
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 8458–8466
November 12-16, 2024 ©2024 Association for Computational Linguistics

CSSL: Contrastive Self-Supervised Learning for Dependency Parsing on
Relatively Free-Word-Ordered and Morphologically-Rich Low-Resource

Languages

Pretam Ray⋆, Jivnesh Sandhan†, Amrith Krishna⋄ and Pawan Goyal⋆
⋆ IIT Kharagpur, † IIT Dharwad, ⋄ Independent Researcher

pretam.ray@kgpian.iitkgp.ac.in, jivnesh@iitdh.ac.in, krishanmrith12@gmail.com
pawang@cse.iitkgp.ac.in

Abstract

Neural dependency parsing has achieved
remarkable performance for Low-Resource
Morphologically-Rich languages. It has also
been well-studied that Morphologically-Rich
languages exhibit relatively free-word-order.
This prompts a fundamental investigation: Is
there a way to enhance dependency parsing
performance, making the model robust to word
order variations utilizing the relatively free-
word-order nature of Morphologically-Rich
languages? In this work, we examine the ro-
bustness of graph-based parsing architectures
on 7 relatively free-word-order languages. We
focus on scrutinizing essential modifications
such as data augmentation and the removal
of position encoding required to adapt these
architectures accordingly. To this end, we
propose a contrastive self-supervised learning
method to make the model robust to word
order variations. Furthermore, our proposed
modification demonstrates a substantial aver-
age gain of 3.03/2.95 points in 7 relatively
free-word-order languages, as measured by the
UAS/LAS Score metric when compared to the
best performing baseline.

1 Introduction

Dependency parsing for low-resource languages
has greatly benefited from diverse data-driven
strategies, including data augmentation (Şahin and
Steedman, 2018), multi-task learning (Nguyen
and Verspoor, 2018), cross-lingual transfer (Das
and Sarkar, 2020), self-training (Rotman and Re-
ichart, 2019; Clark et al., 2018) and pre-training
(Sandhan et al., 2021). Further, incorporat-
ing morphological knowledge substantially im-
proves the parsing performance for low-resource
Morphologically-Rich languages (MRLs; Dehdari
et al., 2011; Vania et al., 2018; Dehouck and De-
nis, 2018; Krishna et al., 2020a; Roy et al., 2022,
2023).

MRLs tend to have sentences that follow a rel-
atively free-word-order (Futrell et al., 2015; Kr-
ishna et al., 2020b), as structural information is
often encoded using morphological markers rather
than word order. In MRLs, a sentence may have
different acceptable word order configurations,
that preserve the semantic and structural informa-
tion. However, the permutation invariance is often
not reflected in their corresponding semantic space
representations encoded using a pretrained model.
Pretrained models typically include a position en-
coding component, often shown to be beneficial
for tasks in languages that follow a fixed word or-
der. However, removing the position encoding of
the encoder during fine-tuning is demonstrated to
be counterproductive (Krishna et al., 2019; Ghosh
et al., 2024).

Languages, including MRLs, tend to follow a
preferred word order typology. However, such
preferences are often followed for the efficiency
of communication, from a cognitive, psycho-
linguistic, and information-theoretic standpoint
and not due to any limitations of the morphology
(Krishna et al., 2019; Clark et al., 2023; Xu and
Futrell, 2024). For instance, Sanskrit, a classical
language (Coulson, 1976), predominantly consists
of sentences written as verses in its pre-classic
and classic literature. The majority of the avail-
able corpora in Sanskrit are written in verse form
(Hellwig, 2010–2021). Here, verbal cognition of-
ten takes a backseat as words are often reordered
to satisfy metrical constraints in prosody (Krishna
et al., 2020b, §2). Hence, these sentences appear
to be arbitrarily ordered based on syntactic analy-
sis (Kulkarni et al., 2015). In this work, we pro-
pose a self-supervised contrastive learning frame-
work, primarily for Sanskrit, that makes the model
agnostic to the word order variations within a sen-
tence.

