
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 8754–8782
November 12-16, 2024 ©2024 Association for Computational Linguistics

Jellyfish: Instruction-Tuning Local
Large Language Models for Data Preprocessing

1Haochen Zhang, 2Yuyang Dong, 1,3Chuan Xiao, 2Masafumi Oyamada
1Osaka University, 2NEC Corporation, 3Nagoya University

{chou.koushin, chuanx}@ist.osaka-u.ac.jp, {dongyuyang, oyamada}@nec.com

Abstract
This paper explores the utilization of LLMs for
data preprocessing (DP), a crucial step in the
data mining pipeline that transforms raw data
into a clean format conducive to easy process-
ing. Whereas the use of LLMs has sparked
interest in devising universal solutions to DP,
recent initiatives in this domain typically rely
on GPT APIs, raising inevitable data breach
concerns. Unlike these approaches, we con-
sider instruction-tuning local LLMs (7 – 13B
models) as universal DP task solvers that op-
erate on a local, single, and low-priced GPU,
ensuring data security and enabling further cus-
tomization. We select a collection of datasets
across four representative DP tasks and con-
struct instruction tuning data using data con-
figuration, knowledge injection, and reasoning
data distillation techniques tailored to DP. By
tuning Mistral-7B, Llama 3-8B, and OpenOrca-
Platypus2-13B, our models, namely, Jellyfish-
7B/8B/13B, deliver competitiveness compared
to GPT-3.5/4 models and strong generalizabil-
ity to unseen tasks while barely compromising
the base models’ abilities in NLP tasks. Mean-
while, Jellyfish offers enhanced reasoning ca-
pabilities compared to GPT-3.5.

1 Introduction

Data preprocessing (DP) is a critical step in the
data mining pipeline that involves transforming
raw data into a manageable and processable format
ready for use. Over the past decades, significant
strides have been made in various DP tasks. Until
2021, most efforts were concentrated on one or two
specific tasks such as error detection (ED) (Heidari
et al., 2019; Mahdavi et al., 2019), data imputa-
tion (DI) (Rekatsinas et al., 2017; Mahdavi and

Haochen Zhang and Yuyang Dong are co-first authors
who contributed equally to this work. Chuan Xiao is the
corresponding author.

Our models are available at: https://huggingface.co/
NECOUDBFM/Jellyfish . Our instruction dataset is avail-
able at: https://huggingface.co/datasets/NECOUDBFM/
Jellyfish-Instruct .

Abedjan, 2020; Mei et al., 2021), schema match-
ing (SM) (Zhang et al., 2021), and entity matching
(EM) (Konda et al., 2016; Li et al., 2020). A key
challenge in developing generic solutions to DP is
that these tasks differ in nature: they deal with er-
rors, anomalies, matches, etc. and require different
actions such as detection, repairing, and alignment.

With the advent of LLMs, researchers have
found a key to address this challenge, spurring the
development of generic solutions for a wider array
of DP tasks. The advantages of LLMs over non-
LLM DP methods reside in their natural language
generation ability, internal knowledge, reasoning
ability, generalizability, and adaptability through
few- (Brown et al., 2020) or zero-shot (Kojima
et al., 2022) prompting, thereby reducing the cost
of human labor (e.g., hyperparameters tuning) and
yielding better intepretability.

Despite these strengths existing LLM-based DP
solutions (Narayan et al., 2022; Zhang et al., 2023a;
Korini and Bizer, 2023; Li et al., 2023), with re-
liance on GPT APIs, have raised concerns about
data breaches, as evidenced by OpenAI’s confirmed
data breach (OpenAI, 2023). Another limitation
is the difficulty in domain specification (Narayan
et al., 2022). When dealing with data from highly
specialized domains, training the LLMs used in
these solutions can be costly (e.g., GPT-3.5) and
even unavailable due to frozen parameters (e.g.,
GPT-4), posing difficulty in customizing the model.

In response to these challenges, we propose to
construct instruction data and tune LLMs for vari-
ous DP tasks. The tuned model, namely Jellyfish,
distinguish itself with several key features: (1) Jel-
lyfish is a universal DP task solver tuned to the
following tasks: ED and DI for data cleaning, and
SM and EM for data integration. (2) Varying from
7B to 13B, Jellyfish can operate on a local, sin-
gle, and low-priced GPU, ensuring data security
and allowing further tuning. (3) Capable of under-
standing natural language, Jellyfish allows users

8754

https://huggingface.co/NECOUDBFM/Jellyfish
https://huggingface.co/NECOUDBFM/Jellyfish
https://huggingface.co/datasets/NECOUDBFM/Jellyfish-Instruct
https://huggingface.co/datasets/NECOUDBFM/Jellyfish-Instruct

Tuning

Base LLM
7B/8B/13B

Raw Datasets
Labeled for DP

Instruc�on Data
(DP Task)

Instruc�on Data
(DP Task with

Reasoning)

Larger Open LLM
(Mixtral 8x7B)

DP Tasks

ED DI

SM EM

Instance
Serializa�on

Knowledge
Injec�on

Inference

Jellyfish
7B/8B/13B

DP Tasks

Seen

ED DI

SM EM

Unseen

CTA

AVE
…

Figure 1: Overview of instruction tuning for data preprocessing.

to manually craft instructions for DP tasks (or
simply use our prompts in this paper) and apply
prompt engineering techniques to tailor it to spe-
cific tasks and datasets. (4) Unlike many existing
methods that rely heavily on handcrafted knowl-
edge during inference (Rekatsinas et al., 2017; Qin
et al., 2023), Jellyfish features domain knowledge
in its instruction tuning and enables optional knowl-
edge injection during inference. (5) By employing
reasoning data in its instruction tuning, Jellyfish’s
interpretation ability provides natural language
explanations of its outputs.

Whereas instruction tuning of LLMs has been
largely used for unstructured text (Zhang et al.,
2023b), the construction of Jellyfish is non-trivial
in the sense that (1) it tunes for structured data, (2)
it finds a good data configuration for various DP
tasks, and (3) it specifies domain knowledge that
can be applied to unseen datasets. Besides, it is ex-
pected that the model’s performance in NLP tasks
can be preserved for generalizability and further
customization. To the best of our knowledge, this
is the first study that investigates instruction tuning
for DP with LLMs as universal solutions.

As depicted in Figure 1, Jellyfish is constructed
by carefully selecting data from several public
datasets widely used for DP evaluation, consid-
ering their impacts on the overall performance. By
instance serialization, raw data is serialized into in-
struction tuning prompts. By knowledge injection,
task- and dataset-specific knowledge – particularly
domain knowledge that can be extended to unseen
datasets – is infused to the prompts. Moreover, we
resort to Mixtral-8x7B-Instruct-v0.1 to generate
reasoning data. As such, Jellyfish distills Mixtral’s
knowledge in reasoning DP results.

Our evaluation focuses on tuning a set of preva-
lent open LLMs, including Mistral-7B-Instruct-
v0.2 (as Jellyfish-7B), Llama 3-8B (as Jellyfish-
8B), and OpenOrca-Platypus2-13B (as Jellyfish-

13B). The results show that our instruction data
applies to all these base models, substantially im-
proving the DP performance. Compared to two
categories of baseline methods, (1) non-LLM meth-
ods – typically solutions based on machine learning
(ML) or pre-trained language models (PLMs) – and
(2) LLM methods – typically GPT series methods,
Jellyfish-13B consistently outperforms non-LLM
methods on its seen datasets, and its effectiveness
on unseen datasets even surpasses non-LLM meth-
ods on their respective seen datasets. Meanwhile,
Jellyfish-7B/8B also exhibit competitiveness, es-
pecially on DI and EM tasks. For unseen tasks,
Jellyfish models also deliver strong performance,
rivaling GPT-3.5/4 models and showcasing gener-
alizability to a wider range of DP tasks beyond
the four tasks used for tuning. Our evaluation re-
veals the impacts of data configuration and the use
of reasoning data in building Jellyfish, and dis-
covers that Jellyfish barely compromises the base
model’s NLP performance. Furthermore, experi-
ments demonstrate the advantage of Jellyfish’s in-
terpretation over GPT-3.5 in reasoning capabilities
as well as the effectiveness of knowledge injection.

2 Preliminaries

In data mining, DP is a crucial step that deals with
noise, missing values, inconsistencies, and hetero-
geneity in data. Major DP procedures include data
cleaning, data integration, data transformation, and
data reduction (Han et al., 2022). In this initial
exploration of LLMs for DP, we concentrate on
tabular data, one of the most common data types.

Our data model operates on relational tables
specified by schemas. We assume all attributes
are either numerical (including binary) or textual
(including categorical) values. Diverging from the
traditional definition that presents the entire dataset
and finds or fixes all the errors (or matches, etc.)
within, we define the problem by handling one

8755

record (or a pair, depending on the task) at a time,
so the prompt can be easily written and its length
is within LLMs’ token limitation. Next, we outline
the DP tasks involved in this study:

(1) Error Detection (ED): Given a record (i.e.,
a tuple in a relational table) and an attribute, our
task is to detect whether there is an error in the cell
value of this attribute. (2) Data Imputation (DI):
Given a record and an attribute such that cell value
for this attribute is missing, our task is to infer its
correct value. (3) Schema Matching (SM): Given
a pair of attributes represented in the form of (name,
description), our task is to find whether they refer
to the same attribute. (4) Entity Matching (EM):
Given a pair of records, our task is to infer whether
they refer to the same entity.

These four tasks form the most critical part of
DP (Narayan et al., 2022; Zhang et al., 2023a) and
are extensively discussed in the context of data min-
ing (Han et al., 2022). We use them for instruction
tuning. Besides, we consider two unseen tasks:
(1) Column Type Annotation (CTA): Given a ta-
ble with no header, our task is to infer the type of
each column from a set of predefined types (e.g.,
name, time, location). (2) Attribute Value Extrac-
tion (AVE): Given a text description of an entity
and a set of predefined attributes, the task is to
extract attribute values from the text description.

We term each input object an instance, i.e., a
record for ED and DI, a pair of attributes for SM,
a pair of records for EM, a table or a column for
CTA, and a text description for AVE.

3 Instruction Tuning of Jellyfish

3.1 Dataset Preparation

For the four seen tasks, we choose a series of
datasets that have been widely used in previous
studies and cover a variety of application domains.
(1) ED: Adult and Hospital (Heidari et al., 2019);
(2) DI: Buy and Restaurant (Mei et al., 2021);
(3) SM: MIMIC-III and Synthea (Zhang et al.,
2021); (4) EM: Amamzon-Google, Beer, DBLP-
ACM, DBLP-GoogleScholar, Fodors-Zagats, and
iTunes-Amazon from the Magellan data reposi-
tory (Das et al.). We use the publicly available
version of these datasets (Narayan et al., 2022),
where errors and missing values are already in-
jected to the datasets of ED and DI, respectively.

To determine the data size for each task, we first
consider a constraint that for fair comparison with
non-LLM methods (Mei et al., 2021; Zhang et al.,

Table 1: DP task data statistics. #Positives denotes the
number of instances having an error (for ED) or match-
ing objects (for SM and EM). ×2 denotes duplication
of instances for treating missing values as errors or not.

Task Dataset #Instances #Positives

ED Adult 550×2 35×2
Hospital 1710×2 44×2

DI Buy 586 N/A
Restaurant 778 N/A

SM MIMIC-III 7000 11
Synthea 5000 18

EM

Amazon-Google 6874 699
Beer 359 54

DBLP-ACM 5000 885
DBLP-GoogleScholar 5000 924

Fodors-Zagats 757 88
iTunes-Amazon 430 105

2021; Li et al., 2020), the training data in building
Jellyfish does not exceed those used for building
these methods, which serve as a pool of 115k in-
stances. Then, we have the following observations
(Section 5.5): (1) The performance of DI can ben-
efit from the other three tasks, but increasing DI
data is relatively negative to them. (2) Increasing
ED and SM data is generally beneficial to other
tasks. (3) Increasing SM data is beneficial to the
overall DP performance. (4) Increasing EM data
compromises the performance of other tasks, but
keeping its size is the key to the EM performance.

Based on these observations, we use all the ED
and DI data in the 115k pool as their sizes are
small, and then choose a large data size for SM
and a moderate data size for EM. Specifically, we
control the data used in large EM datasets (e.g.,
for DBLP-GoogleScholar, 1/3 is chosen from the
pool). As such, we determine the data size for the
four tasks, as shown in Table 1.

In addition, we undertake the following efforts
to prepare data: (1) Given the disproportionately
small number of positive instances compared to
negative ones, we incorporate all positive instances
available in the datasets. (2) For ED, since miss-
ing values can be interpreted as either errors or
non-errors, depending on the context, we create
two versions of each instance: one treating missing
values as errors and the other as non-errors. The du-
plication is guided by knowledge injection, which
is to be detailed in Section 3.2.

Next, we transform raw data to (1) DP task data,
for DP task-solving ability, and (2) DP task with
reasoning data, for interpretation ability. They can
be jointly used for tuning a Jellyfish model.

8756

DP Task with Reasoning DataDP Task Data

You are an AI assistant that follows instruction extremely well.
User will give you a question. Your task is to answer as
faithfully as you can. While answering, provide detailed
explanation and justify your answer.

