task of
vulnerability detection. (sec.3.1 and sec.3.2)

• Data Synthesis. We present a new data
synthesis method and generate a large semi-
synthetic vulnerability dataset by inserting

Vulnerable, Version K Fixed, Version K+1

<?php
. . .
process($_GET['xss ‘]);
. . .
?>

function process($taint){
 . . .
 $taint = sanitize($taint,
CONF1);
 echo $taint;
 . . .
}

<?php
. . .
// lack of regex config
CONF1 = “”;
. . .
?>

page.php

lib.php

conf.php

fixed

unchanged
<?php
. . .
process($_GET['xss ‘]);
. . .
?>

function process($taint){
 . . .
 $taint = sanitize($taint,
CONF1);
 echo $taint;
 . . .
}

<?php
. . .
// lack of regex config
CONF1 = “^[0-9]+$”;
. . .
?>

page.php

lib.php

conf.php

unchanged

Dataset

conf.php
Ver. k

……
lib.php
Ver. k

page.php
Ver. k

conf.php
Ver. k+1

……

Figure 1: In the case of using vulnerability repair to
build a dataset, the green part will be considered secure,
and the red part will be considered vulnerable.

pure vulnerability samples into real-world
projects devoid of vulnerabilities, which al-
lows programming languages like PHP that
lack sufficient vulnerability datasets to abtain
enough samples for model training. (sec.3.4)

• Evaluations and Findings. We conduct tests
on real-world vulnerability dataset to compre-
hensively compare and evaluate the vulnera-
bility detection capabilities of RealVul with
existing methods. Our research underscores
the weakness of existing dataset and the im-
portance of proper preprocessing. (sec.4)

2 Related Works

In this section, we provide an overview of previous
works related to vulnerability detection approches
and the corresponding datasets. We primarily sum-
marize the datasets and approaches used in Ap-
pendix A, as shown in Table 4 and Table 5.

2.1 Existing Datasets

Previous studies have proposed numerous vulner-
ability datasets, which can be broadly categorized
into two types: synthetic datasets and datasets de-
rived from real project.

Synthetic datasets are simplified and isolated,
and while they contain accurate labels, they lack
noise and contextual information, and fail to fully
encapsulate the complexity of real-world vulner-
abilities. For example, SARD (NIST, 2005) and
Juliet (Okun et al., 2013) are overly simplified and
do not accurately represent the vulnerabilities that
may be encountered in practical applications.

8269

To address the limitations of synthetic datasets,
some researchers have suggested collecting data
based on vulnerability repair. For vulnerability
datasets(Zhou et al., 2019; Chakraborty et al., 2020;
Fan et al., 2020; Zheng et al., 2021; Nikitopoulos
et al., 2021; Chen et al., 2023) derived from real
projects, the common approach is to collect vulner-
abilities and their corresponding fixes. While this
may seem logical, previous research(Croft et al.,
2023) has indicated that this data collection method
still has issues with accuracy, uniqueness, and other
aspects.

For instance, consider a potential PHP vulner-
ability fix, as illustrated in Figure 1. The execu-
tion path of the vulnerability passes through three
functions. When extracting samples, this method
will split the execution path of the vulnerability
into four samples based on whether the function
has been fixed. During the model training process,
the correlation between samples will be ignored,
making it difficult for the model to identify the
vulnerability based only on this dataset.

Furthermore, the automatic collection of vulner-
ability datasets based on vulnerability repair may
introduce additional issues, such as including un-
known vulnerabilities in the code, which can nega-
tively impact model performance. In our view, vul-
nerability detection and vulnerability code repair
are two different tasks in different stages of vulner-
ability management. Therefore, we need to take a
new approach to extract vulnerability datasets.

2.2 Existing Approaches
Early research primarily employed deep learning
models such as RNN and GNN for analysis. Token-
based methods transform code into tokens for ex-
amination. µVulDeePecker(Zou et al., 2019) in-
troduces the concept of code attention and utilizes
the Building-block BLSTM network. SySeVR(Li
et al., 2021) incorporates semantic information into
the vulnerability syntax candidate SyVCs to gener-
ate SeVCs and tests them on models such as BRNN
and BGRU.

Graph-based methods transform code into graph
structures for examination. Devign(Zhou et al.,
2019) and Reveal(Chakraborty et al., 2020) lever-
ages the Code Property Graph (CPG) proposed by
Yamaguchi et al.(Yamaguchi et al., 2014) to con-
struct vulnerability prediction model. LineVD(Hin
et al., 2022) utilizes Program Dependency Graph
(PDG) to achieve more precise vulnerability local-
ization. VulChecker further (Mirsky et al., 2023)

employed ePDG and S2V to further capture the
correlation between vulnerability codes.

With the advancements in natural language pro-
cessing, models such as CodeBERT(Feng et al.,
2020) have demonstrated remarkable code com-
prehension and generation capabilities, leading
more researchers to use them for vulnerability anal-
ysis. LineVul(Fu and Tantithamthavorn, 2022)
employs CodeBERT as its core and implements
fine-grained vulnerability classification and local-
ization based on the attention mechanism. Di-
verseVul(Chen et al., 2023) uses models like
RoBERTa(Liu et al., 2019), GPT-2(Radford et al.,
2019), and CodeT5(Wang et al., 2021) to ana-
lyze vulnerability detection capabilities. However,
these works are overly reliant on existing datasets
and lack reasonable preprocessing of vulnerabil-
ity code, such as code slicing and duplicate re-
moval. They directly analyze vulnerability code
samples, resulting in unreliable analysis of un-
known projects(Chen et al., 2023). Recently, the
rapid development of large language models has
triggered disruptive changes in related fields. It per-
forms outstanding in code-intensive fields such as
code synthesis (Wu et al., 2023; Jiang et al., 2023)
and automated programming assistance (Leung and
Murphy, 2023; Wei et al., 2023), making its poten-
tial in software vulnerability detection obvious.

In RealVul, we process samples reasonably by
locating vulnerability triggers, code slicing, irrele-
vant information permutation, and removing simi-
lar samples, and use more advanced code LLM for
analysis to achieve superior performance.

3 Method

This section elucidates the design rationale and the
architecture of our proposed approach, RealVul.
For each type of CWE, RealVul employs distinct
strategies for sample selection and processing, and
trains separate models for analysis. Our method-
ology is expounded upon from three perspectives:
sample selection, data preprocessing, and model
training. Figure 2 illustrates the architecture of our
approach.

3.1 Vulnerability Candidate Detection

In this phase, our objective is to scrutinize potential
vulnerability triggers in the code and slice the pro-
gram based on these triggers. This generates code
snippets that are syntactically correct and solely
associated with one vulnerability trigger, thereby

8270

Code

Snippets
Source Files Prepared

Snippets

Flow

Potential

Vulnerability

Code

LLMs

…

clean

vulnerable

Security Analysis

Vulnerability Candidate Detection Data Preprocessing Model Training

Results

Data Synthesis

<?php
$user = $_GET[‘user’];
$password = $_GET[‘pw’];
$control = $_GET[‘ctrl’];
...
if ($control) {
echo $control;
$sql = “SELECT ” . $user;
...
$res = mysql_query($sql);
$data = fetch_array($res);
...
if($data){
...
$data = sanitize($data);
$data = $data . “
”;
echo “user = ” . $data;
...

