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Abstract

Ranking is a fundamental problem in search,
however, existing ranking algorithms usually
restrict the granularity of ranking to full pas-
sages or require a specific dense index for each
desired level of granularity. Such lack of flex-
ibility in granularity negatively affects many
applications that can benefit from more granu-
lar ranking, such as sentence-level ranking for
open-domain QA, or proposition-level ranking
for attribution. In this work, we introduce the
idea of any-granularity ranking1 which lever-
ages multi-vector embeddings to rank at vary-
ing levels of granularity while maintaining en-
coding at a single (coarser) level of granularity.
We propose a multi-granular contrastive loss
for training multi-vector approaches and vali-
date its utility with both sentences and propo-
sitions as ranking units. Finally, we demon-
strate the application of proposition-level rank-
ing to post-hoc citation addition in retrieval-
augmented generation, surpassing the perfor-
mance of prompt-driven citation generation.

1 Introduction

Dense Retrieval methods employ dual-encoder
models to obtain vector representations for queries
and passages. Usually, single-vector methods (Gau-
tier et al., 2022; Karpukhin et al., 2020) produce
one embedding per query and passage, utilizing dot
product to determine relevance scores. Conversely,
multi-vector methods (Khattab and Zaharia, 2020;
Santhanam et al., 2022b) capture more fine-grained
interactions when computing query-passage rele-
vance score, resulting in better ranking accuracy.
An advantage of multi-vector approaches is the use
of token-level embeddings paired with a MaxSim
operation (Khattab and Zaharia, 2020) which al-
lows for a granular scoring mechanism through dot

*Equal Contribution. Revanth is an external collaborator.
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ml-any-granularity-ranking

Figure 1: Ranking at different levels of granularity.
X→Y is used to denote that X represents the query gran-
ularity used for ranking, with entire query encoded, and
Y indicates the granularity of the retrieval unit being
ranked, with entire retrieval unit encoded. In addition to
the typical ranking setting (A), our proposed approach
enables ranking finer retrieval units (B and D) or using
finer query units for ranking (C and D).

products between individual query and passage to-
ken embeddings. The token-level scores are then
aggregated for final relevance score computation.

We make an important observation that token-
level embeddings in multi-vector approaches en-
able discriminative scoring of sub-components
within a retrieval unit. We argue that finer-
granularity scoring used by multi-vector ap-
proaches cannot be extended to single-vector ap-
proaches since the whole passage is represented by
a single embedding, thereby not allowing for sub-
unit scoring. Such granular scoring enables multi-
granularity ranking, which is beneficial for many
applications. In open-domain question answer-
ing (Lee et al., 2019; Karpukhin et al., 2020), rank-
ing sentences within passages can more precisely
locate answers. Similarly, in attribution (Rashkin
et al., 2023; Chen et al., 2023a), atomic facts within
sentences can be used as queries to retrieve evi-
dence supporting factual claims.

To achieve this, we introduce AGRAME
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(Any-Granularity Ranking with Multi-vector
Embeddings), a method that permits ranking at
different levels of granularity while maintaining
encoding at a single, coarser level. Our approach
enables i) ranking at a finer level than the encoding
(or retrieval) unit, and ii) ranking using fragments
of the query, as demonstrated in Figure 1. We hy-
pothesize that encoding at a coarser level–such as
the entire retrieval unit or query–can provide ad-
ditional context for the sub-retrieval units being
ranked or sub-parts of the query used for ranking.
In contrast, achieving such granularity with single-
vector approaches requires the use of specialized
encoders, such as a sub-sentence encoder (Chen
et al., 2023b), or necessitates a separate encoding at
the desired ranking granularity (Chen et al., 2023c).

Firstly, how well do multi-vector approaches
perform when used for ranking at a finer granular-
ity? We investigate this by conducting an exper-
iment (§2) using ColBERTv2 (Santhanam et al.,
2022b). We observe that the performance of sen-
tence ranking is notably inferior when the encoding
is at the passage-level. To improve the model’s abil-
ity to rank at finer granularity, we propose a multi-
granular contrastive loss during training (outlined
in §3.3). Our experiments in §4.1 confirm a signifi-
cant boost in sentence-level ranking while maintain-
ing passage-level performance. While AGRAME
is generally applicable to arbitrary granularity, we
explore the effectiveness for proposition-level rank-
ing, crucial for applications requiring fine-grained
attribution (Rashkin et al., 2023). Our results in
§4.2 indicate that incorporating a sentence-level
contrastive loss further improves proposition-level
ranking. Additionally, we propose PROPCITE,
which utilizes propositions from generated text as
queries to rank input context passages and select
relevant citations. In §4.3, PROPCITE shows su-
perior performance over traditional methods that
prompt models to include citations in RAG.