You are an AI assistant that follows
instruction extremely well. User will
give you a question. Your task is to
answer as faithfully as you can.

system
message

You are tasked with determining whether two Products listed below are the same based on the information
provided. Carefully compare all the attributes before making your decision.

task
descrip�on

Note that missing values (N/A or "nan") should not be used as a basis for your decision.
injected

knowledge

Product A: [name: "Sequoia American Amber Ale", factory: "Wig And Pen"]
Product B: [name: "Aarhus Cains Triple A American Amber Ale", factory: "Aarhus Bryghus"]

instance
content

Are Product A and Product B the same Product?ques�on

After your reasoning, finish your response in a separate line with
and ONLY with your final answer. Choose your final answer from
[Yes, No].

Choose your answer from: [Yes, No]
output
format

… the names are not identical, with Product B having … These are
different factories … they are not the same product.
Final answer: No

Noanswer

Figure 2: Example prompt in instruction data. The leftmost column is description and not prompted to the model.
Response indicates the answer to the prompt. Detailed prompts are provided in Appendix D.

3.2 DP Task Data

To prepare the DP task data for an LLM, we need
to serialize (a.k.a. contextualize) each instance in
the raw data to a prompt. The prompt contains
the task description, the instance content, and any
injected knowledge. To describe our techniques for
constructing the DP task data for training, we use
an example for an instance in the Beer dataset used
for EM, as shown in Figure 2.

At the beginning, there is a system message
guiding the model behavior. Here, we instruct the
model to act as an AI assistant to answer the user’s
question, and its response should always respect
this constraint. Then, we describe the DP task. The
following part refers to injected knowledge. There
are two types of injected knowledge: (1) general
knowledge that applies to many datasets, and (2)
specific knowledge that only applies to the given
dataset. In this example, the knowledge belongs
to general knowledge and concerns with missing
values. Such knowledge injection may prevent the
model incorrectly handling certain values in the
dataset, especially when training data is noisy. The
following part pertain to the instance content. Fi-
nally, there is a question presented to the model,
and the output format is specified afterwards.

Whereas in the above example we specify knowl-
edge on missing values, there are other forms of
general knowledge used in tuning, including er-
ror types and terminology. For example, for ED,
we inform the model of the fact that errors can
include, but are not limited to, spelling errors, in-
consistencies, or values that do not make sense for

that attribute; for EM, we instruct the model to con-
sider the full name of an attribute and its acronym
to determine if the two values are the same. Spe-
cific knowledge highly depends on the application
domain, mainly including constraints or rules that
pertain to the dataset. For example, in publication
datasets, authors’ names may occur in different
forms and different orders even for the same arti-
cle. Additionally, the model can be configured to
assign greater importance to certain attributes. In
the context of product data, for example, the model
is directed to prioritize the comparison of product
numbers. Specific knowledge can be applicable to
datasets within the same domain, thereby enhanc-
ing the model’s performance on unseen datasets,
particularly in scenarios where prior knowledge
about these datasets is absent. Overall, the knowl-
edge injected through tuning becomes the built-in
knowledge of the model and can be used even with-
out user-specification during inference.

3.3 DP Task with Reasoning Data

(DP task with) reasoning data, not only empowers
the model to interpret the DP results, but also has
the potential in enhancing the DP performance in
the sense that the model can learn the rationale be-
hind DP, thereby generalizing to unseen scenarios
whose underlying logic resembles the tuned tasks/-
datasets. On the other hand, due to the small size of
local LLMs, tuning the model with excessive rea-
soning data may compromise its ability to conduct
the tuned DP tasks. Thus, we need to strike a bal-
ance between DP performance and generalizability.

8757

Table 2: Statistics of reasoning data for instruction tun-
ing. We report the numbers of instances for each task.
For ED and DI, the numbers refer to the amount after
duplicating the instances having missing values.

Dataset Task
ED DI SM EM Total

reasoning-8k 3056 1364 2000 2000 8420
reasoning-11k 3056 1364 3500 3500 11420
reasoning-14k 3056 1364 5000 5000 14420
reasoning-20k 3056 1364 8600 7000 20020

In general, we observe that native models (Mistral
and Llama 3) are more likely to benefit from the
use of reasoning data (Section 5.6).

Another key feature in our reasoning data is
that we resort to a larger open LLM, Mixtral-
8x7B-Instruct-v0.1, to retrieve reasoning answers
as ground truths. As such, Jellyfish distills Mix-
tral’s knowledge in reasoning for DP. Since this
does not involve external APIs like GPT-4, data se-
curity can be ensured, in case users want to include
confidential information in the reasoning data.

We use the same set of datasets as DP task data
to construct the reasoning data. The prompt in rea-
soning data only differs from DP task data in the
reasoning instructions (Figure 2, system message
and output format). To retrieve reasoning answers
from Mixtral, we add a hint at the end of the prompt
for the correct DP result (e.g., “yes/no” for match-
ing tasks), hence to instruct Mixtral to reason in the
right direction (Appendix D.2). Note that such hint
does not appear in the prompt given to Jellyfish.

To control the size and quality of reasoning data,
we select data as follows: (1) For ED and SM, we
keep all positive instances due to their small num-
bers, and then sample negative instances. (2) For
DI, we keep all instances due to the small data size.
(3) For EM, we sample instances. From the 115k
pool, we tune the numbers in the sample to make
four sets of reasoning data with 8k, 11k, 14k, and
20k instances, respectively (Table 2). Moreover,
from the answers returned by Mixtral, we remove
low-quality ones that simply rephrase instance con-
tents, as they barely refers to reasoning.

4 Inference with Jellyfish

For inference, the prompt is same as the instruction
data shown in Figure 2. Users can craft dataset-
specific knowledge into the prompt, such as the
domain knowledge (e.g., constraints) outlined in
the previous section. Such user-specified knowl-
edge is optional.

Feature Engineering. Users can optionally select
a subset of features to improve performance. For
instance, for EM in the Beer dataset, name and
factory are more relevant features, while style
and ABV are less relevant. Hence users may choose
to use only name and factory as attributes. Such
feature engineering can be also implemented in
the prompt as specific knowledge, e.g., you should
only consider name and factory and ignore other
attributes.

Prompt Engineering. Prompt engineering (Weng,
2023) is the process of structuring text to enhance
the model performance. We incorporate few-shot
prompting (Brown et al., 2020), which conditions
the Jellyfish models to learn from a small selection
of examples drawn from the dataset. The prompts
for few-shot examples are reported in Appendix F.

Batch Processing. To enable Jellyfish models to
perform inference in batches rather than process-
ing single instances individually, we can employ
prefix caching (Kwon et al., 2023), available in the
vLLM (vLLM Team, 2024) library, because the in-
structions for the batch share the same prefix, only
differing in the instance content.

5 Experiments

5.1 Experimental Setup

Datasets. We conduct experiments on the datasets
shown in Table 3. CTA and AVE are unseen tasks.

Jellyfish Models. We instruction-tune three base
models: (1) Mistral-7B (Mistral-7B-Instruct-
v0.2 (Jiang et al., 2023)), (2) Llama 3-8B (Llama-3-
8B-Instruct (Meta AI, 2024)), and (3) OOP2-13B
(OpenOrca-Platypus2-13B (Lee et al., 2023)), a
Llama 2-13B variant with enhanced reasoning ca-
pabilities and logic proficiency. The tuned models
are dubbed Jellyfish-7B, Jellyfish-8B, and Jellyfish-
13B, respectively. The 7B and 8B models are tuned
with both DP task and reasoning data (15k reason-
ing instances for the 7B model and 8k for the 8B
model). The 13B model is tuned with only DP task
data. As such, Jellyfish-7B and Jellyfish-8B are
interpretation models while Jellyfish-13B is a task
solver dedicated to the tuned tasks.

We report hyperparameter setup in Appendix A
and injected knowledge in Appendix E. For in-
ference, the (zero-shot) prompts are the same as
DP task data and reasoning data, respectively. We
apply general knowledge in the prompts, e.g., miss-
ing values in matching tasks and error types in

8758

Table 3: Testing dataset statistics. For Walmart-Amazon,
the entities belong to a different category of products
from the Amazon dataset used for instruction tuning.

Task Type Dataset #Instances

ED
Seen Adult 9900

Hospital 17101

Unseen Flights 12832
Rayyan 8997

DI
Seen Buy 65

Restaurant 86

Unseen Flipkart 2675
Phone 1194

SM Seen MIMIC-III 6408
Synthea 2964

Unseen CMS 2564

EM
Seen

Amazon-Google 2293
Beer 91

DBLP-ACM 2473
DBLP-GoogleScholar 5742

Fodors-Zagats 189
iTunes-Amazon 109

Unseen Abt-Buy 1946
Walmart-Amazon 2049

CTA Unseen SOTAB 250

AVE Unseen AE-110K 1482
OA-Mine 2451

ED. Dataset-specific knowledge is not used. When
few-shot prompting is enabled, we equip LLMs
with three examples for each dataset, covering both
positives and negatives (Appendix F).

Baselines. We categorize existing methods into
non-LLM methods and LLM methods. For non-
LLM methods, we select the following baselines:
(1) ED: HoloDetect (Heidari et al., 2019) and
Raha (Mahdavi et al., 2019); (2) DI: IPM (Mei
et al., 2021); (3) SM: SMAT (Zhang et al., 2021);
(4) EM: Ditto (Li et al., 2020) and Unicorn (Tu
et al., 2023); (5) CTA: RoBERTa (Liu et al., 2019).
For their performance, we follow the best num-
bers reported in prior works (Narayan et al., 2022;
Korini and Bizer, 2023; Tu et al., 2023).

LLM methods are GPT-3, GPT-3.5, Table-
GPT (Li et al., 2023) (GPT-3.5 fine-tuned for ta-
bles), GPT-4, GPT-4o, Stable Beluga 2 70B (Ma-
han et al., 2023), and SOLAR 70B (Upstage,
2023). We follow the numbers reported in previous
works (Narayan et al., 2022; Zhang et al., 2023a;
Brinkmann et al., 2023). Few-shots are used in line
with Jellyfish for fair comparison.

Metrics. For DP task solving, we measure accuracy
for DI, F1 score for ED, DI, EM, and AVE, and
micro-F1 for CTA, all reported on a 100-scale.

Environment. Training and inference of LLMs are
conducted on NVIDIA A100 80GB GPUs. We em-

ploy LoRA (Hu et al., 2021) and FlashAttention-
2 (Dao, 2023) for tuning and vLLM with PageAt-
tention (Kwon et al., 2023) for inference.

5.2 DP Performance

Seen Tasks. Table 4 reports the performance on the
seen tasks. GPT-4 performs the best in most cases
(11 out of 19). However, its score on the CMS
dataset of SM is mediocre. Jellyfish-13B wins the
second most (7 out of 19) and reports the best av-
erage score due to advantage over GPT-4 on the
CMS dataset. Comparing Jellyfish-13B with GPT-
3, GPT-3.5, GPT-4o, and Table-GPT, Jellyfish-13B
wins in more cases. Jellyfish-13B also outperforms
best of non-LLMs on all unseen datasets and all but
one seen datasets. Note that for non-LLM methods,
all the datasets are seen because they need to be
fine-tuned on them. Meanwhile, the 7B and 8B
Jellyfish models also exhibit competitiveness, es-
pecially for DI and EM, and their average scores
surpass best of non-LLMs and GPT-4o.

Unseen Tasks. Table 5 reports the performance
comparison on the unseen tasks. For CTA, GPT-4
performs the best. Jellyfish models also exhibit
competitiveness, especially for the 7B and 13B
models. For AVE, all the Jellyfish models show-
case strong generalizability. In particular, Jellyfish-
8B and Jellyfish-13B surpass the two 70B models
on both datasets, and outperform GPT-4 on the
AE-110k dataset.

5.3 Improvement of Jellyfish over Base
Models

Table 6 compares Jellyfish models and their base
models on DP tasks. Consistent performance im-
provement is observed on all datasets for the 7B
and 13B models, and on all but one dataset for the
8B model. The improvement of the 7B model is the
most significant, with an average score of 35. For
the 8B and 13B models, the improvement is also
remarkable, with an average of 18 and 21, respec-
tively. We also observe that the tuning benefits the
performance on unseen datasets and unseen tasks.
Such impact is the most significant on EM’s un-
seen data, showcasing that the knowledge injected
through tuning applies well to unseen scenarios.

5.4 NLP Performance

Table 7 compares Jellyfish models and their
original models on various NLP bench-
marks (Hendrycks et al., 2020; Sakaguchi

8759

Table 4: DP performance on seen tasks, accuracy for DI and F1 score for the other three tasks, with winners in
boldface and runners-up underlined. All datasets are seen for non-LLM methods and Table-GPT. All datasets are
unseen for GPT-3/3.5/4/4o. For LLM methods, zero-shot is used on seen datasets and few-shot is used on unseen
datasets. “–” indicates numbers not reported in prior works for this dataset.

