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Abstract

Reinforcement learning from human feedback
(RLHF) is a promising solution to align large
language models (LLMs) more closely with
human values. Off-policy preference optimiza-
tion, where the preference data is obtained
from other models, is widely adopted due to
its cost efficiency and scalability. However,
off-policy preference optimization often suffers
from a distributional gap between the policy
used for data collection and the target policy,
leading to suboptimal optimization. In this pa-
per, we propose a novel strategy to mitigate
this problem by simulating on-policy learning
with off-policy preference data. Our Weighted
Preference Optimization (WPO) method adapts
off-policy data to resemble on-policy data more
closely by reweighting preference pairs accord-
ing to their probability under the current pol-
icy. This method not only addresses the dis-
tributional gap problem but also enhances the
optimization process without incurring addi-
tional costs. We validate our method on instruc-
tion following benchmarks including Alpaca
Eval 2 and MT-bench. WPO not only outper-
forms Direct Preference Optimization (DPO)
by up to 5.6% on Alpaca Eval 2 but also estab-
lishes a remarkable length-controlled winning
rate against GPT-4-turbo of 76.7% based on
Gemma-2-9b-it. We release the code and mod-
els at https://github.com/wzhouad/WPO.

1 Introduction

Large language models (LLMs; Ouyang et al. 2022;
Achiam et al. 2023; Tunstall et al. 2023; Chung
et al. 2024) have demonstrated remarkable capa-
bilities in generating human-like responses. How-
ever, they still face challenges in scenarios demand-
ing high standards of reliability, safety, and ethics.
To address these challenges, reinforcement learn-
ing from human feedback (RLHF; Christiano et al.
2017; Ouyang et al. 2022; Glaese et al. 2022) is
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a promising approach to better align LLMs with
human values.

Depending on how the outputs are generated,
RLHF can be categorized into on-policy and off-
policy settings. In the on-policy setting (Schulman
et al., 2017; Yuan et al., 2024; Rosset et al., 2024;
Wu et al., 2024), the policy model used to generate
outputs is the same as the policy model being opti-
mized. During this process, a policy model is first
initialized from supervised finetuning (SFT). Then,
a reward model (Schulman et al., 2017; Gao et al.,
2023; Jiang et al., 2023) is obtained based on hu-
man (Schulman et al., 2017) or AI (Lee et al., 2023)
feedback. Finally, the policy model samples out-
puts during training, which are then evaluated using
the reward model. The policy model is optimized to
improve the expected reward using training objec-
tives such as Proximal Policy Optimization (PPO;
Schulman et al. 2017) and Direct Preference Opti-
mization (DPO; Rafailov et al. 2023). However, on-
policy RL relies heavily on policy sampling during
training and online rewards, which can incur high
costs. In contrast, in the off-policy setting (Tunstall
et al., 2023; Ivison et al., 2023), the outputs are
generated from different models, and the policy
model is optimized based on these data instead of
its sampled outputs. Consequently, off-policy RL
offers significant advantages in terms of cost and
data efficiency and is easier to scale up.

Nevertheless, off-policy RL often shows worse
performance than on-policy RL, due to the distribu-
tional gap between the policy used to collect data
and the target policy being optimized, which leads
to instability and inefficiency in training (Fujimoto
et al., 2019; Kumar et al., 2019, 2020; Xu et al.,
2024; Tang et al., 2024a; Tajwar et al., 2024). In off-
policy preference optimization, the optimization is
typically performed on preference data sampled
from other models, and all the preference singles
are equally treated. However, some preference data,
distant from the current policy, are less informative
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Figure 1: Overview of the Weighted Preference Optimization (WPO). Some notations are labeled along with
corresponding components. Existing DPO directly optimizes the policy to best satisfy the preferences with off-
policy data. In contrast, WPO adapts off-policy data to resemble on-policy data more closely by reweighting
preference pairs according to their probability under the current policy.

for training, resulting in inefficient and suboptimal
optimization.

In this paper, we propose simulating on-policy
preference optimization with off-policy preference
data, combining the efficiency of off-policy RL
with the performance benefits associated with on-
policy RL. Our method is motivated by the follow-
ing conceptual data generation process. This pro-
cess begins with transforming the existing prefer-
ence dataset into a preference labeling function. We
can then resample a new preference dataset through
bootstrapping from the existing data. This process
involves uniformly sampling inputs from the pref-
erence dataset and online sampling new pairs of
outputs with the current policy model. Each pair is
retained if it can be labeled by the labeling function;
otherwise, it is rejected. We then perform DPO on
the regenerated preference dataset. In practice, this
bootstrapping process can be implemented with the
Weighted Policy Optimization (WPO) objective,
where different preference pairs are reweighted ac-
cording to the joint probability of their outputs.
We further devise a weighting alignment mecha-
nism to ensure that all on-policy generated pairs
are equally weighted. In this way, WPO can ef-
fectively mitigate the distribution gap during RL
without incurring additional costs.