Our Contrastive Self-Supervised Learning
(CSSL) framework builds upon the recent success
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Ātmā satyasya jñānena paramam amṛtatvaṁ vindate

kartā

sambandha karaṇam

viśeṣaṇam
karma

(a) Original Word Order

Jñānena satyasya amṛtatvaṁ paramam ātmā vindate

sambandha karma

viśeṣaṇam kartā

karaṇam

(b) Permuted Word Order

Figure 1: The Dependency Parse of a Sanskrit sentence and its random permutation is same, exhibiting free-word-
order nature of the language. Translation: "The soul attains supreme immortality through the knowledge of truth."

of using annotated pairs in contrastive learning
Khosla et al. (2021); Yue et al. (2021) to make
the model permutation invariant to the arbitrary
word order variations in Sanskrit (Wright, 1968).
Given the comprehensive morphological marking
system, the core semantic essence of a sen-
tence remains unaltered, rendering the permuted
counterpart as a suitable positive pairing for
contrastive learning. Figure 1 shows that the
original sentence and its permuted counterpart
having the same dependency structure. This
simple use of word permutations in a sentence as
positive pairs achieves substantial improvement
over prior methods. Our approach, to the best of
our knowledge, is the first to use a contrastive
learning approach for dependency parsing.

Our proposed approach is modular and agnos-
tic, allowing for seamless integration with any
encoder architecture without necessitating alter-
ations to the pretaining decisions. Moreover, our
objective is to leverage recent advancements in
parsing literature by augmenting with the CSSL
framework, which would make these models more
robust to word order variations. In this work, we
start by examining the robustness of graph-based
parsing architectures (Ji et al., 2019; Mohammad-
shahi and Henderson, 2020, 2021). We believe,
graph-based parsing architectures could be a nat-
ural choice to model flexible word order. We then
focus on investigating essential modifications such
as data augmentation Şahin and Steedman (2018)

and the removal of position encoding Ghosh et al.
(2024) required to adapt these architectures ac-
cordingly. We finally show the efficacy of our ap-
proach on the best baseline Mohammadshahi and
Henderson (2021, RNGTr) model by integrating
CSSL with it and report an average performance
gain of 3.03/2.95 points (UAS/LAS) improvement
over 7 MRLs.

Our main contributions are as follows:

• We propose a novel contrastive self-
supervised learning (CSSL) module to make
dependency parsing robust for free-word-
order languages.

• Empirical evaluations of CSSL module af-
firm its efficacy for 7 free word-ordered lan-
guages

• We demonstrate statistically significant im-
provements with an average gain of 3.03/2.95
points over the best baseline on 7 MRLs.

2 Contrastive Self-Supervised Learning

CSSL enables joint learning of representation, via
contrastive learning, with the standard classifica-
tion loss for dependency parsing. Here, via CSSL,
we identify sentences which are word-level per-
mutations of each other as similar sentences, and
others as dissimilar sentences. The similar sen-
tences are brought closer while pushing dissimilar
examples apart (van den Oord et al., 2019; Tian
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et al., 2020). As shown in Figure 2, the origi-
nal sentence serves as an anchor point, while its
permutations represent positive examples, juxta-
posed with randomly generated sentences serving
as negative examples. For a given input, when se-

Figure 2: The Contrastive Loss minimizes the distance
between an anchor (blue) and a positive (green), both
of which have a similar meaning, and maximizes the
distance between the anchor and a negative (red) of a
different meaning.

lecting a dissimilar sample, we choose a random
sentence that clearly differs significantly from any
permutation of the given sentence.

Figure 3: Schematic illustration of the proposed ap-
proach for Sanskrit. Self-supervised CSSL leverages
the sentence and its permutation pairs as positives and
other in-batch instances as negatives.

Formally, as shown in Figure 3 for a sentence
Xi (anchor example), its representation should be
similar to the permuted instance X+

i as permuta-
tion 1 does not alter the meaning of a sentence in
Sanskrit. However, the representation will differ
from a random sentence X−

i (negative example).
Therefore, the distance between the appropriate
representations of Xi and X+

i is expected to be
small. Thus, we can develop a contrastive objec-
tive by considering (Xi, X+

i ) a positive pair and
N − 1 negative pairs (Xi, X−

i ) :

1Refer to AppendixA.2 for the algorithm to generate the
permutations.