}
}
...

<?php
$user = $_GET[‘user’];
$control = $_GET[‘ctrl’];
if ($control) {
$sql = “SELECT ” . $user;
$res = mysql_query($sql);
$data = fetch_array($res);
if($data){
$data = sanitize($data);
$data = $data . “
”;
echo “user = ” . $data;
//sink point $data;

}
}

<?php
$user = $_GET[‘user’];
$control = $_GET[‘ctrl’];
if ($control) {
$sql = “SELECT ” . $user;
//sink point $user;
$res = mysql_query($sql);

}

<?php
$var1 = $_GET[‘user’];
$var1 = $_GET[‘ctrl’];
if ($var2) {
$var3 = $var1;
$var4 = mysql_query($var3);
$taint = fetch_array($var4);
if($taint) {
$taint = sanitize($taint);
$data = $data;
echo $taint;
//sink point $taint;

}
}

<?php
$taint = $_GET[‘user’];
$var1 = $_GET[‘ctrl’];
if ($var1) {
$var2 = $taint;
//sink point $taint;
$var3 = mysql_query($var2);

}

…
… …

Figure 2: RealVul architecture overview.

reducing noise and ensuring a robust correlation
between vulnerabilities and samples. Figure 3 de-
picts the process of our approach of vulnerability
candidate detection.

3.1.1 Potential Vulnerability Localization
To extract samples from source files, we initially
employ our domain expertise and heuristic rule
matching to identify statements in the code that
could potentially trigger vulnerabilities. We have
detailed specific identification methods for two
types of CWE vulnerabilities in Appendix B.

For the identified potential vulnerability state-
ments, we analyze the variables used for concate-
nation, considering each concatenated variable as
a potential vulnerability source. We then mark
the current variable as a tainted variable, and this
variable is deemed a potential vulnerability trig-
ger. The analysis of potential vulnerability triggers
here is predicated on our design assumption that
we already have knowledge of which functions in
the program are executed freely and which code
could potentially lead to vulnerabilities. In practi-
cal applications, users can modify the rules to suit
their needs for more accurate matching or detecting
other types of vulnerabilities.

3.1.2 Program Slicing
To trim the program code, we analyze the PHP file’s
code to eliminate code comments, generate an Ab-
stract Syntax Tree (AST), and extract global code,
function code, and control and data flow based on
the AST. We then analyze the statement where the
current potential vulnerability trigger is located.

Given that multiple variables in the current state-
ment could potentially trigger the vulnerability, we
replace variables other than the currently analyzed
tainted variable with constants to facilitate focused
analysis of a single variable. We search for poten-
tial vulnerability triggers related to data flow and
control flow in the current analysis. We label the
variables in these statements as relevant variables
and further recursively search. Ultimately, we iden-
tify all statements related to potential vulnerability
triggers. While ensuring correct syntax, we extract
these code statements as samples.

If the potential vulnerability is within the func-
tion, we posit that function variables are deemed
untrustworthy inside the function as they are passed
in from outside the function. Therefore, we rewrite
these variables in the form of global variables
"$_GET", and convert the function code to global
code. This enables us to standardize the different
representations of function code and global code.
Upon completing the vulnerability candidate detec-
tion, we use code comments to mark taint variables
at potential vulnerability triggers to enhance the
sample’s vulnerability representation.

3.2 Data Preprocessing

In this phase, our objective is to reduce irrelevant
information in the samples and ensuring suitable
preprocessing of the dataset. We accomplish the
preprocessing of the sample set through the follow-
ing three steps.

8271

1: <?php
2: $user = $_GET[‘user’];
3: $password = $_GET[‘pw’];
4: $control = $_GET[‘ctrl’];
5: check($control, $password);
6: if ($control) {
7: $control = “”;
8: $sql = “SELECT ” . $user;
9: $sql .= “FROM user_table”;
10: $res = mysql_query($sql);
11: $data = fetch_array($res);
12: echo “Query ”;
13: if($data){
14: echo “Print:”;
15: $data = sanitize($data);
16: $data = $data . “
”;
17: echo “user = ” . $data;
18: echo “End Print.”;
19: }
20: }
21: ...

1 base:<?php

6 if : if ($control) {

}

7 stmt: $control = “”;

8 stmt: $sql = “SELECT ” . $user;

10 stmt: $res = mysql_query($sql);

11 stmt: $data = fetch_array($res);

13 if : if($data){

}

15 stmt: $data = sanitize($data);

16 stmt: $data = $data . “
”;

17 stmt: echo “user = ” . $data;

4 stmt: $control = $_GET[‘ctrl’];

3 stmt: $password = $_GET[‘pw’];

Data Flow
2 stmt: $user = $_GET[‘user’];

9 stmt: $sql .= “FROM user_table”;

12 stmt: echo “Query ”;

14 stmt: echo “Print:”;

18 stmt: echo “End Print.”;

5 stmt: check($control, $password);

17: echo “user = ” . $data;

8: $sql = “SELECT ” . $user;

...

1: <?php
2: $user = $_GET[‘user’];
4: $control = $_GET[‘ctrl’];
6: if ($control) {
8: $sql = “SELECT ” . $user;
9: $sql .= “FROM user_table”;
10: $res = mysql_query($sql);
11: $data = fetch_array($res);
13: if($data){
15: $data = sanitize($data);
16: $data = $data . “
”;
17: echo “user = ” . $data;

//sink point $data;
19: }
20: }

Potential Vulnerability
Localization

Code Snippet

AST

Source Code File Control Flow

Figure 3: The process of vulnerability candidate detection from a real-world PHP project. We identify potential
vulnerability triggers and analyze the data flow and control flow through the source file’s AST. The obtained code
snippets are our samples.

3.2.1 Labeling
Each extracted sample is labeled based on its poten-
tial to lead to specific types of vulnerabilities. Sam-
ples with and without vulnerabilities are labeled
as y= {good, bad}. Given that only one tainted
variable is passed into the potential vulnerability
statement in the samples, the labels of the samples
correspond one-to-one with the variables that could
potentially trigger the vulnerability. This is what
we consider as the strong correlation between the
samples and vulnerability information.

3.2.2 Normalizing
We note that the program code contains some infor-
mation that is not essential for vulnerability analy-
sis. This information primarily includes constant
strings and variable names. Due to the nature of
web applications, the code often contains many
constant strings, some of which are excessively
long and do not significantly impact vulnerability
analysis, such as strings of HTML statements.

To preserve semantic information as much as
possible, previous research often refrained from
processing this content. However, in this paper, we
eliminate what we consider unnecessary semantic
information through keyword detection. Our exper-
iments (sec.4.4) demonstrate that this approach is
effective.