The main contributions are as follows: (1) We
introduce AGRAME, that leverages multi-vector
embeddings for ranking at various granularities
while using the same encoding-level. (2) We in-
troduce a multi-granular contrastive loss for train-
ing multi-vector approaches, which we show im-
proves sentence-level ranking even when encod-
ing at passage-level. (3) We demonstrate superior
proposition-level ranking using AGRAME, sur-
passing existing state-of-the-art methods. (4) We
leverage proposition-level ranking to formulate a
post-hoc citation addition approach for retrieval-

Model Encoding
Level

Ranking Level
Sentence Passage

P@1 R@5 P@1 R@5
Contriever

(Single Vec.)
Sentence 19.3 45.6 32.4 62.8
Passage - - 37.8 65.1

ColBERTv2
(Multi Vec.)

Sentence 31.6 56.3 40.2 66.8
Passage 27.4 48.8 43.4 69.1

Table 1: Precision@1 (P@1) and Recall@5 (R@5)
results on the Natural Questions (Kwiatkowski et al.,
2019) dev set. We show numbers both at sentence-level
and passage-level ranking granularities for when sen-
tences and passages are encoded individually.

augmented generation, that outperforms prompt-
driven citation generation.

2 Motivating Experiment

Here, we investigate the effectiveness of Col-
BERTv2 (Santhanam et al., 2022b), a multi-vector
approach, in ranking at a finer granularity than the
encoding level. Specifically, when encoding is at
the passage-level, we measure the sentence-level
and passage-level ranking performance.A MaxSim
operation is applied between query token vectors
and token vectors corresponding to the sentence
to get a sentence-level score, which is then added
to the passage-level score to get the final query-
sentence relevance score for ranking. When en-
coding is at the sentence-level, the usual MaxSim
score gives query-sentence relevance. On the other
hand, the query-passage relevance score for rank-
ing using sentence-level encoding is obtained as the
maximum of the corresponding passage’s query-
sentence relevance scores.

We also include Contriever (Gautier et al., 2022),
a single-vector approach, for comparison. When
encoding is at the passage-level, Contriever does
not support sentence-level ranking, which is an
inherent limitation of single-vector approaches.
Our evaluation uses the Natural Questions dev
set (Kwiatkowski et al., 2019) and a 22M pas-
sage corpus (Gautier et al., 2022) from Wikipedia
2018 for retrieval. To keep the retrieval index size
manageable, Contriever is used to index and re-
trieve 100 passages, which are then ranked by Col-
BERTv2. When ranking at sentence-level, only the
sentences in these top 100 passages are considered.
Eval metrics are Precision@1 and Recall@5, based
on string exact match (Rajpurkar et al., 2016).

Table 1 demonstrates a significant reduction in
sentence-level ranking with passage-level encod-
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Sent. ID Sentence-level Enc. Passage-level Enc.
S1 Rank:1, Score:23.31 Rank:1, Score:23.92
S2 Rank:2, Score:17.47 Rank:2, Score:20.12
S3 Rank:3, Score:16.63 Rank:3, Score:16.96

Table 2: Sentence-level ColBERTv2 scores for different
sentences in the same passage, when encoding is at
sentence-level and passage-level. We see that the most
relevant sentence S3 has the lowest score. Token-wise
MaxSim score heatmap is also shown, with tokens in S1
& S2 having higher scores than in S3.

ing, and vice versa. We notice that the sentence-
level performance decreased despite the richer con-
textual information provided by passage-level en-
coding. This contextual information is particularly
useful when sentences that directly address the
query lack overlapping terms (semantic or lexi-
cal), as illustrated in Table 2. Here, S1 and S2
receive higher rankings due to strong lexical ties
with the query, whereas S3, which pertains to cli-
mate change effects but exhibits weak semantic
overlap, scores lower, as evidenced by token-wise
MaxSim score heatmap. High scores for S1 and
S2 are beneficial for identifying relevant passages
in a large corpus but may hinder the selection of
the most pertinent sentence in those passages. This
suggests that the model should be capable of ad-
justing relevance criteria based on the ranking task
granularity. In section 3.2 & 4 we discuss our ap-
proach AGRAME and how it improves sentence-
level ranking, even with a passage-level encoding.

3 Method

3.1 ColBERTv2 Preliminaries

ColBERTv2 (Santhanam et al., 2022b) is a multi-
vector retrieval model, that uses token-level dense
embeddings of the query and passage. Given a
query q containing n tokens tqi and passage p con-
taining m tokens tpi , additional query and passage
marker tokens mq and mp are prepended to the
query and passage respectively before encoding, to
provide an additional signal to the encoder. The
query-passage relevance score SCB(q, p) is ob-
tained as below using the MaxSim operator intro-
duced in Khattab and Zaharia (2020):

[Q⃗tq1
, Q⃗tq1

, ..., Q⃗tqn
] = E(cat(mq, t

q
1, ..., t

q
n))

Figure 2: Figure demonstrating our sentence-level scor-
ing methodology using multi-vector representations
with encoding at passage-level. Query marker mq is
used while getting passage-level score P , while marker
m′

q is used for getting sentence-level scores S1, S2, S3.