Task Type Dataset Model
Best of

non-LLM
GPT-3 GPT-3.5 GPT-4 GPT-4o Table-

GPT
Jellyfish-

7B
Jellyfish-

8B
Jellyfish-

13B

ED
Seen Adult 99.10 99.10 92.01 92.01 83.58 – 77.40 73.74 99.33

Hospital 94.40 97.80 90.74 90.74 44.76 – 94.51 93.40 95.59

Unseen Flights 81.00 – – 83.48 66.01 – 69.15 66.21 82.52
Rayyan 79.00 – – 81.95 68.53 – 75.07 81.06 90.65

DI
Seen Buy 96.50 98.50 98.46 100 100 – 98.46 98.46 100

Restaurant 77.20 88.40 94.19 97.67 90.70 – 89.53 87.21 89.53

Unseen Flipkart 68.00 – – 89.94 83.20 – 87.14 87.48 81.68
Phone 86.70 – – 90.79 86.78 – 86.52 85.68 87.21

SM Seen MIMIC-III 20.00 – – 40.00 29.41 – 53.33 45.45 40.00
Synthea 38.50 45.20 57.14 66.67 6.56 – 55.56 47.06 56.00

Unseen CMS 50.00 – – 19.35 22.22 – 42.86 38.10 59.29

EM
Seen

Amazon-Google 75.58 63.50 66.50 74.21 70.91 70.10 81.69 81.42 81.34
Beer 94.37 100 96.30 100 90.32 96.30 100.00 100.00 96.77

DBLP-ACM 98.99 96.60 96.99 97.44 95.87 93.80 98.65 98.77 98.98
DBLP-GoogleScholar 95.70 83.80 76.12 91.87 90.45 92.40 94.88 95.03 98.51

Fodors-Zagats 100 100 100 100 93.62 100 100 100 100
iTunes-Amazon 97.06 98.20 96.40 100 98.18 94.30 96.30 96.30 98.11

Unseen Abt-Buy 89.33 – – 92.77 78.73 – 86.06 88.84 89.58
Walmart-Amazon 86.89 87.00 86.17 90.27 79.19 82.40 84.91 85.24 89.42

Average 80.44 - - 84.17 72.58 - 82.74 81.55 86.02

Table 5: DP performance on unseen tasks, micro-F1 for CTA and F1 for AVE. CTA is a seen task for RoBERTa.
Zero-shot is used for LLMs. “–” indicates numbers not reported in prior works for this dataset.

Task Dataset Model
RoBERTa
(159 shots)

RoBERTa
(356 shots)

Stable Beluga
2 70B

SOLAR
70B

GPT-3.5 GPT-4 GPT-4o Jellyfish-
7B

Jellyfish-
8B

Jellyfish-
13B

CTA SOTAB 79.20 89.73 – – 89.47 91.55 65.06 83.00 76.33 82.00

AVE AE-110k – – 52.10 49.20 61.30 55.50 55.77 56.09 59.55 58.12
OA-Mine – – 50.80 55.20 62.70 68.90 60.20 51.98 59.22 55.96

Table 6: Improvement of Jellyfish over base models on DP. Zero-shot is used on seen datasets and few-shot is used
on unseen datasets. All datasets are unseen for base models.

Task Type Dataset Model
Mistral-7B Jellyfish-7B Llama 3-8B Jellyfish-8B OOP2-13B Jellyfish-13B

ED
Seen Adult 20.66 77.40 (+56.74) 47.42 73.74 (+26.32) 61.53 99.33 (+37.80)

Hospital 37.09 94.51 (+57.42) 52.51 93.40 (+40.89) 63.24 95.59 (+32.35)

Unseen Flights 28.07 69.15 (+41.08) 67.71 66.21 (-1.50) 73.01 82.52 (+9.51)
Rayyan 22.86 75.07 (+52.21) 62.46 81.06 (+18.64) 89.37 90.65 (+1.28)

DI
Seen Buy 76.92 98.46 (+21.54) 86.15 98.46 (+12.31) 89.23 100 (+10.77)

Restaurant 18.75 89.53 (+70.78) 43.02 87.21 (+44.19) 81.40 89.53 (+8.13)

Unseen Flipkart 79.52 87.14 (+7.62) 66.50 87.48 (+20.98) 78.49 81.68 (+3.19)
Phone 76.72 86.52 (+9.80) 82.16 85.68 (+3.52) 84.33 87.21 (+2.88)

SM Seen MIMIC-III 6.90 53.33 (+46.43) 14.81 45.45 (+30.64) 36.36 40 (+3.64)
Synthea 26.67 55.56 (+28.89) 23.52 47.06 (+23.54) 22.22 56 (+33.78)

Unseen CMS 0 42.86 (+42.86) 27.02 38.10 (+11.08) 13.33 59.29 (+45.96)

EM
Seen

Amazon-Google 36.51 81.69 (+45.15) 60.67 81.42 (+20.75) 36.70 81.34 (+44.64)
Beer 69.57 100 (+30.43) 88 100 (+12) 85.71 96.77 (+11.06)

DBLP-ACM 85.30 98.65 (+13.35) 82.14 98.77 (+16.63) 78.86 98.98 (+20.12)
DBLP-GoogleScholar 59.54 94.88 (+35.34) 76.15 95.03 (+18.88) 59.48 98.51 (+39.03)

Fodors-Zagats 66.67 100 (+33.33) 95.23 100 (+4.77) 92.68 100 (+7.32)
iTunes-Amazon 70.97 96.30 (+25.33) 79.36 96.30 (+16.94) 57.45 98.11 (+40.66)

Unseen Abt-Buy 36.99 86.06 (+49.07) 44.60 88.84 (+44.24) 31.51 89.58 (+58.07)
Walmart-Amazon 63.14 84.91 (+21.77) 59.69 85.24 (+25.55) 65.21 89.42 (+24.21)

CTA Unseen SOTAB 23.49 83.00 (+59.1) 64.25 76.33 (+12.08) 56.36 82.00 (+25.64)

AVE Unseen AE-110k 32.92 56.09 (+23.17) 56.33 59.55 (+3.22) 43.87 58.12 (+14.25)
OA-Mine 32.44 51.98 (+19.54) 55.57 59.22 (+3.65) 54.81 55.96 (+1.15)

Average 44.17 80.14 (+35.97) 60.69 79.30 (+18.60) 61.60 83.21 (+21.61)

Table 7: NLP performance on the Open LLM Leaderboard.

Size Model MMLU WinoGrande ARC TruthfulQA GSM8K HellaSwag Average
(5-shot) (0-shot) (25-shot) (0-shot) (8-shot) (10-shot)

7B Mistral-7B 62.91 73.88 63.48 66.91 41.32 84.79 65.55
Jellyfish-7B 62.08 (-0.83) 72.69 (-1.19) 63.48 (+0.00) 64.76 (-2.15) 37.91 (-3.41) 84.48 (-0.31) 64.23 (-1.32)

8B Llama 3-8B 64.51 71.74 61.01 51.63 70.36 78.61 66.31
Jellyfish-8B 64.23 (-0.28) 72.06 (+0.32) 60.15 (-0.14) 51.83 (+0.20) 69.29 (-1.07) 77.92 (-0.69) 65.76 (-0.56)

13B OOP2-13B 54.49 74.03 62.63 52.56 25.32 83.24 58.71
Jellyfish-13B 53.04 (-1.45) 74.19 (+0.16) 62.88 (+0.25) 52.56 (+0.00) 24.26 (-1.06) 83.16 (-0.08) 58.35 (-0.36)

8760

1000 4000 16000 64000
DP Task Data Size

50

60

70

80

90
ED

 S
co

re

1000 4000 16000 64000
DP Task Data Size

60

70

80

DI
 S

co
re

1000 4000 16000 64000
DP Task Data Size

60

70

80

Av
er

ag
e

1000 4000 16000 64000
DP Task Data Size

20

30

40

50

SM
 S

co
re

1000 4000 16000 64000
DP Task Data Size

60

70

80

90

EM
 S

co
re

ED
DI
SM

EM
OOP2-13B
Jellyfish-13B

Figure 3: Impact of tuning with single-task data on DP
performance, zero-shot. Above red line is positive.

et al., 2021; Lin et al., 2021; Chollet, 2019; Cobbe
et al., 2021; Zellers et al., 2019) of the Open LLM
Leaderboard (Face, 2024). For the 8B and 13B
models, their NLP performance roughly retains
after tuning for DP, with very slight change (0.56
and 0.36 on average, respectively), and even
improves on two benchmarks. This is because we
use natural language instructions to tune Jellyfish
for DP tasks, keeping the same interaction format
of their base models. The 7B model sacrifices
more NLP performance (1.32 on average) for DP
performance. We think this reflects the no free
lunch theorem (Wolpert and Macready, 1997),
considering its smallest size among the three.

5.5 Impact of Instruction Data Configuration

We study the impact of the data configuration in
the instruction data. For this set of experiments, we
randomly sample data from the datasets in Table 1
and disable the data preparation techniques regard-
ing positives and missing values (Section 3.1) to
see the impact of dataset size clearly.

To simplify the evaluation, we tune the 13B
model with data for a single DP task and evaluate
its effect. By varying the amount of data, Figure 3
displays how the tuning data for a specific task af-
fects the DP performance. In general, the four tasks
are all useful in improving the overall performance.
For intra-task performance (e.g., ED to ED), as ex-
pected, the tuning data has a significantly positive
impact. For inter-task performance, ED and SM are
generally positive to other tasks, while DI and EM
report negative effects. Such impact on the overall
DP performance is also observed when we increase
the amount of tuning data (e.g., doubling EM from
21k to 43k). We also find that DI can benefit from
all the other three tasks. We think this is because
the other three tasks all contain correct values for
the attributes, thereby enhancing the model’s ability
in filling missing values. In addition, the benefit of
increasing tuning data for SM is obvious. Overall,

0 5000 10000 15000 20000
Reasoning Data Size

70
75

80

85
90

ED
 S

co
re

0 5000 10000 15000 20000
Reasoning Data Size

78

81

84

87
90

DI
 S

co
re

0 5000 10000 15000 20000
Reasoning Data Size

78

81

84

Av
er

ag
e

0 5000 10000 15000 20000
Reasoning Data Size

36

40

44

48
52

SM
 S

co
re

0 5000 10000 15000 20000
Reasoning Data Size

90

92
94

EM
 S

co
re

Mistral-7B
Llama3-8B
OOP2-13B

Figure 4: Impact of reasoning data on DP performance,
zero-shot, plotted in log scale to show trends clearly.

these observations results in the data configuration
in constructing Jellyfish (Section 3.1). More results
for this experiment appear in Appendix C.2.

5.6 Impact of Reasoning Data

Figure 4 shows how reasoning data, varying from
8k, 11k, 14k, to 20k instances, impacts the DP
performance. For the 7B and 8B models, the aver-
age scores increase first and then drop when more
reasoning data is used for tuning, suggesting that
small amount of reasoning data – with the rationale
behind DP – can enhance the model’s DP perfor-
mance. Seeing this, we choose 14k and 8k for the
two models, respectively, as the reasoning data size
for tuning, striking a balance for the overall perfor-
mance. For the 13B model, the scores drastically
reduce and then rebound with more reasoning data.
This may be attributed to the reasoning and logic
capabilities of OOP2-13B, which are intended to
enhance those of Llama 2 but ultimately do not
align well with the underlying logic of DP. Only
when the DP reasoning data reaches 20k, the model
learns to handle DP well with reasoning. Nonethe-
less, the scores are still below those without rea-
soning, and thus we choose not to tune the 13B
model with reasoning data. For interpretation per-
formance, we refer readers to Appendix C.4.

5.7 Comparison of Efficiency

With 8 GPUs of A100 80G, instruction tuning
spends around 5 hours for Jellyfish-13B, 3 hours for
Jellyfish-7B and Jellyfish-8B. For inference on sin-
gle GPU of A100 80G, Jellyfish-7B, 8B, and 13B
spend 0.07, 0.08, and 0.15 seconds, respectively,
on average to process an instance. As a reference,
GPT-4 spends an average of 1 – 8 seconds per
instance. Although LLMs require substantial com-
putational resources, thereby increasing the cost
of use and compromising the efficiency, some non-
LLM methods, such as RoBERTa and those built
upon it (e.g., IPM), need fine-tuning when applied

8761

to unseen datasets. This fine-tuning time should be
counted towards total time expense for fair com-
parison. Moreover, advanced learning techniques
enables Jellyfish models to be quantized (Liu et al.,
2023) or distilled to improve efficiency, which will
be considered in the future. To further save process-
ing time, users are also suggested using a simple
but faster method to retrieve a set of candidates and
then apply Jellyfish models to the candidates. For
example, for EM, blocking is often used to group
similar records together based on certain attributes
and narrow the comparisons to within each block.

For batch processing of multiple instances, the
speed can be improved by 1.31 and 1.27 times
for 8B and 13B models, respectively, when prefix
caching is enabled in vLLM. However, this opti-
mization is not available for the 7B model due to
the sliding window attention used in Mistral-7B.

As for memory consumption, Jellyfish-7B, 8B,
and 13B spend 18GB, 20GB, and 30GB VRAM (in-
cluding the model), respectively. To further reduce
memory consumption, we can resort to activation-
aware weight quantization (Lin et al., 2024). By do-
ing so, the memory consumption of the 7B and 8B
models can be reduced to 7.5GB and 8GB, respec-
tively, without compromising much of the perfor-
mance (-1.25 and -0.52 average micro-F1/accuracy
for the 7B and 8B models, respectively).