We evaluate WPO on instruction following
benchmarks, including Alpaca Eval 2 (Li et al.,
2023) and MT-bench (Zheng et al., 2023). In
the off-policy setting based on Ultrafeedback (Cui
et al., 2023), WPO improves the length-controlled
winning rate against GPT-4-turbo on Alpaca Eval
2 by up to 14.9% over SFT model, outperforming
DPO by up to 5.6%. Particularly, in the hybrid
RL setting where the off-policy preference data
is further enriched with on-policy outputs, WPO
(Figure 1) achieves a new SOTA length-controlled

winning rate of 76.7% on Alpaca Eval 2. Addi-
tionally, we find that WPO can be integrated into
other loss functions for preference optimization
and shows consistent improvements. Furthermore,
we systematically compare the model performance
in different RL settings. Our analysis reveals that
the hybrid setting, which utilizes both on-policy
and off-policy preference data, achieves the best
results, and on-policy, dispreferred data is more
important for preference optimization.

To summarize, our contributions are three-fold:

• We identify the distribution gap problem in
off-policy preference optimization, and ac-
cordingly introduce a method to simulate on-
policy RL using off-policy preference data.

• We propose the WPO objective, which
reweights preference pairs based on their prob-
abilities. This ensures that the most relevant
and probable outputs are prioritized during op-
timization, mitigating the distribution gap and
improving the effectiveness of the preference
optimization.

• We conduct extensive instruction following
benchmarks. Our results demonstrate that
WPO significantly outperforms DPO and
achieves new SOTA results on Alpaca Eval 2
in the hybrid RL setting.

2 Related Work

General alignment methods. The advancement
of ChatGPT has propelled significant advance-
ments in the field of large language models (LLMs).
Notable models such as Zephyr (Tunstall et al.,
2023) and GPT-4 (Achiam et al., 2023) have effec-
tively demonstrated the application of techniques
like reinforcement learning from human feedback
(RLHF; Christiano et al. 2017; Ouyang et al. 2022;
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Glaese et al. 2022) and direct preference optimiza-
tion (DPO; Rafailov et al. 2023), highlighting their
efficacy in achieving improved model alignment.
These approaches, along with related methods such
as sequence likelihood calibration (Zhao et al.,
2023) and Generalized Preference Optimization
(GPO) (Tang et al., 2024b), aim to refine the objec-
tives of RLHF by clearly enhancing the distinction
between more and less preferred outputs. Addi-
tionally, the introduction of the Direct Nash Opti-
mization (DNO) algorithm by Rosset et al. (2024)
represents a further innovation. This algorithm
utilizes cross-entropy to assess the gap between ac-
tual and predicted win rates. Practical applications
more frequently rely on the iterative framework of
DPO (Xu et al., 2023). Yet, DPO often reveals a
discrepancy between the output distributions pro-
duced by the policy and those in the preference
dataset. To address this, we propose simulating
on-policy reinforcement learning using off-policy
data, thereby combining the benefits of on-policy
RL with enhanced efficiency.

On-policy reinforcement learning. Self-Play
Fine-Tuning (Chen et al., 2024) operates under an
iterative framework akin to DPO, utilizing human-
labeled responses as "winners" and outputs from
previous iterations as "losers" within each pair-
ing. Similarly, Adversarial Preference Optimiza-
tion (Cheng et al., 2023) incorporates contrastive
losses, which obviate the need for direct feedback
from annotators. This method introduces a token-
level loss function known as Cringe Loss (Adolphs
et al., 2022), which differentiates the correct sub-
sequent token from a deliberately incorrect token
from the vocabulary. Pairwise Cringe Loss (Xu
et al., 2023) utilizes this cringe loss mechanism
within a continuously improving iterative training
framework. Moreover, the recent introduction of
SAMI (Fränken et al., 2024) targets optimizing a
lower bound on the conditional mutual informa-
tion between prompts and responses through a con-
trastive estimation technique. In our approach, we
adjust the importance of each pair in the training
process by assigning greater weight to those pairs
more likely to be sampled from the policy model,
thus simulating on-policy reinforcement learning.

3 Method

In this section, we provide the theoretical back-
ground of RLHF and DPO in Section 3.1. We
then introduce the distributional gap problem and

Algorithm 1: Weighted Preference Opti-
mization (WPO)

Input: Dataset (D) with prompts and respon-
ses, policy LM πθ, total number of iterations
T , learning rate αt,
for t = 0 to T do

Sample a mini-batch of tuples (x, yw, yl)
from D,
Calculate the alignment weight via Eq. (2),
Compute LWPO via Eq. (1),
Update policy parameters θ using gradient
descent: θ ← θ − αt∇θ(x, yw, yl, θ).

end for

propose the WPO method (Algorithm 1) in Sec-
tion 3.2. Finally, we explore how to better sim-
ulate on-policy RL through weight alignment in
Section 3.3.

3.1 Preliminaries
RLHF (Schulman et al., 2017) aims to align a large
language model with human preferences. Given
a preference dataset D = {(x(i), y(i)w , y

(i)
l )}Ni=1, in

which yw and yl are a pair of outputs given prompt
x sampled from a policy model, and yw is favored
over yl as determined by human or AI annotators.
This preference is modeled by a latent reward func-
tion r∗(x, y), which scores on how well the can-
didate output y matches the input x. There are
various ways to model the reward function, among
which the Bradley-Terry (BT; Bradley and Terry
1952) model is most commonly used. The BT
model assumes that the preference distribution is
characterized by the following equation:

p(yw ≻ yl|x) = exp(r∗(x,yw))
exp(r∗(x,yw))+exp(r∗(x,yl))

.

