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Abstract

Large Language Models (LLMs) have signif-
icantly advanced the field of information re-
trieval, particularly for reranking. Listwise
LLM rerankers typically showcase superior
performance and generalizability over conven-
tional supervised approaches. However, exist-
ing LLM rerankers can be inefficient as they
provide ranking output in the form of a gen-
erated ordered sequence of candidate passage
identifiers. Further, they are trained using the
standard language modeling objective, which
treats all ranking errors uniformly, potentially
at the cost of misranking highly relevant pas-
sages. Addressing these limitations, we intro-
duce FIRST1, a novel listwise LLM reranking
approach that leverages the output logits of the
first generated identifier to directly obtain a
ranked ordering of the candidates. We further
utilize a learning-to-rank loss for this model,
which prioritizes ranking accuracy for the more
relevant passages. Empirical results demon-
strate that FIRST accelerates inference by 50%
while maintaining robust ranking performance,
with gains across the BEIR benchmark. Finally,
to illustrate the practical effectiveness of list-
wise LLM rerankers, we investigate their appli-
cation in providing relevance feedback for re-
trievers during inference. Our results show that
LLM rerankers can provide a stronger distilla-
tion signal compared to cross-encoders, yield-
ing substantial improvements in retriever recall
after relevance feedback.

1 Introduction

Given their vast linguistic knowledge and strong
zero-shot capabilities (Wei et al., 2022), there has
been a natural push to incorporate large language
models (LLMs) into the search stack (Zhu et al.,
2023; Wang et al., 2024). One of the core ap-
plications of LLMs in search involves ranking
candidate passages for their relevance to a given

*Equal Contribution.
1https://github.com/gangiswag/llm-reranker
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Figure 1: FIRST (b) directly ranks candidates using the
output vocabulary logits for the first generated identifier,
as opposed to the generation approach (a) of generating
the entire ordered sequence. A learning-to-rank loss is
incorporated during training to provide supervision to
the model for ranking using single-token decoding.

query. Recent studies (Sun et al., 2023) have
shown that instruction-tuned LLMs can outperform
traditional supervised cross-encoders in zero-shot
passage reranking (Nogueira et al., 2020; Zhuang
et al., 2023b). In particular, listwise reranking ap-
proaches (Tang et al., 2023; Pradeep et al., 2023b)
have received increased attention for their ability
to score multiple passages simultaneously, as op-
posed to pointwise (Zhuang et al., 2023a,c) or pair-
wise (Qin et al., 2023) reranking, where scoring
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is performed in isolation. As Xian et al. (2023)
have demonstrated, listwise reranking benefits from
contextually comparing multiple passages at once,
which helps calibrate relevance scoring better.

Listwise reranking with LLMs is typically
framed as a generation task, where given a query
and multiple candidate passages as input, the
model outputs a ranked sequence of passage IDs.
While Sun et al. (2023); Ma et al. (2023) use pro-
prietary models, Pradeep et al. (2023a,b) demon-
strate that open-source LLMs finetuned with GPT-
3.5/GPT-4 (Achiam et al., 2023) annotated data can
also achieve competitive performance. Pradeep
et al. (2023b) introduce RankZephyr, which is
trained using a standard language modeling ob-
jective, with the ranking sequence generated by
GPT-4 as the target. Despite its promises, how-
ever, this approach has a number of key drawbacks.
First, it involves generating entire sequences of
passage IDs, which is arguably inefficient, and as
we demonstrate through our study, is also unneces-
sary. Second, it penalizes errors uniformly across
the ranking sequence – misjudging the rank of the
most (and potentially only) relevant passage, for
example, receives the same penalty as mistaking
the ranks of two non-relevant passages. Intuitively,
reranker training should prioritize accurately rank-
ing top candidates over those that bear low rele-
vance to the query.

