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Abstract

Dialogue Aspect-based Sentiment Quadruple
analysis (DiaASQ) extends ABSA to more
complex real-world scenarios (i.e., dialogues),
which makes existing generation methods en-
counter heightened noise and order bias chal-
lenges, leading to decreased robustness and
accuracy. To address these, we propose the
Segmentation-Aided multi-grained Denoising
and Debiasing (SADD) method. For noise, we
propose the Multi-Granularity Denoising Gen-
eration model (MGDG), achieving word-level
denoising via sequence labeling and utterance-
level denoising via topic-aware dialogue seg-
mentation. Denoised Attention in MGDG inte-
grates multi-grained denoising information to
help generate denoised output. For order bias,
we first theoretically analyze its direct cause as
the gap between ideal and actual training objec-
tives and propose a distribution-based solution.
Since this solution introduces a one-to-many
learning challenge, our proposed Segmentation-
aided Order Bias Mitigation (SOBM) method
utilizes dialogue segmentation to supplement
order diversity, concurrently mitigating this
challenge and order bias. Experiments demon-
strate SADD’s effectiveness, achieving state-of-
the-art results with a 6.52% F1 improvement.

1 Introduction

Dialogue Aspect-based Sentiment Quadruple Ex-
traction task (DiaASQ) (Li et al., 2023a) is a sub-
task of Aspect-based Sentiment Analysis (ABSA),
aiming to extract sentiment quadruples in dia-
logues, i.e., Target: mentioned objects, Aspect:
components of targets, Opinion: expressions con-
veying comments, and Sentiment: polarity of tar-
gets. Recently, Li et al. (2023a) proposed a dis-
criminative model to control the information fusion
among utterances, ultimately classifying different
elements separately. However, this method fails
to utilize the connections between tuple elements
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Figure 1: Noise refers to irrelevant words in dialogue
(highlighted in orange), which lead the model to gen-
erate incorrect quadruples. Order Bias occurs when
the model erroneously learns non-existent tuple order
dependencies (highlighted in yellow boxes). Through
denoising and debiasing, our SADD method enhances
the performance of quadruple extraction.

fully. Generative methods (Zhang et al., 2021a,b;
Mao et al., 2022; Gou et al., 2023) succeeded in
framing ABSA as a text-to-text task with robust
generalization capabilities and fully leverage ele-
ment connections, which inspired us.

However, generative methods still face two sig-
nificant challenges: Noise and Order Bias, as illus-
trated in Fig 1. 1. Noise is extraneous words in
dialogues that interfere with the quadruple gener-
ation process, as illustrated by the orange words
in Fig. 1. These extraneous words often disrupt
the predicted quadruples; for instance, the terms
’brightness’ and ’low’ interfere with previous meth-
ods, leading to an incorrect quadruple. 2. Order
Bias is an irrational causal relationship caused by
the fixed order of quadruple labels, like the yellow
relationships in Fig. 1. As shown in Fig. 1, we
formulate Diaasq task as a text-to-text problem: In-
put text → “Q1, Q2” (just like Fig. 1) , where the
label is a sequence of tuples. However, the order
between the tuples does not inherently exist, and
the generation of Q2 should not be conditioned on

839



Q1. This labeling scheme compels previous mod-
els to establish an order dependency from Q2 to Q1
(‘xr->iPhone’) and a causal relationship between
the input and the order of tuples. However, such
order dependency and causal relationships do not
actually exist. These incorrect constraints hinder
the model’s generalization. A further explanation
of noise and bias is shown in Appendix A.1. To
address these, we propose a novel Segmentation-
Aided multi-granularity Denoising and Debiasing
(SADD) method, including the following modules.

Denoising: Specifically, we first propose a novel
Multi-Granularity Denoising Generation (MGDG)
module to reduce noise at the word and utterance
levels. As shown in Fig. 1, our MEDG module
identifies and eliminates the noise "Especially in
... before.", thereby achieving denoising. At the
word level, we employ sequence labeling to label
tuple elements. At the utterance level, we adopt
topic-aware dialogue segmentation to achieve topic-
centric utterance clustering, followed by generating
topic masks based on clusters. Finally, we merge
probability from the sequence labeling task and
topic masks from the segmentation task into the
decoder’s denoised attention to generate denoised
output. By emphasizing in-tuple and topic-related
elements, denoised attention effectively makes the
model more accurate and robust in tuple extraction
tasks.

Our Topic-Aware Dialog Segmentation (TADS)
differs from previous segmentation methods by ex-
plicitly introducing fine-grained topics information.
Unlike existing methods (Wu et al., 2020a; Xie
et al., 2021) that directly analyze complex contexts
between utterances, we establish fine-grained rela-
tions between topic words and utterance sentences
by cross-attention interaction, ultimately indirectly
analyzing relationships between sentences. These
improve models’ robustness and accuracy in the
segmentation of complex dialogue.

Debiasing: For the second challenge, we be-
gin with theoretically analyzing the direct cause of
order bias: the gap between the ideal and actual
training objectives. By further analyzing the gap
and the Maximum Likelihood Estimation (MLE)
from a distribution perspective, we find a solution
to augment order diversity at the data level, yet this
poses a one-to-many learning problem. To solve
these challenges, we propose a Segmentation-aided
Order Bias Mitigation (SOBM) method to tackle
order bias as shown in the lower part of Fig. 1. We
leverage dialogue segmentation to generate multi-

ple inputs that meet a specific criterion. We then
pair these inputs with various feasible labels to cre-
ate new samples, thereby increasing the diversity
of tuple orders. The SOBM narrows the gap be-
tween ideal and actual training objectives, thereby
mitigating order bias in the generation method.

In summary, our contributions are as follows:
1. We introduce a novel multi-granularity de-

noising generation model to mitigate interference
noise through word-level sequence labeling and
utterance-level topic masks.

2. We propose a topic-aware dialogue segmenta-
tion model to streamline context analysis and estab-
lish fine-grained relationships between utterances
by introducing topic words as a bridge.

3. We uncover the direct cause of order bias and
mitigate its impact by enhancing the data distribu-
tion through dialogue segmentation.

4. Our SADD method is validated on the widely
used dataset and achieves state-of-the-art perfor-
mance with a 6.52% F1 improvement.

2 Related Works

Aspect-Based Sentiment Analysis (Thet et al.,
2010) primarily focuses on short texts (i.e., 1 or 2
sentences text) like reviews and emphasizes senti-
ment interpretability. ABSA methods analyze ele-
ments such as target (Li et al., 2019a,b), target cate-
gories (Zhang et al., 2021a), specific aspects, direct
opinions (Peng et al., 2020) and so on. Quadru-
ple extraction, involving four key elements, is a
more comprehensive sentiment analysis task. Main-
stream ABSA methods include sequence labeling
(Wu et al., 2020b; Chen et al., 2022; Liang et al.,
2023) and generative methods (Gao et al., 2022;
Yu et al., 2023; Gou et al., 2023), with the latter
known for robustness and generalization. However,
existing ABSA models face challenges in dealing
with complex textual content and structures when
applied to dialogue texts, highlighting the need for
advancements in this domain.

Dialogue Segmentation aims to segment a dia-
logue into pieces based on topics discussed, enhanc-
ing comprehension for downstream tasks (Zhong
et al., 2022). Existing unsupervised Deep Learn-
ing(DL) methods use a pre-trained model without
fine-tuning for segmentation (Xu et al., 2021b; De-
vlin et al., 2019; Xing and Carenini, 2021). DL-
based methods directly analyze the context of two
utterances and predict their relationships with fine-
tuned CLS tokens, like TOD-BERT (Wu et al.,
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2020a) and RetroTS-T5 (Xie et al., 2021). How-
ever, analyzing two utterances directly can be chal-
lenging, especially with complex contexts involv-
ing multiple topics or lacking explicit topics.