Variable names, defined by programmers, do not
have a fixed form due to varying coding habits,

which could potentially affect the performance of
vulnerability detection models. For vulnerability
analysis, the names of variables do not indicate
whether the data they contain poses a threat, ren-
dering this information unnecessary. We standard-
ize the code by mapping identical variables to the
same values and renaming different variables (i.e.,
"var0", "var1"). We retain user-defined function
names because they provide semantic information
that reveals the function’s behavior.

3.2.3 Deduplication
Following the normalization process, there may be
similar samples in the sample set due to the removal
of some irrelevant information and the presence of
code reuse. Code duplication has been shown to
negatively impact trained models(Allamanis, 2019).
Ensuring the uniqueness of samples in the dataset
aids the model in generalizing to the true data dis-
tribution. Based on sequence alignment analysis,
we remove all space characters from the vulera-
bility samples to assess their similarity and set a
threshold based on experience to remove highly
repetitive code.

3.3 Model Training

Upon the completion of sample collection and pro-
cessing, we fine-tune the pre-trained code LLMs
to classify the previously collected and processed
samples. These preprocessed code samples are

8272

inputted into code LLMs, with the model’s task
being to ascertain the presence of vulnerabilities in
the samples through sequence classification. We
employ the Low Rank Adaptive (LoRa) technique
(Hu et al., 2021) to fine-tune the Query and Key
in the self-attention layers of the LLM. Given the
varying performance of different types of CWEs,
we train models for each CWE type separately to
achieve specific vulnerability detection for a partic-
ular type.

3.4 Data Synthesis

While our aim is to extract vulnerability samples
through code statements that may trigger vulnera-
bilities, there is no existing dataset that fulfills our
requirements. This is due to the fact that the vul-
nerability dataset of real projects originates from
vulnerability repair, while synthetic datasets such
as SARD do not align with the code in real-world
projects. Given that existing datasets cannot meet
our research needs, we designed vulnerability can-
didate detection and preprocessing methods to ob-
tain datasets suitable for model training. However,
manual labeling method (3.2.1) limits the amount
of vulnerability samples, and we need to build a
large-scale dataset for model fine-tuning. There-
fore, the data synthesis method introduced in this
section is crucial.

Referring to data synthesis methods from exist-
ing research(Mirsky et al., 2023), which procures
new vulnerability samples by inserting pure vul-
nerability samples into projects devoid of vulner-
abilities, we extend this method to generate PHP
source code samples that meets our requirements.
We select samples with shorter data stream lengths
and less complex conditional branches, and insert
them into functions of real projects. These func-
tions are then sliced and preprocessed to finally get
our synthetic dataset. Appendix C describes the
detailed process of our data synthesis.

4 Evaluation

This section outlines the experimental details, en-
compassing the experiment setup and datasets.
Then we fine-tune Code LLM through data ob-
tained from synthesis and conduct a comprehensive
comparison of our method with existing method-
ologies, thereby validating the enhancement of our
method’s effectiveness and generalization capabil-
ity.

4.1 Experiments and Datasets

4.1.1 Experiments
We execute extensive experiments to validate the
performance of RealVul, considering two scenarios:
model prediction code and model training code
derive from identical and different PHP projects.
We design three related experiments accordingly.

EXP1: Effectiveness. For the first scenario, we
do not distinguish the projects where the samples
in the training, validation, and test sets come from.
As a baseline, We compare the performance of Re-
alVul and LLMs fine-tuned by vulnerability-repair-
based datasets. These dataset will be randomly
divided into training, validation and test sets.

EXP2: Generalization. For the second sce-
nario, We require that the data used for testing
is unknown to the fine-tuned LLMs. This means
that the training set, validation set and test set are
as unrelated as possible in terms of data sources.
For the dataset of baseline method, we impose the
same requirements, ensuring the these three sets
are sourced from different projects.

To further demonstrate the real-world applica-
tion capabilities of RealVul, we conduct a compari-
son of RealVul with two common PHP SAST tools,
RIPS(RIP) and Fortify SCA(for), in terms of their
function-level analysis capabilities.

EXP3: Ablation Study. Normalization and
model training are two crucial component of our
sample processing. To demonstrate that normal-
ization generally enhances model performance, we
conduct corresponding experiments on CWE-79
vulnerabilities. We use non-normalized datasets
for training and testing, and compare the results
with the first two experiments. We also compare
RealVul with in-context learning approaches to
demonstrate the necessity of fine-tuning. We use
both Zero-shot and Few-shot prompts.

In line with the evaluation metrics of existing
researches(Chakraborty et al., 2020; Fu and Tan-
tithamthavorn, 2022; Chen et al., 2023), we em-
ploy four metrics: accuracy, recall, precision, and
F1 score to thoroughly evaluate our experimen-
tal results. During the sampling phase, we im-
plement AST generation of PHP code using the
PHPLy (php). We primarily use CodeT5(Wang
et al., 2021), CodeT5p(Wang et al., 2023b), CodeL-
lama(Roziere et al., 2023), and the latest Star-
Coder2(Lozhkov et al., 2024) to demonstrate the
effectiveness of RealVul, including five mod-
els: CodeT5-base, CodeT5p-770m, CodeLlama-7b,

8273

Methods
CWE-79 CWE-89

Acc Rec Pre F1 ∆F1 Acc Rec Pre F1 ∆F1

RealVul

CodeLlama-7b 91.47 87.96 79.80 83.68 +51.3 92.35 78.13 79.37 78.74 +73.6
StarCoder2-7b 89.74 86.50 75.71 80.75 +50.5 90.08 84.38 68.35 75.52 +57.3
StarCoder2-3b 88.48 88.69 71.68 79.28 +29.3 92.63 78.13 80.65 79.37 +73.5
CodeT5p-770m 89.02 83.58 75.08 79.10 +53.7 88.39 76.56 65.33 70.50 +37.2

CodeT5-base 89.02 84.67 74.60 79.32 +46.0 79.89 82.81 46.90 59.89 +31.3

Baseline

CodeLlama-7b 86.51 26.83 40.74 32.35 - 89.52 3.85 7.69 5.13 -
StarCoder2-7b 86.51 24.39 40.00 30.30 - 89.80 15.38 22.22 18.18 -
StarCoder2-3b 88.27 48.78 51.28 50.00 - 90.93 3.85 12.50 5.88 -
CodeT5p-770m 86.22 19.51 36.36 25.40 - 93.20 23.08 60.00 33.33 -

CodeT5-base 87.10 26.83 44.00 33.33 - 92.91 19.23 55.56 28.57 -

Table 1: Evaluation results on Random Samples. ∆F1 is the difference between the F1 scores of RealVul and
Baseline methods.