The goal of this work is to overcome these
limitations in LLM rerankers. Our investigation
starts with the following question: Do the log-
its computed by existing LLM rerankers for their
first generated identifier, which are meant to only
predict the top-ranked candidate, also provide a
calibrated estimate of the relative importances of
all input candidates? In Figure 2, we show how
the ranking indicated by the logits produced by
RankZephyr (Pradeep et al., 2023b) in its first token
position matches that of its fully generated ranking
sequence. For each rank position p ∈ [1, ..., 9],
Figure 2a illustrates the degree of exact match be-
tween the two rankings in position p, and Figure 2b
shows the average agreement over all different pair-
wise combinations of rank positions involving po-
sition p. We observe that RankZephyr’s sequence-
generation training objective also improves the
quality of its logit-induced ranking by bringing
it close to the sequence-based ranking, unlike the
underlying pre-trained LLM. Crucially, this sug-
gests that LLM rerankers can implicitly judge the
relevance of candidate passages without needing to
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Figure 2: The degree to which the rank generated by an
LLM reranker (RankZephyr (Pradeep et al., 2023b)) for
a candidate agrees with the rank implied by its computed
logit for the same candidate in the first (top-rank) token
position, at different ranks. RankZephyr, originally fine-
tuned with a sequence generation objective (in blue),
shows a considerably higher similarity between the two
above rankings than a pretrained LLM (in red).

explicitly generate a ranking sequence. We seek to
capitalize on this property to significantly acceler-
ate inference process for listwise ranking, eliminat-
ing the need to generate a full sequence of IDs.

To that end, we present FIRST2, a novel ap-
proach that relies solely on the output logits of the
first generated identifier to produce a listwise rank-
ing of input candidates. FIRST employs a novel
training strategy that directly incorporates a rank-
ing loss into the supervision of LLM rerankers. The
use of a learning-to-rank loss (Liu et al., 2009) also
enables us to assign greater weights to more impor-
tant ranks, unlike generation-based losses that treat
all ranks in the output sequence uniformly. Figure
1 illustrates FIRST, which in our evaluation im-
proves not only the efficiency of inference of LLM

2Faster Improved Re-ranking with a Single Token
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rerankers due to single-token decoding, but also
the quality of reranking by leveraging the more
effective learning-to-rank supervision. As seen in
Figure 2a, 2b, FIRST considerably increases exact
match and pairwise agreement between the rank-
ing sequence generated and the logit-based ranking.
Experiments in §4.3 demonstrate that FIRST low-
ers the latency of LLM rerankers by 50%.

We further demonstrate the benefits of FIRST
in downstream applications. Specifically, we study
the impact of using LLM rerankers for pseudo-
relevance feedback (ROCCHIO, 1971), wherein
the output of a reranker is used to improve the re-
call of retrieval at inference. Prior work (Reddy
et al., 2023; Sung et al., 2023) typically uses
numeric point-wise scoring output from cross-
encoders (Thakur et al., 2021a) as distillation su-
pervision for relevance feedback. Here, we demon-
strate (in §4.4) that a superior output from an LLM
reranker, albeit in the form of an ordered sequence,
can provide better relevance feedback that leads
to greater improvement in retriever recall when
distilled with ranking losses.

The main contributions of this work are:

• We introduce FIRST, a novel strategy for
reranking with LLMs that obtains the rank-
ing from only the output logits of the first
generated identifier.

• By incorporating a learning-to-rank loss for
supervision, FIRST improves ranking accu-
racy while lowering inference latency by 50%.

• Finally, we demonstrate the potential of LLM
rerankers for relevance feedback, with im-
proved retriever recall compared to using
cross-encoders for inference-time distillation.