Previous Methods for Addressing Tuple Or-
der Bias mainly focused on addressing the order
bias by modifying the model. They used non-
autoregressive transformers (Sui et al., 2021; Tan
et al., 2021) or set up multiple output heads (Ye
et al., 2021) to generate results in an unordered
manner. However, these methods have limited the
generality of the model. "Set" (Li et al., 2023b)
adjusts the loss function to force the model to min-
imize overall loss for all feasible labels globally.
However, this approach actually forces models to
learn a one-to-many mapping, hindering them from
converging to optimal performance.

3 Task Definition

The input of the DiaASQ task is a n-utterance and
N -word dialogue D={u1, . . . , un}, where ui repre-
sents the i-th utterance. DiaASQ aims to extract all
quadruples (target, aspect, opinion, sentiment)
from the dialogue, where the target, aspect, and
opinion are sub-strings of D, and sentiment ∈
{pos , neg, other}. In the example "I didn’t buy it
since my friend said the Xiaomi 11 has poor bat-
tery life," the corresponding quadruple is (Xiaomi
11, battery life, poor, neg).

4 Method

In the DiaASQ task, generation models face
two significant challenges: noise and order bias.
To mitigate noise, we propose a novel Multi-
Granularity Denoising Generation approach involv-
ing sequence labeling, topic-aware dialogue seg-
menting, and denoising generation, as shown in
Fig. 2. By employing sequence labeling and topic-
aware dialogue segmentation, we acquire denoising
information at both the utterance and word levels.
Then, we integrate this multi-grained denoising in-
formation to guide the model in generating quadru-
ples more accurately and robustly. For order bias,
we uncover its cause as the gap between the ac-
tual and the ideal training objective. We propose a
novel Segmentation-aided Order Bias Mitigation
(SOBM) method to narrow the gap with dialog seg-
mentation. This method simultaneously addresses
both the one-to-many training challenge and the
order bias.

4.1 Multi-Granularity Denoising Generation

Due to the extensive content and intricate struc-
ture of dialogues, the model is susceptible to
noise. To address noise, we propose a novel
Multi-Granularity Denoising Generation method
to reduce the noise at the word and utterance lev-
els. Specifically, we leverage sequence labeling
to mitigate noise at the word levels, and employ
topic-aware dialogue segmentation to cluster sen-
tences with the same topics, thereby eliminating
noise from irrelevant sentences. We generate de-
noised outputs with the decoder’s denoised atten-
tion which combines multi-grained information.

4.1.1 Labeling for Word-level Denoising
Word-level denoising identifies and emphasizes
quadruple elements to reduce noise. For a dia-
logue D, we concatenate all utterances and en-
code them using the generation model’s encoder:
e=Encoder([u1; . . . ;un]). Then, we employ a
classification layer to label the quadruple elements
in e with a loss Llabeling. Each word ei in e is
classified into one of four categories (None, Target,
Aspect, Opinion) using pi=Softmax(W1 ∗ ei + b1),
where pi ∈ R4. This process classifies all words in
e to generate P ∈ RN×4.

4.1.2 Topic-aware Dialogue Segmentation for
Utterance-level Denoising

Existing dialog segmentation methods directly an-
alyze the complex context between utterances to
determine their relationship, i.e., whether they be-
long to the same topic. However, these methods
can struggle with complex utterance contexts, es-
pecially those involving multiple topics or lacking
explicit topic mentions. To simplify the context
analysis, we indirectly establish fine-grained rela-
tionships between utterances by examining their
relationships with the same topic. This employs
topics as bridges, streamlining the contextual anal-
ysis and enhancing the model’s robustness in com-
plex contexts. Moreover, we utilize cross-attention
for fine-grained information fusion between topics
and utterances, which helps resolve semantic-level
coreferences for topics (Experiment 5.3.3).

Fine-grained Interaction We designate those
words labeled as "Target" (in section 4.1.1) as
the primary "topics" of the utterances because
the target words are the cores of the quadru-
ples and are highly relevant to the utterance top-
ics. The topic embedding ti for i-th topic (i.e.,
target) is selected from e according to its posi-
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Figure 2: (a) Overview of the MGDG model. (b) Topic-aware Dialogue Segmentation module utilizes cross-attention
to explore fine-grained correlations between utterances and topics, facilitating topic-centric clustering of utterances.
Subsequently, we create a topic mask for each cluster. (c) The Denoising-Constrained Generation module integrates
the denoising information into cross-attention to guide generation, resulting in denoised outputs.

tion. All topic embeddings are concatenated into
Ttp=[t1; . . . ; tk]∈Rk×dim. The utterance embed-
ding eui for i-th utterance ui is directly extracted
from e without pooling. eui ∈ R|ui|×dim, where
|ui| means the number of words in ui. Feed them
to cross-attention layers (Ttp as Query, ui as Key

and Value): O=softmax
(
Ttp (eui )

′
√
dim

)
eui , where

O∈Rk×dim. Pass O to a classification layer to
predict whether ui has fine-grained associations
(e.g. discussing relations) with {t1, . . . , tk} con-
currently, with loss Ltopic. During training, the po-
sitions of the "Target" words are determined by the
ground truth; during testing, they are determined
by the predictions of the preceding module.

Topic Mask Applying these steps to all utter-
ances {u1, . . . , un}, we predict the relationships
between all utterances and {t1, . . . , tk}. If both
ui and uj discuss tv, these two utterances can be
grouped into the same v-th cluster. In this way, we
establish fine-grained relations between utterances
and aggregate utterances with the same topic into
topic-centric clusters. Based on these clusters, we
generate topic masks. Each topic mask m(i) ∈ RN

masks out all utterances not in the i-th cluster.

4.1.3 Denoising-Constrained Generation
Denoised Attention Learning irrelevant context
can lead attention mechanisms to focus on harmful
information. To mitigate this, we restrict the atten-
tion scope and adjust its weight to maintain global
interaction features while minimizing interaction
with harmful data. When generating quadruples

related to k-th topic, we incorporate its correspond-
ing topic mask m(k) ∈ RN and the probabilities
P ∈ RN×4 from section 4.1.1 into decoder’s cross-
attention:

P̂j = 1−Pj,0 ; rj =
(
1+P̂j

)
·m(k)

j (1)

w′
i =

rj · exp (wi,j)∑
j rj · exp (wi,j)

(2)

where Pj,0 denotes probabilities of the input dia-
logue’s j-th word belonging to the "None" category,
P̂j ∈ RN denotes probabilities of j-th input word
being quadruple elements, m(k)

j ∈ {0, 1} indicates
whether the j-th word is masked r ∈ RN is multi-
granularity denoising information, w ∈ RN×N is
the original cross-attention weights, wi,j signifies
the weight of the i-th generated token relative to
the j-th input token, and w′

i is the weights after
adjusted to incorporate the multi-granularity de-
noising information. During training, the topic
masks are replaced by ground truth masks; during
testing, we employ the predicted topic masks.

Multi-granularity denoising To ensure the com-
patibility of our method with pre-trained models,
we can directly replace the cross-attention in pre-
trained generation models’ decoders with the De-
noised Attention. Train this generation task with
a loss Lgeneration. The topic mask mi enables
utterance-level denoising by constraining cross-
attention scope to utterances within i-th topic clus-
ter. This diminishes noisy utterances that do not
mention the potential ’targets’. The probabilities
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P facilitate word-level denoising by guiding the
model to prioritize words identified as quadruple
elements by the sequence labeling module. This ef-
fectively reduces noise from non-quadruple words.
This multi-granularity denoising approach controls
attention scope and adjusts attention weight to re-
duce noise, thereby enhancing extraction accuracy
and robustness.

Overall loss L=Llabeling+Ltopic+Lgeneration.