LCSSL = − log
exp (zi · zi+/τ)∑
a∈N exp (zi · za/τ)

where N represents a batch, zi represents the rep-
resentation vector of the anchor sample, z+i de-
notes the representation vector for the positive
sample (permuted sample), za represents the rep-
resentation vector for a sample in the batch (N
different samples), and τ is a temperature param-
eter that controls the concentration of the distri-
bution. For all representation vectors, we em-
ploy pooled sentence embedding (Reimers and
Gurevych, 2020) for the CSSL loss. Therefore,
our final loss is:

L = LCSSL + LCE (1)

The classification loss LCE is the cross-entropy
loss applied only to token-level labels of the origi-
nal training input. The scorer is based on biaffine-
scorer (Dozat and Manning, 2017), which tries to
independently maximize the local probability of
the correct head word for each word.

3 Experiment

3.1 Dataset and metric

As our primary benchmark dataset, we utilize
the Sanskrit Treebank Corpus (Kulkarni, 2013,
STBC). From STBC, we use a train and dev split
of 2,800 and 1,000 respectively. Further, we em-
ploy a test set comprising 300 sentences, drawn
from the classical Sanskrit work, Śiśupāla-vadha
(Ryali, 2016).

Moreover, from Universal Dependencies
(de Marneffe et al., 2021, UD-2.13), we choose
6 additional Morphologically-Rich low-resource
languages, namely, Turkish, Telugu, Gothic, Hun-
garian, Ancient Hebrew, and Lithuanian.2 Please
note that all the seven languages are chosen from
diverse language families and are typologically
diverse. Our experiments are primarily focused
on a low-resource setting. However, we also show
how the framework performs on high-resource
MRL. We also experiment with English which
is a fixed-ordered high-resource language. Here,
we use a training set of 12,544 sentences. We
use standard UAS/LAS metrics (McDonald and
Nivre, 2011) for evaluation.

2The statistics of each of the treebanks used for our ex-
periments is mentioned in Table 4 in the Appendix.
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Model UAS LAS
G2GTr (Transition-based) 85.75 82.21
GNN (Graph-based) 88.01 82.8
RNGTr (Graph-based) 89.62 87.43
RNGTr (NoPos) 80.78 78.37
RNGTr (DA) 90.38 88.46
Prop. System (CSSL) 91.86 89.38
CSSL + DA 92.43 90.18

Table 1: Comparison of graph-based parsers on San-
skrit STBC dataset. We modify the best baseline
RNGTr by integrating the proposed method (CSSL) to
compare against variants, removing position encoding
(NoPos) and data augmentation (DA). The best perfor-
mances are bold-faced. The results (CSSL vs DA) and
(CSSL vs DA+CSSL) are statistically significant as per
the t-test with a p-value < 0.01 for the LAS metric.

Baselines: We utilize Mohammadshahi and
Henderson (2020, G2GTr), a transition-based de-
pendency parser. Furthermore, we explore Ji et al.
(2019, GNN) a graph neural network-based model
that captures higher-order relations in dependency
trees. Finally, we examine Graph-to-Graph Non-
Autoregressive Transformer proposed by Moham-
madshahi and Henderson (2021, RNGTr) which
iteratively refines arbitrary graphs through recur-
sive operations.

Hyper-parameters: For RNGTr model, we use
the same architecture from the work of Moham-
madshahi and Henderson (2020) which uses pre-
trained mBERT (Wolf et al., 2020) as the encoder
and an MLP and biaffine followed by softmax for
the decoder. We adopt the RNGTr codebase with
hyperparameter settings as follows: the batch size
is 16, the learning rate as 2e-5, the number of
transformer blocks as 12 and for the decoder 2
Feed Forward Layers, and the remaining hyperpa-
rameters are the same.