6 Related Works

The DP tasks targeted in this paper have been
extensively studied. While traditional methods
mainly depend on hand-crafted rules (Chu et al.,
2013; Rekatsinas et al., 2017; Song et al., 2018; Pa-
padakis et al., 2020), advanced approaches employ
ML techniques. (1) For ED, HoloDetect (Heidari
et al., 2019) utilizes few-shot learning with a noisy
channel model, and Raha (Mahdavi et al., 2019)
resorts to a series of ML pipelines such as feature
engineering. (2) For DI, notable approaches are
based on VAE (Nazabal et al., 2020), GAN (Yoon
et al., 2018), attention mechanisms (Wu et al.,
2020; Tihon et al., 2021), and PLMs (Mei et al.,
2021). (3) For SM, learning-to-rank (Gal et al.,
2019), deep similarity matrix (Shraga et al., 2020),
and attention-based approach have been devel-
oped (Zhang et al., 2021). (4) For EM, prevalent
approaches employ deep learning models for block-
ing (Thirumuruganathan et al., 2021) or pairwise
matching (Mudgal et al., 2018), as well as PLMs
for both procedures (Li et al., 2020). Moreover, a

PLM solution (Tu et al., 2023) is available for both
SM and EM. (5) For CTA, prevalent approaches are
mainly based on table representation learning (Iida
et al., 2021; Deng et al., 2022; Suhara et al., 2022).
Recently, ChatGPT has been utilized (Korini and
Bizer, 2023). (6) For AVE, early approaches em-
ploy LSTM (Kozareva et al., 2016; Zheng et al.,
2018). With the advent of PLMs, many solutions
resort to tuning BERT (Xu et al., 2019; Wang et al.,
2020; Zhu et al., 2020). A recent work (Brinkmann
et al., 2023) considered tuning GPT-3.5 and prompt-
ing GPT-4.

The above methods are non-LLM solutions prior
to the LLM era. Many of them are based on PLMs
that only apply to one or two DP tasks and need
fine-tuning on the target dataset. Recent progress
developed generic solutions to DP based on frozen
LLMs such as GPT-3 (Narayan et al., 2022), GPT-
3.5, and GPT-4 (Zhang et al., 2023a). Fine-tuning
GPT-3.5 and ChatGPT for a variety of table-related
tasks has also been investigated (Li et al., 2023).

Besides the six tasks investigated in this paper,
other DP tasks include data repairing (Rekatsinas
et al., 2017; Mahdavi and Abedjan, 2020; Lew
et al., 2021; Qin et al., 2023), data fusion (Azzalini
et al., 2023; Heidari et al., 2023), and data transfor-
mation (He et al., 2018; Jin et al., 2020). We will
investigate them in our future work.

7 Conclusions

We studied the problem of instruction-tuning LLMs
as universal DP task solvers. By devising data
preparation and knowledge injection techniques,
we proposed Jellyfish, which enables users to craft
instructions for DP tasks. Another notable feature
of Jellyfish is its interpretation ability, providing
explanations of its outputs. We tuned three base
models ranging from 7B to 13B, which can operate
on a local GPU without compromising data secu-
rity. The experiments demonstrated the competi-
tiveness of Jellyfish against existing DP solutions,
impressive generalizability to new tasks, the ability
of retaining performance in NLP tasks, as well as
the competence in interpretation.

Acknowledgements

This work is mainly supported by NEC Cor-
poration and partially supported by JSPS Kak-
enhi 23K17456, 23K25157, 23K28096, and JST
CREST JPMJCR22M2.

8762

Ethical Statement

In this work, we study tuning LLMs for DP. To the
best of our knowledge, there is no negative societal
impact in this research.

Despite generative AI used to polish the writing
of the paper, we are responsible for all the materials
presented in this work.

Limitations

We investigated six DP tasks in this paper, whereas
there are still many other tasks (e.g., data repair-
ing, data fusion, and data transformation). We will
investigate them in our future work.

We discovered that our reasoning data compro-
mises the 13B model’s DP performance, possibly
because OpenOrca-Platypus2-13B’s reasoning and
logic do not align well with the underlying logic
of DP. In contrast, the 7B and 8B models, derived
from native models Mistral-7B and Llama 3-8B,
respectively, can benefit from the use of reasoning
data. Due to the lack of (approximately) 13B size
for these two base models, we cannot deliver better
DP performance than the 13B model while pre-
serving the interpretation ability. Nonetheless, we
believe that our instruction data can apply to more
advanced base models, with which better DP per-
formance and interpretation ability could be both
achieved.

Our prompt is designed as instance-based, rather
than the table-based setting which was adopted in
many non-LLM approaches. This is partially due
to the token limitation of the LLMs we used (e.g.,
4096 tokens for a 13B model), and compromises
efficiency when we use our models for large-scale
datasets. We can use prefix caching to alleviate this
issue, as shown in our experiments.

Another limitation is that LLMs might further
introduce errors. For example, there is a chance
that the model treats correct values as errors in ED.
If we use DI on the entries incorrectly detected, it
is possible that errors might be further introduced.
Nonetheless, Jellyfish models still report higher ac-
curacy than non-LLM solutions. Furthermore, in
the instruction-tuning of Jellyfish, we chose base
models that generate content in a safe and responsi-
ble way, and tried our best to configure the tuning
data to avoid bias or safety issues.

Furthermore, when using our models for prac-
tical data mining pipelines, we also need to care-
fully consider the issues of preprocessing and post-
processing. For example, the input data may be

scanned copies and contain hierarchical tables,
while we focus on relational tables in this work.

References
Fabio Azzalini, Davide Piantella, Emanuele Rabosio,

and Letizia Tanca. 2023. Enhancing domain-aware
multi-truth data fusion using copy-based source au-
thority and value similarity. The VLDB Journal,
32(3):475–500.

Alexander Brinkmann, Roee Shraga, and Christian
Bizer. 2023. Product attribute value extraction
using large language models. arXiv preprint
arXiv:2310.12537.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. NeurIPS, 33:1877–1901.

Adriane Chapman, Elena Simperl, Laura Koesten,
George Konstantinidis, Luis-Daniel Ibáñez, Emilia
Kacprzak, and Paul Groth. 2020. Dataset search: a
survey. The VLDB Journal, 29(1):251–272.

François Chollet. 2019. On the measure of intelligence.
arXiv preprint arXiv:1911.01547.

Xu Chu, Ihab F Ilyas, and Paolo Papotti. 2013. Holistic
data cleaning: Putting violations into context. In
ICDE, pages 458–469. IEEE.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Tri Dao. 2023. FlashAttention-2: Faster attention
with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691.

Sanjib Das, AnHai Doan, Paul Suganthan G. C.,
Chaitanya Gokhale, Pradap Konda, Yash
Govind, and Derek Paulsen. The magel-
lan data repository. https://sites.google.
com/site/anhaidgroup/useful-stuff/
the-magellan-data-repository.

Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong
Yu. 2022. TURL: Table understanding through repre-
sentation learning. ACM SIGMOD Record, 51(1):33–
40.

Hugging Face. 2024. Open llm leader-
board. https://huggingface.co/spaces/
HuggingFaceH4/open_llm_leaderboard.

Flipkart.com. Flipkart products. https:
//www.kaggle.com/datasets/PromptCloudHQ/
flipkart-products.

8763

https://sites.google.com/site/anhaidgroup/useful-stuff/the-magellan-data-repository
https://sites.google.com/site/anhaidgroup/useful-stuff/the-magellan-data-repository
https://sites.google.com/site/anhaidgroup/useful-stuff/the-magellan-data-repository
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://www.kaggle.com/datasets/PromptCloudHQ/flipkart-products
https://www.kaggle.com/datasets/PromptCloudHQ/flipkart-products
https://www.kaggle.com/datasets/PromptCloudHQ/flipkart-products

Avigdor Gal, Haggai Roitman, and Roee Shraga.
2019. Learning to rerank schema matches. IEEE
Transactions on Knowledge and Data Engineering,
33(8):3104–3116.

Rihan Hai, Christos Koutras, Christoph Quix, and
Matthias Jarke. 2023. Data lakes: A survey of func-
tions and systems. IEEE Transactions on Knowledge
and Data Engineering.

Jiawei Han, Jian Pei, and Hanghang Tong. 2022. Data
mining: concepts and techniques. Morgan kauf-
mann.

Yeye He, Xu Chu, Kris Ganjam, Yudian Zheng, Vivek
Narasayya, and Surajit Chaudhuri. 2018. Transform-
data-by-example (TDE) an extensible search engine
for data transformations. PVLDB, 11(10):1165–
1177.

Alireza Heidari, Joshua McGrath, Ihab F Ilyas, and
Theodoros Rekatsinas. 2019. HoloDetect: Few-shot
learning for error detection. In SIGMOD, pages 829–
846.

Alireza Heidari, George Michalopoulos, Ihab F Ilyas,
and Theodoros Rekatsinas. 2023. Record fusion via
inference and data augmentation. ACM/JMS Journal
of Data Science.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. LoRA: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Hiroshi Iida, Dung Thai, Varun Manjunatha, and Mohit
Iyyer. 2021. Tabbie: Pretrained representations of
tabular data. arXiv preprint arXiv:2105.02584.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Zhongjun Jin, Yeye He, and Surajit Chauduri. 2020.
Auto-transform: learning-to-transform by patterns.
PVLDB, 13(12):2368–2381.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. arXiv preprint
arXiv:2205.11916.

Pradap Konda, Sanjib Das, AnHai Doan, Adel Ardalan,
Jeffrey R Ballard, Han Li, Fatemah Panahi, Haojun
Zhang, Jeff Naughton, Shishir Prasad, et al. 2016.
Magellan: toward building entity matching manage-
ment systems over data science stacks. PVLDB,
9(13):1581–1584.

Keti Korini and Christian Bizer. 2023. Column
type annotation using ChatGPT. arXiv preprint
arXiv:2306.00745.

Zornitsa Kozareva, Qi Li, Ke Zhai, and Weiwei Guo.
2016. Recognizing salient entities in shopping
queries. In ACL, pages 107–111.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In SOSP.

Ariel N. Lee, Cole J. Hunter, Nataniel Ruiz, Bleys
Goodson, Wing Lian, Guan Wang, Eugene Pentland,
Austin Cook, Chanvichet Vong, and "Teknium". 2023.
OpenOrcaPlatypus: Llama2-13B model instruct-
tuned on filtered OpenOrcaV1 GPT-4 dataset and
merged with divergent STEM and logic dataset
model. https://huggingface.co/Open-Orca/
OpenOrca-Platypus2-13B.

Alexander Lew, Monica Agrawal, David Sontag, and
Vikash Mansinghka. 2021. PClean: Bayesian data
cleaning at scale with domain-specific probabilis-
tic programming. In AISTATS, pages 1927–1935.
PMLR.

Peng Li, Yeye He, Dror Yashar, Weiwei Cui, Song Ge,
Haidong Zhang, Danielle Rifinski Fainman, Dong-
mei Zhang, and Surajit Chaudhuri. 2023. Table-
GPT: Table-tuned GPT for diverse table tasks. arXiv
preprint arXiv:2310.09263.

Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan,
and Wang-Chiew Tan. 2020. Deep entity matching
with pre-trained language models. PVLDB, 14(1):50–
60.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-
Ming Chen, Wei-Chen Wang, Guangxuan Xiao,
Xingyu Dang, Chuang Gan, and Song Han. 2024.
Awq: Activation-aware weight quantization for on-
device llm compression and acceleration. Proceed-
ings of Machine Learning and Systems, 6:87–100.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2021.
TruthfulQA: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958.

Shih-yang Liu, Zechun Liu, Xijie Huang, Pingcheng
Dong, and Kwang-Ting Cheng. 2023. LLM-FP4:
4-bit floating-point quantized transformers. arXiv
preprint arXiv:2310.16836.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

Dakota Mahan, Ryan Carlow, Louis Castricato, Nathan
Cooper, and Christian Laforte. 2023. Stable bel-
uga 2. https://huggingface.co/stabilityai/
StableBeluga2.

8764

https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B
https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B
https://huggingface.co/stabilityai/StableBeluga2
https://huggingface.co/stabilityai/StableBeluga2

Mohammad Mahdavi and Ziawasch Abedjan. 2020.
Baran: Effective error correction via a unified con-
text representation and transfer learning. PVLDB,
13(12):1948–1961.

Mohammad Mahdavi, Ziawasch Abedjan, Raul Cas-
tro Fernandez, Samuel Madden, Mourad Ouzzani,
Michael Stonebraker, and Nan Tang. 2019. Raha:
A configuration-free error detection system. In SIG-
MOD, pages 865–882.

Yinan Mei, Shaoxu Song, Chenguang Fang, Haifeng
Yang, Jingyun Fang, and Jiang Long. 2021. Cap-
turing semantics for imputation with pre-trained lan-
guage models. In ICDE, pages 61–72. IEEE.

Meta AI. 2024. Introducing Meta Llama 3: The most
capable openly available LLM to date. https://ai.
meta.com/blog/meta-llama-3/.

Sidharth Mudgal, Han Li, Theodoros Rekatsinas, An-
Hai Doan, Youngchoon Park, Ganesh Krishnan, Ro-
hit Deep, Esteban Arcaute, and Vijay Raghavendra.
2018. Deep learning for entity matching: A design
space exploration. In SIGMOD, pages 19–34.

Avanika Narayan, Ines Chami, Laurel Orr, and Christo-
pher Ré. 2022. Can foundation models wrangle your
data? PVLDB, 16(4):738–746.

Alfredo Nazabal, Pablo M Olmos, Zoubin Ghahramani,
and Isabel Valera. 2020. Handling incomplete het-
erogeneous data using VAEs. Pattern Recognition,
107:107501.

OpenAI. 2023. March 20 ChatGPT outage: Here’s what
happened.

George Papadakis, Dimitrios Skoutas, Emmanouil
Thanos, and Themis Palpanas. 2020. Blocking and
filtering techniques for entity resolution: A survey.
ACM Computing Surveys, 53(2):1–42.