4.2 Order Bias Mitigation

Although previous works have shown the effective-
ness of generative extraction methods, they often
overlooked the accompanying issue of order bias,
as shown in Figure 1. Existing solutions for order
bias exhibit poor generalizability and scalability.
To address order bias and ensure strong generaliz-
ability, we begin with a theoretical analysis reveal-
ing that the gap between practical and ideal training
objectives leads to order bias. By further analyzing
the gap and MLE from a distribution perspective,
we find a data-driven solution to narrow the gap.
However, this solution faces a one-to-many train-
ing challenge. To address this, we leverage dialog
segmentation to enrich the order diversity within
the data distribution, thereby mitigating the one-to-
many training issue and order bias.

4.2.1 Ideal-Actual Training Gap
Ideal Training Objective According to Appendix
B.2.1, the MLE loss for generative methods is :

min
θ

−Ex∼p(x)

[
Ey∼p(y|x) [log pθ(y|x)]

]
(3)

where p represents the data distribution, and p(x)
denotes the probability of x occurring in the natu-
ral language context. When training a generative
model for DiaASQ, for each input x, the associated
ideal goal S is an unordered set of quadruples. By
concatenating the quadruples in S in all possible
permutation orders Π, we get a set of all feasible
labels (Π(S)={π1(S), π2(S), . . . }). According to
Appendix B.2.1, for each sample with input as x,
the ideal training loss (MLE) needs learning all
feasible labels:

minθ

[
−p(x)

∑
y∈Π(S) p(y|x) log (pθ(y|x))

]
(4)

Actual Training Objective Neural network sys-
tems often struggle with learning one-to-many map-
pings (Vargas et al., 2017; Berner et al., 2021;
Mukhamediev et al., 2022; Taye, 2023) because

multiple labels imply multiple descending gradi-
ents, making it difficult for the model to adjust
parameters and converge to optimal performance.
Consequently, when constructing a training dataset,
only one label πk(S) ∈ Π(S) corresponds to each
input x. Thus, the actual training objective is:

min
θ

[−p(x)p(πk(S)|x) log (pθ(πk(S)|x))] (5)

Following the calculations in Appendix B.3, the
Ideal-Actual Training Gap ∆ between the ideal
training loss(MLEideal) and the actual training
loss(MLEactual) is:

∆ = MLEideal −MLEactual (6)

=
-p(x)
|S|


 ∑

y∈(Π(S)−{πk(S)})
log pθ(y|x)


̸= 0 (7)

where |S| is the number of elements in S. The
difference in Eq. (7) cannot be approximated to
0, indicating a gap between the actual and ideal
training objectives. Clearly, the ideal training ob-
jective needs learning all feasible labels Π(S) to
capture the unordered nature of quadruples. How-
ever, in practice, the model is trained on only one
feasible label π(S), neglecting training with other
feasible labels. This may lead the model to learn
non-existent order biases and spurious causal rela-
tionships between input and order.

4.2.2 Segmentation-aided Order Bias
Mitigation

Idea and Challenge Inspired by the MLE in-
sights from the distribution perspective in Ap-
pendix B.2.1, a straightforward idea to narrow the
gap is to augment the dataset with feasible label
samples, allowing the model to learn more feasible
labels to approximate the ideal training objective:

min
θ

−


paug(x)

∑

y∈Π(S)

paug(y|x) log
(
paug(y|x)
pθ(y|x)

)
 (8)

where paug represents the data distribution after
augmenting with feasible labels. However, as men-
tioned earlier, it’s challenging for a model to learn
multiple outputs y for a single input x.

Order Diversity Augmentation: To address
this issue, we propose constructing an input set
Ag(x) for x (x∈Ag(x)). Each x̂∈Ag(x) shares
the same quadruples and similar semantics with
x. Then we pair x̂∈Ag(x) with feasible labels
y ∈Π(S) in a one-to-one manner to create new
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samples (x̂, y). For the original sample with input
x, the objective in this augmented distribution is:

minθ −
[∑

(x̂,y)∈(Ag(x),Π(S)) paug(x̂)paug(y|x̂) log
(
paug(y|x̂)
pθ(y|x̂)

)]
(9)

Clearly, in this augmented dataset, the training
objective can approximate the ideal objective, as
demonstrated in Appendix B.3.1.

AI rewriting tools (such as ChatGPT) and tradi-
tional data augmentation methods struggle to gen-
erate dialogue inputs with the same quadruples and
similar semantics without human intervention, as
shown in Appendix B.1.1 and Experiment C.6. We
propose a cost-effective solution based on dialogue
segmentation to address this problem, which di-
vides the dialogue into segments based on their
semantic topics, ensuring they are semantically iso-
lated. These segments are then rearranged and
concatenated in all possible orders to form an aug-
mented dialogue input set like Ag(x). Each input
in this set shares similar semantics because rear-
ranging semantically independent segments does
not affect the overall semantics. Each input in
this set contains the same quadruples, as all the
words remain unchanged. We then pair these inputs
with multiple feasible labels to create new samples,
thereby increasing order diversity and enhancing
the data distribution. In this augmented dataset,
as mentioned earlier, the actual training objective
closely approximates the ideal training objective,
thus alleviating order bias. For simplicity, our dia-
log segmentation scheme is based on the inherent
reply thread structure (shown in section 5.1) within
the dataset. It works because utterances connected
by reply relationships often share similar semantic
topics, making them inseparable, while others are
separable.

Utterance1

Utterance2

Utterance3

Utterance4Utterance5

Utterance6
Utterance7

Reply ThreadsReply Relations 1

2 5 7

63

4
Thread 1

2→1 means 2 replies to 1

Figure 3: Example of Reply thread in a dialog.

5 Experiments

5.1 Experimental Settings

Dataset The Diaasq dataset (Li et al., 2023a) com-
prises both English(EN) and Chinese(ZH) datasets
and provides dialogue texts with reply threads. A
reply thread is a collection of utterances linked by

reply relationships, as shown in Fig. 3. More detail
is in Appendix C.1.

Metrics We use micro F1 for the pair extrac-
tion task and both Micro F1 and Identification F1
(Barnes et al., 2021) for the quadruple extraction
task, following the dataset creators’ recommenda-
tions. Micro F1 considers tuples with all words
correct as TP and any incorrect word as FP. Identifi-
cation F1 is similar but ignores sentiment elements.

Baselines We compared with generative mod-
els like ParaPhrase (Zhang et al., 2021a) and
discriminative models like CRF-ExtractClassify
(CEC)(Cai et al., 2021), SpERT(Eberts and Ulges,
2020), Span-ASTE(Xu et al., 2021a), and MvI(Li
et al., 2023a). ParaPhrase(Zhang et al., 2021a)
introduces a novel paraphrase modeling paradigm
to frame the ASQP task as a paraphrase generation
process. MvI (Li et al., 2023a) uses multi-view
information to control information fusion and then
extracts quadruples by decoding Tagging Grid.

Settings We use BART (Lewis et al., 2020)
(440M) for both EN and ZH datasets. We train
the model for 10 epochs (2 hours) on 4 3090 GPUs
with a batch size of 5 and a learning rate of 5e-5.
The ratio of the three losses is 1:1:1. The number
of cross-attention layers is 3(Appendix C.8). More
detail is in Appendix C.3. All reported results are
averaged over multiple runs.

5.2 Main Result
The results are presented in Table 1. In the quadru-
ple extraction task, our SADD method achieves a
maximum improvement of 5.56% micro F1 and
6.52% Iden F1 in the EN dataset compared to the
previous best model(MvI), demonstrating the ef-
fectiveness of our method. Because discriminative
models are not influenced by bias, our method’s
major advantage over them lies in denoising. With
the multi-granularity denoising generation module,
we achieve up to a 6.52% Iden F1 improvement
compared to the best discriminative method(MvI)
on the EN dataset. Compared to generative models,
our method’s greatest strength lies in order bias
mitigation. With the segmentation-aided order bias
mitigation module, we achieve up to a 16.56% Iden
F1 improvement compared to the ParaPhrase in the
EN dataset. Further insights into the impact of
order bias on the results can be found in the Ap-
pendix C.5. In the Pair Extraction task, our model
achieved an average 3.19% micro F1 improvement
in all datasets over the previous best approaches.
This underscores the effectiveness of our method in
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Table 1: Main Results. ’D’ denotes discriminative methods, while ’G’ indicates generation methods. T-A means the
target-aspect pair extraction task, T-O refers to target-opinion, and A-O refers to aspect-opinion.