3.2 Results

In Table 1, we benchmark graph-based parsers on
the Sanskrit STBC dataset. Our proposed con-
trastive loss module is standalone and could be
integrated with any parser.3 Thus, we modify
the best baseline RNGTr by integrating the pro-
posed method (CSSL) and comparing it against
variants, removing position encoding (NoPos),

3Refer to Appendix A.3 for empirical evidence.

and augmenting data augmentation (DA) 4. Ta-
ble 1 illustrates that the proposed framework
adds a complementary signal making robust word
order representations to RNGTr by improving
2.24/1.95 points in UAS/LAS scores. The per-
formance significantly drops (8.8/9.0 UAS/LAS)
when position embeddings are removed (vs. Pos
kept) from RNGTr due to train-test mismatch
in pretraining and fine-tuning steps. More-
over, our method outperforms data augmentation
technique (DA) (Şahin and Steedman, 2018) by
1.48/0.92 points (UAS/LAS) when integrated with
the RNGTr baseline. We integrate CSSL on top
of an RNGTr+DA system and observe statisti-
cally significant improvements of 0.57/0.80 points
(UAS/LAS), suggesting the proposed method
complements the data-augmentation technique.

Results on multilingual experiments: In this
section, we investigate the efficacy of CSSL mod-
ule in multi-lingual settings. For all MRLs,
the trend is similar to what is observed for
Sanskrit. Table 2 reports results on 6 other
Morphologically-Rich languages in low-resource
settings. Our approach averages 3.16/3.12 higher
UAS/LAS scores than the usual cross-entropy-
based RNGTr baseline. Our system outperforms
the rotation-based DA technique with an average
increase of 1.74/1.83 in UAS/LAS scores. Here,
as expected, our proposed CSSL approach out-
performs the standard RNGTr and DA approaches
for all the languages, except English. English is
not an MRL and it relies heavily on configura-
tional information of the words to understand sen-
tence structure. The DA approach performs bet-
ter by 0.57/1.45 UAS/LAS scores than our frame-
work. However, it is interesting to note that CSSL
still outperforms the RNGTr baseline by 1.11/0.48
UAS/LAS, possibly due to robustness of permu-
tation invariant representation learning we employ
in CSSL.
As illustrated in Table 1, it is evident that com-
bining CSSL with DA surpasses CSSL alone by
approximately 0.5 points, exhibiting a 2-point en-
hancement over DA.
We also experiment with Turkish on UD_Turkish-
PENN Treebank in a high-resource setting, hav-
ing 14,850 sentences in the training set. Our
CSSL framework outperforms usual cross-entropy
technique by 6.12/4.59 in UAS/LAS scores and

4Refer to Appendix A.1 for the algorithm used in Data
Augmentation.
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RNGTr RNGTr + DA RNGTr + CSSL
Language Setting UAS LAS UAS LAS UAS LAS
Turkish-IMST LRL 72.86 71.99 74.18 72.96 78.21 74.69
Telugu-MTG LRL 90.02 80.34 91.86 81.51 93.79 85.67
Gothic-POIEL LRL 86.59 81.28 88.61 82.93 89.15 84.19
Hungarian-SZEGED LRL 88.13 84.93 90.02 86.65 91.65 87.28
Ancient Hebrew-PTNK LRL 90.76 86.42 91.43 87.12 92.35 88.68
Lithuanian-ALKSNIS LRL 87.63 83.27 88.41 84.79 89.82 86.45
Turkish-PENN HRL 82.31 76.23 85.57 78.19 88.43 80.82
English-EWT non-MRL 92.08 90.23 93.76 92.16 93.19 90.71

Table 2: Performance comparison on the RNGTr model on UD Treebanks, RNGTr + DA (Data Augmentation) and
RNGTr + CSSL module. The best performances are bold-faced. Our results (CSSL) are statistically significant
compared to both RNGTr and RNGTr + DA for each language as per the t-test with a p-value < 0.01 for the LAS
metric. LRL stands for low-resource MRL, HRL means high-resource MRL.

outperforms the DA technique by 2.96/2.63 in
UAS/LAS scores. The significant increase in score
can be attributed to the greater number of training
examples.