[P⃗tp1
, P⃗tp2

, ..., P⃗tpm
] = E(cat(mp, t

p
1, ..., t

p
m))

SCB(q, p) =
n∑

i=1

max
1≤j≤m

Q⃗tqi

T
P⃗tpj

The training process for neural retrievers typically
involves a contrastive loss over the <query q, posti-
tive p+, negative p−> triples. ColBERTv2 instead
incorporates a distillation-based training strategy
wherein k negative passages are sampled from the
retrieval corpus, to form a (k + 1)-way passage
set [p] = {p+, p−1 , ..., p−k } for each query. The rel-
evance supervision is in the form of soft scores
SCE(.) from a cross-encoder reranker. For train-
ing we use KL-Divergence loss Lpsg between the
cross-encoder and ColBERT passage scoring dis-
tributions, DCE(q, [p]) and DCB(q, [p]).

Lpsg(q, [p]) = KL(DCE(q, [p])||DCB(q, [p]))

3.2 AGRAME: Any-Granularity Ranking
with Multi-Vector Embeddings

We introduce our approach for scoring sub-units
within the retrieval unit. We do this by access-
ing the token-level embeddings in multi-vector ap-
proaches. While AGRAME can rank at any granu-
larity, we will consider sentences as the sub-units
for simplicity. With the entire passage input to the
encoder, only the output embeddings correspond-
ing to tokens within a given sentence are used dur-
ing the MaxSim operation for scoring that sentence.

Let tpijr correspond to the jth token of sentence
spij from passage pi that is passed as input to en-
coder E. To signal the model to score discrimina-
tively within the passage for sentence-level rank-
ing, we prepend a new query marker token m′

q,
different from mq used when ranking at passage-
level. The in-passage query-sentence relevance
score SCB(q, s

pi
j ) is computed as follows:

[Q⃗′
tq1
, Q⃗′

tq1
, ..., Q⃗′

tqn
] = E(cat(m′

q, t
q
1, ..., t

q
n))
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SCB(q, s
pi
j ) =

n∑

i=1

max
1≤r≤|spij |

Q⃗′
tqi

T
P⃗t

pi
jr

Note that the passage encoding is the same as be-
fore, meaning the same multi-vector index can
be used for both passage-level and sentence-level
ranking. As we demonstrate in §4.1, encoding at
passage-level provides more context to the token
embeddings to benefit sentence-level ranking.

We note that our proposed sentence-level loss
(described in §3.3) teaches the model to rank sen-
tences discriminatively within a passage, and not
across passages. Hence, at inference to get a fi-
nal sentence-level relevance score Score(q, spij ) to
rank sentences across passages, we combine the in-
passage sentence relevance score SCB(q, s

pi
j ) with

the usual passage-level relevance score SCB(q, pi):

Score(q, spij ) = SCB(q, s
pi
j ) + αSCB(q, pi)

3.3 Multi-Granular Contrastive Training
As discussed in §3.1, given a query q and a pas-
sage set [p], the ColBERTv2 training process aims
to teach the model to identify the most relevant
passage within [p]. To enable the model to discrim-
inatively select sub-units within the passage, we
propose to incorporate a more finer-level of train-
ing supervision, by teaching to further identify the
most relevant sentence within each passage.

Since ColBERTv2 uses passage-level cross-
encoder scores as teacher supervision, we train
a different cross-encoder model CE′ to provide
in-passage sentence-level relevance supervision.
Specifically, CE′ takes a passage pi as input, with
a given sentence spij marked with delimiters $, to
give a relevance score SCE′(q, spij ) for the sentence.
CE′ is trained using question answering data in
the form <query, passage, answer> triples. A bi-
nary cross-entropy loss is used while training CE′,
wherein any sentence within the passage that con-
tains the answer is marked as a positive, with the
other sentences marked as negatives.

The cross encoder CE′ provides soft scores for
sentence-level relevance superivision when training
our model. For each passage pi, we compute a
KL-divergence loss Ls(q, pi) between the CE′ and
ColBERTv2 sentence-level scoring distributions,
DCE′(q, [spi ]) and DCB(q, [s

pi ]) respectively.

Ls(q, pi) = KL(DCE′(q, [spi ])||DCB(q, [s
pi ])))

We then aggregate each passage’s sentence-level
scoring loss Ls(q, pi), by weighting with the cor-
responding passage’s relevance supervision score

SCE(q, pi), to get a single loss Lsent.(q, [p]). The
passage score weight ensures that the model is pe-
nalized higher on sentence-level losses for passages
that are more relevant. The sentence-level loss
Lsent.(q, [p]) is finally added to original passage-
level loss Lpsg(q, [p]) to get the training loss L.