Methods
CWE-79 CWE-89

Acc Rec Pre F1 ∆F1 Acc Rec Pre F1 ∆F1

RealVul

CodeLlama-7b 81.71 75.36 63.41 68.87 +43.2 76.19 100.00 45.95 62.96 +23.0
StarCoder2-7b 77.43 63.77 57.14 60.27 +56.9 86.90 97.06 61.11 75.00 +46.4
StarCoder2-3b 79.76 75.36 59.77 66.67 +41.4 66.67 97.06 37.50 54.10 +28.7
CodeT5p-770m 82.88 73.91 66.23 69.86 +19.9 86.31 97.06 60.00 74.16 +31.5

CodeT5-base 74.32 71.01 51.58 59.76 +1.1 70.24 97.06 40.24 56.89 +18.4

Baseline

CodeLlama-7b 89.38 17.86 45.45 25.64 - 87.23 37.84 42.42 40.00 -
StarCoder2-7b 89.74 1.79 33.33 3.40 - 86.32 24.32 34.62 28.57 -
StarCoder2-3b 89.19 17.86 43.48 25.32 - 85.71 21.62 30.77 25.40 -
CodeT5p-770m 89.01 53.57 46.88 50.00 - 84.50 51.35 36.53 42.70 -

CodeT5-base 89.93 69.64 50.65 58.65 - 85.41 40.54 36.58 38.46 -

Table 2: Evaluation results on Unseen Projects. ∆F1 is the difference between the F1 scores of RealVul and Baseline
methods.

StarCoder2-3b, and StarCoder2-7b. In the Abla-
tion Study on model fine-tuning, we utilized the
in-context learning approaches to directly evaluate
GPT-4, as well as other SOTA open-source LLMs
such as Mistral-7B, Llama3-8B, and CodeLlama-
7B. We used both zero-shot and few-shot prompts.
In the few-shot prompts, we provided two demon-
stration examples to help the LLMs understand
the context of the task. The Appendix D provides
detailed information about models and evaluation
metrics.

4.1.2 Datasets
We collect samples from the CrossVul
dataset(Nikitopoulos et al., 2021) for train-
ing and testing models of RealVul and baseline
method. The CrossVul dataset provides PHP files
pre and post vulnerability repair, which allows us
to collect the datasets from the same data source in
different ways. We use the RealVul framework to
obtain real-world vulnerability datasets, denoted as
Dreal. Leveraging our data synthesis algorithm,
we synthesize a large-scale dataset Dsyn from

Dreal and the SARD dataset(NIST, 2005). For
the baseline method, we obtaine another dataset
by comparing the code differences pre and post
vulnerability repair, denoted as Drep.

To evaluate RealVul, we split the Dsyn as the
training and validation sets, and we use Dreal as
the test set. For the baseline method, we split the
Dsyn as the training, validation and test sets. In
EXP1, we split the dataset through random sam-
pling. But in EXP2, we strictly split the datasets
based on the source projects. We stipulate that the
code samples in the test set can’t be used for synthe-
sizing training and validation sets, and the samples
used for synthesizing validation sets could not be
used for synthesizing training sets. In EXP3, we
use non-normalized datasets Dreal* and Dsyn* for
training and testing, and we use Dreal to evaluate
the in-context learning approaches. We provide
more information in Appendix D, including statis-
tics and properties of our datasets.

8274

4.2 Effectiveness

Table 1 presents the evaluation outcomes of
two vulnerabilities, CWE-79 (XSS) and CWE-89
(SQLI), utilizing the same data source on our test
set Dreal. Based on these results, we can infer the
following:

Despite our training data being algorithmically
synthesized, the evaluation outcomes of RealVul
exhibit commendable performance across four met-
rics. Even for the CWE-89 type, which has a
smaller real data sample size, the evaluation out-
comes remain relatively stable. This suggests that
our synthesized dataset aligns well with the real
dataset, and training with synthesized data can ef-
fectively evaluate code samples in real environ-
ments. Due to the limited data volume in CWE-89,
its overall F1 score performance is not as stable
as that of CWE-79, indicating potential for further
enhancement of our method’s analytical capability
by increasing the number of real sample data.

Comparing with the baseline method further re-
veals that our RealVul method generally outper-
forms the baseline method, with RealVul combined
with CodeLlama-7b and StarCoder2-3b delivering
the best performance in the CWE-79 and CWE-89
tasks, particularly in terms of F1 score. In contrast,
the F1 score of the vulnerability repair-based sam-
pling method does not exceed 50%. This suggests
that our sampling and processing techniques enable
our code to better represent vulnerability feature
information, thereby enhancing the LLM code’s
performance in vulnerability detection.

4.3 Generalization

Table 2 displays the evaluation outcomes on test
sets from different data sources. These results sub-
stantiate that our RealVul method more effectively
encapsulates vulnerability-related information in
the code and achieves superior generalization per-
formance.

In our training data, the proportion of vulner-
ability samples is relatively small, reflecting the
uneven distribution of vulnerability samples in real
environments and imposing higher demands on the
analytical method’s capability. Therefore, although
our method may slightly lack accuracy compared
to the baseline, our F1 score significantly surpasses
the baseline. The baseline’s input is complete func-
tion code or top-level code, which increases the
model’s analytical difficulty compared to samples
obtained by our method.

Methods
CWE-79 CWE-89

TP FP Times (s) TP FP Times (s)

RealVul

CodeLlama-7b 40 14 152 30 17 147
StarCoder2-7b 34 24 130 29 22 151
StarCoder2-3b 38 11 56 29 9 64
CodeT5p-770m 39 15 23 29 20 32

CodeT5-base 32 16 7 29 12 10

RIPS 43 30 <1 3 3 <1
Fortify SCA 40 8 30 1 0 28

Table 3: Comparison of RealVul and two SAST tools.
We also provide the time required for the evaluation.

Additionally, we observe that the model’s pa-
rameter count has minimal impact on its vulnerabil-
ity detection capability. Even smaller models like
Codet5 and Codet5p possess sufficient analytical
capabilities to accomplish the analysis task. This
suggests that our method, by vulnerability candi-
date detection and preprocessing, reduces individ-
ual sample code length and emphasizes potential
vulnerability trigger-related information, thereby
reducing the model’s analytical capability require-
ments.

We also present the comparative results of Re-
alVul and the two traditional SAST tools in Table
3. From the results, our method performs slightly
worse than static tools on CWE-79. However,
our method obviously outperforms static tools on
CWE-89. This is because we match the behavior
of concatenating SQL statements rather than the
functions executing SQL statements when select-
ing potential vulnerability points for SQL injection
vulnerabilities. This allows us to more comprehen-
sively identify SQL vulnerabilities.

In traditional methods, the improvement of vul-
nerability detection requires the continuous accu-
mulation of rules, which increases the time nec-
essary for analysis. It is worth noting that while
SAST tools primarily rely on the CPU for compu-
tation during runtime, the part of our method that
applies the CodeT5 series models takes less eval-
uation time than SAST tools, and the accuracy is
fairly close to that of traditional SAST tools. In Ap-
pendix E, we provide further explanation through
case study.

