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Abstract

Emotion significantly influences human behav-
ior and decision-making processes. We propose
a labeling methodology grounded in Plutchik’s
Wheel of Emotions theory for emotion classifi-
cation. Furthermore, we employ a Mixture of
Experts (MoE) architecture to evaluate the effi-
cacy of this labeling approach, by identifying
the specific emotions that each expert learns
to classify. Experimental results reveal that
our methodology improves the performance of
emotion classification.

1 Introduction

Emotion is essential in human life, having influ-
ence on our thoughts, behaviors, and communica-
tion. Recognizing the paramount importance of
emotions, researchers have made significant efforts
to analyze and understand them (Picard, 1997). A
particularly important area of this research is emo-
tion recognition in text, as it forms a substantial
part of our daily interactions, including email and
Social Network Service (SNS).

While sentiment analysis, categorizing text as
positive, negative, or neutral, has advanced signifi-
cantly, recognizing the full spectrum of emotions in
text–such as joy, anger, sadness, and fear–remains
a challenging task. Mao et al. (2023) report that
RoBERTa large with HG-F24 achieved 84.7% ac-
curacy on sentiment analysis of Amazon product
reviews but only 40.9% accuracy in emotion detec-
tion using a Twitter (X) dataset.

Previous research utilizing deep learning tech-
nology has demonstrated significant promise in ex-
tracting emotions from text (Yu et al., 2018; Bazio-
tis et al., 2018; Ying et al., 2019; Li and Xiao, 2023;
Alhuzali and Ananiadou, 2021). Recently, Chen
et al. (2023) conducted a study analyzing the role of
emotions in controversial Reddit comments using
language models. He et al. (2024) systematically
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measured the affective alignment of language mod-
els (LMs) by comparing LM-generated responses
to SNSs on two socio-political issues. However,
these studies face challenges like sampling bias
and subjective annotation. For instance, Chai et al.
(2024) note that existing multi-label text classifica-
tion models lack the ability to generalize complex
concepts. Ahanin et al. (2023) argue that current
methods overlook the sentiment polarity of words.

To tackle the problems in emotion annotation,
we introduce a new labeling approach. Our pri-
mary objective is to enhance the expressiveness of
emotion labels by applying Plutchik’s Wheel of
Emotions and Diagram of Emotion Dyads. Fur-
thermore, we employ a Mixture of Experts (MoE)
framework for emotion classification, which iden-
tifies the specific emotion that each expert in the
model is best at classifying. This approach seeks
to validate the improved classification performance
and specialization of experts in distinct emotional
categories.

The key contributions of this research are listed
as follows:

• We propose a new emotion labeling method
based on Plutchik’s wheel of emotions theory.

• We leverage MoE that is trained on basic emo-
tions and learns to classify complex emotions
effectively.

• We conducted experiments to show the effi-
cacy of the proposed method. The results
demonstrate that our approach can effectively
improve the performance of emotion classifi-
cation tasks, especially for emotions that are
typically harder to classify with traditional
methods.

The structure of the paper is organized as fol-
lows. Section 2 provides a review of related work.
Section 3 outlines our approach. Section 4 details
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Figure 1: Plutchik’s Diagram of Emotion Dyads. Depict-
ing the primary, secondary, and tertiary dyads formed by
mixing the eight basic emotions (Plutchik, 1991, 2000).

Figure 2: Plutchik’s Wheel of Emotions. The eight emo-
tions are represented within the color spectrum, showing
their mild and intense variations (Plutchik, 1988).

the experimental design. Section 5 discusses the
results, and Section 6 provides an in-depth analysis.
The final section concludes with future research.

2 Related Work

2.1 Affective Computing

Emotions are physical and mental states induced
by neurophysiological changes, often associated
with specific thoughts, feelings, behavioral re-
sponses, and varying degrees of pleasure or dis-
pleasure (Damasio, 1998; Ekman and Davidson,
1994; Panksepp, 2004). They intertwine with mood,
temperament, personality, disposition, and creativ-
ity (Averill, 1999). Recent research across psychol-
ogy, medicine, history, sociology, and computer
science highlights the complexity and importance
of understanding emotions.

Despite extensive research, there is no univer-

sally accepted definition of emotion (Cabanac,
2002; Clore and Ortony, 2008). Emotions are cate-
gorized into various affects corresponding to spe-
cific situations (Barrett, 2006), and numerous theo-
ries have been proposed, each offering distinct per-
spectives on emotional experiences (James, 1884;
Candland, 2003).

