@inproceedings{lim-cheong-2024-integrating,
title = "Integrating {P}lutchik{'}s Theory with Mixture of Experts for Enhancing Emotion Classification",
author = "Lim, Dongjun and
Cheong, Yun-Gyung",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.50",
pages = "857--867",
abstract = "Emotion significantly influences human behavior and decision-making processes. We propose a labeling methodology grounded in Plutchik{'}s Wheel of Emotions theory for emotion classification. Furthermore, we employ a Mixture of Experts (MoE) architecture to evaluate the efficacy of this labeling approach, by identifying the specific emotions that each expert learns to classify. Experimental results reveal that our methodology improves the performance of emotion classification.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lim-cheong-2024-integrating">
<titleInfo>
<title>Integrating Plutchik’s Theory with Mixture of Experts for Enhancing Emotion Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dongjun</namePart>
<namePart type="family">Lim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Gyung</namePart>
<namePart type="family">Cheong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Emotion significantly influences human behavior and decision-making processes. We propose a labeling methodology grounded in Plutchik’s Wheel of Emotions theory for emotion classification. Furthermore, we employ a Mixture of Experts (MoE) architecture to evaluate the efficacy of this labeling approach, by identifying the specific emotions that each expert learns to classify. Experimental results reveal that our methodology improves the performance of emotion classification.</abstract>
<identifier type="citekey">lim-cheong-2024-integrating</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.50</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>857</start>
<end>867</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Integrating Plutchik’s Theory with Mixture of Experts for Enhancing Emotion Classification
%A Lim, Dongjun
%A Cheong, Yun-Gyung
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F lim-cheong-2024-integrating
%X Emotion significantly influences human behavior and decision-making processes. We propose a labeling methodology grounded in Plutchik’s Wheel of Emotions theory for emotion classification. Furthermore, we employ a Mixture of Experts (MoE) architecture to evaluate the efficacy of this labeling approach, by identifying the specific emotions that each expert learns to classify. Experimental results reveal that our methodology improves the performance of emotion classification.
%U https://aclanthology.org/2024.emnlp-main.50
%P 857-867
Markdown (Informal)
[Integrating Plutchik’s Theory with Mixture of Experts for Enhancing Emotion Classification](https://aclanthology.org/2024.emnlp-main.50) (Lim & Cheong, EMNLP 2024)
ACL