2 Related Work

2.1 Reranking with LLMs
Modern IR systems commonly employ a multi-
stage pipeline, wherein an efficient initial re-
triever (Robertson et al., 2009; Karpukhin et al.,
2020) selects a set of candidates from a vast cor-
pus, which is then reranked by a more sophisti-
cated reranker (Nogueira and Cho, 2019; Nogueira
et al., 2020) to enhance precision. Methods lever-
aging cross-encoder models (Nogueira et al., 2020;
Zhuang et al., 2023b) for rerankers have achieved
notable success in improving ranking performance.
Nonetheless, a principal limitation of such method-
ologies is their reliance on extensive in-domain

human supervision, which leads to poor generaliz-
ability across different domains (Zhu et al., 2023).
Recent efforts have explored mitigating this limita-
tion by utilizing the zero-shot capabilities of LLMs
for passage reranking (Ma et al., 2023; Sun et al.,
2023). Building on this, Pradeep et al. (2023a,b)
finetuned open-source LLMs to be capable of per-
forming high-quality listwise reranking on par with
proprietary models, such as GPT-4 (Achiam et al.,
2023). However, existing works do not incorpo-
rate any traditional learning-to-rank strategies (Liu
et al., 2009) when finetuning LLMs for listwise
reranking. Further, they often overlook the consid-
erable latency of reranking with LLMs. Our ap-
proach, FIRST, addresses both limitations by lever-
aging the output logits of the first generated identi-
fier to directly obtain the rank order. FIRST suc-
cessfully demonstrates that substantial efficiency
gains are achievable without compromising accu-
racy in reranking with LLMs.

2.2 Learning to Rank

In IR literature, Learning to Rank (LTR) (Liu et al.,
2009) aims to order items by their relevance to a
particular query. LTR is an extensively explored re-
search field, and multiple optimization techniques
have been proposed that can be broadly categorized
into three main approaches: pointwise, pairwise,
and listwise. Given the item and query pair, point-
wise approaches (Crammer and Singer, 2001; Li
et al., 2007) determine relevance by a numerical
score or binary judgment, which is later used for
ranking. The pairwise approaches (Burges et al.,
2005, 2006) measure the pairwise preferences be-
tween item pairs, being reportedly more effective
than the pointwise method by capturing the relative
importance of the items. Later, the training subjects
were extended to a list of items, and the loss was
defined over the entire item list (Cao et al., 2007;
Xia et al., 2008; Taylor et al., 2008), allowing to ob-
tain more fine-grained relative importance among
the items. Recent studies (Nogueira et al., 2020;
Zhuang et al., 2023b; Sun et al., 2023; Pradeep
et al., 2023a,b) have applied pre-trained language
models for passage reranking and observed sig-
nificant performance gains. While Zhuang et al.
(2023b) and Sun et al. (2023) employ LTR al-
gorithms for finetuning, they only consider it for
pointwise ranking. On the other hand, our approach
adopts LTR algorithms for finetuning listwise LLM
rerankers.
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2.3 Listwise Reranking

Early exploration of leveraging pre-trained lan-
guage models for document reranking relied on
pointwise ranking (Sachan et al., 2022; Cho et al.,
2023; Zhuang et al., 2023b). This involves extract-
ing the generation probability of a relevance token,
such as ‘true’ or ‘yes’, from the model when asked
to determine the document’s relevance to a query.
Despite their supremacy over supervised ranking
methods based on cross-encoders (Nogueira et al.,
2020; Zhuang et al., 2023b), the isolated scoring
mechanism of pointwise rerankers makes it difficult
to calibrate relevance (Xian et al., 2023). Recent
works (Ma et al., 2023; Sun et al., 2023) adopted
listwise reranking to generate the ordered list of
candidates directly, without needing any interme-
diate relevance scores. Compared to pointwise or
pairwise counterparts (Qin et al., 2023), listwise
reranking requires fewer runs as it takes multiple
documents into account for a single window. When
reranking multiple candidates making the prompt
size more than max allowed input context length,
listwise reranking adopts a sliding window strat-
egy (Sun et al., 2023) with a fixed window and
step size. However, due to the computationally
demanding nature of LLMs, the improved results
from listwise reranking come at the expense of
increased latency. Recent work has tackled the
latency problem of listwise reranking through effi-
cient processing of candidate passages. Meng et al.
(2024) introduced ranked list truncation, which op-
timizes the process by trimming reranking candi-
dates, allowing for variable-length candidate lists
that can be adapted per query. Parry et al. (2024)
propose top-down partitioning, which introduces a
parallelizable algorithm that effectively reduces re-
dundancy in inference calls. Our method, FIRST,
reduces the latency for each window in listwise
reranking by lowering the number of output tokens
required to be generated to one. FIRST comple-
ments existing strategies like ranked list truncation
and top-down partitioning as each method targets a
distinct yet complementary aspect of the listwise
reranking workflow. We leave the empirical inves-
tigation of stacking these approaches together as
an important direction for future work.