4 Conclusion

In this work, we investigated the robustness of
graph-based parsing architectures across 7 lan-
guages characterized by relatively flexible word
order. We introduced a self-supervised contrastive
learning module aimed at making encoders insen-
sitive to variations in word order within sentences.
Additionally, the modular nature of our approach
enables seamless integration with any encoder ar-
chitecture without necessitating modifications to
pretraining decisions. To the best of our knowl-
edge, our approach represents the first utilization
of contrastive learning techniques for dependency
parsing to address challenges arising from vari-
able word order in low-resource settings. Finally,
we demonstrate the effectiveness of our approach
by integrating it with the RNGTr architecture Mo-
hammadshahi and Henderson (2021), reporting an
average performance improvement of 3.03/2.95
points (UAS/LAS) across the 7 MRLs.

Limitations We could not evaluate on complete
UD due to limited available compute resources
(single GPU); hence, we selected 7 representative
languages for our experiments.

Ethics Statement We do not foresee any eth-
ical concerns with the work presented in this
manuscript.
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A Appendix

A.1 Data Augmentaion
In our data augmentation (DA) experiments, we
employ the Rotation algorithm described (Şahin
and Steedman, 2018). This approach rearranges
the siblings of headwords within a defined set of
relations. This alters a collection of words or con-
figuration data, but it does not modify the depen-
dencies.

A.2 Permutation Generation
For generating sentence permutations, we ran-
domly rearrange each word in a sentence to gener-
ate phrase permutations while maintaining the re-
lationship between the words. The random per-
mutations are generated while preserving the orig-
inal dependency tree structures and relations be-
tween words in each training sentence. In other
words, we first generate the dependency trees for
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the original sentences and randomly permute the
linear order of words, ensuring that the newly per-
muted sentences still respect the same dependency
relations between word pairs.

A.3 Integration of CSSL with another
encoder

The modular nature of CSSL framework allows
for seamless integration with any encoder archi-
tecture, without necessitating alterations to pre-
training decisions. We have shown its effective-
ness for the best-performing baseline. We are also
showing results with one more baseline (for San-
skrit). Our supplementary results indicate that ac-
tivating contrastive loss for the G2GTr baseline
on the STBC treebank for Sanskrit leads to an
approximate 2-point enhancement in performance
measured by UAS/LAS.

CE CSSL
UAS LAS UAS LAS

G2GTr 87.16 85.68 89.05 87.05

Table 3: Contrastive Loss with G2GTr on STBC
dataset.

A.4 Treebank Statistics
Table 4 provides the detailed statistics for the lan-
guages used in the experiments.

A.5 Related Work
Contrastive learning has been the pinnacle of re-
cent successes in sentence representation learning.
(Chen et al., 2020) proposed SimCLR by refining
the idea of contrastive learning with the help of
modern image augmentation techniques to learn
robust sets of features. In order to optimize the
appropriately designed contrastive loss functions,
(Gao et al., 2021; Zhang et al., 2022) uses the en-
tailment sentences in NLI as positive pairs, signif-
icantly improving upon the prior state-of-the-art
results. To this end, a number of methods have
been put forth recently in which the augmenta-
tions are obtained through back-translation (Fang
et al., 2020), dropout (Yan et al., 2021; Gao et al.,
2021), surrounding context sampling (Logeswaran
and Lee, 2018; Giorgi et al., 2021), or perturba-
tions carried out at different semantic-level (Wu
et al., 2020; Yan et al., 2021).
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Treebank Language Family train dev test
Sanskrit-STBC Indo-Aryan 2,800 1,000 300

UD-Turkish_IMST Turkic 3,435 1,100 1,100
UD-Gothic_Proeil Germanic 3,387 985 1,029
UD-Telugu_MTG Dravidian 1,051 131 146

UD-Hungarian_Szeged Uralic 910 441 449
UD-Ancient_Hebrew_PTNK Semitic 730 439 410
UD-Lithuanian_ALKSNIS Baltic 2,341 617 684

UD-Turkish_PENN Turkic 14850 622 924
UD-English_EWT Roman 12,544 2,001 2,077

Table 4: Treebank Statistics. The number of sentences in train, dev and test for each language.
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