Type Method
EN ZH

Pair Extraction(F1) Quadruple(F1) Pair Extraction(F1) Quadruple(F1)
T-A T-O A-O Micro Iden T-A T-O A-O Micro Iden

D.

CEC 34.31 20.94 19.21 11.59 12.80 32.47 26.78 18.90 8.81 9.25
SpERT 28.33 21.39 23.64 13.07 13.38 38.05 31.28 21.89 13.00 14.19

Span-ASTE 42.19 30.44 45.90 26.99 28.34 44.13 34.46 32.21 27.42 30.85
MvI 47.91 45.58 44.27 33.31 36.80 48.61 43.31 45.44 34.94 37.51

G.
ParaPhrase 37.22 32.19 30.78 24.54 26.76 37.81 34.32 27.76 23.27 27.98

SADD (Ours) 50.82 49.64 49.70 38.87 43.32 51.13 46.72 47.87 37.80 41.05

enhancing extraction performance across various
tasks, indicating its generalizability. By employing
topic-aware dialogue segmentation to form target-
centric clusters, our model effectively diminishes
noise from quadruples with different targets dur-
ing aspect and opinion extraction tasks associated
with a specific target (TA, TO task). Furthermore,
in aspect-opinion pair extraction (AO task), our
model primarily benefits from the sequence label-
ing probability, which diminishes non-quadruple
noise.

5.3 Analysis

5.3.1 Ablation Study

Table 2: Ablation studies of MGDG and SOBE compo-
nents on DiaASQ Dataset.

Method
Components EN ZH

MGDG SOBM Micro Iden Micro Iden
Baseline 29.31 32.30 30.45 33.64
+MGDG ✓ 36.35 40.64 35.76 39.21
+SOBM ✓ 34.96 37.86 35.70 38.39

SADD (Ours) ✓ ✓ 38.36 42.94 37.80 41.05

We conducted an ablation study to validate the
effectiveness of our Multi-Granularity Denoising
Generation (MGDG) and Segmentation-aided Or-
der Bias Mitigation (SOBM) components, detailed
in Table 2. Compared to the baseline, integrating
the MGDG module brings a maximum 8.34% Iden
F1 improvement in the EN dataset. It indicates that
the MGDG module significantly enhances tuple ex-
traction accuracy and robustness by reducing noise.
We also compared our MGDG module with exist-
ing segmentation methods in Section 5.3.3. Fur-
thermore, the integrated SOBM module brings a
maximum 5.65% micro F1 improvement in the EN
dataset compared to the baseline. It demonstrates
the effectiveness of SOBM in mitigating order bias.
We also compared our SOBM module with existing
debias methods in Section 5.3.4 and investigated

Table 3: The proportion of errors attributed to noise

MvI SADD(our) ∆

Proportion 79.88 48.67 -31.21

the effects of different data augmentation strategies
in the SOBM in Appendix C.6.

5.3.2 Statistics and Case Studies
We conducted a comparative analysis between our
proposed method and the SOTA method (MvI) re-
garding the proportion of errors attributed to noise,
as shown in Table 3. The significant proportion
of errors, amounting to 79.88%, underscores the
inadequacy of previous methods in handling noise
effectively, thereby highlighting the necessity for
denoising techniques. Furthermore, our denois-
ing approach resulted in a notable reduction of
31.21% in the proportion of errors attributed to
noise, affirming our method’s effectiveness. Figure
4 presents several case studies where the previous
SOTA method (MvI) failed to provide good pre-
dictions, whereas our model demonstrated superior
performance. The two examples primarily illus-
trate how noise leads to an increase in irrelevant
quadruples and a decline in quadruple quality. In
the first example, due to the interference of noisy
words like "Meizu 18", "machine," "backup," and
"main," MvI produced several erroneous and irrel-
evant quadruples. In the second example, the MvI
model’s prediction of the quadruple "(mate series,
appearance, much better, pos)" is compromised by
the noise word "p series," leading to the erroneous
generation of "(p series, appearance, much better,
pos)" instead. Noise detrimentally affects the qual-
ity of predicted quadruples. In contrast, our model
remains unaffected by such disturbances.

5.3.3 Further Ablation Study on TADS
To assess the effectiveness of the Topic-aware Di-
alogue Segmentation (TADS) method, we com-
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Dilogues MvI SADD(our) Label Explanation
speaker0:...
speaker1:"After watching your 5 - minute long test , I bought the p40pro . It 's really 
good [ hee hee ] . Taking photo is stable and the workmanship is excellent . 90hz is well 
optimized .",
speaker0:...
speaker1:...
speaker2:"Why is P40Pro and not mate40Pro ? Meizu 18 is just a backup machine , 
what about the main machine ?",
speaker3:"The mate40p feels too bad , not suitable for holding it all the time , but it 
has full functions and is more suitable for the main machine in life",
speaker2:...
speaker4:...

(mate40p, feels, too bad, neg)
(p40pro, Taking photo, stable, pos)
(p40pro, 90hz, well optimized, pos)
(mate40p, functions, full, pos)
(p40pro, workmanship, excellent, pos)
(Meizu 18, machine, backup, neg)
(mate40p, machine, main, pos)

(mate40p, feels, too bad, neg)
(p40pro, Taking photo, stable, pos)
(p40pro, 90hz, well optimized, pos)
(mate40p, functions, full, pos)
(p40pro, workmanship, excellent, pos)

(mate40p, feels, too bad, neg)
(p40pro, Taking photo, stable, pos)
(p40pro, 90hz, well optimized, pos)
(mate40p, functions, full, pos)
(p40pro, workmanship, excellent, pos)

"Machine" is not an aspect 
of Meizu or Mate40p; 
instead, it refers to their 
entities. Therefore, the two 
additional quadruples 
predicted are incorrect.

speaker0:...
speaker1:...
speaker2:"When the Android phone of Dimensity 9000 comes out , such as OPPO 's , it 
will definitely be good . And Huawei 's flagship is really no better than Oppo 's 
flagship . Oppo 's flagship machine has good quality control and texture . But it is very 
cheap , much cheaper than Huawei .",
speaker1:...
speaker3:...
speaker0:...
speaker4:"Honestly , I personally think the appearance of the mate series is much 
better than the p series ."
speaker5: ...

(Oppo, quality control, good, pos)
(p series, appearance, much better, pos)
(Oppo, texture, good, pos)

(Oppo, quality control, good, pos)
(mate series, appearance, much better, pos)
(Oppo, texture, good, pos)

(Oppo, quality control, good, pos)
(mate series, appearance, much better, pos)
(Oppo, texture, good, pos)

In the dialogue, the phrase 
"much better" describes the 
"mate series" rather than 
the "p series".

Figure 4: Case Study. The orange words represent the noise that causes errors in the MvI model.

pare it with existing methods detailed in Appendix
C.7, as shown in Table 4. Compared to TOD-
BERT(Wu et al., 2020a) , our methods achieved a
maximum of 6.23 % Iden F1 improvement in the
ZH dataset. This underscores the effectiveness of
incorporating topic information to simplify contex-
tual analysis, enhancing segmentation accuracy and
robustness by avoiding the direct analysis of com-
plex utterances. Compared to TSP, our methods
achieved a maximum of 3.74% Iden F1 improve-
ment in the ZH dataset. This demonstrates that
utilizing cross-attention to mine fine-grained as-
sociations can enhance the model’s robustness in
complex situations, such as utterances with multi-
ple topics and implicit topics. Compared to SMGD,
our methods achieved a maximum 12.1% Iden F1
improvement in the EN dataset. This highlights that
the pre-labeling topic words are necessary for the
topic-aware dialogue segmentation module. The
SMGD method, which segments dialogues with-
out pre-labeling topics, struggles to analyze com-
plex context interactions between utterances. In
contrast, our method benefits from pre-labeling
topics, which simplifies contextual analysis by fo-
cusing only on interactions between topics and ut-
terances. Compared to RT, our methods achieved
a maximum 3.96% Iden F1 improvement in the EN
dataset. This indicates that our method can han-
dle utterances related to multiple topics, thereby
performing more accurate dialogue segmentation
and denoising without removing any topic-related
information. Compared to TWM, our methods
achieved a maximum 6.74% Iden F1 improvement
in the EN dataset. This demonstrates that utilizing
cross-attention to mine fine-grained associations
can help resolve topic-level coreferences.