3 Methodology

In this section, we first discuss the fundamentals
of listwise LLM reranking (§3.1). We then present
FIRST, our own novel approach to the task (§3.2).

3.1 Listwise Reranking with LLMs

Given a list of retrieved passages P =
{p1, p2, ..., pn}, the task of a reranker is to return
k passages that are the most relevant to a query q.
Due to input size limits, listwise reranking with
LLMs often adopts a sliding window strategy with
a window size of m passages (m < n) and a step
size s (Sun et al., 2023). For each window, pas-
sages are denoted by unique identifiers ti; the LLM
reranker generates as output a sequence of iden-
tifiers in decreasing order of their relevance (e.g.,
t1 > t3 > t2). The global process operates by first
ranking the last m documents and then iteratively
sliding the processing window s positions at a time
until the beginning of the list is reached (Sun et al.,
2023).

Recent work (Pradeep et al., 2023a,b) has
drawn supervision for open-source listwise LLM
rerankers (Tunstall et al., 2023) from larger propri-
etary models, such as GPT3.5 and GPT4. The rele-
vance supervision in such cases comes in the form
of a generated sequence y = [y1] > [y2]... > [ym],
where yi is the identifier of a document that has
been judged more relevant to the query q than yj ,
for every m ≥ j > i. The reranker is then trained
with a language modeling objective, minimizing
the error in predicting the true next token in the
generation sequence:

LLM = −
|y|∑

i=1

log(Pθ(yi|x, y<i)) (1)

Pθ(yi|x, y<i) here is the conditional probability of
predicting the target yi given the instruction prompt
x and the preceding tokens y<i.

3.2 FIRST: Ranking with a Single Token

The FIRST method operates under the hypothe-
sis – which we validated in §1 – that LLMs can
latently approximate the full ranked list during the
generation of the first (top-ranked) passage iden-
tifier. FIRST simply extracts the output logits of
candidate identifier tokens while generating the
first identifier y1 and returns the passage ranking in
the order of decreasing logit values. Crucially, this
process only involves computing the output logits
of a single token during inference.

Since this ranking is based on output logits of in-
dividual tokens from the LLM’s vocabulary, avoid-
ing tokenizing passage identifiers into multiple to-
kens is key. Using numeric identifiers would limit
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the number of candidates to ≤ 9 as byte pair encod-
ing (Sennrich et al., 2016) tokenizes multiple-digit
numbers into more than one token. We, therefore,
adopt alphabetic identifiers instead, ranging from
A to Z, as LLM rerankers typically consider up to
20 candidate passages in a single window.

Using FIRST directly with current LLM
rerankers (Pradeep et al., 2023a,b), while show-
ing promise in the evaluation of Figure 2, is still
suboptimal, as these models are finetuned with a
language modeling objective. Hence, we propose
to leverage a learning-to-rank objective to provide
targeted supervision to FIRST rerankers that can
better equip them to rank using the first token’s
output logits. Formally, given m candidate pas-
sages (p1, p2, ..., pm), with ti the identifier token
of pi and si the output vocabulary logit of pas-
sage identifier ti during first token generation, let
ri ∈ [1, 2, ...,m] be the true rank of pi within the
m candidates. We consider as our training objec-
tive a weighted version of RankNet (Burges et al.,
2005) – a pairwise loss which considers the cor-
rectness of relative passage orders to formulate the
learning-to-rank objective – as follows:

LRank =

m∑

i=1

m∑

j=1

1ri<rj

i+ j
log(1 + exp(si − sj))

=
∑

ri<rj

1

i+ j
log(1 + exp(si − sj))

(2)
Here, the weight 1/(i+ j) is the inverse mean rank
of candidate pair (i, j), which prioritizes getting
the ranks of higher-ranked candidates right over
those of lower-ranked ones. Since the standard
language modeling objective has also been used
successfully to train listwise rerankers, we combine
it with LRank to construct the following joint loss
for our training:

LJoint = LLM + λLRank (3)

where λ is a hyperparameter that controls the rela-
tive importance of the two losses. Note that while
LRank is applied only to the output logits of the
first generated token, LLM is an aggregate over all
tokens in the target ranking sequence. At inference,
FIRST uses only the output vocabulary logits of
the first generation token to obtain the ranked can-
didate identifier order.

4 Experiments

We first demonstrate in §4.2 that the proposed rank-
ing loss improves the accuracy of listwise LLM
reranking. Next, in §4.3, we measure the improve-
ment in latency of inference from using FIRST.
Finally, we show in §4.4 that leveraging listwise
LLM rerankers for relevance feedback improves
the recall of retrievers.

4.1 Setup

Model: We follow Pradeep et al. (2023b) to use
Zephyrβ (Tunstall et al., 2023) as our instruction-
following LLM for listwise reranking. Zephyrβ
is a 7B LLM based on Mistral (Jiang et al., 2023)
and instruction-tuned on chat datasets (Ding et al.,
2023; Cui et al., 2023). We finetune Zephyrβ for
listwise reranking for three epochs with an effec-
tive batch size of 32, a learning rate of 5e-6 us-
ing bfloat16 precision, and leverage noisy embed-
dings (Jain et al., 2023). Training takes approxi-
mately 7 hours on four 40GB Nvidia A100 GPUs
when used with DeepSpeed (Rasley et al., 2020).
We randomly sample 300 queries from MS Marco
as our development set, and use λ = 10 for scaling
the weighted RankNet loss

Datasets: We use 40k GPT-4 labeled instances
from Pradeep et al. (2023b) for fine-tuning LLM
rerankers, which were created using 5k queries
from MS MARCO (Nguyen et al., 2016a). Exam-
ples contain a variable number (≤ 20) of candidate
passages that need to be reranked. For evaluation,
we use the BEIR benchmark (Thakur et al., 2021b),
which comprises test instances from MS MARCO
and out-of-domain evaluation data from several sci-
entific, biomedical, financial, and Wikipedia-based
retrieval datasets3.

Reranking Setup: We use Contriever (Gautier
et al., 2022) for retrieving an initial set of candi-
dates. The top 100 retrieved passages are then
passed as input to the reranker. The listwise rerank-
ing process uses a sliding window strategy as in
Sun et al. (2023); Pradeep et al. (2023b), with win-
dow size m = 20 and step size s = 10.

Baselines: We compare performance with a
pointwise cross-encoder reranker from Thakur
et al. (2021a), as well as RankVicuna (Pradeep
et al., 2023a) and RankZephyr (Pradeep et al.,
2023b), which are LLM-based listwise rerankers.

3We use the same BEIR subset as in Reddy et al. (2023).
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Reranker Training
Data

Avg. Climate
FEVER

DBP-
edia FEVER FiQA Hotpot

QA
MS

Marco
NFC-
orpus NQ Sci-

docs
Sci-
fact

Trec-
COVID

None MS Marco 45.9 23.7 41.3 75.8 32.9 63.8 40.7 32.8 49.8 16.5 67.7 59.6

Cross-Encoder MS Marco 50.7 25.5 47.0 81.9 35.6 71.8 47.0 34.5 57.6 17.0 69.1 71.0