Lsent.(q, [p]) =
k+1∑

i=1

σ(SCE(q, pi))Ls(q, pi)

L(q, [p]) = Lpsg(q, [p]) + Lsent.(q, [p])

4 Experiments

AGRAME can rank at different granularities, as
shown in Figure 1, which involves ranking sub-
parts of the retrieval unit or ranking using sub-parts
of the query. In our experiments, we aim to in-
vestigate two research questions: RQ1: Can the
training approach proposed in §3.3 improve rank-
ing at a finer granularity than the level of encod-
ing, i.e. Query→Sub-Retrieval Unit? In §4.1, we
show the improvements at sentence-level ranking
from our proposed multi-granular contrastive loss,
while maintaining performance at passage-level, i.e.
Query→Retrieval Unit; RQ2: Can multi-vector
embeddings be used to rank with sub-parts of the
query? In §4.2, we demonstrate the application
of multi-vector approaches in Sub-Query→Sub-
Retrieval Unit ranking for proposition-level attribu-
tion. Here, a given proposition within a sentence
is used as the query to rank and identify relevant
propositions in a corpus of sentences. Further, in
§4.3, we introduce PROPCITE, a post-hoc citation
addition approach based on Sub-Query→Retrieval
Unit ranking. PROPCITE scores input context pas-
sages based on propositions in the generated text
to add citations in retrieval-augmented generation.

4.1 Query→Sub-Retrieval Unit Ranking for
Open-Domain QA

In §2, we saw that with a multi-vector approach,
sentence ranking performance drops when chang-
ing the encoding from sentence-level to passage-
level. We addressed this in two ways: a) AGRAME
introduces a new query marker (in §3.2) for
sentence-level scoring; (b) our multi-granular con-
trastive loss (in §3.3) providing sentence-level rele-
vance supervision during training. Here, we empir-
ically demonstrate the benefits of our proposed ap-
proach for sentence-level (sub-retrieval unit) rank-
ing performance when encoding is at passage-level.
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Model Encoding
Level

Natural Questions TriviaQA Web Questions Entity Questions
Sentence Passage Sentence Passage Sentence Passage Sentence Passage

P@1 R@5 P@1 R@5 P@1 R@5 P@1 R@5 P@1 R@5 P@1 R@5 P@1 R@5 P@1 R@5

Contriever
Sentence 20.6 48.9 35.0 65.4 31.0 58.8 48.5 72.1 14.5 39.1 28.8 57.9 14.7 42.7 39.8 64.9
Passage - - 40.3 66.0 - - 50.1 71.5 - - 36.9 63.6 - - 36.9 63.6

ColBERTv2
Sentence 32.7 58.8 42.0 68.8 43.2 66.1 55.6 74.7 29.0 51.9 38.8 63.7 38.1 59.4 50.9 68.1
Passage 27.9 51.1 43.2 70.0 43.5 65.6 57.5 75.6 27.6 50.7 41.0 65.1 39.2 55.3 53.9 69.2

Ours Passage 36.8 60.5 44.0 69.9 48.9 68.1 57.9 75.6 33.2 55.6 41.2 65.4 43.8 61.5 54.2 69.5

Table 3: Precision@1 (P@1) and Recall@5 (R@5) results on various open-domain QA datasets. We show numbers
both at sentence-level and passage-level ranking for when sentences and passages are encoded individually.

Model Encoding
Level

Finance Recreation Lifestyle Science Technology Writing Biomedical Average
Sent. Psg. Sent. Psg. Sent. Psg. Sent. Psg. Sent. Psg. Sent. Psg. Sent. Psg. Sent. Psg.

Contriever
Sentence 13.8 22.2 17.9 29.4 19.7 32.7 10.9 18.8 11.3 18.3 23.0 36.1 10.7 16.6 15.3 24.9
Passage - 27.2 - 34.7 - 40.4 - 17.5 - 21.4 - 39.6 - 4.6 - 26.5

ColBERTv2
Sentence 15.8 23.7 24.0 33.6 22.6 34.2 17.6 25.0 15.5 23.4 33.4 46.6 12.8 17.3 20.2 29.1
Passage 17.1 29.8 25.5 40.7 23.9 41.9 18.4 28.7 16.7 27.1 34.7 51.3 13.1 16.9 21.4 33.8

Ours Passage 19.5 29.8 29.2 40.4 30.0 42.6 20.5 28.1 18.4 26.4 36.7 50.2 15.4 17.5 24.2 33.6

Table 4: Precision@1 results on various domains from the RobustQA dataset (Han et al., 2023). We show numbers
at sentence-level and passage-level ranking when sentences and passages are encoded individually.