The parameters of the reward function can be es-
timated based on maximum likelihood estimation,
resulting in the reward model r̂(x, y). Then, we
can use the fitted reward model to provide feed-
back to a large language model by optimizing the
following objective:

maxπθ
Ex∼D,y∼πθ(·|x)

[
r̂(x, y)− β log πθ(·|x)

πref(·|x)

]
,

where β controls the deviation between the policy
model πθ and the reference model πref, which is
usually initialized from the SFT model.

DPO. Direct optimization optimization (DPO;
Rafailov et al. 2023) integrates the learning of the
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reward function and the policy model to a unified
objective. Specifically, suppose the optimal pol-
icy π∗ is given, the corresponding reward r∗ has a
closed form:

r∗(x, y) = β log
π∗(y|x)
πref(y|x)

+ β logZ(x),

where Z(x) is the partition function. Applying this
reparameterization to the BT model, we have:

p∗(yw ≻ yl|x) = σ
(
β log π∗(yw|x)

πref(yw|x) − β log π∗(yl|x)
πref(yl|x)

)
.

We can then formulate a maximum likelihood es-
timation objective for the policy model πθ on the
preference dataset D, resulting in the following
training objective:

LDPO = −E(x,yw,yl)∼D [log p(yw ≻ yl|x)] .

Here, the loss is calculated based on a uniform
sampling of the preference dataset. In practice,
the yw and yl in the preference dataset may be
generated either with the same policy model being
optimized, which corresponds to an on-policy RL
setting (Xu et al., 2023; Yuan et al., 2024; Rosset
et al., 2024), or with other models (e.g., GPT-4;
Achiam et al. 2023), corresponding to an off-policy
RL setting (Tunstall et al., 2023; Ivison et al., 2023;
Pal et al., 2024).

3.2 Weighted Preference Optimization
DPO does not require actively generating new out-
puts from the current policy, making it more cost-
effective and suitable for off-policy settings. How-
ever, DPO introduces a notable discrepancy be-
tween the distribution of outputs produced by the
policy and those present in the preference dataset.
This divergence can lead to less effective learn-
ing. To illustrate, consider two instances of prefer-
ence data:

(
x(1), y

(1)
w , y

(1)
l

)
and

(
x(2), y

(2)
w , y

(2)
l

)
,

where the first tuple is sampled directly from the
current policy model, while the second tuple is sam-
pled from a different distribution from the current
policy model. Despite this difference in sampling
probability, DPO treats both instances equally in
its loss calculation, ignoring the fact that the first
tuple, representing a more probable output of the
current policy, should ideally exert a greater influ-
ence on the optimization process. This oversight
can lead to suboptimal performance, as DPO does
not prioritize learning from the most representative
or probable output of the policy model.

To address this issue, we propose to simulate
on-policy RL using off-policy data, thereby being
both fast and enjoying benefits from on-policy RL.
Theoretical derivation. To simulate on-policy
RL, we first transform the (off-policy) preference
dataset D = {(x(i), y(i)w , y

(i)
l )}Ni=1 into the follow-

ing preference labeling function:

f(x, y1, y2) =





y1 ≻ y2, (x, y1, y2) ∈ D
y2 ≻ y1, (x, y2, y1) ∈ D
NA, otherwise

where we assume that the dataset contains no con-
flicting preferences, meaning that for any x, if
(x, y1, y2) ∈ D, then (x, y2, y1) /∈ D. We then
conceptually generate a new preference dataset
through a bootstrapping approach without actually
carrying out the procedure. Suppose an input x
is uniformly sampled from the original preference
dataset, and then a pair of outputs y1, y2 is sampled
with the current policy model. We retain the pair
if it can be labeled by the labeling function, and
otherwise reject the pair when f(x, y1, y2) = NA.
If we sample for an infinite amount of times, ac-
cording to the law of large numbers, the occurrence
rate of a pair (x, yw, yl) would be proportional to
πθ(yw|x)πθ(yl|x)p(x). We then apply DPO to the
newly generated preference dataset.
Practical implementation. The conceptual pro-
cess above is equivalent to optimizing the following
weighted preference optimization (WPO) objec-
tive, where different pairs in the original preference
dataset are reweighed:

LWPO = −E(x,yw,yl)∼D [w(x, yw)w(x, yl) log p(yw ≻ yl|x)] , (1)

where w(x, y) = πθ(y|x) and is detached from
back propagation. Through this process, we ef-
fectively adjust the importance of each pair in the
training process, giving greater weight to those
pairs that are more likely to be sampled from the
policy model, thus simulating on-policy RL.

In language models where yw and yl are se-
quences of tokens, the product of the conditional
probabilities πθ(yw|x) · πθ(yl|x) can be exceed-
ingly small and exhibit high variance among dif-
ferent pairs. To address this, we utilize the length-
normalized sequence probability as a weighting
factor:

w(x, y) = exp


 1

|y|

|y|∑

t=1

log πθ(yt|x, y<t)


 ,
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Figure 2: Weight distribution of outputs sampled using
the policy model with different alignment methods.

where |y| represents the number of tokens in the
output.