Jianbin Qin, Sifan Huang, Yaoshu Wang, Jing Zhu, Yi-
fan Zhang, Yukai Miao, Rui Mao, Makoto Onizuka,
and Chuan Xiao. 2023. BClean: A bayesian data
cleaning system. arXiv preprint arXiv:2311.06517.

Theodoros Rekatsinas, Xu Chu, Ihab F Ilyas, and
Christopher Ré. 2017. HoloClean: Holistic data
repairs with probabilistic inference. PVLDB,
10(10):1190–1201.

Amazon Reviews. Amazon reviews: Un-
locked mobile phones. https://www.
kaggle.com/datasets/PromptCloudHQ/
amazon-reviews-unlocked-mobile-phones.

Dominique Ritze, Oliver Lehmberg, Yaser Oulabi, and
Christian Bizer. 2016. Profiling the potential of web
tables for augmenting cross-domain knowledge bases.
In WWW, pages 251–261.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99–106.

Roee Shraga, Avigdor Gal, and Haggai Roitman. 2020.
Adnev: Cross-domain schema matching using deep
similarity matrix adjustment and evaluation. PVLDB,
13(9):1401–1415.

Shaoxu Song, Yu Sun, Aoqian Zhang, Lei Chen, and
Jianmin Wang. 2018. Enriching data imputation un-
der similarity rule constraints. IEEE transactions on
knowledge and data engineering, 32(2):275–287.

Yoshihiko Suhara, Jinfeng Li, Yuliang Li, Dan Zhang,
Çağatay Demiralp, Chen Chen, and Wang-Chiew Tan.
2022. Annotating columns with pre-trained language
models. In SIGMOD, pages 1493–1503.

Saravanan Thirumuruganathan, Han Li, Nan Tang,
Mourad Ouzzani, Yash Govind, Derek Paulsen,
Glenn Fung, and AnHai Doan. 2021. Deep learn-
ing for blocking in entity matching: a design space
exploration. PVLDB, 14(11):2459–2472.

Simon Tihon, Muhammad Usama Javaid, Damien Fou-
rure, Nicolas Posocco, and Thomas Peel. 2021.
DAEMA: Denoising autoencoder with mask atten-
tion. In ICANN, pages 229–240.

Jianhong Tu, Ju Fan, Nan Tang, Peng Wang, Guoliang
Li, Xiaoyong Du, Xiaofeng Jia, and Song Gao. 2023.
Unicorn: A unified multi-tasking model for support-
ing matching tasks in data integration. Proceedings
of the ACM on Management of Data, 1(1):1–26.

Upstage. 2023. Solar-0-70b-16bit. https://
huggingface.co/upstage/SOLAR-0-70b-16bit.

vLLM Team. 2024. vLLM: Easy, fast, and cheap LLM
serving with PagedAttention. https://vllm.ai.

Qifan Wang, Li Yang, Bhargav Kanagal, Sumit Sanghai,
D Sivakumar, Bin Shu, Zac Yu, and Jon Elsas. 2020.
Learning to extract attribute value from product via
question answering: A multi-task approach. In KDD,
pages 47–55.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903.

Lilian Weng. 2023. Prompt engineering.
https://lilianweng.github.io/posts/
2023-03-15-prompt-engineering/.

David H Wolpert and William G Macready. 1997. No
free lunch theorems for optimization. IEEE transac-
tions on evolutionary computation, 1(1):67–82.

Richard Wu, Aoqian Zhang, Ihab Ilyas, and Theodoros
Rekatsinas. 2020. Attention-based learning for miss-
ing data imputation in HoloClean. MLSys, 2:307–
325.

Huimin Xu, Wenting Wang, Xinnian Mao, Xinyu Jiang,
and Man Lan. 2019. Scaling up open tagging from
tens to thousands: Comprehension empowered at-
tribute value extraction from product title. In ACL,
pages 5214–5223.

8765

https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://openai.com/blog/march-20-chatgpt-outage
https://openai.com/blog/march-20-chatgpt-outage
https://www.kaggle.com/datasets/PromptCloudHQ/amazon-reviews-unlocked-mobile-phones
https://www.kaggle.com/datasets/PromptCloudHQ/amazon-reviews-unlocked-mobile-phones
https://www.kaggle.com/datasets/PromptCloudHQ/amazon-reviews-unlocked-mobile-phones
https://huggingface.co/upstage/SOLAR-0-70b-16bit
https://huggingface.co/upstage/SOLAR-0-70b-16bit
https://vllm.ai
https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/
https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/

Jinsung Yoon, James Jordon, and Mihaela Schaar. 2018.
GAIN: Missing data imputation using generative ad-
versarial nets. In ICML, pages 5689–5698.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

Haochen Zhang, Yuyang Dong, Chuan Xiao, and
Masafumi Oyamada. 2023a. Large language
models as data preprocessors. arXiv preprint
arXiv:2308.16361.

Jing Zhang, Bonggun Shin, Jinho D Choi, and Joyce C
Ho. 2021. SMAT: An attention-based deep learning
solution to the automation of schema matching. In
ADBIS, pages 260–274. Springer.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang,
Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tian-
wei Zhang, Fei Wu, et al. 2023b. Instruction tuning
for large language models: A survey. arXiv preprint
arXiv:2308.10792.

Tianshu Zhang, Xiang Yue, Yifei Li, and Huan Sun.
2023c. Tablellama: Towards open large generalist
models for tables. arXiv preprint arXiv:2311.09206.

Guineng Zheng, Subhabrata Mukherjee, Xin Luna
Dong, and Feifei Li. 2018. Opentag: Open attribute
value extraction from product profiles. In KDD,
pages 1049–1058.

Tiangang Zhu, Yue Wang, Haoran Li, Youzheng
Wu, Xiaodong He, and Bowen Zhou. 2020. Mul-
timodal joint attribute prediction and value ex-
traction for e-commerce product. arXiv preprint
arXiv:2009.07162.

8766

A Experimental Setup

Hyperparameters. The following hyperparameters are used for Jellyfish models’ tuning and inference:

Table 8: Hyperparameter setting.

Category Parameter Value

Tuning

lora_target q_proj, k_proj, v_proj, o_proj
per_device_train_batch_size 2
gradient_accumulation_steps 2
learning_rate 3e-5
num_train_epochs 5
lora_rank 32
lora_alpha 32

Inference
temperature 0.35
top_p 0.9
top_k 20

Datasets. Apart from the seen datasets in building Jellyfish (Section 3), we use the following datasets as
unseen data, where CTA and AVE are case studies on unseen tasks. (1) ED: Flights and Rayyan (Mahdavi
et al., 2019); (2) DI: Flipkart (Flipkart.com) and Phone (Reviews) from Kaggle; (3) SM: CMS (Zhang
et al., 2021); (4) EM: Abt-Buy and Walmart-Amazon from the Magellan data repository (Das et al.);
(5) CTA: SOTAB (Korini and Bizer, 2023); (6) AVE: AE-110k and OA-Mine (Brinkmann et al., 2023).
The statistics of the datasets are reported in Table 3. We generate train/valid/test splits following the
protocols for Adult and Hospital (Heidari et al., 2019), Flipkart and Phone (Mei et al., 2021), and MIMIC-
III and CMS (Zhang et al., 2021). The other datasets have already been provided with splits (Narayan
et al., 2022; Korini and Bizer, 2023; Brinkmann et al., 2023).

Baselines. We categorize existing methods into non-LLM methods and LLM methods. For non-LLM
methods, we select the following baselines, in line with (Narayan et al., 2022): (1) ED: HoloDetect (Heidari
et al., 2019) and Raha (Mahdavi et al., 2019); (2) DI: IPM (Mei et al., 2021); (3) SM: SMAT (Zhang
et al., 2021); (4) EM: Ditto (Li et al., 2020) and Unicorn (Tu et al., 2023); (5) CTA: RoBERTa (Liu
et al., 2019). For their performance, we follow the best numbers reported in prior works (Narayan et al.,
2022; Korini and Bizer, 2023; Tu et al., 2023). Other methods such as Baran (Mahdavi and Abedjan,
2020), HoloClean (Rekatsinas et al., 2017), and DODUO (Suhara et al., 2022), have been shown to be
outperformed by the above competitors (Mei et al., 2021; Narayan et al., 2022; Korini and Bizer, 2023),
and hence are not compared here.

LLM methods are GPT-3 (text-davinci-002), GPT-3.5 (gpt-3.5-turbo-0301), Table-GPT (Li
et al., 2023) (GPT-3.5 fine-tuned for tables), GPT-4 (gpt-4-0314), GPT-4o (gpt-4o-2024-05-13),
Stable Beluga 2 70B (Mahan et al., 2023), and SOLAR 70B (Upstage, 2023). We follow the numbers
reported in previous works (Narayan et al., 2022; Zhang et al., 2023a; Brinkmann et al., 2023). Few-shots
are used in line with Jellyfish for fair comparison. TableLlama (Zhang et al., 2023c), which can handle
CTA, is not compared because it is tuned for CTA, whereas our purpose is to evaluate the performance of
LLMs on CTA as an unseen task.

B Extensions to Unseen Tasks

Column Type Annotation. As a task in the realm of table understanding, CTA is an essentially DP step for
data search (Chapman et al., 2020), knowledge base completion (Ritze et al., 2016), and data integration
a data lake (Hai et al., 2023). We follow the two-stage pipeline proposed in a previous work (Korini
and Bizer, 2023), which was designed for ChatGPT and based on chain-of-thought (Wei et al., 2022), a
technique that enables complex reasoning capabilities through intermediate reasoning steps.

Given a table to be annotated, in the first stage (table classification), the model predicts the domain of
the table. In the second stage (column classification), given a set of predefined types, the model determines
the type of column based on sample values extracted from it. The chain-of-thought prompt instructs the
model in a step-by-step manner. For example, to predict the domain of the table, there are four steps:

8767

Table 9: Impact of knowledge injection, zero-shot. “w/o KNL” denotes the model tuned without injected knowledge
in the DP task data.

Task Type Dataset Model
OOP2-13B Jellyfish-13B (w/o KNL) Jellyfish-13B

ED
Seen Adult 61.53 72 99.33

Hospital 63.24 69.81 95.59

Unseen Flights 73.01 65.44 82.52
Rayyan 89.37 76.14 90.65

DI
Seen Buy 89.23 93.85 100

Restaurant 81.40 88.37 89.53

Unseen Flipkart 78.49 82.80 81.68
Phone 84.33 83.58 87.21

SM Seen MIMIC-III 36.36 46.15 40
Synthea 22.22 53.33 56

Unseen CMS 13.33 7.14 59.29

EM
Seen

Amazon-Google 36.70 77.78 81.34
Beer 85.71 93.33 96.77

DBLP-ACM 78.86 97.36 98.98
DBLP-GoogleScholar 59.48 93.10 98.51

Fodors-Zagats 92.68 100 100
iTunes-Amazon 57.45 93.10 94.55

Unseen Abt-Buy 31.51 86.29 89.58
Walmart-Amazon 65.21 74.15 89.42

(1) look at the input and make a table out of it, (2) look at the cell values in detail, (3) decide if the table
describes domain A, domain B ... and (4) answer with the domain. Then, the model follows this prompt
to cope with the task. The column type selection in the second stage works in the same way, except that
table is replaced by column and domains are replaced by candidate types.

Attribute Value Extraction. Given a text description, AVE is an information extraction task that discovers
missing values of attributes and reconstructs a table. For this task, we follow the prompt in a previous
work (Brinkmann et al., 2023) designed for GPT-4. The prompt is simple, beginning with the task
description. Then, the instance content follows, with the description of the entity and the attribute to be
extracted. Finally, an exception rule is mentioned: if the attribute cannot be extracted, the model should
answer “N/A”.

In addition to the above unseen tasks, we also would like to mention that Jellyfish enables further
fine-tuning. Users may choose to condition the model for specific DP tasks or domains to seek better
performance. Moreover, Jellyfish can be utilized for multiple tasks in a DP pipeline, e.g., data cleaning
followed by data integration on the same sets of data. It is likely that the DP tasks within this pipeline
belong to the same domain. In this case, Jellyfish may deliver consistency in handling the data in different
tasks due to the built-in domain knowledge acquired through tuning.

C Additional Experiments

C.1 Impact of Knowledge Injection

To evaluate the impact of knowledge injection, we report in Table 9 the results for OOP2-13B and its
tuned version with knowledge either injected or not. Comparing OOP2-13B and the one without injected
knowledge, the performance is significantly raised on seen datasets but drops on a few unseen datasets.
When we turn on knowledge injection, the performance further improves the performance on seen datasets
and the improvement is consistent on all but two datasets. Furthermore, the improvement is also observed
and more significant on unseen datasets, because like seen datasets of Amazon-Google and Beer, they are
also product data. This observation suggests that the domain knowledge learned through tuning indeed
enhances the model’s generalizability to unseen datasets. In addition, the impact is the most remarkable
on CMS, the unseen dataset of SM, remedying the model’s performance on this dataset and making it
highly competitive.