4.4 Ablation Study

The ablation study results of normalization, pre-
sented in Figure 4, clearly show that although
StarCoder2-3b experiences a certain decrease in
F1 scores when tested on unseen projects, normal-

8275

0

25

50

75

100

CodeLlama-7b StarCoder2-7b StarCoder2-3b CodeT5p-770m CodeT5-base

F1 of RealVul F1* without Norm F1' of Baseline

(a) Test on Random Samples

0

25

50

75

100

CodeLlama-7b StarCoder2-7b StarCoder2-3b CodeT5p-770m CodeT5-base

F1 of RealVul F1* without Norm F1' of Baseline

(b) Test on Unseen Projects

Figure 4: Comparison of ablation study results with the
visualization of results from the first two experiments.

ization processing is necessary in most cases, with
the maximum F1 score difference reaching 14.06%.
This suggests that appropriately reducing irrelevant
semantic information may lead to better results in
PHP vulnerability detection tasks. What’s more,
normalizing the function name might yield better
results. However, to retain the function’s necessary
information, it is essential to construct a function
call graph and analyze its functionality, which ne-
cessitates further development of an analysis sys-
tem.

Although the absence of normalization process-
ing can lead to a decrease in evaluation outcomes,
our sampling method still outperforms Baseline
in previous experiments, indicating its superior-
ity over vulnerability repair-based methods. We
present all the evaluation outcomes of this ablation
study in Appendix E.

The evaluation results of ablation study on model
fine-tuning are shown in Table 9 in Appendix E. It
is obvious that there is a significant performance
gap between the in-context learning approaches
and RealVul, which shows the contribution of our
RealVul. This also confirms the conclusion of exist-
ing research(Steenhoek et al., 2024) that the models
lack the ability to directly use in-context learning
to understand software vulnerabilities, thus fine-
tuning is necessary.

5 Conclusion

In this paper, we concentrate on PHP web vulnera-
bility detection utilizing code LLMs. To enhance
detection proficiency, we identifies potential vulner-
ability triggers, analyzes control flow and data flow,
and eliminates unnecessary semantic information
to obtain samples robustly correlated with vulner-
ability information. Based on the improved data
synthesis method, we extensively synthesize new
vulnerability samples, thereby alleviating the chal-
lenge of insufficient vulnerability dataset of PHP.
We carry out extensive experiments, comparing our
method with existing techniques using samples de-
rived from real-world projects. The experimental
outcomes indicate that our method exhibits sig-
nificantly superior capabilities in comparison to
existing techniques.

Limitations

We acknowledge three potential limitations in our
study that warrant further exploration in future re-
search: (i) During the normalization process, we
preserve user-defined function names. We posit
that integrating function call analysis, standardiz-
ing function name representation, and supplement-
ing code comments with functional information
could potentially enhance the effectiveness of our
approach. (ii) We fine-tune our model specifically
for each type of CWE vulnerability to augment
detection capabilities. This approach incurs sub-
stantial overhead and the performance of a unified
multi-classification model merits investigation. (iii)
At present, there is a dearth of effective vulnerabil-
ity sample labeling methods, leading us to resort
to manual labeling of samples and data synthesis
to compensate for the lack of sufficient data vol-
ume. Consequently, the efficacy of our dataset
could be further improved. (iiii) We adopted a
heuristic rule-based approach to identify potential
vulnerability triggering statements, and these rule
bases still need to be extended or modified in our
framework to adapt to new vulnerability patterns
or updated programming practices.

Acknowledgments

This work is supported by the National Key
Research and Development Program of China
(2022YFB3105405, 2021YFC3300502) and the
Provincial Key Research and Development Pro-
gram of Anhui(202423l10050033).

8276

References
checkmarx. https://checkmarx.com/. Accessed:

May 8, 2024.

Codeql. https://codeql.github.com/. Accessed:
July 27, 2024.

fortify. https://www.microfocus.com/en-us/
cyberres/application-security. Accessed:
May 8, 2024.

Github. https://github.com/. Accessed: May 8,
2024.

phply. https://github.com/viraptor/phply. Ac-
cessed: May 8, 2024.

Rips. https://rips-scanner.sourceforge.net/.
Accessed: May 8, 2024.

Sonarqube. https://www.sonarsource.com/. Ac-
cessed: May 8, 2024.

Miltiadis Allamanis. 2019. The adverse effects of code
duplication in machine learning models of code. In
Proceedings of the 2019 ACM SIGPLAN Interna-
tional Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, pages
143–153.

Saikat Chakraborty, Rahul Krishna, Yangruibo Ding,
and Baishakhi Ray. 2020. Deep learning based vul-
nerability detection: Are we there yet? IEEE Trans-
actions on Software Engineering, 48(9):3280–3296.

Yizheng Chen, Zhoujie Ding, Lamya Alowain, Xinyun
Chen, and David Wagner. 2023. Diversevul: A
new vulnerable source code dataset for deep learn-
ing based vulnerability detection. In Proceedings
of the 26th International Symposium on Research in
Attacks, Intrusions and Defenses, pages 654–668.

Roland Croft, M Ali Babar, and M Mehdi Kholoosi.
2023. Data quality for software vulnerability datasets.
In 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE), pages 121–133. IEEE.

Jiahao Fan, Yi Li, Shaohua Wang, and Tien N Nguyen.
2020. Ac/c++ code vulnerability dataset with code
changes and cve summaries. In Proceedings of the
17th International Conference on Mining Software
Repositories, pages 508–512.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A
pre-trained model for programming and natural lan-
guages. arXiv preprint arXiv:2002.08155.

Michael Fu and Chakkrit Tantithamthavorn. 2022. Line-
vul: A transformer-based line-level vulnerability pre-
diction. In Proceedings of the 19th International
Conference on Mining Software Repositories, pages
608–620.

David Hin, Andrey Kan, Huaming Chen, and M Ali
Babar. 2022. Linevd: Statement-level vulnerability
detection using graph neural networks. In Proceed-
ings of the 19th international conference on mining
software repositories, pages 596–607.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan.
2023. Impact of code language models on automated
program repair. In 2023 IEEE/ACM 45th Interna-
tional Conference on Software Engineering (ICSE),
pages 1430–1442. IEEE.

Mira Leung and Gail Murphy. 2023. On automated
assistants for software development: The role of llms.
In 2023 38th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages
1737–1741. IEEE.

Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu,
and Zhaoxuan Chen. 2021. Sysevr: A framework for
using deep learning to detect software vulnerabili-
ties. IEEE Transactions on Dependable and Secure
Computing, 19(4):2244–2258.

Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai
Jin, Sujuan Wang, Zhijun Deng, and Yuyi Zhong.
2018. Vuldeepecker: A deep learning-based sys-
tem for vulnerability detection. arXiv preprint
arXiv:1801.01681.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
et al. 2024. Starcoder 2 and the stack v2: The next
generation. arXiv preprint arXiv:2402.19173.