3.3 Weight Alignment

The objective of our weighting strategy is to sim-
ulate on-policy RL, where outputs are weighted
according to how closely they align with on-policy
behavior. For outputs generated by the current pol-
icy model, we expect their weights to be uniformly
1, while outputs that deviate from this on-policy
behavior should receive smaller weights. How-
ever, due to the varying levels of confidence that
LLMs exhibit across different inputs (Si et al.,
2023; Xiong et al., 2024), even outputs gener-
ated by the policy model may sometimes be as-
signed low weights. This introduces an unintended
bias where some on-policy outputs receive lower
weights purely because of lower model confidence
based on the input, disrupting the uniformity we
aim to achieve. Figure 2 shows the weight distri-
bution of sampled outputs based on prompts from
Ultrafeedback and the Mistral-sft-beta model, in
which we observe significant variability in w(x, y).
To address this and ensure equal weighting of these
outputs, we propose to align the weights in WPO.

A direct method is to adjust the weights above
by the sequence probability of the on-policy out-
puts sampled from the policy model. However,
generating outputs during training is computation-
ally expensive, and hence, we explore approxima-
tion methods for this alignment. Instead of using
weights of the whole sequences as reference, we op-
erate at the token level and adjust the probability of
output tokens according to the token distribution in
the policy model, based on the current subsequence.
We propose two ways to achieve the alignment.

Greedy alignment. In this approach, we adjust the
weights based on greedy decoding by comparing
the probability of the current token with that of

the most probable token in the vocabulary. Specif-
ically, we adjust weights based on the maximum
token probability among the set of all tokens in the
subsequence, defined as:

w(x, y) = exp

(
1
|y|

|y|∑
t=1

log πθ(yt|x,y<t)
maxv∈V πθ(v|x,y<t)

)
,

where V represents the set of all tokens in the lan-
guage model.

Sampled alignment. In this approach, we ad-
just weights based on outputs that are randomly
sampled from the policy model at a temperature
of 1.0. Since the probability for each token v
is computed as πθ(v|x, y<t), the expected prob-
ability of a randomly sampled token would be∑

v∈V πθ(v|x, y<t)
2, and the calibrated weights

are then given by:

w(x, y) = exp

(
1
|y|

|y|∑
t=1

log πθ(yt|x,y<t)∑
v∈V πθ(v|x,y<t)2

)
. (2)

We use sampled alignment as the default alignment
method in WPO due to its superior performance,
as confirmed in Section 4.2. Additionally, in Fig-
ure 2, sampled alignment leads to a more concen-
trated weight distribution of outputs from the policy
model, thereby better simulating on-policy RL.

4 Experiment

In this section, we outline our experimental settings
(Section 4.1) and present the main results along
with ablation studies (Section 4.2). We then com-
pare different RL settings (Section 4.3). Additional
analysis of WPO is provided in Appendix A.

4.1 Experimental Settings

Model configurations. Our methods are imple-
mented based on the official code of zephyr1. For
Mistral-base, we adopt the official hyperparameters
from zephyr. Specifically, we use the SFT check-
point of zephyr2 as our SFT model. Training is
conducted over a single epoch with a batch size
of 128, a learning rate of 5e-7, a warm-up phase
for 10% of the training, and a cosine decay sched-
ule. We set β to 0.01 for both DPO and WPO.
For Llama-3-Instruct, we perform a hyperparame-
ter search within the range recommended by Meng

1https://github.com/huggingface/
alignment-handbook

2https://huggingface.co/HuggingFaceH4/
mistral-7b-sft-beta
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Method

Mistral-Base (7B) Llama-3-Instruct (8B)

Alpaca Eval 2.0 MT-bench Alpaca Eval 2.0 MT-bench

Len-control. Win Rate Avg. Win Rate Len-control. Win Rate Avg. Win Rate
Win Rate vs GPT-4 Score vs DPO Win Rate vs GPT-4 Score vs DPO

SFT 9.5 5.8 6.64 - 26.0 25.3 7.97 -

O
ff

-p
ol

ic
y

ORPO 14.7 12.6 7.32 - - - - -
KTO 14.9 12.3 7.36 - - - - -
SimPO 21.5 21.4 7.32 - - - - -
DPO 20.6 (0.7) 18.6 (1.0) 7.36 (0.04) 50 (0) 28.2 (0.5) 24.0 (0.5) 8.10 (0.05) 50 (0)
WPO 24.4 (1.4) 23.7 (2.1) 7.37 (0.10) 60.1 (4.7) 33.8 (1.3) 31.0 (1.8) 8.14 (0.05) 58.1 (3.4)

H
yb

ri
d DPO 37.9 (1.2) 40.3 (1.1) 7.14 (0.41) 50 (0) 44.2 (1.2) 48.6 (1.0) 8.16 (0.10) 50 (0)

WPO 42.0 (1.7) 46.2 (2.3) 7.38 (0.08) 56.4 (4.6) 45.8 (1.3) 50.0 (1.1) 8.18 (0.22) 54.8 (2.2)
+ Ultrafeedback 43.1 (1.1) 49.6 (1.2) 7.23 (0.19) 58.8 (4.5) 48.6 (1.3) 52.1 (1.2) 8.14 (0.10) 55.1 (2.4)

Table 1: Alpaca Eval 2.0 and MT-bench results. We report the average and standard deviation of the results from 5
runs of different random seeds. Scores that are underlined denote statistically significant gains (p < 0.05).

et al. (2024). Our final hyperparameters are a learn-
ing rate of 1e-6, two training epochs, and β of 0.01
for both DPO and WPO. For all training configura-
tions, we conduct training for 5 runs with different
random seeds and report both the average results
and their standard deviation.