Table 4: Result of various dialogue segmentation meth-
ods combined with SOBM and MGDG. NN means the
method is totally a Neural Network method.

Method NN
Components EN ZH

Topic Fine-grain Micro Iden Micro Iden
TOD-BERT ✓ 34.76 38.42 32.12 34.82

TSP ✓ ✓ 36.30 40.18 34.30 37.31
SMGD ✓ ✓ 27.67 31.22 28.39 30.87

RT 35.78 39.36 35.36 38.51
TWM ✓ 32.85 36.58 31.78 36.00

TADS (Ours) ✓ ✓ ✓ 38.87 43.32 37.80 41.05

Table 5: Results of Methods Addressing Order Bias.

Method
EN ZH

Micro Iden Micro Iden
Set 31.83 35.26 29.81 33.52

SOBM(Ours) 34.96 37.86 35.70 38.39

5.3.4 Further Ablation Study on SOBM
To evaluate the effectiveness of our debiasing solu-
tion, we compare it with an existing method called
Set (Li et al., 2023b) introduced in Section 2 , as
shown in Table 5. Our method outperforms Set by
a maximum of 5.89% micro F1 in the ZH dataset,
highlighting its effectiveness in mitigating order
bias. In contrast to Set’s struggle with one-to-many
learning at the loss level, our approach augments
inputs to avoid learning one-to-many mappings
and mitigate order bias at the data level, thereby
improving performance and generalizability.

6 Conclusion

This paper introduces a novel Segmentation-Aided
multi-grained Denoising and Debiasing (SADD)
model for denoising and debiasing in the DiaASQ
task. For noise, we propose a Multi-Granularity
Denoising Generation(MGDG) model to denoise
at both word and utterance levels with denoised
attention. For order bias, we analyze its direct
causes and propose a distribution-based solution.
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We then introduce the Segmentation-aided Order
Bias Mitigation (SOBM) method, which utilizes
dialogue segmentation to increase order diversity,
thereby simultaneously alleviating the challenges
of one-to-many learning and order bias. Extensive
experiments show SADD’s SOTA performance.

7 Limitations

1. A limitation we encountered is the increased
training time due to the augmented dataset.

2. The BART model encounters challenges when
processing long-text inputs, particularly in di-
alogue scenarios, due to the increasing time
complexity of attention mechanisms as the
input length grows. This results in higher
time overhead compared to short-text ABSA.
More efficient attention mechanisms tailored
for long textual inputs in dialogue contexts
need to be developed to mitigate this issue.

3. We didn’t fully utilize the inherent informa-
tion in the DiaASQ dataset, such as speaker in-
formation or reply relationships, which could
improve the model’s comprehension of dia-
logue content.

8 Ethics Statement

In all our experiments, we utilized pre-existing
datasets widely used in previous research. While
analyzing experimental results, We made diligent
efforts to maintain fairness and honesty, ensuring
that our work did not cause harm to any individuals.

Regarding broader impacts, this work can con-
tribute to further research in sentiment analysis and
the utilization of generative methods for simplify-
ing and automating the extraction of user opinions
in real-world applications. However, it’s notewor-
thy that this work utilizes fine-tuning large-scale
pre-trained language models for generating senti-
ment triplets. Since the large-scale pre-training
corpora originate from the internet, predicted senti-
ment polarity may be subject to unintended biases
associated with gender, race, and intersectional
identities (Tan and Celis, 2019). Large pre-trained
language models often inherit biases present in
their training data, potentially leading to biased
sentiment analysis results, particularly when evalu-
ating texts from underrepresented or marginalized
groups, thereby perpetuating and amplifying so-
cietal prejudices. It is crucial for the natural lan-
guage processing community to consider these bi-

ases more extensively. Fortunately, these issues are
actively being addressed within the research com-
munity, including efforts to standardize datasets
and methodologies.

We obtained licenses for all artifacts used in
our study, and our data was obtained from open-
source repositories. Our use of existing artifacts is
consistent with their intended use. Our method’s
specific intended use is to extract quadruples from
dialogues and is compatible with the original ac-
cess conditions. We read and checked each sample
to ensure that the data used does not contain infor-
mation that names or uniquely identifies individual
people or offensive content.
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A Appedix for Introduction

A.1 Definition and Example of Noise and Bias
Noise is words that interfere with the genera-
tion process when the model generates a certain
quadruple.

Order Bias: Due to the constraints of seq2seq
tasks, the model learns a nonexistent causal rela-
tionship from the input to the order of quadru-
ples. The model ends up overfitting to a specific or-
der we’ve arbitrarily defined, which affects its gen-
eralization ability. We term this as "Order Bias."

Example:
Input ⋆: Utterance 1: . . .The battery of the

iPhone was quite good and the system was smooth
. . .

Utterance 2: . . . The battery of Samsung phones
is worse. . . . I also bought a Samsung phone for
my girlfriend. . .

Utterance 3: . . . Xiaomi can also be considered,
mainly because the price is very low. . .

Output ♡:
“iPhone” Quads: (iPhone, battery, quite good,

POS), (iPhone, system, smooth, POS)
“Samsung” Quads: (Samsung, battery, worse,

NEG)
“Xiaomi” Quads: (Xiaomi, price, very low,

POS).
Example of Noise: Specifically, when the model

generates the quadruple ♣" (iPhone, battery, quite
good, POS)", it selects words from the input ⋆.
Words in the input ⋆ but not in the quadruple are
the words that interfere with the generation pro-
cess of the quadruple ♣. So, these words are the
noise (The definition of Noise). For instance, words
such as "bought" and "considered" can introduce
significant noise, potentially leading the model to
generate incorrect quadruples.

Example of Bias: When we transform the
quadruple extraction task into a text-to-text gen-
eration task, we need to design a sentence as the la-
bel. Considering the quadruples (Samsung, battery,
worse, NEG) and (Xiaomi, price, very low, POS),
we have to decide the order between them when
constructing labels for the seq2seq task. Whether
it’s “(Samsung, battery, worse, NEG) (Xiaomi,
price, very low, POS)” or “(Xiaomi, price, very

low, POS) (Samsung, battery, worse, NEG)”, the
model is forced to learn the corresponding order
and move away from the other orders. But in fact,
any order is correct. This confusion leads the model
to seek semantic clues from the input to find out
why this order. The model attempts to find a nonex-
istent causal relationship between the input and the
order of quadruples to find why this order exists.
As a result, the model overfits to our arbitrarily
defined order, impacting its generalization ability,
thus leading to a bias.