8768

0 20000 40000 60000 80000 100000 120000 140000
DP Task Data Size

55

60

65

70

75

80

Av
er

ag
e

DP
 S

co
re

(1, 0, 1, 0)

(0, 1, 1, 0)
(0, 0, 1, 0)

(0, 1, 0, 0)

(0.5, 0.5, 0, 0)

(0.5, 0.5, 1, 0)

(1, 0, 0.5, 1)

(0, 0, 0, 1)

(0.5, 0.5, 1, 0.5)
(1, 0, 1, 1)

(1, 0.5, 0, 0)
(1, 0, 0, 1)

(1, 0, 0.5, 0)

(1, 0.5, 1, 0.5)

(0.5, 0, 1, 0.5)

(0, 0.5, 1, 0)

(0, 0.5, 0, 0)
(0, 0.5, 0, 1)

(0.5, 0, 0, 1)

(0, 0.5, 0.5, 0)

(1, 0, 0, 0.5)

(0.5, 1, 0.5, 0.5)

(0, 1, 1, 0.5)

(0, 1, 0.5, 1)

(0.5, 1, 0.5, 1)(1, 1, 0, 0.5)

(0, 1, 0.5, 0)

(1, 1, 1, 0)

(0.5, 0, 0.5, 0.5)

(0, 0, 0.5, 0)

(0, 0.5, 0.5, 1)

(0.5, 1, 1, 0)

(0.5, 0, 1, 0)
(0.5, 0, 0.5, 1)

(1, 0, 0.5, 0.5)
(0.5, 0.5, 0.5, 1)

(0, 0, 0.5, 1)

(1, 1, 1, 0.5)
(1, 0.5, 0.5, 1)

(1, 0.5, 0, 1)

(0.5, 1, 1, 1)

(0, 0.5, 0.5, 0.5)

(1, 0, 1, 0.5)

(0, 0, 0.5, 0.5)

(1, 1, 0, 0)

(1, 0.5, 0.5, 0)

(1, 1, 1, 1)

(0.5, 0.5, 0.5, 0.5)

(0, 0, 1, 0.5)
(0, 1, 1, 1)

(0.5, 0.5, 0, 1)

(0.5, 0, 0, 0.5)

(0.5, 0, 0.5, 0)

(0.5, 1, 0.5, 0) (0.5, 0, 1, 1)

(0.5, 1, 0, 0)

(1, 0.5, 1, 0)

(1, 1, 0.5, 1)

(0.5, 0.5, 0.5, 0)

(0, 0, 1, 1)

(0, 0, 0, 0.5)

(1, 1, 0.5, 0)

(1, 0.5, 1, 1)

(0.5, 0, 0, 0) (0, 1, 0.5, 0.5)

(1, 0.5, 0, 0.5) (0.5, 1, 0, 1) (1, 1, 0, 1)

(0.5, 1, 0, 0.5)

(1, 1, 0.5, 0.5)

(0, 1, 0, 0.5)

(1, 0.5, 0.5, 0.5)

(0, 1, 0, 1)

(0.5, 0.5, 1, 1)
(0.5, 1, 1, 0.5)

(1, 0, 0, 0)

(0.5, 0.5, 0, 0.5)

(0, 0.5, 1, 1)

(0, 0.5, 0, 0.5)

(0, 0.5, 1, 0.5)

Jellyfish-13BOOP2-13B
Jellyfish-13B
(ED, DI, SM, EM)

Figure 5: Impact of tuning with multi-task data on DP performance, zero-shot. Numbers in parenthesis indicate the
percentage of data used for each task.

1000 4000 16000 64000
DP Task Data Size

0.53

0.54

0.54

0.55

M
M

LU

1000 4000 16000 64000
DP Task Data Size

0.74

0.74

0.75

W
in

oG
ra

nd
e

1000 4000 16000 64000
DP Task Data Size

0.62

0.62

0.63
AR

C

1000 4000 16000 64000
DP Task Data Size

0.58

0.59

0.59

0.59

Av
er

ag
e

1000 4000 16000 64000
DP Task Data Size

0.52

0.53

0.53

0.54

Tr
ut

hf
ul

QA

1000 4000 16000 64000
DP Task Data Size

0.24

0.25

0.26

0.26

0.27

GS
M

8K

1000 4000 16000 64000
DP Task Data Size

0.83

0.83

0.83

0.83

0.83

0.83

He
lla

Sw
ag

ED
DI
SM
EM
OOP2-13B
Jellyfish-13B

Figure 6: Impact of tuning with single-task data on NLP performance. Above red line is positive.

0 20000 40000 60000 80000 100000 120000 140000
DP Task Data Size

0.582

0.584

0.586

0.588

0.590

0.592

Av
er

ag
e

LL
M

 L
ea

de
rb

oa
rd

 S
co

re

(0, 0.5, 1, 0.5)

(0, 1, 0.5, 0)

(1, 0.5, 0, 0.5)

(0.5, 1, 1, 1)

(0, 0, 0.5, 1)

(1, 0.5, 0, 1)

(1, 0, 0.5, 1)

(0, 0.5, 1, 1)

(0, 0.5, 0, 1)

(1, 0, 1, 0.5)

(0.5, 0, 1, 0.5)

(0, 1, 1, 0)

(0.5, 1, 0, 0.5)

(0.5, 1, 0, 1)(1, 0, 0, 0.5)

(1, 0.5, 0.5, 0)

(0, 1, 0, 1)

(1, 1, 0.5, 0.5)
(0.5, 0.5, 1, 0)

(0, 0.5, 0, 0) (0.5, 0, 0.5, 1)

(1, 0, 0, 1)

(0, 1, 1, 1)

(0.5, 0, 1, 0)

(0, 0, 0, 0.5)

(0, 0.5, 0.5, 0)

(0.5, 1, 0.5, 0.5)

(0.5, 0.5, 1, 1)

(1, 0, 0.5, 0.5)

(0.5, 0.5, 0.5, 1)

(0.5, 1, 0.5, 0) (0, 0.5, 0.5, 1)

(1, 0.5, 0, 0)
(0.5, 0.5, 0, 1)

(0.5, 0.5, 0, 0)

(0, 0.5, 0.5, 0.5)

(0.5, 1, 0.5, 1)
(0, 1, 0.5, 1)

(0, 0.5, 0, 0.5)

(0, 0, 0.5, 0)

(1, 0.5, 1, 0)

(0.5, 1, 0, 0)

(0.5, 0.5, 0.5, 0)

(1, 0.5, 1, 1)

(0, 0, 1, 1)

(0.5, 0, 0, 0)

(0.5, 0, 1, 1)

(1, 1, 0.5, 1)

(0, 0.5, 1, 0)

(1, 0.5, 1, 0.5)

(1, 0, 1, 1)

(1, 0.5, 0.5, 1)

(0, 0, 0, 1)

(0.5, 0, 0.5, 0.5)

(1, 0, 1, 0)
(1, 1, 0, 1)

(0.5, 0.5, 1, 0.5)

(0.5, 0, 0.5, 0)

(0, 1, 0, 0)

(0.5, 0.5, 0.5, 0.5) (0.5, 1, 1, 0)

(0, 0, 1, 0.5)

(0.5, 0, 0, 1)

(1, 1, 0, 0)

(1, 1, 0, 0.5)

(1, 0, 0, 0)

(0, 1, 0.5, 0.5)

(1, 1, 1, 0)

(0.5, 0.5, 0, 0.5)

(1, 1, 0.5, 0)

(0.5, 1, 1, 0.5)

(0, 0, 1, 0)

(0, 1, 0, 0.5)

(0.5, 0, 0, 0.5)

(1, 0.5, 0.5, 0.5)

(1, 1, 1, 0.5)

(1, 1, 1, 1)

(0, 1, 1, 0.5)

(0, 0, 0.5, 0.5)

(1, 0, 0.5, 0)

OOP2-13B
Jellyfish-13B
(ED, DI, SM, EM)

Figure 7: Impact of tuning with multi-task data on NLP performance. Numbers in parenthesis indicate the percentage
of data used for each task.

8769

Table 10: Precision (P), recall (R), and F1 score on SM.

Type Dataset Model
SMAT GPT-4 Jellyfish-13B

P R F1 P R F1 P R F1

Seen MIMIC-III 11.5 84.6 20.2 33.33 50.0 40.0 45.45 35.71 40.0
Synthea 24.4 90.9 38.5 71.42 62.5 66.67 41.18 87.50 56

Unseen CMS 33.9 95.0 50.0 60.0 11.5 19.35 57.14 61.54 59.26

Table 11: Impact of DP instruction tuning on the unseen task of CTA. “+ task” denotes the model tuned for the task.

OOP2-13B + ED + DI + SM + EM Jellyfish-13B
56.40 74.20 79.20 76.70 71.50 82

Table 12: Impact of prompt engineering on the unseen task of CTA, varying options in stages and chain-of-thought
(CoT) over Jellyfish-13B.

One-stage, w/o CoT One-stage, w/ CoT Two-stage, w/o CoT Two-stage, w/ CoT
51.50 58 67 82

C.2 Impact of Instruction Data Configuration (Additional Results)

We study the impact of tuning OOP2-13B with multi-task data and plot the results in Figure 5. By feeding
the tuning set with data for more tasks, it is obvious that they jointly contribute to better DP performance,
and the improvement is consistent. When fully utilized the data, as indicated by (1, 1, 1, 1), it achieves
the best performance. Based on the above results, we construct the instruction data by appropriately
choosing the size of data for each task. Moreover, with the data preparation techniques (Section 3.1)
applied, Jellyfish-13B, even with less amount of tuning data, performs better than (1, 1, 1, 1) in Figure 5.

Then, we evaluate how the data for a specific DP task affects the NLP performance and report the
results in Figure 6. In general, ED and EM exhibit positive impacts on the overall NLP performance. By
increasing the amount of tuning data, all the tasks, except DI, are positive to NLP tasks. Specifically, SM
turns from negative to positive when the dataset size is doubled, whereas the trend for DI is reversed,
resulting in a significant drop. To drill down to each benchmark, all the four tasks are positive to
WinoGrande, while they are generally negative to MMLU, and neutral to the other benchmarks, roughly
in line with the results in Table 7. This experiment indicates that we need to choose an appropriate data
size for each DP task, specifically, with moderately less data for DI, to prevent the model from losing its
NLP capability.

We also test the impact of tuning OOP2-13B with multi-task data on its NLP performance over the
six benchmarks used in Table 7. The results are reported in Figure 7. The general trend is that with data
for more tasks, the NLP performance has a drop, yet this change, as shown in more sporadic points, is
less consistent than what we observed in Figure 5. It is noteworthy that the overall decrease in NLP
performance is moderate, with an average of 0.36 (from 58.71 to 58.35) for Jellyfish-13B.

C.3 Recall Comparison on SM

Among the four seen tasks, SM is the hardest task, and all the competitors report relatively low F1 score.
Looking into the datasets, we find that even humans have difficulties in telling whether the two attributes
match, given only name and description. To compare the methods in more detail, we report precision
and recall in Table 10. The non-LLM method, SMAT, reports the highest recall, yet with a very low
precision. Among its results, only 1 out of 3 – 9 is true positive. This iss because many SM-tailored
methods seek high recall, in order to find more candidates for further verification. Jellyfish-13B exhibits
relatively high precision (41% – 57%), and is close to GPT-4 on the unseen dataset of CMS. This suggests
that Jellyfish-13B can be used as a verification method (1 out of 2 is true positive) on top of a filtering
approach (e.g., SMAT).

8770

Table 13: Head-to-head comparison of GPT-3.5 and Jellyfish-7B/8B on interpretation, judged by GPT-4o. The two
comparisons share the same sets of questions and the same answers from GPT-3.5.

Task Dataset Comparison 1 Comparison 2
GPT-3.5 Jellyfish-7B GPT-3.5 Jellyfish-8B

ED Adult 17 3 4 16
Hospital 4 16 4 16

DI Buy 4 16 4 16
Restaurant 10 10 9 11

SM Synthea 15 5 3 17

EM

Amazon-Google 3 17 2 18
Beer 13 7 7 13

DBLP-ACM 11 9 2 18
DBLP-GoogleScho8lar 16 4 9 11

Fodors-Zagats 13 7 13 7
iTunes-Amazon 12 8 2 18
Total 118 102 59 161

Winning Rate 53.63% 46.36% 26.81% 73.18%

C.3.1 Impact of Instruction Tuning on Unseen Tasks
To drill down to the impact of instruction tuning on unseen tasks, we investigate CTA as an example.
Table 11 helps us find out which task contributes the most to this unseen task. When tuning with only one
task, the model reports a micro-F1 in the range of 71% – 79%, with DI being the highest. We suppose
this is because DI is exactly the inverse operation of CTA, i.e., DI fills the value of an attribute, and
meanwhile CTA infers the type of an attribute given a set of sample values. Moreover, the four tasks
jointly contributes to an overall micro-F1 of 82% and it surpasses the performance of tuning with only DI,
showcasing the usefulness of other tasks as well.

Further, we conduct an ablation study to study the impact of prompting and report the results in Table 12.
The two-stage pipeline performs better than the one-stage pipeline, and chain-of-thought, which splits
the inference of column types into four steps, is also useful, in line with the observation in a previous
study (Korini and Bizer, 2023). This demonstrates that the prompt engineering techniques developed
for existing LLM-based solutions also work for Jellyfish-13B. In doing so, the design of prompts for
Jellyfish-13B on unseen tasks is rendered much easier, as users may directly follow those used in existing
works.

The SOTAB dataset contains entities such as events, movies, and hotels, which are out of the domains
covered by the training data of Jellyfish. We observe that Jellyfish models generalize better to the out-
of-domain data than their base models. For example, for table classification (first stage in the two-stage
pipeline), Jellyfish-8B first correctly infers the table domain of event from the attributes of dates and
times and the description of activities (e.g., tours and concerts), while its base model of Llama 3-8B
incorrectly infers this table as restaurant. For column classification (second stage in the two-stage pipeline),
Jellyfish-8B correctly infers the column type of restaurant/description from the detailed descriptions of
dining experiences and the mention of specific dishes and atmosphere, while Llama 3-8B incorrectly
infers the column as restaurant/name.