Training data. We perform RLHF in off-policy
and hybrid settings. In the off-policy setting, we
use the binarized Ultrafeedback dataset3(Cui et al.,
2023), which compromises 63k preference pairs
sampled from models other than our SFT model,
such as GPT-4 and Llama-2 (Touvron et al., 2023).
In the hybrid setting, we follow the approach in
DNO (Rosset et al., 2024), using data generated
from both the policy model and other models.
Specifically, we sample 5 outputs from the SFT
model based on prompts from Ultrafeedback and
add another output generated by gpt-4-turbo. We
employ top-p sampling with p = 0.95 and a temper-
ature of 0.7. Preference annotations are produced
using gpt-4-turbo with additive scoring prompt.
For each prompt, we select outputs scoring 5 or
6 as yw and then choose a random output with a
score at least one point lower as yl. If such a pair
cannot be found, the prompt is not used. This data
construction step produces a smaller preference
dataset, so we further employ the + Ultrafeedback
setting, where we add the missing prompts back
using the preference pairs from Ultrafeedback.

Evaluation. We evaluate the models on Alpaca
Eval 2 and MT-bench. Alpaca Eval 2 is an au-
tomated metric that measures LLMs’ alignment
with human preferences using 805 representative
instructions. For each instruction, the evaluated

3https://huggingface.co/datasets/
HuggingFaceH4/ultrafeedback_binarized

model’s response and gpt-4-turbo’s response are
compared head-to-head using an auto-evaluator.
The win rate is the probability that the auto-
evaluator prefers the evaluated model’s responses.
Alpaca Eval 2 also introduces a length-controlled
win rate (Dubois et al., 2024) to address the length
bias of gpt-4-turbo. We follow the generation
configurations in Tunstall et al. (2023) for Mistral
models and in Zheng et al. (2024) for Llama-3
models.

MT-bench is an LLM-based automated evalua-
tion metric comprising 80 challenging questions.
We report results using two scoring methods. In the
single answer grading approach, the auto-evaluator
(gpt-4-0613) assigns scores from 1 to 10 to re-
sponses, and we report the average scores. In
the pairwise comparison approach, the evaluator
(gpt-4-0613) compares two responses to decide
which is better or if it’s a tie (recorded as 0.5 in
win rate). The pairwise method can detect more
subtle differences between responses than single
answer grading. We use the official generation
configurations in MT-bench.

4.2 Main Results and Ablation

WPO consistently and significantly outperforms
DPO and its variants. The main results are shown
in Table 1. We include the results of different
preference optimization algorithms such as DPO,
ORPO (Hong et al., 2024), KTO (Ethayarajh et al.,
2024), and SimPO (Meng et al., 2024) on the two
benchmarks. For ORPO, KTO, and SimPO, we
report the evaluation results of their official model
checkpoints on Mistral-base.4 We find that WPO

4We do not include their results on Llama-3-Instruct in the
off-policy setting as the official checkpoints are unavailable.
Reproducing these methods requires extensive hyperparameter
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Method
Alpaca Eval 2.0 MT-bench

Len-control. Win Rate Win Rate
Win Rate vs GPT-4 vs DPO

WPO w/ sampled align. 24.4 23.7 60.1

WPO w/ greedy align. 23.0 21.4 57.9
WPO w/o align. 22.0 20.3 54.4
DPO 20.6 18.6 50

Table 2: Ablation of weight alignment methods on
Mistral-base in the off-policy setting. sampled align-
ment, the default weight alignment method, yields the
best results.

generally outperforms DPO in all settings and also
outperforms all its variants on Mistral-base in the
off-policy setting. Particularly, when trained with
the Llama-3-Instruct model and the hybrid +Ul-
trafeedback setting, WPO achieves a new state-of-
the-art length-controlled win rate of 48.6% against
GPT-4-turbo on Alpaca Eval 2. These results high-
light the effectiveness of WPO. Additionally, while
DPO underperforms compared to SimPO, it still
demonstrates competitive results, providing a solid
basis for WPO.

Varied separation of benchmarks. On MT-bench,
the average score does not effectively distinguish
the performance of different models. Additionally,
we observe variability in the average MT-bench
score. Even when using GPT-4 to score the same
outputs with a temperature of 0, the score can vary
by up to 0.1 at different times. Given the clearer
separation in our experiments and the greater align-
ment with human evaluations, as shown in the origi-
nal paper (Zheng et al., 2023), we consider pairwise
win rate to be a more suitable metric for assessing
different alignment methods. Therefore, we use it
for MT-bench in the following part of the paper.

Sampled weight alignment works the best. Ta-
ble 2 shows the results of WPO with different
weight alignment methods on Mistral-base in the
off-policy setting. We observe that sampled align-
ment outperforms other variations on both bench-
marks, while greedy sampling outperforms w/o
alignment. We also find that the ranking of perfor-
mance matches the ranking of concentration levels
in the weight distribution shown in Figure 2. This
indicates that weight alignment enables a more
effective simulation of on-policy RL, leading to
improved performance.

WPO also improves other loss functions for pref-
erence optimization. It is important to note that,

searches, which may not yield the optimal hyperparameter
values for a fair comparison.