Ekman has significantly advanced our under-
standing of basic emotions through his research
on facial expressions (Ekman, 1984). He identified
six fundamental emotions: anger, disgust, fear,
happiness, sadness, and surprise (Ekman, 1992a,b;
Miller, 2016). Later, he expanded this list to in-
clude amusement, contempt, contentment, embar-
rassment, excitement, guilt, pride in achievement,
relief, satisfaction, sensory pleasure, and shame,
recognizing emotions not expressed solely through
facial muscles (Ekman, 1999).

Our labeling method relies on Plutchik’s emo-
tion theories (Plutchik, 2000, 1988), which define
eight basic emotions, grouped as joy versus sad-
ness; anger versus fear; trust versus disgust; and
surprise versus anticipation. These basic emo-
tions can combine to form complex emotions, as
depicted in Figure 1; for instance, the complex
emotion love is formed by joy and trust, while re-
morse is a mix of disgust and sadness. These com-
plex emotions may arise from cultural conditioning
or associations combined with the basic emotions.
He further introduced twenty-four ‘Primary,’ ‘Sec-
ondary,’ and ‘Tertiary’ dyads, representing differ-
ent emotion combinations, and noted that emotions
can vary in intensity from mild to intense (Plutchik,
1991; Turner, 2000). As illustrated in Figure 2, for
instance, annoyance, anger, and rage fall within
the same category with different intensities.

2.2 Mixture of Expert
The Mixture of Experts (MoE) method divides com-
plex problems into multiple sub-problems, using
specialized models (i.e., experts) to address each
sub-problem. MoE utilizes a gating network to
combine the outputs of each expert model, select-
ing the most suitable expert for a given input. This
approach is particularly useful for datasets with
diverse characteristics, enhancing model perfor-
mance and computational efficiency.

Eigen et al. (2013) introduced the idea of us-
ing multiple MoEs, each with its own gating net-
work, as part of a deep model. This approach is
more powerful since complex problems may con-
tain many sub-problems, each requiring different
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experts. They also suggest that introducing sparsity
could transform MoE into a tool for computational
efficiency. Shazeer et al. (2017) proposed a new
type of general-purpose neural network component:
a Sparsely-Gated Mixture-of-Experts Layer (MoE).
This method uses Noisy top-k gating, which adds
sparsity and noise to the Softmax Gate used in the
MoE architecture (Jordan and Jacobs, 1994), select-
ing the top k values among the experts to produce
the output. There are numerous other attempts to
improve the gate network (Clark et al., 2022; Haz-
imeh et al., 2021; Zhou et al., 2022).

Lepikhin et al. (2020) replaced the Transformer
Encoder’s FFN layer with MoE, distributing ex-
perts across devices. This had the drawback of
slower speeds when computations concentrated on
a single expert. Fedus et al. (2022) improved this by
limiting each token to one expert (k=1) and restrict-
ing the number of tokens per expert. Jiang et al.
(2024) used an MoE structure with Top-k Gating
and SwiGLU as experts within the Mistral model’s
Transformer block, improving performance across
tasks and showing each expert specialized in spe-
cific tasks.

3 Method

This section describes our proposed method for
emotion classification, utilizing the new labeling
method based on Plutchik’s emotion theory and the
implementation of the MoE structure in our model.

3.1 Plutchik Labeling
We redefine the emotion labels of any dataset we
wish to use, based on the work of Plutchik (2000,
1988). Data labeled with our method are termed
“Plutchik Labeling" and and those without it as
“Normal Labeling." The Plutchik Labeling process
follows the following rules:

• Labels corresponding to the eight basic emo-
tions in Plutchik’s emotion theory are re-
tained.

• Labels corresponding to primary, secondary,
and tertiary dyads of the eight basic emotions
are decomposed into their constituent emo-
tions before labeling.

• Emotions that are combinations of opposite
emotions are similarly decomposed into their
constituent emotions before labeling.

• Mild and intense emotion labels are relabeled
as the corresponding basic emotions.

Figure 3: The Structure of Top-k MoE FFN.

While Plutchik’s emotion theory also hints at the
existence of triads (Plutchik, 1991), these dataset
did not provide sufficient detail on these emotions.
Therefore, our study does not consider the triads,
higher-order combinations, or the intensity of emo-
tions.