B Appedix for Method

B.1 Appendix for section 4.1
B.1.1 Augment with Chatgpt
We aim to keep the quadruple elements unchanged
while constructing semantically similar inputs.
However, AI paraphrasing tools like ChatGPT 3.5
and ChatGPT 4 often fail to preserve the quadru-
ple elements and may alter the original semantics.
Firstly, there’s the issue of maintaining quadruple
elements. ChatGPT often modifies the opinion
part of the quadruples. Changing the quadruple
elements renders the original labels incompatible
with the input, resulting in a failed input construc-
tion. It is nearly impossible to determine whether
the original quadruple elements remain unchanged
through code analysis, as the appearance of char-
acters in the text does not necessarily imply their
association with the same quadruple or a quadruple
relationship between them. Additionally, manu-
ally verifying whether quadruple elements have
changed would require significant effort. Secondly,
there’s the issue of preserving the original input’s
semantics. ChatGPT also frequently alters seman-
tics, disregarding certain parts of the content or
even producing dialogues with entirely opposite
meanings. We demonstrate some examples where
ChatGPT rewriting resulted in changes to quadru-
ple elements and altered semantics, as shown in
Figure 8 and Figure 9. Therefore, AI rewriting
tools like ChatGPT may not be suitable for our
augmentation task.

B.2 Appendix for section 4.2
B.2.1 From a Data Distribution Perspective:

MLE Loss
Currently, generative extraction models are primar-
ily trained using Maximum Likelihood Estimation
(MLE). Given the data distribution p and a paramet-
ric model with parameters θ, Maximum likelihood
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estimation (MLE) minimizes:

LMLE(θ) = −Ex∼p(x)[Ey∼p(y|x)[logpθ(y|x)]]
(10)

where x represents the input context, y represents
the generation label.

It is well known that MLE can be seen as
minimizing the Kullback-Leibler (KL) divergence
between the data distribution p and the model-
estimated distribution pθ. The equation below
shows the relationship between MLE loss and KL
divergence:

DKL(p ∥ pθ) (11)

=
∑

X

p(x)
∑

Y

p(y|x) log
(

p(y|x)
pθ(y|x)

)
(12)

=
∑

X

p(x)
∑

Y

p(y|x) log (p(y|x)) (13)

−
∑

X

p(x)
∑

Y

p(y|x) log (pθ(y|x)) (14)

= −H + MLE(θ) (15)

where H is the "Entropy" and is independent of
model parameters θ, it can be disregarded in the
training loss. Hence, MLE loss and KL divergence
share the same minimum. By minimizing the MLE
loss, we encourage the predicted distribution pθ to
align with the data distribution p closely.

Learning All Feasible Lables It is worth noting
that Equation 12 indicated that we need to learn
all feasible labels for the input. In many spe-
cific tasks, only one label y corresponds to a given
input, with a probability p(y|x) = 1, and the prob-
abilities p(other|x) for other texts are all 0. How-
ever, in some tasks, there may be multiple labels
{y1, y2, . . . } that match a given input, with proba-
bilities p(y1|x), p(y2|x), . . . all non-zero. Unfortu-
nately, these probabilities are often immeasurable,
which has led to prior research overlooking mul-
tiple feasible labels and instead focusing only on
one label. Failing to learn all feasible labels fully,
and instead focusing on just one, increases the
risk of introducing bias into the model.

B.3 Proof of Ideal-Actual Training Gap

We prove that, for each sample, the Ideal-Actual
Training Gap ∆, i.e., the difference between the
ideal MLE loss and the actual MLE loss is not zero,
thereby demonstrating a disparity between the ideal
training objective and the actual training objective.

Given one sample with input as x and model
parameter θ, the difference ∆ between the ideal
MLE loss and the actual MLE loss is as follows:
∆ =MLEideal −MLEactual

=−


p(x)

∑

y∈Π(S)

p(y|x) log pθ(y|x)




+ [p(x)p(πk(S)|x) log pθ(πk(S)|x)]

=− p(x)


 ∑

y∈Π(S)

p(y|x) log pθ(y|x)− p(πk(S)|x) log pθ(πk(S)|x)




In this task, all feasible labels contain the same
quadruples but in different orders. Moreover, all
permutation orders are equivalent. Therefore, all
labels are equivalent, resulting in equal probabil-
ities for each label. That is, for p(y|x), the prob-
ability of each feasible label y ∈ Π(S) is the
same, so p(y|x) = 1

|Π(S)| , where |Π(S)| repre-
sents the number of elements in S. Of course,
p(πk(S)|x) = 1

|Π(S)| . Consequently, we can fur-
ther simplify the above expression:

∆ = MLEideal −MLEactual

= −p(x)

|S|


 ∑

y∈Π(S)

log pθ(y|x)− log pθ(πk(S)|x)




= −p(x)

|S|


 ∑

y∈{Π(S)-{πk(S)}}
log pθ(y|x)




̸≈ 0

In dialogue datasets, each sample contains more
than one quadruple, so Π(S)-{πk(S)} ≠ ∅. There-
fore, in this scenario, the Ideal-Actual training gap
∆ between the ideal MLE loss and the actual MLE
loss cannot approximate 0. This indicates a gap
between the ideal training objective and the actual
training objective.

B.3.1 Objective Approximation
Our approach to supplementing necessary samples
with various feasible labels involves the following
steps: Firstly, construct an input set Ag(x) where
each input shares the same quadruple elements and
exhibits similar semantics. Then, combine these in-
puts with multiple feasible labels to create samples.
Within the augmented dataset, we will illustrate
that the Ideal-Actual training gap ∆ between the
ideal Maximum Likelihood Estimation (MLE) loss
and the actual MLE loss for any given sample is
approximately 0. This demonstration serves to in-
dicate that the training objective on this augmented
dataset can closely approximate the ideal training
objective.
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Given one sample with input as x and model
parameter θ, the gap ∆ between the ideal MLE
loss and the actual MLE loss is as follows:

∆ =MLEideal −MLEactual

=−


p(x)

∑

y∈Π(S)

p(y|x) log pθ(y|x)




+


 ∑

(x̂,y)∈(Ag(x),Π(S))

paug(x̂)paug(y|x̂) log pθ(y|x̂)




(16)

Because x and each x̂ ∈ Ag(x) are semantically
similar, they occur with the same probability in
natural language contexts. With a sufficiently large
sample size in the dataset, under the guarantee of
the "Law of the Large Numbers," we can assert that
p(x) ≈ paug(x̂). Thus, we can simplify the above
formula to:

∆ =MLEideal −MLEactual

≈− p(x)


 ∑

y∈Π(S)

p(y|x) log pθ(y|x)

−
∑

(x̂,y)∈(Ag(x),Π(S))

paug(y|x̂) log pθ(y|x̂)




(17)

In this task, all feasible labels contain the same
quadruples but in different orders. Moreover, all
permutation orders are equivalent. Therefore, all la-
bels are equivalent, resulting in equal probabilities
for each label. That is, for p(y|x), the probabil-
ity of each feasible label y ∈ Π(S) is the same,
so p(y|x) = 1

|Π(S)| . In the augmented dataset, x̂
and x share the same quadruple elements, implying
that all feasible labels associated with them are the
same. Furthermore, as our augmented dataset en-
compasses all feasible labels, we have paug(y|x̂) =

1
|Π(S)| . Hence, p(y|x) = paug(y|x̂) = 1

|Π(S)| . This
allows for further simplification of the above ex-
pression:

∆ =MLEideal −MLEactual

≈ −p(x)

|S|


 ∑

y∈Π(S)

log pθ(y|x)

−
∑

(x̂,y)∈(Ag(x),Π(S))

log(pθ(y|x̂)




(18)

An input x consists of two components: the quadru-
ple elements xq and the non-quadruple context xc.
Therefore, we can decompose x in the above equa-

tion as follows:

∆ =MLEideal −MLEactual

≈− p(x)

|S|


 ∑

y∈Π(S)

log [pθ(y|xq)pθ(y|xo)]

−
∑

(x̂,y)∈(Ag(x),Π(S))

log [pθ(y|x̂q)pθ(y|x̂o)]




(19)

Here, xq is correlated with the label y, while xc is
independent of the label y. So, we have

∆ =MLEideal −MLEactual

≈p(x) log pθ(y)

|S|


−

∑

y∈Π(S)

log pθ(y|xq) +
∑

(x̂,y)∈(Ag(x),Π(S))

log pθ(y|x̂q)




(20)
When constructing x̂, we ensure that it shares the
same quadruple elements as x, hence x̂q = xq.
Consequently, log (pθ(y|x̂q)) = log (pθ(y|xq)).
Hence, we can simplify the above expression to:

∆ = MLEideal −MLEactual

≈ p(x)

|S|


−

∑

y∈Π(S)

log pθ(y|xq) +
∑

(x̂,y)∈(Ag(x),Π(S))

log(pθ(y|xq)




≈ 0

(21)
The above equation can be approximated to 0 be-
cause the variable y in Equation 21 can cover all
feasible labels during actual training, aligning it
with the ideal scenario. Therefore, in this case,
the difference between the ideal MLE loss and the
actual MLE loss can be approximated to 0. This
indicates that when training the model in the
augmented dataset, the actual training objec-
tive can closely approximate the ideal training
objective.