Rank Vicuna GPT 3.5 50.7 28.2 50.0 81.0 35.9 73.5 36.7 33.1 58.6 18.4 70.5 71.3

Rank Zephyr GPT 3.5+4 53.7 25.6 50.0 80.1 42.2 71.6 42.7 37.7 65.6 20.5 76.7 78.4

FIRST GPT-4 54.3 26.7 50.9 81.7 42.2 74.2 44.4 37.4 66.4 20.4 74.6 78.8

Table 1: Performances of different rerankers (nDCG@10 in %) on BEIR (Thakur et al., 2021b). Top-100 retrieval
results from Contriever (Gautier et al., 2022) are passed as input. Reranker: None indicates the retriever.

Training
Strategy Inference Avg. Climate

FEVER
DBP-
edia FEVER FiQA Hotpot

QA
MS

Marco
NFC-
orpus NQ Sci-

docs
Sci-
fact

Trec-
COVID

LM Generation 52.3 20.8 48.6 79.1 40.6 71.3 43.5 35.4 65.6 19.7 72.3 77.6

LM +
RankNet

Generation 53.4 25.1 50.1 80.3 41.1 71.7 43.4 37.6 64.7 20.3 74.1 79.4

FIRST 54.3 26.7 50.9 81.7 42.2 74.2 44.4 37.4 66.4 20.4 74.6 78.8

- Weighting FIRST 53.8 23.7 50.1 79.0 43.2 74.9 44.6 36.8 66.9 19.7 75.3 77.5

- LM FIRST 51.7 20.3 48.8 74.8 40.6 72.5 43.2 35.9 63.5 19.3 73.5 76.2

Table 2: Table showing the nDCG@10 (in %) on BEIR (Thakur et al., 2021b) for LLM listwise reranking when
training with different strategies. LM corresponds to the traditional language modeling objective for training.

The cross-encoder was trained using 500k
pairwise human-annotated instances from MS
MARCO (Nguyen et al., 2016b). RankVicuna
was finetuned using the RankGPT data (Sun
et al., 2023), which contains GPT-3.5 labeled list-
wise reranking examples created from 100k MS
MARCO queries. RankZephyr employs a two-
stage training process that first finetunes with the
RankGPT data and then with GPT-4 labeled list-
wise reranking examples created from 5k MS
MARCO queries. We only use the smaller GPT-4
labeled instances due to compute constraints.

4.2 Ranking Performance
Table 1 shows nDCG@10 scores of different
rerankers on BEIR (Thakur et al., 2021b), where
each reranker was used to rerank the top-100 re-
trievals of Contriever. We first observe that FIRST
outperforms RankZephyr despite being fine-tuned
on considerably less data. Note that the cross-
encoder achieves a very high score on MS MARCO
as it was trained with in-domain human-annotated
data, unlike the LLM rerankers.

Next, we report results from ablation studies in-
volving different finetuning strategies in Table 2.
The proposed joint loss significantly improves per-
formance over finetuning with just the language

Dataset RankNet LambdaRank ListNet

DBPedia 50.9 47.3 49.1

FiQA 42.2 43.2 43.7

NFCorpus 37.4 35.6 36.8

Scifact 74.6 76.1 74.4

Trec-COVID 78.8 75.0 75.5

Average 56.7 55.4 55.9

Table 3: Table showing the nDCG@10 (in %) on a
subset of BEIR from incorporating different ranking
losses when finetuning the listwise LLM reranker.

modeling objective. We observe that the FIRST
approach to inference, in addition to being consid-
erably faster, also produces more accurate results
than sequence generation. This suggests that error
made early in the reranking with autoregressive se-
quence generation can propagate, leading to poten-
tially suboptimal rankings. The benefit of adding
the proposed inverse mean rank weighting to the
existing RankNet loss is also evident. Interestingly,
we observe that finetuning using only the weighted
RankNet loss performs worse than using only the
LM objective, which is perhaps unsurprising given
the alignment of the latter with LLM pretraining.