Yisroel Mirsky, George Macon, Michael Brown, Carter
Yagemann, Matthew Pruett, Evan Downing, Sukarno
Mertoguno, and Wenke Lee. 2023. {VulChecker}:
Graph-based vulnerability localization in source code.
In 32nd USENIX Security Symposium (USENIX Se-
curity 23), pages 6557–6574.

MITRE. Cve. https://cve.mitre.org/. Accessed:
May 8, 2024.

Georgios Nikitopoulos, Konstantina Dritsa, Panos
Louridas, and Dimitris Mitropoulos. 2021. Crossvul:
a cross-language vulnerability dataset with commit
data. In Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and
Symposium on the Foundations of Software Engineer-
ing, pages 1565–1569.

8277

https://checkmarx.com/
https://codeql.github.com/
https://www.microfocus.com/en-us/cyberres/application-security
https://www.microfocus.com/en-us/cyberres/application-security
https://github.com/
https://github.com/viraptor/phply
https://rips-scanner.sourceforge.net/
https://www.sonarsource.com/
https://cve.mitre.org/

NIST. 2005. Nist software assurance reference dataset.
Accessed: 2024-05-17.

Vadim Okun, Aurelien Delaitre, Paul E Black, et al.
2013. Report on the static analysis tool exposition
(sate) iv. NIST Special Publication, 500:297.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Calif. Sausalito. 2023 cybersecurity almanac:
100 facts, figures, predictions, and statis-
tics. https://cybersecurityventures.com/
cybersecurity-almanac-2023/. Accessed: May
8, 2024.

Benjamin Steenhoek, Md Mahbubur Rahman,
Monoshi Kumar Roy, Mirza Sanjida Alam, Earl T
Barr, and Wei Le. 2024. A comprehensive study of
the capabilities of large language models for vulnera-
bility detection. arXiv preprint arXiv:2403.17218.

Yuqiang Sun, Daoyuan Wu, Yue Xue, Han Liu, Wei
Ma, Lyuye Zhang, Miaolei Shi, and Yang Liu. 2024.
Llm4vuln: A unified evaluation framework for de-
coupling and enhancing llms’ vulnerability reasoning.
arXiv preprint arXiv:2401.16185.

W3Techs. Usage statistics of server-side pro-
gramming languages for websites. https:
//w3techs.com/technologies/overview/
programming_language. Accessed: May 8, 2024.

Huanting Wang, Guixin Ye, Zhanyong Tang, Shin Hwei
Tan, Songfang Huang, Dingyi Fang, Yansong Feng,
Lizhong Bian, and Zheng Wang. 2020. Combin-
ing graph-based learning with automated data collec-
tion for code vulnerability detection. IEEE Transac-
tions on Information Forensics and Security, 16:1943–
1958.

Jin Wang, Zishan Huang, Hengli Liu, Nianyi Yang,
and Yinhao Xiao. 2023a. Defecthunter: A
novel llm-driven boosted-conformer-based code vul-
nerability detection mechanism. arXiv preprint
arXiv:2309.15324.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare,
Nghi DQ Bui, Junnan Li, and Steven CH Hoi. 2023b.
Codet5+: Open code large language models for
code understanding and generation. arXiv preprint
arXiv:2305.07922.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH
Hoi. 2021. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code un-
derstanding and generation. arXiv preprint
arXiv:2109.00859.

Yuxiang Wei, Chunqiu Steven Xia, and Lingming
Zhang. 2023. Copiloting the copilots: Fusing large
language models with completion engines for auto-
mated program repair. In Proceedings of the 31st
ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software
Engineering, pages 172–184.

Yi Wu, Nan Jiang, Hung Viet Pham, Thibaud Lutellier,
Jordan Davis, Lin Tan, Petr Babkin, and Sameena
Shah. 2023. How effective are neural networks for
fixing security vulnerabilities. In Proceedings of the
32nd ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 1282–1294.

Fabian Yamaguchi, Nico Golde, Daniel Arp, and Kon-
rad Rieck. 2014. Modeling and discovering vulner-
abilities with code property graphs. In 2014 IEEE
symposium on security and privacy, pages 590–604.
IEEE.

Yunhui Zheng, Saurabh Pujar, Burn Lewis, Luca Buratti,
Edward Epstein, Bo Yang, Jim Laredo, Alessandro
Morari, and Zhong Su. 2021. D2a: A dataset built for
ai-based vulnerability detection methods using dif-
ferential analysis. In Proceedings of the ACM/IEEE
43rd International Conference on Software Engineer-
ing: Software Engineering in Practice, ICSE-SEIP
’21, New York, NY, USA. Association for Computing
Machinery.

Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du,
and Yang Liu. 2019. Devign: Effective vulnerability
identification by learning comprehensive program
semantics via graph neural networks. Advances in
neural information processing systems, 32.

Deqing Zou, Sujuan Wang, Shouhuai Xu, Zhen Li, and
Hai Jin. 2019. µ vuldeepecker: A deep learning-
based system for multiclass vulnerability detection.
IEEE Transactions on Dependable and Secure Com-
puting, 18(5):2224–2236.

A Related Works

The statistical data of existing vulnerability detec-
tion datasets and research methods are shown in
Tables 4 and 5.

B Vulnerability Candidate Detection

Different methods are needed to identify potential
vulnerability triggers for different types of vulner-
abilities. For XSS vulnerabilities (CWE-79), the
potential statement is echo, print and other output
statements.

However, searching for functions that execute
SQL statements through matching as potential vul-
nerability points is highly inaccurate. On the one
hand, many PHP projects do not use PHP’s na-
tive SQL execution functions, and they often use
self written SQL execution functions or some PHP

8278

https://samate.nist.gov/SARD
https://cybersecurityventures.com/cybersecurity-almanac-2023/
https://cybersecurityventures.com/cybersecurity-almanac-2023/
https://w3techs.com/technologies/overview/programming_language
https://w3techs.com/technologies/overview/programming_language
https://w3techs.com/technologies/overview/programming_language

Datasets Size Type Language

SARD(NIST, 2005) 450K Synthetic C/C++/Java/PHP/C#
SATE IV Juliet(Okun et al., 2013) 253K Synthetic C/C++/Java
Devign(Zhou et al., 2019) 23K Real C
Reveal(Chakraborty et al., 2020) 18K Real C
Big-Vul(Fan et al., 2020) 188K Real C/C++
D2A(Zheng et al., 2021) 1.3M Real C/C++
CrossVul(Nikitopoulos et al., 2021) 27K Real C/C++/Java/PHP/...
DiverseVul(Chen et al., 2023) 349K Real C/C++

Table 4: Overview of Existing Vulnerability Datasets

Approaches Input Model Language

VulDeePecker(Li et al., 2018) Token (Code Gadget) Bi-LSTM C/C++
µVulDeePecker(Zou et al., 2019) Token (Code Gadget) B-BLSTM C/C++
Devign(Zhou et al., 2019) Graph (CPG) GCN C
Reveal(Chakraborty et al., 2020) Graph (CPG) GGNN C
SySeVR(Li et al., 2021) Token (SeVC) BRNN, BGRU C/C++
LineVul
(Fu and Tantithamthavorn, 2022)