C.4 Evaluation of Interpretation

We evaluate the performance of Jellyfish’s 7B and 8B models and compare them with GPT-3.5
(gpt-3.5-turbo-0613). Given an answer output by Jellyfish, we generate reasons using both Jelly-
fish and GPT-3.5, and request GPT-4o to decide which one is better. Note that GPT-4o is unaware of the
correct answer to the question in DP. As such, it needs to judge by its own analysis of the question as well.

Table 13 reports the head-to-head comparison of the two models. The results show that Jellyfish-7B is
almost on a par with GPT-3.5, while Jellyfish-8B is a much better interpreter. In particular, Jellyfish-7B
wins over GPT-3.5 on 3 out of 11 datasets, reporting an overall winning rate of 46% across 220 tests.
Jellyfish-8B defeats GPT-3.5 on 10 out of 11 datasets, achieving a winning rate of 73%. To delve into
detailed comparison of Jellyfish-8B and GPT-3.5, we show an example on the Amazon-Google dataset in
EM. The prompt is as follows.

8771

Head-to-Head Instance

You are an AI assistant that follows instruction extremely well. The user will give you a question.
Your task is to answer as faithfully as you can. While answering, provide detailed explanation and
justify your answer.
Answer your reason first, then finish your response in a separate line with and ONLY with your
final answer.
Product A: [name: "adobe dreamweaver cs3 [mac]", manufacturer: "adobe", price: "399.0"]
Product B: [name: "adobe cs3 web premium", price: "1659.99"]
Are Product A and Product B the same Product?

The reason given by Jellyfish-8B is as follows.

No, Product A and Product B are not the same product. Although both products are manufactured by Adobe, they have
different names and prices. Product A is named "adobe dreamweaver cs3 [mac]" and is priced at $399.00. On the other
hand, Product B is named "adobe cs3 web premium" and is priced at $1659.99. The difference in price and name suggests
that these are two distinct products with different features and functionalities.
In addition, the name of Product A includes the specific software name "dreamweaver cs3" and the operating system it is
designed for, "mac". This suggests that Product A is a specific version of the Dreamweaver software for Mac users. In
contrast, Product B is named "cs3 web premium", which suggests that it is a more comprehensive package that includes
multiple Adobe software products, rather than just a single software application.
Therefore, based on the available information, it is clear that Product A and Product B are not the same product.
Final Answer: No, Product A and Product B are not the same product.",

The reason given by GPT-3.5 is as follows.

No, Product A and Product B are not the same product. The reason is that although both products are from Adobe and are
part of the CS3 suite, they have different names and prices. Product A is specifically named "Adobe Dreamweaver CS3
[Mac]" and is priced at $399.0, while Product B is named "Adobe CS3 Web Premium" and is priced at $1659.99. The
difference in names and prices indicates that they are different products within the CS3 suite, likely with different features
and functionalities.
Therefore, Product A and Product B are not the same product.
Final answer: No.

GPT-4o compares the outputs of both models in the following aspects, where Model 1 refers to
Jellyfish-8B and Model 2 refers to GPT-3.5: (1) Faithfulness to Instruction: Model 1: Provides a detailed
explanation, comparing the names, prices, and inferred functionalities of both products. It also elaborates
on the specific nature of Product A (Dreamweaver for Mac) versus the more comprehensive package
suggested by Product B (Web Premium). Model 2: Also states that the products are different, citing
differences in names and prices. However, it provides less detail and does not delve into the possible
functionalities or the specific nature of the products as much as Model 1 does. (2) Justification: Model
1: Justifies the conclusion by explaining the implications of the product names and prices. It infers
that Product A is a specific software for Mac users, while Product B is a more comprehensive suite,
which is a logical and well-supported argument. Model 2: Justifies the conclusion by pointing out the
differences in names and prices but does not provide as thorough an analysis of what those differences
imply about the products. (3) Clarity and Completeness: Model 1: The response is clear, detailed, and
logically structured. It ensures that the user understands why the products are different. Model 2: The
response is clear but lacks the depth and completeness found in Model 1’s explanation. (4) Conclusion:
Model 1: Concludes with a clear and well-supported final answer. Model 2: Concludes with a clear
final answer but lacks the depth of reasoning provided by Model 1. (5) Winner: Model 1. Based on
the analysis, GPT-4o decides that Jellyfish-8B performed better because it adhered more strictly to the
original instruction by providing a clear, concise response without unnecessary repetition. In addition,
with its built-in knowledge, Jellyfish-8B pointed out the difference in functionalities, whereas GPT-3.5
merely described the difference on the surface.

Furthermore, we find out that when reasoning, GPT-3.5 even fails to respond with a correct answer
of matching or not for EM, as shown in its mediocre performance on datasets like Amazon-Google
and DBLP-GoogleScholar in Table 4. In contrast to the above example of Jellyfish-8B’s landslide win,
GPT-3.5 only has a slight edge when it wins. For instance, in an example of the Amazon-Google dataset,

8772

GPT-4o points out that GPT-3.5 has more focused justification and additional insights into the implications
of the differences between the products, yet it also mentioned that GPT-3.5’s repetition of the final answer
is a minor deviation from the instruction’s format.

D Instruction Data Prompts

D.1 DP Task Data

For DP task data, we show the prompt for each task, using one dataset as an example. Then, we show the
prompt for reasoning data, which slightly differs from DP task data. The prompts for inference are the
same as tuning, except that dataset-specific knowledge is optional. The prompts for reasoning ground
truth collection and head-to-head judge are used for Mixtral.

We use Jellyfish-13B’s prompts as examples. For other models, users may adjust them according to the
prompt format of their base models (e.g., using “[INST] [/INST]” blocks for the 7B model).

DP Task Data – ED (Adult)

(system message) You are an AI assistant that follows instruction extremely well. User will give
you a question. Your task is to answer as faithfully as you can.
(task description) Your task is to determine if there is an error in the value of a specific attribute
within the whole record provided. The attributes may include age, workclass, education, marital
status, occupation, relationship, race, sex, hours per week, country, and income.
(injected knowledge) Errors may include, but are not limited to, spelling errors, inconsistencies,
or values that don’t make sense given the context of the whole record.
(instance content) Record [age: "18-21", workclass: "Private", education: "Some-college",
maritalstatus: "Never-married", occupation: "Other-service", relationship: "Own-child", race:
"White", sex: "Male", hoursperweek: "30", country: "United-States", income: "eLssThan50K"]
Attribute for Verification: [income: "eLssThan50K"]
(question) Is there an error in the value of the "income" attribute?
(output format) Choose your answer from: [Yes, No]

DP Task Data – DI (Restaurant)

(system message) You are an AI assistant that follows instruction extremely well. User will give
you a question. Your task is to answer as faithfully as you can.
(task description) You are presented with a restaurant record that is missing a specific attribute:
the city. Your task is to deduce or infer the city of the restaurant using the available information in
the record. You may be provided with fields like ’Name’, ’Address’, ’Phone’, and ’Type’ to help
you in the inference.
(instance content) Record: [name: "darbar", addr: "44 w. 56th st.", phone: "212-432-7227", type:
"indian"].
(question) Based on the provided restaurant record, what would you infer is the value for the
missing attribute "City"?
(output format) Answer the name of the city.

8773

DP Task Data – SM (MIMIC-III)

(system message) You are an AI assistant that follows instruction extremely well. User will give
you a question. Your task is to answer as faithfully as you can.
(task description) Your task is to determine if the two attributes (columns) are semantically
equivalent in the context of merging two tables. Each attribute will be described by its name and a
brief description. Your goal is to assess if they refer to the same information based on these names
and descriptions provided.
(instance content) Attribute A is [name: "visit_occurrence-visit_end_date", description: "the end
date of the visit. if this is a one-day visit the end date should match the start date."].
Attribute B is [name: "admissions-dischtime", description: "dischtime provides the date and time
the patient was discharged from the hospital."].
(question) Are Attribute A and Attribute B semantically equivalent?
(output format) Choose your answer from: [Yes, No]

DP Task Data – EM (Beer)

(system message) You are an AI assistant that follows instruction extremely well. User will give
you a question. Your task is to answer as faithfully as you can.
(task description) You are tasked with determining whether two Products listed below are the
same based on the information provided. Carefully compare all the attributes before making your
decision.
(injected knowledge) Note that missing values (N/A or "nan") should not be used as a basis for
your decision.
(instance content) Product A: [name: "Sequoia American Amber Ale", factory: "Wig And Pen"]
Product B: [name: "Aarhus Cains Triple A American Amber Ale", factory: "Aarhus Bryghus"]
(question) Are Product A and Product B the same Product?
(output format) Choose your answer from: [Yes, No]

D.2 Reasoning Data

To construct reasoning data, we use the following prompt.

Reasoning Data

(system message) [same as DP Task Data] While answering, provide detailed explanation and
justify your answer.
(task description – question) [same as DP Task Data]
(output format) After your reasoning, finish your response in a separate line with and ONLY with
your final answer. Choose your final answer from [Yes, No].

We use the following prompt to collect ground truth from Mixtral (for the Beer dataset in EM).

Reasoning Ground Truth Collection

(system message – output format) [same as Reasoning Data]
(injected knowledge) Note that different factories can belong to the same parent company. The
company name of Product B may occur in its product name.
(answer hint) You can use the "Hint" below, but your response cannot contain any information
from it.
Hint: the final answer is "No"

In the above prompt, we inject a piece of knowledge specific to the dataset. With this additional
knowledge, Mixtral can produce high-quality reasoning result. Note that such knowledge is not prompted

8774

to Jellyfish models, as for unseen datasets such knowledge is not always available. In addition to the
injected knowledge, Mixtral also receives a hint to the answer of yes or no. As such, we can guarantee that
the output reason always points to the correct direction. A sample answer from Mixtral is given below.

To determine if Product A and Product B are the same, we need to compare their names and factories. The names of the
products are "Sequoia American Amber Ale" and "Aarhus Cains Triple A American Amber Ale". While both are American
Amber Ales, the names are not identical, with Product B having additional words "Aarhus Cains Triple A". Therefore, based
on the name, we cannot conclude that the products are the same. Next, let’s consider the factories. Product A is produced at
"Wig And Pen" while Product B is produced at "Aarhus Bryghus". These are different factories, and the fact that they may
belong to the same parent company or use similar production processes does not change the fact that the products are made
at different locations. Therefore, based on the comparison of the names and factories, we can conclude that Product A and
Product B are not the same product.
Final answer: No

E Injected Knowledge

Table 14: General knowledge.

Prompt
Missing values (N/A or "nan") should not be used as a basis for your decision.
If there are missing values, you should make inferences based only on the information that is available.

Table 15: Task-specific knowledge.

Task Prompt

ED

Errors may include, but are not limited to, spelling errors, inconsistencies, or values that don’t make sense given the
context of the whole record. (Used when showing the whole record)
Errors can include, but are not limited to, spelling errors, inconsistencies, or values that don’t make sense for that
attribute. (Used when showing only one attribute)
Capitalization should not be a factor in deciding whether there is an error or not.

DI

Note that values such as ’nan’ and ’N/A’ mean missing vaules, and they are not considered as errors. (used when
we decide not to treat missing values as errors)
Note that values such as ’nan’ and ’N/A’ mean missing values, and they ARE errors. (used when we decide to
treat missing values as errors)

EM To determine if two values are identical, you need to examine both their full names and corresponding acronyms.

Table 16: Dataset-specific knowledge.

Task Dataset Prompt

ED Adult

Both the ’age’ attribute and the ’hoursperweek’ attribute can represent a range
of integer values.
Verify the consistency of target attribute with related attributes to identify any
errors.

Hospital The value of attribute "score" can be a percentage number.

DI Restaurant The city can often be deduced from the area code of the phone number and
the specific street name.

EM

Amazon-Google
Different editions, versions, or operating systems for the same software are
all considered as different products.
You should compare the two product numbers first.

Beer

Note that different factories can belong to the same parent company.
Beverages that undergo different production processes, such as the use of
various types of wood in the barrelling process, may be considered distinct
products.

Fodors-Zagats The type of a specific restaurant might vary between different datasets.

iTunes-Amazon The length of the same song might vary slightly across different datasets due
to rounding or data entry discrepancies.

DBLP-ACM The names of authors might be presented in various formats or sequences,
even when referring to the same article.

DBLP-GoogleScholar The names of authors might be presented in various formats or sequences,
even when referring to the same article.

8775

F Few-Shot Prompting

We apply few-shot prompting by manually selecting a subset of data instances from the dataset and
labeling them. For instance, a few-shot example for the Beer dataset is presented as follows:

Few-Shot Prompting

(system message – injected knowledge) [same as DP Task Data]
(1st example’s instance content) ### Instruction: Product A: [name: "Shirt Tail Amber", factory:
"Iron Hill Brewery & Restaurant"]
Product B: [name: "Iron Hill Shirt Tail Amber", factory: "Iron Hill Maple Shade"]
(1st example’s question) Are Product A and Product B the same Product?
(1st example’s output format) Choose your answer from: [Yes, No]
(1st example’s answer) ### Response: Yes
(other examples) ...
(instance content – output format) [same as DP Task Data] ### Response:

The example follows the same format of instance content, question, and output format as in the DP
task data. It also provides the answer indicated by ### Response: Yes. Whereas we only show an positive
example here, it is suggested to include both positive and negative examples. After the final example, the
instance to be processed is presented in the prompt, and the model follows the same output format as
demonstrated in the examples.