Method
Alpaca Eval 2.0 MT-bench

Len-control. Win Rate Win Rate
Win Rate vs GPT-4 vs Baseline

IPO 25.0 21.2 50
SimPO 21.5 21.4 50
KTO 14.9 12.3 50

WPOIPO 29.4 25.7 54.1
WPOSIMPO 21.9 24.6 52.5
WPOKTO 21.1 20.3 60.0

Table 3: Results of WPO with different loss functions
for preference optimization on Mistral-base in the off-
policy setting, which show that incorporating WPO
leads to consistent improvements.

in addition to DPO, there are other loss functions
for aligning LLMs. Since WPO works by weigh-
ing preference data and is independent to the loss
function being used, it can be easily integrated into
them. We investigate whether the integration of
WPO enhances the performance of other loss func-
tions. Existing losses can be categorized into those
using paired preference data and those utilizing un-
paired preference data. For losses using paired data,
we weigh each pair similarly to DPO. For losses
using unpaired data, we weigh each output y inde-
pendently with w(x, y) and normalize the weights
so that the total weights of favored outputs and dis-
favored outputs are both 1 within the batch. This
normalization ensures a balance between favored
and disfavored outputs in the loss. In this study, we
considered IPO (Azar et al., 2024) and SimPO for
alignment with paired data, and KTO for alignment
with unpaired data. The results on Mistral-base in
the off-policy setting, shown in Table 3, indicate
that integrating WPO leads to improved results for
all loss functions. This demonstrates that WPO
provides universal improvements across different
loss functions for preference optimization.

Better base and reward models yield stronger
results. To further enhance our model, we investi-
gate using better base models and reward models.
Specifically, we adopt the Gemma-2-9b-it (Team
et al., 2024) as the base model. In a setup sim-
ilar to our hybrid approach, we sample five out-
puts from Gemma and one additional output from
gpt-4-turbo. To rank these outputs, we apply Ar-
moRM (Wang et al., 2024a,b) and use the best and
worst outputs to form preference pairs. We use
the same set of training hyperparameters used in
Llama-3-Instruct. The model finetuned using WPO
achieves a length-controlled win rate of 76.7% and
a win rate of 77.8% on Alpaca Eval 2, demonstrat-
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Figure 3: Results of WPO in different RL settings. The
hybrid setting consistently yileds better results than
other RL settings.

ing the effectiveness of this approach.

4.3 Comparison of Different RL Settings
Recent studies on RLHF have employed various
RL settings where preference data is generated in
an off-policy, on-policy, or hybrid manner. Exist-
ing work (Tang et al., 2024a; Xu et al., 2024) has
demonstrated that on-policy preference optimiza-
tion outperforms off-policy methods, while Rosset
et al. (2024) show that incorporating high-quality
off-policy outputs can yield superior performance,
as these outputs can introduce valuable information
that the current policy might not encounter on its
own. In this study, we compare model performance
trained with WPO across these RL settings. The
results are presented in Figure 3, showcasing the
length-controlled win rate on Alpaca Eval 2 and
the pairwise win rate compared to the off-policy
setting on MT-bench.

Hybrid RL achieves the best results. Figure 3
shows that for both Mistral-base and Llama-3-
Instruct, the hybrid setting—utilizing both on-
policy data and high-quality off-policy data from
gpt-4-turbo—consistently delivers superior per-
formance. This suggests that combining high-
quality off-policy data and on-policy data can sig-
nificantly enhance preference optimization, which
is consistent to the results in Rosset et al. (2024).

On-policy is not always better than off-policy.
Our analysis reveals that the effectiveness of on-
policy versus off-policy preference optimization
is model-dependent (Munos et al., 2016; Voloshin
et al., 2019). For the Mistral-base model, off-policy
setting yields slightly better performance, while for
Llama-3-Instruct, on-policy setting shows better
performance. We attribute this variation to the qual-
ity of the SFT model. In the case of Mistral-base,
the sampled outputs are of lower quality, causing
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Figure 4: Results of variations of WPO in different RL
settings.

the preference optimization process to mimic sub-
optimal outputs and leading to poorer results. This
highlights the importance of the initial policy’s
quality and suggests that models with higher initial
performance might benefit more from on-policy
optimization, while those with lower initial quality
may not gain as much.

The dispreferred data should be on-policy, the
preferred data benefits less. While WPO simu-
lates on-policy data by weighing both yw and yl in
the preference data, these two outputs play differ-
ent roles during optimization. The gradient of the
WPO is given by:

∇LWPO = −βw(x, yw)w(x, yl)σ (r̂ (x, yl)− r̂ (x, yw))

[ ∇ log π (yw|x)︸ ︷︷ ︸
increase the probability of yw

− ∇ log π (yl|x)︸ ︷︷ ︸
reduce the probability of yl

].