Token (Code) CodeBert C/C++

LineVD(Hin et al., 2022) Graph (PDG) GCN, GAT C/C++
VulChecker(Mirsky et al., 2023) Graph (ePDG) S2V, DNN C/C++

DiverseVul(Chen et al., 2023) Token (Code)
RoBERTa, GPT-2,
CodeT5

C/C++

RealVul(Ours) Token (Processed Code)
CodeT5, CodeT5+,
CodeLlama, StarCoder2

PHP

Table 5: Overview of Existing Vulnerability Detection Approches

framework functions, which makes it difficult to
match all potential vulnerability points. On the
other hand, the matched SQL execution function
cannot determine whether a filter for SQL injection
vulnerabilities is built-in. In practice, SQL state-
ments often need to be concatenated with variables
before execution, so we match statements that di-
rectly concatenate SQL statements with variables
as potential vulnerability trigger statements.

C Data Synthesis

Algorithm 1 demonstrates our data synthesis
method. By analyzing the AST of the samples, we
use the code corresponding to the top-level AST
node as the basic unit for inserting into the clean
project code. Subsequently, we analyze the control
flow of the project code, randomly select a control
flow path, and remove potential code trigger state-
ments to obtain clean project code. After T rounds
of synthesis, syntax checking of the code, program
slicing, and preprocessing as described in sections
3.1 and 3.2, we ultimately obtain our synthesized
dataset.

D Experiments Setup

Model Configuration. Table 6 presents an
overview of the Code LLMs we apply in our pa-
per. We use cross entropy as the loss function and
deploy LLMs on four NVIDIA-V100 GPU with
32GB of memory for training and testing to demon-
strate the effectiveness of RealVul. We adopt Adam
optimizer in fp16 precision, 32 global batch size.
We set the training epoch to 2 and 3 for test on
random samples and test on unseen projects. We
add an additional epoch for samples of CWE-89
because its data is small.

Datasets. Table 8 presents an overview of the
dataset utilized in our paper. The sample size
derived from our methodology is comparatively
smaller than that obtained through vulnerability re-
pair, primarily due to the constraints of our manual
labeling process. Furthermore, we pinpoint poten-
tial triggers for CWE-89 type vulnerabilities by
scrutinizing instances where variables are amalga-
mated into SQL statements within the code. De-
spite drawing from the vulnerability dataset, such
SQL concatenation instances are relatively infre-

8279

Code LLM Size Release Time Base Model Publisher License

CodeT5-base 220M Sep-2021 T5 Salesforce Open-source
CodeT5p-770m 770M May-2023 T5 Salesforce Open-source
CodeLlama-7b 7B Jun-2023 Llama2-7b Meta AI Open-source
StarCoder2-3b 3B Feb-2024 - BigCode Open-source
StarCoder2-7b 7B Feb-2024 - BigCode Open-source

Llama3-8b-instruct 8B apr-2024 - Meta AI Open-source
Mistral-7b-instruct-v0.3 7B Dec-2023 Mistral-7b Mistral AI Open-source

GPT-4 - Mar-2023 - OpenAI Closed-source

Table 6: Detail information of Models we apply in this paper.

Algorithm 1 Data Synthesis
Input: Existing pure sample set Sraw, projects’ global
code and function code set Cproj and synthesis times T
for each sample,
Output: Synthesis samples set Ssyn obtained through
synthesis.
Ssyn ← ∅
for each sraw ∈ Sraw do

Craw ← code list of Top-level AST nodes in sraw
for each cproj ∈ Cproj do

for i in range T do
cp ← code of random path in the control flow
of cproj
cp ← remove_vuln_triggers(cp)
csyn ← Randomly insert Craw into cp
if syntax_check(csyn) then

ssyn ←slicing_and_preprocessing(csyn)
Ssyn ← Ssyn ∪ {ssyn}

end if
end for

end for
end for

quent in comparison to "echo" and "print" state-
ments, leading to a reduced collection of CWE-89
vulnerability samples. To counteract this issue, we
amplified the frequency of single sample synthe-
sis (T) during the data synthesis process, resulting
in synthesized samples constituting approximately
30% of the total sample size. This strategy has
somewhat alleviated the problem.

Our datasets are at the snippet level, and the
average LoC for the XSS and SQL vulnerability
datasets are 13.07 and 22.06 lines, respectively.
Compared with function-level datasets, the advan-
tages of our snippet-level dataset are fine-grained
detection, simple labeling, more samples, high
training efficiency, and strong sample indepen-
dence. However, the contextual information pro-
vided by ours is relatively limited compared to
function-level and project-level.

Evaluation Metrics. We use the following eval-

(a): Test on Random Samples

Code LLM Metrics

Acc Rec Pre F1

CodeLlama-7b 83.75 89.05 62.09 73.16
StarCoder2-7b 83.30 90.51 61.08 72.94
StarCoder2-3b 83.48 89.05 61.62 72.83
CodeT5p-770m 84.66 77.01 66.56 71.40

CodeT5-base 82.03 67.88 62.83 65.26

(b): Test on Unseen Projects

Code LLM Metrics

Acc Rec Pre F1

CodeLlama-7b 84.04 60.87 75.00 67.20
StarCoder2-7b 77.04 44.93 59.62 51.24
StarCoder2-3b 80.93 91.30 59.43 72.00
CodeT5p-770m 74.71 84.05 51.78 64.08

CodeT5-base 75.48 57.97 54.05 55.94

Table 7: Evaluation results of Ablation Study on nor-
malization.

uation metrics:

• Accuracy indicates the overall correctness:
Acc = TP+TN

TP+FP+FN+TN .

• Precision indicates the correct positive predic-
tions part: Pre = TP

TP+FP .

• Recall calculates the correctly recalled posi-
tive examples part: Rec = TP

TP+FN .

• F1 is the harmonic mean of Precision and Re-
call: F1 = 2 · Pre·Rec

Pre+Rec . We mainly use F1
to decide the best performing model as it pro-
vides a balanced evaluation of the model’s
performance in terms of both Precision and
Recall.

8280

CWE # Projects
by Fix (Drep) # RealVul (Dreal) # for Synthesis # Synthesis (Dsyn)

Total Vuln Total Vuln Total SARD Total Vuln

CWE-79 154 6818 815 1102 274 1417 315 33255 12040
CWE-89 50 3525 303 353 64 543 190 14116 4237

Total 180 10343 1118 1455 338 1960 505 47371 16277

Table 8: Statistics of the dataset we used. We list the number of samples obtained through vulnerability repair,
samples obtained through RealVul, samples used for data synthesis, and samples obtained through synthesis.