Since ground truths are usually not available in real applications, users can handcraft few-shot examples
for inference. On the other hand, few-shot examples can be automatically generated by randomly injecting
errors for ED and DI, such as missing values, typographical/formatting errors, and randomly swapping
values for two columns in a tuple or two tuples in a column. For SM and EM, we can employ rule-based
methods (e.g., blocking rules (Konda et al., 2016)) to quickly find a few matches and use them as few-shot
examples.

F.1 Error Detection

The few-shot examples for the Flights and Rayyan datasets are given as follows.

Flights – 1st Example

Instruction:
Record [datasource: "flightview", flight: "AA-3063-SLC-LAX", scheduled departure time: "nan",
actual departure time: "8:40 p.m.", scheduled arrival time: "nan", actual arrival time: "9:11
p.m."]
Attribute for Verification: [scheduled departure time: "nan"]
Question: Is there an error in the value of the "scheduled departure time" attribute?
Choose your answer from: [Yes, No]
Response:
Yes

8776

Flights – 2st Example

Instruction:
Record [datasource: "aa", flight: "AA-3823-LAX-DEN", scheduled departure time: "9:00 p.m.",
actual departure time: "nan", scheduled arrival time: "12/02/2011 12:15 a.m.", actual arrival
time: "nan"]
Attribute for Verification: [scheduled arrival time: "12/02/2011 12:15 a.m."]
Question: Is there an error in the value of the "scheduled arrival time" attribute?
Choose your answer from: [Yes, No]
Response:
Yes

Flights – 3rd Example

Instruction:
Record [datasource: "flightview", flight: "AA-616-DFW-DTW", scheduled departure time: "9:05
a.m.", actual departure time: "10:11 a.m.", scheduled arrival time: "12:35 p.m.", actual arrival
time: "1:18 p.m."]
Attribute for Verification: [datasource: "flightview"]
Question: Is there an error in the value of the "datasource" attribute?
Choose your answer from: [Yes, No]
Response:
No

Rayyan – 1st Example

Instruction:
Record [article_title: "A re-appraisal of screening for colour vision impairments", arti-
cle_language: "nan", journal_title: "Child: Care, Health & Development", jounral_abbreviation:
"nan", journal_issn: "0305-1862", article_jvolumn: "23", article_jissue: "5", article_jcreated_at:
"1/1/97", article_pagination: "391-398", author_list: ""D. M. B. Hall","E. Holroyd""]
Attribute for Verification: [jounral_abbreviation: "nan"]
Question: Is there an error in the value of the "jounral_abbreviation" attribute?
Choose your answer from: [Yes, No]
Response:
Yes

Rayyan – 2nd Example

Instruction:
Record [article_title: "Nurturing students’ interest in primary care research through summer
training in meta-analysis.", article_language: "eng", journal_title: "Academic Medicine: Journal
Of The Association Of American Medical Colleges", jounral_abbreviation: "nan", journal_issn:
"1040-2446", article_jvolumn: "76", article_jissue: "5", article_jcreated_at: "5/1/01", arti-
cle_pagination: "526", author_list: ""L N Meurer""]
Attribute for Verification: [article_jissue: "5"]
Question: Is there an error in the value of the "article_jissue" attribute?
Choose your answer from: [Yes, No]
Response:
No

8777

Rayyan – 3rd Example

Instruction:
Record [article_title: "Different renal toxicity profiles in the association of cyclosporine and
tacrolimus with sirolimus in rats.", article_language: "eng", journal_title: "Nephrology, dialy-
sis, transplantation : official publication of the European Dialysis and Transplant Association -
European Renal Association", jounral_abbreviation: "Nephrol. Dial. Transplant.", journal_issn:
"1460-2385", article_jvolumn: "23", article_jissue: "10", article_jcreated_at: "10/1/08", arti-
cle_pagination: "3111-9", author_list: ""N\u033cria Lloberas","Marcel la Franquesa","Josep M
Cruzado","Josep M Griny\ufffd_","In\u0329s Rama","Gabriela Alperovich","Immaculada Herrero-
Fresneda","Joan Torras","Pepita Gim\u0329nez-Bonaf\u0329""]
Attribute for Verification: [article_pagination: "3111-9"]
Question: Is there an error in the value of the "article_pagination" attribute?
Choose your answer from: [Yes, No]
Response:
Yes

F.2 Data Imputation

The few-shot examples for the Flikpkart and Phone datasets are given as follows.

Flipkart – 1st Example

Instruction:
Record: [Product Name: "Himmlisch ST381 Magnetic Sun Shade For Maruti Alto", description:
"Himmlisch ST381 Magnetic Sun Shade For Maruti Alto (Side Window) Price: Rs. 1,899 Beat the
heat this summer and feel like a VIP with Himmlisch Car Window Magnetic Sunshades. These
magnetic sunshades create a mesh layer to stops the heat. Magnet border gets easily stick to your
car window door edges (No need of Suction cups) Features: Block UV Rays Keeps Car Cool Easy
to install and remove Durable and Exact Fit Provides Complete privacy Resists Heat Mesh Type
Sunshade Package Contents: 1 x Set Of 4 Magnetic Sunshades,Specifications of Himmlisch ST381
Magnetic Sun Shade For Maruti Alto (Side Window) General Brand Himmlisch Model Number
ST381 Magnetic Placement Position Side Window Color Black Dimensions Weight 4000 g Depth
1.1 cm In the Box Sales Package 4 Sun Shade Pack of 4"]
Based on the provided product record, what would you infer is the value for the missing attribute
"brand"?
Answer the name of the brand.
Response:
Himmlisch

8778

Flipkart – 2nd Example

Instruction:
Record: [Product Name: "dilli bazaaar Bellies, Corporate Casuals, Casuals", description: "Key
Features of dilli bazaaar Bellies, Corporate Casuals, Casuals Material: Fabric Occasion: Ethnic,
Casual, Party, Formal Color: Pink Heel Height: 0,Specifications of dilli bazaaar Bellies, Corporate
Casuals, Casuals General Occasion Ethnic, Casual, Party, Formal Ideal For Women Shoe Details
Weight 200 g (per single Shoe) - Weight of the product may vary depending on size. Heel Height 0
inch Outer Material Fabric Color Pink"]
Based on the provided product record, what would you infer is the value for the missing attribute
"brand"?
Answer the name of the brand.
Response:
dilli bazaaar

Flipkart – 3rd Example

Instruction:
Record: [Product Name: "Shining Diva Alloy Yellow Gold Bangle Set", description: "Shining
Diva Alloy Yellow Gold Bangle Set (Pack of 2) Price: Rs. 499 Accentuate Your Feminine Charm
Wearing This Beautiful Bangle From The House Of Shining Diva. Made From Premium Quality
Material, It Will Retain Its Quality And Lustre For Years To Come. This Bangle Is Lightweight And
Skin Friendly. Featuring A Stylish Design And Great Finish, It Will Definitely Give Your Overall
Look An Ethereal Dimension. This Bangle Will Surely Catch Your Fancy At Once. It Is Worth
Investing In And Will Definitely Get You Noticed. This Bangle Comes In A Set Of Two.Accentuate
Your Feminine Charm Wearing This Beautiful Bangle From The House Of Shining Diva. Made
From Premium Quality Material, It Will Retain Its Quality And Lustre For Years To Come. This
Bangle Is Lightweight And Skin Friendly. Featuring A Stylish Design And Great Finish, It Will
Definitely Give Your Overall Look An Ethereal Dimension. This Bangle Will Surely Catch Your
Fancy At Once. It Is Worth Investing In And Will Definitely Get You Noticed. This angle Comes In
A Set Of Two."]
Based on the provided product record, what would you infer is the value for the missing attribute
"brand"?
Answer the name of the brand.
Response:
Shining Diva

Phone – 1st Example

Instruction:
Record: Record: [Product Name: "UNLOCKED RIM BlackBerry Pearl Flip 8220 Smart Cell
Phone - Red"]
Based on the provided cellphone record, what would you infer is the value for the missing attribute
"brand"?
Answer the name of the brand.
Response:
BlackBerry

8779

Phone – 2nd Example

Instruction:
Record: [Product Name: "OtterBox Apple iPhone 4 & 4S Protective ION Defender Series Case
(Retail Packaging) Black"]
Based on the provided cellphone record, what would you infer is the value for the missing attribute
"brand"?
Answer the name of the brand.
Response:
OtterBox

Phone – 3rd Example

Instruction:
Record: [Product Name: "DTECH @ 2 PECES! Universal Ring Grip/Stand Holder for any Smart
Device,Universal Black Bunker Ring Stand Holder for Apple iPhone 4 4s iphone 5 Samsung
Galaxy s3 SIII Samsung GALAXY S6,S6 EDGE.Note II iPad 2 3 ipad mini iPod Nokia LG HTC
One X etc,RING Essentials " Cell Phone and Tablets Anti Drop Ring for iPhone 6 plus iPad mini
iPad2 iPad iPod Samsung GALAXY NOTE S5 Universal Mobile Devices"]
Based on the provided cellphone record, what would you infer is the value for the missing attribute
"brand"?
Answer the name of the brand.
Response:
DTECH

F.3 Schema Matching

The few-shot examples for the CMS dataset are given as follows.

CMS – 1st Example

Instruction:
Attribute A is [name: "condition_occurrence-condition_source_value", description: "the source
code for the condition as it appears in the source data. this code is mapped to a standard condition
concept in the standardized vocabularies and the original code is stored here for reference."]
Attribute B is [name: "inpatientclaims-admtng_icd9_dgns_cd", description: "claim admitting
diagnosis code"]
Are Attribute A and Attribute B semantically equivalent?
Choose your answer from: [Yes, No]
Response:
Yes

CMS – 2nd Example

Instruction:
Attribute A is [name: "provider-npi", description: "the national provider identifier (npi) of the
provider."]
Attribute B is [name: "outpatientclaims-op_physn_npi", description: "operating physician –
national provider identifier number"]
Are Attribute A and Attribute B semantically equivalent?
Choose your answer from: [Yes, No]
Response:
Yes

8780

CMS – 3rd Example

Instruction:
Attribute A is [name: "visit_detail-visit_detail_start_datetime", description: "the date and time of
the visit started."]
Attribute B is [name: "outpatientclaims-desynpuf_id", description: "beneficiary code"]
Are Attribute A and Attribute B semantically equivalent?
Choose your answer from: [Yes, No]
Response:
No

F.4 Entity Matching

The few-shot examples for the Abt-Buy and Walmart-Amazon datasets are given as follows.

Abt-Buy – 1st Example

Instruction:
Product A: [name: "samsung s3 black multimedia player yps3jab", description: "samsung s3
black multimedia player yps3jab 4 gb internal flash memory 1.8 ’ tft lcd display touch-sensitive led
controls multi-formats support dnse 2.0 sound engine fm tuner and recorder with presets up to 25
hours audio playback up to 4 hours video playback black finish"]
Product B: [name: "samsung 4gb portable mltimdia plyr blk yps-s3jab / xaa", description: "nan"]
Are Product A and Product B the same Product?
Choose your answer from: [Yes, No]
Response:
Yes

Abt-Buy – 2nd Example

Instruction:
Product A: [name: "sony white 8 ’ portable dvd player dvpfx820w", description: "sony dvp-fx820
white 8 ’ portable dvd player dvpfx820w swivel & flip screen with dual sensor for remote control
control buttons on screen bezel 12 bit video dac with 108 mhz processing removable , rechargeable
battery & car adapter included white finish"]
Product B: [name: "toshiba sd-p71s portable dvd player", description: "toshiba sd-p71s 7 ’
portable dvd player"]
Are Product A and Product B the same Product?
Choose your answer from: [Yes, No]
Response:
No

Abt-Buy – 3rd Example

Instruction:
Product A: [name: "sony xplod 10-disc add-on cd/mp3 changer cdx565mxrf", description: "sony
xplod 10-disc add-on cd/mp3 changer cdx565mxrf cd/cd-r/cd-rw and mp3 playback mp3 decoding
d-bass 12-second advanced electronic shock protection fm modulator 9 modulation frequencies
wireless remote"]
Product B: [name: "sony cdx-565mxrf 10-disc cd/mp3 changer", description: "nan"]
Are Product A and Product B the same Product?
Choose your answer from: [Yes, No] ### Response:
Yes

8781

Walmart-Amazon – 1st Example

Instruction:
Product A: [name: "d-link dgs-1005g 5-port gigabit desktop switch", modelno: "dgs1005g"]
Product B: [name: "d-link dgs-1005g 5-port gigabit desktop switch", modelno: "dgs-1005g"]
Are Product A and Product B the same Product?
Choose your answer from: [Yes, No]
Response:
Yes

Walmart-Amazon – 2nd Example

Instruction:
Product A: [name: "nzxt phantom crafted series atx full tower steel chassis black", modelno: "nzxt
phantom"]
Product B: [name: "nzxt crafted series atx full tower steel chassis - phantom white", modelno:
"phantom white"]
Are Product A and Product B the same Product?
Choose your answer from: [Yes, No]
Response:
No

Walmart-Amazon – 3rd Example

Instruction:
Product A: [name: "at t prepaid gophone samsung a187 with bluetooth blue", modelno: "a187"]
Product B: [name: "samsung a107 prepaid gophone at t", modelno: "a107"]
Are Product A and Product B the same Product?
Choose your answer from: [Yes, No]
Response:
No

8782