That is, WPO will make the policy model mimic yw
while moving away from yl. Given their different
optimization directions, we investigate the impor-
tance of on-policy sampling for yw and yl in prefer-
ence optimization. To achieve this, we further study
two different variants of WPO, namely WPOW and
WPOL. These losses are formulated as follows:

LWPO = −E(x,yw,yl)∼D [w(x, yw)w(x, yl) log p(yw ≻ yl|x)] ,
LWPOW = −E(x,yw,yl)∼D [w(x, yw) log p(yw ≻ yl|x)] ,
LWPOL = −E(x,yw,yl)∼D [w(x, yl) log p(yw ≻ yl|x)] ,

where in WPOW, we only increase the weights
of pairs where yw is more closed to on-policy out-
puts. For WPOL, we only increase the weights of
pairs where yl is closer to on-policy outputs. Re-
sults on Mistral-base and Llama-3-Instruct are in
Figure 4. It shows that WPOL generally achieves
similar results to WPO. Conversely, WPOW con-
sistently underperforms WPO and even underper-
forms DPO in most settings. Therefore, making
yl on-policy explains most of the improvements of
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WPO, while making yw on-policy is still useful but
not as important. This finding suggests that using
on-policy, dispreferred data is important for prefer-
ence optimization, while using on-policy preferred
data may be beneficial but not as critical.

5 Conclusion

In this study, we tackled the distributional gap
problem inherent in off-policy preference optimiza-
tion. By introducing Weighted Preference Opti-
mization (WPO), we successfully simulated on-
policy preference optimization using off-policy
preference data, merging the benefits of both ap-
proaches. Our method not only addressed the dis-
tributional gap without incurring additional costs
but also enhanced the effectiveness of preference
optimization. Extensive experiments demonstrate
that WPO can produce better LLMs that are more
closely aligned with human preferences.

Limitations

The performance gap between off and on-policy
preference optimization remains. Although
WPO simulates on-policy RL with off-policy data,
it does not fully bridge the performance gap be-
tween off-policy and on-policy RL. As shown in the
results, even with WPO, off-policy methods may
still underperform compared to on-policy and hy-
brid methods. Therefore, while we propose WPO
as a solution, it does not entirely eliminate the per-
formance disparity, and on-policy preference data
remains important. Future work will be on how to
further reduce this performance gap without incur-
ring additional training costs.

Comprehensiveness of preference dataset. The
goal of our experiments is to compare WPO with
other preference optimization algorithms, not to
provide a comprehensively aligned LLM. In our
experiments, we use Ultrafeedback as the prefer-
ence data, which primarily focuses on helpfulness,
truthfulness, and instruction following, and does
not include safety aspects. Additionally, it does
not consider preference optimization for multi-turn
conversations. Future work should involve collect-
ing more comprehensive preference datasets and
integrating multiple aspects of preference optimiza-
tion to train better-aligned LLMs.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Leonard Adolphs, Tianyu Gao, Jing Xu, Kurt Shuster,
Sainbayar Sukhbaatar, and Jason Weston. 2022. The
cringe loss: Learning what language not to model.
arXiv preprint arXiv:2211.05826.

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain,
Deep Ganguli, Tom Henighan, Andy Jones, Nicholas
Joseph, Ben Mann, Nova DasSarma, et al. 2021. A
general language assistant as a laboratory for align-
ment. arXiv preprint arXiv:2112.00861.

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bi-
lal Piot, Remi Munos, Mark Rowland, Michal Valko,
and Daniele Calandriello. 2024. A general theoret-
ical paradigm to understand learning from human
preferences. In International Conference on Arti-
ficial Intelligence and Statistics, pages 4447–4455.
PMLR.

Edward Beeching, Clémentine Fourrier, Nathan Habib,
Sheon Han, Nathan Lambert, Nazneen Rajani, Omar
Sanseviero, Lewis Tunstall, and Thomas Wolf. 2023.
Open llm leaderboard. https://huggingface.co/
spaces/HuggingFaceH4/open_llm_leaderboard.

Ralph Allan Bradley and Milton E Terry. 1952. Rank
analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–
345.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji,
and Quanquan Gu. 2024. Self-play fine-tuning con-
verts weak language models to strong language mod-
els. arXiv preprint arXiv:2401.01335.

Pengyu Cheng, Yifan Yang, Jian Li, Yong Dai, and
Nan Du. 2023. Adversarial preference optimization.
arXiv preprint arXiv:2311.08045.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Mar-
tic, Shane Legg, and Dario Amodei. 2017. Deep
reinforcement learning from human preferences. Ad-
vances in neural information processing systems, 30.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2024. Scaling instruction-finetuned language models.
Journal of Machine Learning Research, 25(70):1–53.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao,
Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu, and
Maosong Sun. 2023. Ultrafeedback: Boosting lan-
guage models with high-quality feedback. arXiv
preprint arXiv:2310.01377.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tat-
sunori B Hashimoto. 2024. Length-controlled al-
pacaeval: A simple way to debias automatic evalua-
tors. arXiv preprint arXiv:2404.04475.

8336

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard


Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff,
Dan Jurafsky, and Douwe Kiela. 2024. Kto: Model
alignment as prospect theoretic optimization. arXiv
preprint arXiv:2402.01306.

Jan-Philipp Fränken, Eric Zelikman, Rafael Rafailov,
Kanishk Gandhi, Tobias Gerstenberg, and Noah D
Goodman. 2024. Self-supervised alignment with
mutual information: Learning to follow princi-
ples without preference labels. arXiv preprint
arXiv:2404.14313.

Scott Fujimoto, David Meger, and Doina Precup. 2019.
Off-policy deep reinforcement learning without ex-
ploration. In International conference on machine
learning, pages 2052–2062. PMLR.