4.1.1 Setup
Datasets We first evaluate on different popu-
lar open-domain QA datasets: Natural Ques-
tions (Kwiatkowski et al., 2019), TriviaQA (Joshi
et al., 2017), Web Questions (Berant et al.,
2013) and Entity Questions (Sciavolino et al.,
2021). For the retrieval corpus, we use the 2018
Wikipedia dump released by Lee et al. (2019).
For cross-domain evaluation, we consider the Ro-
bustQA (Han et al., 2023) dataset, a large-scale
OpenQA benchmark specifically designed for eval-
uating cross-domain generalization capabilities.

Baselines We use Contriever (Gautier et al.,
2022) as the single-vector baseline, and Col-
BERTv2 (Santhanam et al., 2022b) as the
multi-vector baseline. All models use MS
MARCO (Nguyen et al., 2016) as the training
dataset. Due to storage constraints, we create a
single-vector index with Contriever and rank the
top-100 retrieval results from Contriever using the
multi-vector approaches to report numbers.

4.1.2 Results
Table 3 shows ranking results on various open-
domain QA datasets. It is evident that for both
Contriever and ColBERTv2, passage-level ranking
is best with passage-level encoding. Our proposed
approach not only improves sentence-level rank-
ing with passage-level encoding but also surpasses
its performance at sentence-level encoding. This
result supports our notion that passage-level en-
coding aids sentence-level ranking by providing

additional context. Furthermore, our method en-
sures that passage-level ranking remains on par
with that of ColBERTv2. Table 4 shows sentence-
level and passage-level ranking results for the cross-
domain RobustQA benchmark. We observe that
our approach is robust and extends to cross-domain
settings, with consistent improvements in sentence-
level ranking across the board, while maintaining
passage-level ranking performance.

4.1.3 Analysis

We do an ablation study to examine the impact of
substituting the default query marker mq with a
new query marker m′

q on sentence-level scoring.
Note that the markers mq and m′

q at inference only
affect the query token embeddings. his analysis in-
volved three experimental settings: A1) employing
m′

q for both training and inference, representing
our proposed method; A2) using m′

q during train-
ing with mq at inference; and A3) utilizing mq

throughout training and inference. Additionally,
we compared these settings against the baseline
ColBERTv2, which lacks sentence-level training
supervision and uses mq at inference. Based on
the results in Table 5, A1 outperforms A3 in the
majority of the cases, indicating the effectiveness
of the new marker. Furthermore, the A2 setting,
wherein mq is used at inference, demonstrates im-
provements over the ColBERTv2 baseline, suggest-
ing that training with m′

q enables the model to en-
code passage tokens to be better at discriminatively
scoring sentences. More analysis in Appendix A.1.

8634



Setting NQ TQA WebQ EntQ
ColBERTv2 27.9 43.5 27.6 39.2

A1) Train→m′
q , Rank→m′

q 36.8 48.9 33.2 43.8
A2) Train→m′

q , Rank→mq 29.1 44.8 29.4 40.8
A3) Train→mq , Rank→mq 35.9 47.6 32.9 44.1

Table 5: Precision@1 of sentence-level ranking perfor-
mance for different variations of using a query marker.
ColBERTv2, trained with a passage-level loss, uses
marker mq. The latter three variants are represented
with the query marker while training with sentence-level
loss and that used for ranking at inference.

4.2 Sub-Query→Sub-Retrieval Unit Ranking
for Fine-Grained Attribution

Attributing model-generated text with citations
from established sources is an emerging research
topic (Gao et al., 2023a; Liu et al., 2023). Each sen-
tence in the generation can have multiple atomic
facts (or propositions) (Min et al., 2023) for which
evidence needs to be obtained. We explore ranking
at proposition-level, wherein given a sentence, fine-
grained attributions (Rashkin et al., 2023) need to
be obtained for a specific sub-part of the sentence.
Our study focuses on the Atomic Fact Retrieval
task, which requires identifying and sourcing evi-
dence for specific propositions within a sentence.

We consider this task to demonstrate that multi-
vector embeddings can be leveraged to natively
rank at the sub-sentence level, and compare against
specialized models (Chen et al., 2023b) trained to
encode propositions. We note that the encoding
here is at the sentence-level, unlike §4.1 where en-
coding is at the passage-level. Since the marker m′

q

in our multi-granular training loss is for sentence-
level ranking with passage-level encoding, we use
the default marker mq when ranking at proposition-
level with sentence-level encoding.

4.2.1 Setup
Dataset For evaluating proposition-level ranking,
we use the PROPSEGMENT (Chen et al., 2023a),
which involves 8.8k propositions as sub-queries for
which evidence needs to be obtained from a corpus
of 45k human-labeled atomic propositions.