C Appendix for Experiment

C.1 Dataset Detail
The dataset used is called Diaasq, including both
a Chinese and an English dataset. The dataset is
divided into train/test/dev sets in an 8:1:1 ratio.
Aside from the dialogue text, the dataset also in-
cludes important details such as the speaker for
each utterance, dialogue reply relationships, and re-
ply thread relationships. Every dialogue originates
from a root utterance, and multiple speakers take
part in responding to preceding utterances. Multi-
threaded and multi-turn dialogues form a tree struc-
ture based on reply relationships. In other words,
dialogues are structured like trees, following reply
relationships. Each reply thread consists of all
the utterances along the path from a leaf node

852



to the root node, as illustrated in Figure 5. The
dataset labels consist of ground truth tuples and the
positions of their element. The statistical informa-
tion of the dataset is shown in Table 6.

1

2 5 7

63

4

I regret buying Xiaomi 11. # What do you 
think of Xiaomi mobile phone #

I didn’t buy since my friend said the 
battery life of Xiaomi 11 is not well.

That’s right, and as far as I’ve experienced, 
WiFi module is also a bad design.

Here I am! Rabbit has seen your issues 
and please check your private message.

A 4-year holder of Xiaomi 6 is here!

Me too, the screen quality of it is 
very nice!

Me too.

1

2

3

4

5

6

7

Reply threads

Multi-thread Multi-turn Dialogue

Thread 1

Figure 5: Reply threads. "2" →"1" means utterance "2"
replies to utterance "1".

C.2 Detail of Metrics

We use micro F1 for the pair extraction task and
both micro F1 and identification F1 for the quadru-
ple extraction task, as stated in (Barnes et al., 2021).
In micro F1, predicted tuples with all correct words
are considered true positives (TP), while tuples
with any incorrect word are considered false posi-
tives (FP). Tuples that were not predicted correctly
are considered false negatives (FN). On the other
hand, Identification F1 is similar to Micro F1, but
it does not take sentiment elements into account.

C.3 Detail of Experiment Setting

We use BART (Lewis et al., 2020) (440M) for both
EN and ZH datasets. We train the model for ten
epochs (2 hours) on 4 3090 GPUS with a batch
size of 5 and a learning rate of 5e-5, while other
layers employ a learning rate of 8e-5. We use 3
cross-attentithreen layers. During testing, the beam
search size is set to 2. All reported results are
averaged over multiple runs.

C.4 Detail of Compared Baseline

CRF-ExtractClassify(CEC)(Cai et al., 2021) is
a two-stage model that initially extracts aspect-
opinion pairs and then predicts category-sentiment
based on the extracted aspect-opinion pairs.
SpERT(Eberts and Ulges, 2020) is a span-based
transformer model for joint entity and relation ex-
traction, initially extracting spans, filtering them,
and finally classifying relationships among the

spans. Modify this model to support quadruple
extraction classification. Span-ASTE(Xu et al.,
2021a) is a span-based model that explicitly consid-
ers interactions between the entire span of targets
and opinions when predicting sentiment relations.
Modify the final stage of SpanASTE to enumerate
triplets, aligning it with the DiaASQ task. Para-
Phrase(Zhang et al., 2021a), an end-to-end genera-
tion approach, introduces a novel paraphrase mod-
eling paradigm to frame the ASQP task as a para-
phrase generation process. MvI(Li et al., 2023a)
method leverages speaker information, reply rela-
tionships, and thread information in dialogues to
control information fusion between dialogues. Fi-
nally, it extracts quadruples based on the decoding
output of Grid Tagging.

C.5 More analysis for main Experiment
Results

ParaPhrase is a generative model that outperforms
the discriminative model Span-ASTE on short text
datasets but falls short on dialogue datasets. This is
because the dialogue dataset has an increasing num-
ber of tuples, which widens the gap between the
actual and ideal training objectives, i.e., increasing
gap in Π(S) and πk(S) as indicated by Equation 4
and 5. This amplifies the order bias interference in
ParaPhrase. In contrast, Span-ASTE remains unaf-
fected by tuple order bias, resulting in a reversal of
performance on dialogue datasets shown in Table
1.

C.6 Augmentation Strategies in SOBM

To investigate the effectiveness of the augmenta-
tion strategy in SOBM, we compared it with other
augmentation methods. By determining whether to
shuffle the tuples in labels and the segmented frag-
ments in inputs, we get various augmented datasets.
We also compared SOBM with traditional data aug-
mentation methods: synonyms, replacement, and
deletion (SRD). The results are presented in Table
8. Compared to row 1, our method surpasses the
first method by a maximum of 2.52 %(micro F1)
on the EN dataset. The first method creates biased
samples, while our method helps alleviate biases,
improving the model’s robustness and generaliz-
ability. The second method is actually a type of
standard data augmentation method. So, it outper-
forms the first method by a maximum of 1.04%(mi-
cro F1) in the ZH dataset. However, the compari-
son between rows 5 and 2 shows that our method
outperforms the second method by a maximum of
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Table 6: Statistical information of the Diaasq dataset.

Pairs Quadruples Utterance Length Dialogue Length

Pairt-a Pairt-o Paira-o Quad Intra Cross Avg Min Max Avg Min Max

EN 5894 7432 4994 5514 4287 1227 31 3 156 231 85 481

ZH 6041 7587 5358 5742 4467 1275 29 3 142 219 76 462

Table 8: Result of different augmentation methods.
TDA - Traditional Data Augment.

Method TDA
Shuffle EN ZH

Input OutPut Micro Iden Micro Iden
w/o 36.35 41.64 35.76 39.21

In only ✓ 37.31 41.68 36.80 39.78
Out only ✓ 36.44 41.35 36.64 39.53

SRD ✓ ✓ 37.44 41.95 36.29 39.12
SOBM (Our) ✓ ✓ 38.87 43.32 37.80 41.05

1.64%(Iden F1) in the EN dataset. This empha-
sizes that our approach isn’t merely an optional
data augmentation technique but rather a neces-
sary debiasing technique. Compared to row 3, our
method outperforms the third method by a maxi-
mum of 2.43%(micro F1) in the EN dataset. The
second method introduces a one-to-many learning
challenge, while our method avoids this by pairing
feasible labels with newly constructed inputs, facil-
itating models to converge to optimal performance.
Compared to row 4, our method outperforms the
fourth method by a maximum of 1.93%(Iden F1)
in the EN dataset. This highlights the superior-
ity of our augmentation technique over traditional
methods in dialogue processing.

C.7 Compared Dialogue Segmentation
Methods

Here is the detail of the compared dialogue seg-
mentation methods:
1. TOD-BERT (Wu et al., 2020a): This method di-

rectly classifies the utterance relationships with-
out introducing topic information. The method
interacts with the contextual information be-
tween two utterances, and the classification is
performed on the fused contextual information
to achieve dialogue segmentation. Pass the
fused contextual information through an MLP
layer and then classify to determine whether the
two utterances share the same topic or whether
they need to be segmented. This method is
the most commonly used approach in existing
works.