Methods
CWE-79 CWE-89

Acc Rec Pre F1 Acc Rec Pre F1

RealVul CodeLlama-7b 91.47 87.96 79.80 83.68 92.35 78.13 79.37 78.74

zero-shot

CodeLlama-7b 24.86 100.00 24.86 39.82 18.18 100.00 18.18 30.77
Llama3-8b 24.86 100.00 24.86 39.82 18.13 100.00 18.13 30.69
Mistral-7b 24.01 100.00 24.01 38.72 17.69 100.00 17.09 29.19

GPT-4 27.58 100.00 25.56 40.71 18.69 100.00 18.23 30.84

few-shot

CodeLlama-7b 24.58 97.36 21.63 35.40 10.81 100.00 10.20 18.52
Llama3-8b 25.17 100.00 25.17 40.22 15.04 100.00 15.04 26.15
Mistral-7b 33.48 97.44 26.88 42.14 24.36 89.06 17.98 29.92

GPT-4 59.50 96.61 41.91 58.46 40.79 98.43 23.24 37.61

Table 9: Evaluation results of Ablation Study on model fine-tuning.

E Experiment Results

Case Study. We illustrate two sample cases in
the Figure 5. In practical projects, there may ex-
ist longer top-level or function codes. It can be
observed that compared to the original samples,
our samples are shorter, contain fewer irrelevant
details and maintain correct syntax. This enables
the Code LLMs to more easily perform vulnerabil-
ity detection tasks. Additionally, as the function
code shown in the Figure 5(b), triggering functions
in CWE-89 vulnerabilities are difficult to identify
through traditional rules. That’s why our poten-
tial vulnerability localization method significantly
outperforms SAST tools in CWE-89 vulnerability
detection.

Ablation Study. The detailed evaluation results
of ablation study on normalization and model fine-
tuning are shown in the Table 7 and Table 9.

8281

function cfdef_input_list(array $p_field_def, $p_custom_field_value,
$p_required = ''){

$t_values = explode('|',
custom_field_prepare_possible_values($p_field_def['possible_values']));

$t_list_size = $t_possible_values_count = count($t_values);

if($t_possible_values_count > 5) {
$t_list_size = 5;
}

if($p_field_def['type'] == CUSTOM_FIELD_TYPE_ENUM) {
$t_list_size = 0;

}

if($p_field_def['type'] == CUSTOM_FIELD_TYPE_MULTILIST) {
echo ...;

} else {
echo ...;

}

$t_selected_values = explode('|', $p_custom_field_value);
foreach($t_values as $t_option){

if(in_array($t_option, $t_selected_values, true)){
echo '<option value="'.string_attribute($t_option).

'" selected="selected"> '.string_display_line($t_option).'</option>’;
} else {

echo '<option value="'.string_attribute($t_option).
'">' . string_display_line($t_option) . '</option>’;

}
}
echo '</select>';

}

<?php
// controlable parameters:
$var3 = $_GET['input0'];
$var1 = $_GET['input1'];

// php code:
$var4 = explode('|',
custom_field_prepare_possible_values($var3['possible_values']));
$var2 = explode('|', $var1);
foreach($var4 as $taint) {
if(in_array($taint, $var2, true)) {
echo string_attribute($taint) . string_display_line($taint) ;
//sink point: $taint;

}
}

function cfdef_input_list(array $p_field_def, $p_custom_field_value,
$p_required = ''){

$t_values = explode('|',
custom_field_prepare_possible_values($p_field_def['possible_values']));

$t_list_size = $t_possible_values_count = count($t_values);

if($t_possible_values_count > 5) {
$t_list_size = 5;
}

if($p_field_def['type'] == CUSTOM_FIELD_TYPE_ENUM) {
$t_list_size = 0;

}

if($p_field_def['type'] == CUSTOM_FIELD_TYPE_MULTILIST) {
echo ...;

} else {
echo ...;

}

$t_selected_values = explode('|', $p_custom_field_value);
foreach($t_values as $t_option){

if(in_array($t_option, $t_selected_values, true)){
echo '<option value="'.string_attribute($t_option).

'" selected="selected"> '.string_display_line($t_option).'</option>’;
} else {

echo '<option value="'.string_attribute($t_option).
'">' . string_display_line($t_option) . '</option>’;

}
}
echo '</select>';

}

<?php
// controlable parameters:
$var3 = $_GET['input0'];
$var1 = $_GET['input1'];

// php code:
$var4 = explode('|',
custom_field_prepare_possible_values($var3['possible_values']));
$var2 = explode('|', $var1);
foreach($var4 as $taint) {
if(in_array($taint, $var2, true)) {
echo string_attribute($taint) . string_display_line($taint) ;
//sink point: $taint;

}
}

(a) CWE-79 Case

static function prepopulate_versionnumber_cache($class, $stage,
$idList = null) {

$filter = "";

if($idList) {
foreach($idList as $id)
if(!is_numeric($id))
user_error("Bad ID ... : " . $id, E_USER_ERROR);
$filter = "WHERE \"ID\" IN(" .implode(", ", $idList).")";

}

$baseClass = ClassInfo::baseDataClass($class);
$stageTable = ($stage == 'Stage') ? $baseClass :

"{$baseClass}_{$stage}";

$versions = DB::query("SELECT \"ID\", \"Version\" FROM
\"$stageTable\" $filter")->map();

foreach($versions as $id => $version) {
self::$cache_versionnumber[$baseClass][$stage][$id] =

$version;
}

}
<?php
// controlable parameters:
$var2 = $_GET['input0'];
$var3 = $_GET['input1'];

// php code:
$var1 = ClassInfo::baseDataClass($var2);
$taint = ($var3 == 'Stage') ? $var1 :"{$var1}_{$var3}";

$var4 = "$taint";
//sink point: $taint;

$var5 = mysql_query($var4);

static function prepopulate_versionnumber_cache($class, $stage,
$idList = null) {

$filter = "";

if($idList) {
foreach($idList as $id)
if(!is_numeric($id))
user_error("Bad ID ... : " . $id, E_USER_ERROR);
$filter = "WHERE \"ID\" IN(" .implode(", ", $idList).")";

}

$baseClass = ClassInfo::baseDataClass($class);
$stageTable = ($stage == 'Stage') ? $baseClass :

"{$baseClass}_{$stage}";

$versions = DB::query("SELECT \"ID\", \"Version\" FROM
\"$stageTable\" $filter")->map();

foreach($versions as $id => $version) {
self::$cache_versionnumber[$baseClass][$stage][$id] =

$version;
}

}
<?php
// controlable parameters:
$var2 = $_GET['input0'];
$var3 = $_GET['input1'];

// php code:
$var1 = ClassInfo::baseDataClass($var2);
$taint = ($var3 == 'Stage') ? $var1 :"{$var1}_{$var3}";

$var4 = "$taint";
//sink point: $taint;

$var5 = mysql_query($var4);

(b) CWE-89 Case

Figure 5: Two sets of sample Cases obtained through vulnerability reapir and RealVul. We mark the data flow and
potential vulnerability statements.

8282