Baselines We consider SUBENCODER (Chen
et al., 2023b) as the primary baseline, a state-of-the-
art sub-sentence encoder for proposition-level rank-
ing. SUBENCODER has been specifically trained to
produce contextual embeddings for atomic proposi-
tions in a sentence. SUBENCODER produces a sin-
gle sub-sentence embedding for each atomic propo-

Model
Proposition Sentence

P@1 R@5 P@1 R@5
GTR 21.9 52.5 49.4 77.0
ST5 26.2 57.7 50.6 79.4

SUBENCODER (GTR) 40.8 72.9 42.9 82.3
SUBENCODER (ST5) 41.0 72.2 43.5 81.4

ColBERTv2 46.9 74.2 54.7 87.8
Ours 47.7 74.7 55.0 87.4

Table 6: Evaluation results on the Atomic Fact Retrieval
task in PROPSEGMENT (Chen et al., 2023a). The en-
coding level is individual sentences, with each sentence
consisting of multiple propositions. All models are
based on encoders with 110M parameters. Numbers for
GTR, ST5, SUBENCODER are from Chen et al. (2023b).

sition in the sentence. We include other sentence-
level embedding approaches, such as GTR (Ni
et al., 2022b), Sentence-T5 (Ni et al., 2022a) as
baselines from Chen et al. (2023a).

4.2.2 Results

Table 6 shows results from the Atomic Fact Re-
trieval task. The baseline ColBERTv2 already
outperforms the state-of-the-art SUBENCODER

at proposition-level (sub-sentence) ranking. Al-
though our proposed approach adds a sentence-
level constrastive loss at passage-level encoding,
we see some improvements even when ranking at
proposition-level. However, we hypothesize that
better proposition-level ranking can be expected by
further training with a proposition-level loss in §3.3,
which we leave for future work to explore. Given
the superior performance of multi-vector methods
in proposition-level ranking, we introduce next in
§4.3 a practical application that leverages this ca-
pability to add citations to machine-generated text.

4.3 Sub-Query→Retrieval Unit Ranking for
Citation Addition

Retrieval-augmented generation (RAG) (Lewis
et al., 2020) produces a long-form answer to a
query using a set of relevant input passages. We
investigate the use of multi-vector methods for ci-
tation addition in RAG. Specifically, given K pas-
sages and the generated long-form answer, the task
is to add citations to one or more of the input pas-
sages for each sentence of the generated response.

We present PROPCITE, a post-hoc methodology
that adds citations to the input context supporting
propositions (atomic facts) in the generated text.
Figure 3 illustrates PROPCITE, which makes use
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Figure 3: PROPCITE, our proposed approach for post-hoc addition of citations to long-form answers. PROPCITE
encodes sentences and uses the propositions within them as queries for attribution. Propositions are highlighted
within the current sentence (in yellow), and corresponding supporting evidence is highlighted in the input passages.
PROPCITE correctly attributes P2 to C1, while directly encoding and querying using P2 incorrectly attributes to C2.

of propositions tagged2 within the generated sen-
tences. These sentence sub-units are used to score
the input passages and identify the ones to cite. Our
approach is ‘post-hoc’ with citations added after
the text is generated, unlike the typical approach of
generating text with citations by directly prompting
the generation model (Gao et al., 2023c).

4.3.1 Setup
Datasets and Metrics We consider two long-
form QA datasets: ASQA (Stelmakh et al., 2022)
and ELI5 (Fan et al., 2019). Our RAG setup uses
either K=5 or K=10 passages as input to the lan-
guage model to generate answers. Attribution qual-
ity is evaluated using citation precision and recall
metrics from Gao et al. (2023c). Citation recall as-
sesses if the output is completely supported by cited
passages, while citation precision identifies irrel-
evant citations. These metrics are calculated with
TRUE (Honovich et al., 2022), an 11B-parameter
model trained on a collection of natural language
inference datasets, and widely used (Bohnet et al.,
2022; Gao et al., 2023b) for evaluating whether
cited passages entail the claims in the sentence.

Baselines We compare PROPCITE against the
commonly used instruction-driven citation gener-
ation (Gao et al., 2023c), which we call Gener-
ate, where the generation model is prompted to
output text with citations. We use the same few-
shot prompt as in Gao et al. (2023c) to instruct
the model to add citations while generating the an-
swer. We consider instruction-tuned variants of
two LLMs: 4B Qwen1.5 (Bai et al., 2023) and 7B
Mistral (Jiang et al., 2023). Additionally, we eval-
uate against Self-RAG (Asai et al., 2023), which
employs a self-reflective generation framework to
adaptively pick passages to generate from and cite.

2More details on identifying propositions in Appendix B

Generation
Model

Psg. Citation
Method

ASQA ELI5
P R P R

Qwen1.5 4B
5

Generate 26.9 21.3 11.0 8.6
PROPCITE 48.9 54.5 19.5 23.4

10
Generate 14.8 11.7 5.7 4.7

PROPCITE 45.3 52.0 18.3 22.9

Mistral 7B
5

Generate 64.9 69.5 40.5 49.0
PROPCITE 65.7 74.2 43.0 51.9

10
Generate 60.2 66.7 38.0 48.8

PROPCITE 61.6 71.9 41.9 53.0

Self-RAG 7B
5

Generate 67.9 67.1 - -
PROPCITE 68.5 68.4 - -

Self-RAG 13B
Generate 71.4 70.5 - -

PROPCITE 71.6 71.5 - -

Table 7: Table showing precision (P) and recall (R)
for different citation addition approaches on the ASQA
and ELI5 datasets. For Self-RAG, we directly use the
generation outputs from Asai et al. (2023).