Further, in addition to the weighted RankNet loss
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Figure 3: Ranking accuracy (nDCG@10) against the reranker’s per query latency in seconds. k refers to the number
of passages reranked for the corresponding latency. FIRST considerably outperforms sequence generation when
constrained to a latency budget, as it is able to rerank significantly more candidates.

(eq. 2), we experimented with incorporating dif-
ferent ranking losses while finetuning the listwise
reranker. Specifically, we considered the Lamb-
daRank and ListNet losses. LambdaRank (Burges
et al., 2006) is a pair-wise ranking loss that is sim-
ilar to RankNet, but uses a weight proportional
to the change in the target ranking metric (e.g.
NDCG) that would result from swapping the posi-
tions of items in the pair. ListNet (Cao et al., 2007)
is a listwise loss based on the cross entropy be-
tween two parameterized probability distributions
of permutations. Table 3 shows the results on a
subset of BEIR. We see that our weighted RankNet
loss gives a better performance compared to using
the LambdaRank and ListNet losses.

4.3 Comparing Latencies

One of the key stated advantages of FIRST is
single-token decoding, which can be expected to
improve latency considerably. To demonstrate this
empirically, we compare the latencies of inference
with FIRST and sequence generation4. Latency
is measured on a 40GB Nvidia A100 GPU and
averaged over 200 sampled queries.

We first compare the overall time taken for rank-
ing candidate passages in a single window. Figure
4 plots the latency of FIRST and sequence gen-

4For a fair comparison, we omitted the generation time of
the identifier indicators (‘[’ and ‘]’) for sequence generation.
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Figure 4: Plot comparing the single window inference
latency for FIRST vs. generating the ranked sequence,
for different numbers of candidate passages m.

eration against the window size m. While overall
inference time increases for both approaches with
more candidate passages in the window, the latency
gap between the two grows as m increases. This is
understandable, as the output length increases for
sequence generation with the number of candidate
passage identifiers, but not for FIRST.

In Figure 3, we further evaluate the reranking
accuracy of the two approaches under specific la-
tency requirements. We fix the number of the candi-
dates k = (20, 40, 60, 80) for FIRST and retrieve
the corresponding number of candidates with se-
quence generation under identical latency require-
ments. Figure 3 shows the plots for six different
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Relevance Feedback Average
R@100

Climate
FEVER

DBP-
edia FEVER FiQA Hotpot

QA
MS

Marco
NFC-
orpus NQ Sci-

docs
Sci-
fact

Trec-
COVID

None 66.8 57.4 54.1 94.9 65.6 77.7 89.1 30.0 92.5 37.8 94.7 40.7

CE (KL Div.) 69.0 59.5 57.3 95.5 65.6 80.4 90.5 31.9 94.2 40.1 95.2 51.5

LLM (RankNet) 71.2 58.8 58.4 95.2 72.7 79.8 89.3 34.5 95.6 43.1 96.1 59.4

CE + LLM 72.0 59.4 59.8 95.5 71.8 81.2 89.7 35.9 96.1 44.1 95.9 62.2

Table 4: Table showing recall@100 (in %) on BEIR (Thakur et al., 2021b) using the updated query vector for
second-stage retrieval after relevance feedback. Results for None correspond to the first-stage retrieval using
Contriever. Relevance feedback from cross-encoder (CE) uses the KL divergence loss as in Reddy et al. (2023),
while that from listwise LLM reranker uses the weighted RankNet loss (Eq. 2) for optimizing the query vector.

datasets from BEIR, where we observe FIRST to
consistently outperform sequence generation while
maintaining the same per-query reranking latency.
Clearly, FIRST can rerank more candidates k in
the same amount of time, which leads to the ob-
served performance gains.