Leo Gao, John Schulman, and Jacob Hilton. 2023. Scal-
ing laws for reward model overoptimization. In In-
ternational Conference on Machine Learning, pages
10835–10866. PMLR.

Amelia Glaese, Nat McAleese, Maja Trębacz, John
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Method ARC TruthfulQA WinoGrande GSM8k HellaSwag MMLU Average

Mistral-Base (7B)

SFT 58.19 43.03 77.51 38.89 82.30 59.78 59.95
Off-policy DPO 64.42 52.44 79.48 30.17 85.36 59.78 61.94
Off-policy WPO 64.08 51.07 78.14 32.60 85.17 59.51 61.76
Hybrid DPO 64.76 60.46 78.22 32.15 85.30 58.75 63.27
Hybrid WPO 65.70 57.62 79.08 30.71 85.15 59.82 63.01

Llama-3-Instruct (8B)

SFT 61.60 51.65 76.72 75.82 78.68 65.65 68.35
Off-policy DPO 68.00 61.07 77.43 74.68 82.26 66.31 71.63
Off-policy WPO 66.98 58.91 75.45 71.95 81.87 65.97 70.19
Hybrid DPO 65.53 56.10 78.93 75.13 81.12 65.72 70.42
Hybrid WPO 65.27 55.47 79.72 66.72 81.02 65.97 69.03

Table 4: Results on the OpenLLM leaderboard.
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Figure 5: Results of DPO and WPO when trained for more epochs.

A Additional Analysis

Results on downstream tasks. We further evaluate the performance of SFT, DPO, and WPO models on
the OpenLLM leaderboard (Beeching et al., 2023) to assess their capabilities on downstream tasks. For
this evaluation, we use the lm-evaluation-harness5, the official code base for the OpenLLM leaderboard.
Results are shown in Table 4. Generally, we find that preference optimization with DPO or WPO
outperforms the SFT model, while Llama-3-Instruct based models outperform Mistral-base. However,
we do not observe a correlation between performance on the OpenLLM leaderboard and performance
on instruction-following benchmarks such as Alpaca Eval 2 and MT-bench. For example, although
Llama-3-Instruct with DPO or WPO in the hybrid setting shows the best results on instruction-following
benchmarks, it underperforms its off-policy counterparts on the OpenLLM leaderboard. Additionally, we
find that preference optimization may not improve results on all downstream tasks. On MMLU, the results
are similar to SFT, and on GSM8K, the results are even lower than SFT in all settings. Our findings are
consistent with the alignment tax phenomenon (Askell et al., 2021), which indicates that better alignment
may not improve and can sometimes even hurt performance on downstream tasks.

Comparison between DPO and WPO on training dynamics. We investigate how the performance of
DPO and WPO changes with different numbers of training epochs. Both DPO and WPO were trained
using the SFT checkpoint of Mistral-base and the Ultrafeedback dataset for five epochs, with evaluation
results recorded at the end of each epoch, as shown in Figure 5. In this study, we use the same set of
hyperparameters as mentioned in Section 4.1, with DPO and WPO using the same set of hyperparameters.
We observed that DPO’s performance declines sharply after two epochs, suggesting strong reward model
overoptimization (Rafailov et al., 2024). In contrast, WPO maintains consistent performance over more

5https://github.com/EleutherAI/lm-evaluation-harness
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epochs, indicating better training stability. This suggests that simulating on-policy RL, as done by WPO,
may mitigate issues related to reward model overoptimization and increase the stability of preference
optimization. Furthermore, a comparison of results between DPO and WPO, particularly on Alpaca
Eval 2, shows that the peak performance of DPO across various epochs still falls below that of WPO.
This indicates that WPO not only provides more stable training dynamics but also finds a different and
better solution than DPO. This enhanced performance and stability highlight the advantages of WPO
in effectively leveraging the preference data and maintaining stable and robust preference optimization
throughout the training process.

B Link of Open Sourced Models in Experiments

The list of open-sourced LLMs and their Huggingface IDs are listed in Table 5.

Model Huggingface ID

Mistral-base SFT HuggingFaceH4/mistral-7b-sft-beta
Mistral-base ORPO kaist-ai/mistral-orpo-beta
Mistral-base KTO ContextualAI/zephyr_sft_kto
Mistral-base SimPO princeton-nlp/Mistral-7B-Base-SFT-SimPO
Llama-3-instruct SFT meta-llama/Meta-Llama-3-8B-Instruct

Table 5: List of open-source models in experiments.

C Additional Details

Scientific artifacts. We use various scientific artifacts throughout the paper, including base LLM models,
preference datasets, and evaluation tools/benchmarks. References to all used artifacts are provided, and
details such as their license, language, coverage, number of parameters, and any safety issues can be found
by following the respective references. Note that current LLMs and preference datasets may encompass a
wide range of data types and utilizes data from different domains and sources, so we do not list the details
in this paper and encourage readers to refer to the original sources for more information. In this paper, we
primarily use these artifacts for non-distributive and non-commercial purposes, which is in compliance
with their licenses.

Budget. We conduct all experiments using 8 × H100 GPUs. The experiments take approximately 1.5
hours for Mistral-base and around 4 hours for Llama-3-Instruct.

Use of AI assistants. We used ChatGPT solely for revising the language of the paper. Note that the
revision is exclusively for enhancing the clarity and readability of the text, and not for any other purposes.
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