2. Topic-Sentence Pair: This approach introduces

"topics" and then performs classification on
topic-utterance pairs, similar to our method.
However, instead of using cross-attention for
fine-grained information fusion, it uses a con-
catenation operation to pool information.
Firstly, it performs average pooling on a topic
word and on an utterance. Then, it concatenates
the two pooled embeddings and passes them
through an MLP layer for classification to deter-
mine whether the utterance belongs to the given
topic. Apply this process to all the topics and
utterances to finish the segmentation.

3. Simultaneously Multi-Granularity Denoising:
This method incorporates sequence labeling and
dialogue segmentation into the dialogue seg-
mentation module. It doesn’t need to pre-label
topics topics. Instead, it views each word in an
utterance as a potential topic and categorizes the
connection between each word and the utterance.
Based on the classification results, the method
identifies words linked to any sentence as topics,
while those without connections are not con-
sidered topics. This approach achieves both
topic-centric clustering and topic labeling simul-
taneously. However, this means that when
we perform dialogue segmentation, there is
no explicit guidance from topic information.
Consequently, it must deal with the intricate
contextual interactions between utterances.

4. Reply Thread (RT): This method doesn’t em-
ploy neural networks. Instead, it directly uses
the inherent reply thread structures (as shown
in Section C.1) in the dataset as the final dia-
logue segmentation scheme. In this segmen-
tation scheme, every utterance, except for the
initial dialogue, is assigned to a single topic-
centric cluster. However, this approach lacks
finer segmentation granularity, as seen in cases
where an utterance may relate to multiple topics,
as illustrated by the black utterances in Fig. 2.

5. Topic Word Match(TWM): This technique be-
gins by labeling topic words within the utter-
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ances. Then, it utilizes string-matching algo-
rithms to determine whether an utterance be-
longs to a specific topic. Specifically, it checks
if an utterance contains the topic string at the
string level. If the topic is found in the utterance,
it’s considered to belong to that topic; otherwise,
it’s not. However, this method is limited to es-
tablishing connections between an utterance and
a topic only when the utterance explicitly men-
tions the topic at the string text level. When
an utterance indirectly references a topic or dis-
cusses related content, such as using pronouns,
this approach proves ineffective.

C.8 Hyparameter Experiment

1 2 3 4 5
Cross Attention Layers

0.36
0.37
0.38
0.39
0.40
0.41
0.42

M
od

el
 R

es
ul

ts Micro F1
Inden. F1

Figure 6: Results for the different number of cross at-
tention layers.

We also investigated the impact of the number
of cross-attention layers on model performance,
keeping the batch size constant at four due to GPU
memory limitations. The results are shown in Fig-
ure 6. The figure illustrates that increasing the
number of cross-attention layers initially enhances
model performance but then diminishes it. When
there are fewer cross-attention layers, the model
lacks sufficient interaction between topic and utter-
ance information, limiting the exploration of their
relationship. Conversely, an excessive number of
cross-attention layers leads to overfitting due to a
surplus of parameters and limited data, resulting in
the incorporation of non-topic-related information
during interaction.

C.9 LLM’s performance
We experimented with various fine-tuning meth-
ods, fine-tuning the Qwen1.5(7B) (Bai et al., 2023)
model on the English dataset. Fine-tuning meth-
ods include full parameters fine-tuning, Lora (Hu

et al., 2021) fine-tuning, and Qlora (Dettmers et al.,
2024) fine-tuning. The results are depicted in Fig.
7. Clearly, even with a smaller parameter setting,
our approach outperforms the results of larger mod-
els.

5 6 7 8 9
Log2 of Rank

0.3349
0.3268

0.3421

0.2115

0.1770

Ex
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rim
en

t R
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SADD(ours)
QLora
Lora
Full Finetuning

Figure 7: LLM’s Performance. The x-axis represents
the logarithmic values of Lora’s rank number, and the
y-axis represents the Iden F1 results.
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Please rewrite the following dialogues in their original language so that change the content, but keep the general semantics  
and the elements in the quadruples unchanged:
Quadruples:[ "neg", "k50", "take photos", "a little better"], [ "pos", "pro", "photo", "far worse than"], 
["neg", "12", "photo", "far worse than"], [ "neg", "K40", "game", "always 460"], 
["pos", "Xiaomi", "taking pictures", "better"], ["neg", "Redmi", "taking pictures", "Don't consider"]
 Here is the dialogue: 
["I hope k50 can take photos a little better [ School Season][School Season][School Season ]", "Taking photos is 
really important !", "No matter how good the camera parameters are , it is useless without technology [ doge ]", "I 
went to the store to try the 12 and 12pro , the 12 's photo is far worse than the pro 's", "I agree with the photo too ! 
The top - level configuration version of the camera can also be enhanced", "The light is dark at night , and it is 
inconvenient to scan the code when going out .", "The telephoto scan code is even more fragrant .", "Do n't consider 
taking pictures using Redmi , Xiaomi is better [ DOGE ] .", "[ Doge ] [ Doge ] [ Doge ] Yes , I do n't know if you have 
encountered it , my K40 game is always 460 [ Tears ] [ Tears ] [ Tears ] ."]

["I hope the K50 can improve its photo-taking capabilities just a bit. [School Season][School Season][School 
Season]", "Taking photos really matters!", "No matter how impressive the camera specs are, without the right 
technology, they're useless. [doge]", "I visited the store to test out the 12 and 12 Pro. The 12's camera performance is 
far worse than the Pro's.", "I totally agree about the camera! Even the highest-tier camera setup can be further 
enhanced.", "It gets really dark at night, making it inconvenient for scanning codes when out and about.", "Scanning 
codes with the telephoto lens is even more satisfying.", "If you're considering photo quality, go for Xiaomi over 
Redmi. Xiaomi performs better. [DOGE]", "[Doge] [Doge] [Doge] You know what, I've been experiencing this issue too. 
My K40's gaming performance is consistently at 460. [Tears] [Tears] [Tears]."

Unexpected Changed Quaruples:
[ "neg", "k50", "take photos", "a little better"], [ "neg", "K40", "game", "always 460"], 
["pos", "Xiaomi", "taking pictures", "better"], ["neg", "Redmi", "taking pictures", "Don't consider"]

Figure 8: Chatgpt example 1.

Please rewrite the following dialogues in their original language so that change the content, but keep the general semantics  
and the elements in the quadruples unchanged:
Quadruples:[ "pos", "vivo", "rear camera module", "better"], ["neg", "11U", "rear camera module", "stands out too 
much"], [ "pos", "11U", "design", "recognizable"], ["pos", "11U", "design", "very beautiful"], 
Here is the dialogue: 
["The price is not bad", "11U said ( all are little brothers [ doge ] refers to the back design )", "The 11U rear camera 
module stands out too much , which vivo has done better . The next generation of Ultra has changed again , and 
Xiaomi really has no inheritance . . . In fact , the design of 11U is very beautiful , and it is also recognizable .", "The 
recognition is too great", "iQOO can be regarded as a firm high - end , Xiaomi has not hurry to learn [ doge ] ?", "Now 
I really do n't understand which of the X series and iQOO is the son of vivo ?"]

["The price is quite reasonable.", "Regarding the 11U, all the younger models (referred to as 'little brothers' [doge]) 
have similar rear designs.", "The rear camera module of the 11U stands out too much, which contrasts with vivo's 
more subtle approach. The next generation of Ultra has made further changes, highlighting Xiaomi's lack of design 
continuity. However, the design of the 11U is undeniably beautiful and distinctive.", "The design is truly remarkable.", 
"iQOO can definitely be considered a solid high-end option. Is Xiaomi in any hurry to catch up? [doge]", "Honestly, 
I'm confused about whether the X series or iQOO is the true heir to vivo."]

Unexpected Changed Quaruples:
[ "pos", "vivo", "rear camera module", "better"], [ "pos", "11U", "design", "recognizable"], 
["pos", "11U", "design", "very beautiful"]

Figure 9: Chatgpt example 2.
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