4.4 Relevance Feedback with LLM Rerankers

Here, we demonstrate that the better ranking perfor-
mance from LLM-based rerankers, when compared
to cross-encoders, is advantageous for downstream
applications. Specifically, we consider the task of
providing relevance feedback (ROCCHIO, 1971)
for improving the retrieval recall. Relevance feed-
back using rerankers at inference involves optimiz-
ing the retriever’s query representation at test-time
using the reranker’s output for the retrieval results.
Reddy et al. (2023); Sung et al. (2023) update the
query representation from dense retrievers, like
Contriever (Gautier et al., 2022), by gradient de-
scent based on KL divergence loss between the
query vector and cross-encoder reranker scoring
distributions over the retrieved passages. Since
rerankers are typically more performant than re-
trievers, the updated query representation, when
used for second-stage retrieval, can improve recall
upon the previously retrieved results. We refer the
reader to Reddy et al. (2023) for more details.

While cross-encoder rerankers provide floating-
point scores that can be used as distillation supervi-
sion, listwise rerankers output an ordered sequence
of the candidates. Hence, the typically used KL
divergence loss cannot be applied for relevance
feedback in this setting. In this regard, we inves-
tigate how listwise rerankers can be leveraged for
relevance feedback, and whether they can provide
bigger improvements for second-stage retrieval re-
call compared to cross-encoders. We experiment

with using the weighted RankNet loss (in eq. 2) to
use the ranked ordering from listwise rerankers as
distillation supervision for relevance feedback.

For our experiments, we follow the same setup
as Reddy et al. (2023) with Contriever for initial
retrieval and evaluation on BEIR (Thakur et al.,
2021b). Distillation using the cross-encoder with
KL divergence loss has a learning rate of 0.005
and 100 gradient updates, while that using the
LLM reranker with the weighted RankNet loss has
a learning rate of 0.001 and 20 gradient updates.
Table 4 shows recall@100 numbers from second-
stage retrieval after different relevance feedback
strategies. We observe that relevance feedback
from the LLM reranker significantly improves re-
call compared to the cross-encoder reranker. We
attribute this to the superior ranking performance of
LLM rerankers (as seen in Table 1), thereby provid-
ing higher quality relevance feedback. Moreover,
we see that using the LLM reranker feedback in
addition to that from the cross-encoder (CE+LLM)
leads to further gains. This improvement could
be explained as the diversity of feedback signals
from the two rerankers, i.e. floating-point scores
for cross-encoder vs ranking sequence for listwise
reranker, providing a more comprehensive distilla-
tion supervision and demonstrating the huge poten-
tial of listwise rerankers for relevance feedback.

5 Conclusion

In this work, we introduce FIRST, a novel strategy
for listwise LLM reranking. FIRST leverages the
output logits of the first generated identifier to ob-
tain a ranking for the candidates, as opposed to the
typical approach of generating the entire ranked
ordering sequence of candidate passage identifiers.
We demonstrated that our single-token decoding
approach reranks a considerably larger number of
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candidates compared to inference with ordered se-
quence generation in the same time, leading to
larger gains when reranking under a latency con-
straint. FIRST also demonstrates ranking perfor-
mance benefits from incorporating a learning-to-
rank loss during training, allowing for prioritizing
more important ranks. By addressing both the train-
ing and inference inefficiencies of existing LLM
listwise reranking approaches, FIRST represents
a significant step forward in the development of
advanced re-ranking techniques using LLMs.

Limitations

While FIRST benefits from leveraging GPT-4 la-
beled data for training, we have not experimented
with using human-annotated pairwise examples in
supervised datasets such as MS Marco to further
improve performance. Moreover, our experiments
here are on English data on account of the under-
lying LLM being predominantly monolingual. An
interesting extension would be to finetune a multi-
lingual LLM for listwise reranking to demonstrate
the benefit of our approach in other languages. Fur-
ther, we use alphabets as passage identifiers since
the window size for listwise reranking is typically
≤20. However, we expect finetuning using other
vocabulary tokens as identifiers should enable lever-
aging a larger set of candidate identifiers in case
the window size needs to be further increased.
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