4.3.2 Results
Table 7 compares citation precision and recall
between the Generate approach vs our post-hoc
PROPCITE. Text generation models with strong
instruction-following capabilities, such as Mistral
7B, outperform weaker models like Qwen1.5 4B
in generating text with citations. Additionally, the
quality of post-hoc citations is contingent upon the
quality of the generated text; weaker models often
lead to lower-quality citations due to inaccuracies
or hallucinated text. PROPCITE enhances citation
quality across both 4B and 7B model outputs, and
shows improvements even for Self-RAG models,
which are specially tuned for citation generation
by incorporating reflection tokens. Importantly, as
a post-hoc solution, PROPCITE can be integrated
with any RAG framework without modifications
to the generation model. PROPCITE is lightweight
and can add citations to sentences as they are gen-
erated one-by-one in a streaming setting.
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Setting Precision Recall
Generate 64.9 69.5

PROPCITE 65.7 74.2
+ Thresholding 69.2 71.1

(i) Propositions as query 63.5 73.9
(ii) Sentence as query (top 1) 69.0 67.5
(iii) Sentence as query (top 2) 51.2 72.6

Table 8: Analysis of citation precision and recall perfor-
mance on ASQA for Mistral 7B when using top-5 pas-
sages as input. We consider different settings, wherein
the generated propositions or the sentence itself are used
as the query when searching for relevant citations.

4.3.3 Analysis
Table 8 shows results for an ablation study exam-
ining different methods of post-hoc citation addi-
tion, highlighting the effectiveness of using propo-
sitions within sentences as queries. We introduce a
high-precision variant of PROPCITE that employs
thresholding to mitigate false positives, only adding
citations if the top-scored passage exceeds a rele-
vance score margin of at least 1.0. We also compare
against variants that directly encode the proposi-
tion (i) or query using the entire sentence (ii, iii).
Our results show that encoding propositions di-
rectly leads to lower precision compared to encod-
ing entire sentences, supporting our hypothesis that
sentence-level encoding provides a richer context
for proposition-level queries. Figure 3 illustrates
this with an example from ASQA. Here, PROPCITE

correctly attributes P2 to C1. However, directly
encoding P2 incorrectly links it to passage C2, ref-
erencing a different tournament won by Ouiment.

Additionally, we evaluate an alternative method
using the entire sentence as a single query, which
yields high precision but low recall when tagging
only the top-scored passage as the citation (ii), and
higher recall but reduced precision when using the
top two scored passages (iii). Overall, PROPCITE

results in 66% of sentences with one citation, 30%
with two, and 4% with more than two citations.

5 Related Work

The phrase ‘multi-granularity’ can have different
meanings depending on the domain of usage. In the
field of image retrieval, it corresponds to represent-
ing different regions of the image separately (Wang
et al.; Zhang et al., 2022). For representation learn-
ing (Kusupati et al., 2022; Li et al., 2024), it refers
to encoding information at different output embed-
ding dimensions, to adapt to the computational

constraints of downstream tasks. Our definition of
granularity in text ranking corresponds to the level
of the ranked sub-units with a given retrieval unit.

Multi-vector approaches (Luan et al., 2021;
Khattab and Zaharia, 2020; Santhanam et al.,
2022b) have primarily been used for ranking at
the same granularity as the encoding level, which
is typically at passage-level. Single vector ap-
proaches, on the other hand, inherently do not sup-
port ranking at a finer granularity than the encod-
ing level, thereby needing a separate dense index
for each granularity (Chen et al., 2023c). Hence,
specialized models for single-vector embeddings
have been introduced for embedding phrases (Lee
et al., 2021), propositions (Chen et al., 2023b),
sentences (Reimers and Gurevych, 2019) or pas-
sages (Karpukhin et al., 2020). Our approach over-
comes this limitation by leveraging multi-vector
approaches for ranking at different granularities,
while still encoding at a single coarser granularity.

Prior approaches that rank at different granular-
ities have used custom scoring functions or incor-
porate separate embeddings. Chang et al. (2023)
proposes a multi-granularity matching model that
uses a convolutional filter for scoring, instead of
cosine similarity, meaning it cannot be scaled to
a retrieval-scale corpus due to the matching func-
tion. Hierarchical ranking approaches (Liu et al.,
2019; Chu et al., 2022; Ma et al., 2024) consider
multi-granular ranking but require using a separate
embeddings for each ranking granularity. Further,
our approach uses multi-vector embeddings with a
dot product for scoring at all levels of granularity,
meaning the same pre-computed dense index can
be used for ranking at any granularity.

6 Conclusion

In this work, we introduce AGRAME, which lever-
ages multi-vector embeddings to rank at finer gran-
ularities, while maintaining encoding at a single,
coarser level. Our proposed multi-granular con-
trastive loss for training multi-vector approaches
improves sentence ranking performance even with
encoding at passage-level. We demonstrate that
AGRAME can rank at any granularity, even by
using sub-parts of the query for ranking. Leverag-
ing multi-vector approaches’ superior performance
at proposition-level ranking, our post-hoc attribu-
tion approach, PROPCITE, outperforms the con-
ventional approach of prompt-driven citation in
retrieval-augmented generation.
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Limitations

While training AGRAME, we incorporate
sentence-level relevance supervision in addition to
the usual passage-level supervision, and introduce
a corresponding new query marker m′

q for
sentence-level ranking granularity. While this does
improve ranking even at proposition-level ranking,
as shown in §4.2, we expect more improvements
from additionally providing proposition-level
supervision during training, along with a separate
query marker for proposition-level ranking
granularity.

While our proposed PROPCITE approach is
lightweight, we do not explicitly measure latency
when used for post-hoc citation addition in a prac-
tical application such as streaming text generation.
Moreover, since the citation precision and recall
metrics are automatic, there is a possibility of in-
accurate judgement from the evaluation model, al-
though it has been shown in Gao et al. (2023c) to
highly correlate with human judgements.
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A Analysis

A.1 Query→Sub-Retrieval Unit Ranking for
Open-Domain QA

We show the training loss curves in Figure 4 when
the same query marker (mq) vs different query
markers (m′

q and mq) are used for sentence-level
and passage-level loss respectively. We can see
that the model converges faster at sentence-level
loss when new marker m′

q is used. Further, Table
9 shows the sentence-wise scores for the example
in Table 2 from using m′

q vs mq for sentence-level
scoring. We observe that sentence-level ranking
changes when m′

q is used, with the most relevant
sentence (S3) ranked best.

Figure 4: Comparison of training curves for sentence-
level and passage-level loss, when a different query
marker is used. The model converges faster at sentence-
level with a different query marker, while passage-level
loss is mostly similar for the two.

Sent. ID Query Marker m′
q Query Marker mq

S1 Rank:2, Score:14.32 Rank:1, Score:24.04
S2 Rank:3, Score:14.16 Rank:2, Score:21.07
S3 Rank:1, Score:15.92 Rank:3, Score:16.81

Table 9: Sentence-level scores from our model at
passage-level encoding for the example in Table 2, when
different query markers are used. The most relevant sen-
tence (S3) is ranked best when new marker m′

q is used.

A.2 Time and Storage Consumption Analysis

AGRaME uses the same token embeddings from a
single coarser level of encoding for ranking at finer
granularities. Hence, the storage consumptions
are the same as the baseline ColBERTv2 approach.
AGRaME uses different query embeddings depend-
ing on the ranking granularity, i.e. with marker
mq for passage ranking and m′

q for sentence rank-
ing. Thus, compared to the baseline ColBERTv2,
AGRaME involves an extra query embedding step
that involves using a different query marker m′

q

and then max-sim scoring with passage tokens. As
per PLAID (Santhanam et al., 2022a), an efficient

inference engine for ColBERTv2, the query em-
bedding step contributes to 20% (roughly 12ms) of
the overall retrieval, with majority of the latency
corresponding to the passage retrieval steps, while
the final max-sim scoring step has negligible la-
tency. We hypothesize that this additional query
embedding can be run concurrently with the pas-
sage retrieval process, thereby seeing no increase
in the overall latency.

B Identifying Propositions in Sentences

We employ the approach from Chen et al. (2023b),
which uses a T5 model (Raffel et al., 2020) to seg-
ment sentences into propositions, that are then con-
verted into token masks by aligning the tokens
in each proposition to the sentence. While we
use a T5 model to explicitly generate propositions,
faster approaches relying on syntactic dependency
parsing (Goyal and Durrett, 2020; Wanner et al.,
2024) can be a cheaper alternative to get the sub-
structures with a sentence that represents the propo-
sitions or atomic claims.

C ColBERTv2 Training

Our training data to finetune ColBERTv2 for
AGRAME comprises the 20M examples from San-
thanam et al. (2022b). Hyperparameters for the
training run are provided below.

Hyperparameter Value
Max Steps 1,000,000
Warmup 40,000

Batch Size 16
Learning Rate 1e-05

Output Embed Dim 128
N-Way Negatives 63

In-Batch Negatives True
Max Doc Len 128

Max Query Len 32

Table 10: Hyperparameters for training ColBERTv2
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