3.2 Mixture of Emotion Expert

We aim to apply Mixture of Experts (MoE) to
each model to determine whether each expert can
be trained as a specialist in individual emotions.
As previously mentioned, there are several gating
methods that connect inputs to specific experts. Fol-
lowing the approach in Jiang et al. (2024), we se-
lected the k most relevant experts for each token.
The reason for experimenting with multiple values
of k instead of fixing it is to account for complex
emotions such as love and optimism, which are
described as mixtures of several basic emotions
according to Plutchik (2000, 1988). This consid-
eration is crucial when tokens contain complex
emotions.

For the implementation of MoE, we referred to
Mixtral (Jiang et al., 2024). The MoE structure
used in Mixtral determines the output for a given
input x by taking a weighted sum of the expert
networks’ outputs, with weights provided by the
gating network. This is efficiently implemented us-
ing a softmax over the Top-K logits of a linear layer.
A brief overview of the MoE Layer is provided in
Figure 3.

To compare how well the model understands
emotions when MoE is applied, we used the FFN
network of the base model as experts. To observe
the performance changes with minimal parameter
modifications, we replaced the FFN network in the
last transformer block of each model with an MoE
structure.
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Original Emot. Relabeled Emot.
Love Joy, Trust

Optimism Anticipation, Joy
Pessimism Anticipation, Sadness

Table 1: Rules for relabeling compound emotions as the
corresponding basic emotions in SemEval-2018.

Original Emot. Relabeled Emot.
Admiration Trust
Annoyance Anger
Confusion Anticipation, Surprise
Curiosity Surprise, Trust

Disappointment Sadness, Surprise
Disapproval Sadness, Surprise
Excitement Fear, Joy

Grief Sadness
Love Joy, Trust

Optimism Anticipation, Joy
Pride Anger, Joy

Remorse Disgust, Sadness

Table 2: Rules for relabeling compound, mild, and in-
tense emotions as the corresponding basic emotions in
GoEmotions.

4 Experiments

This section details the experimental design for
evaluating the effectiveness of the proposed method
in multi-label emotion classification.

4.1 Experimental Setup
Our experiments utilize two transformer-based
models, Llama-2(Touvron et al., 2023) and Mis-
tral(Jiang et al., 2023), each with 7 billion parame-
ters, chosen for their effectiveness across various
domains (Hou et al., 2024; Yu et al., 2024; Gruver
et al., 2023). The unmodified versions of these
models served as baselines for comparison. We
accessed these models via the Hugging Face API
and fine-tuned them using Q-LoRA(Dettmers et al.,
2024). For all experiments, we used the same hy-
perparameters except for the k value. Performance
was evaluated by averaging the results over five
runs for each setting. Detailed hyperparameter con-
figurations are provided in Section A.1.

4.2 Labeling for Building Datasets
We chose the evaluation datasets based on the fol-
lowing criteria: (1) inclusion of all 8 basic emo-
tions from Plutchik’s wheel, or (2) inclusion of
emotions corresponding to Plutchik’s ‘Primary’,

Emotion train valid test
Anger 2544 315 1101

Anticipation 978 124 425
Disgust 2602 319 1099

Fear 1242 121 485
Joy 2477 400 1442

Love 700 132 516
Optimism 1984 307 1143
Pessimism 795 100 375

Sadness 2008 265 960
Surprise 361 35 170

Trust 357 43 153

Table 3: Emotion distribution across train, validation,
and test sets for SemEval-2018 with Normal labeling.

Emotion train valid test
Anger 2544 315 1101

Anticipation 3216 453 1688
Disgust 2602 319 1099

Fear 1242 121 485
Joy 2991 454 1669

Sadness 2266 292 1049
Surprise 361 35 170

Trust 975 161 621

Table 4: Emotion distribution across train, validation,
and test sets for SemEval-2018 with Plutchik labeling.

Emotion train valid test
Admiration 4130 488 504

Anger 1567 195 198
Annoyance 2470 303 320
Confusion 1368 152 153
Curiosity 2191 248 284

Disappointment 1269 163 151
Disapproval 2022 292 267

Disgust 793 97 123
Excitement 853 96 103

Fear 596 90 78
Grief 77 13 6
Joy 1452 172 161

Love 2086 252 238
Optimism 1581 209 186

Pride 111 15 16
Remorse 545 68 56
Sadness 1326 143 156
Surprise 1060 129 141

Table 5: Emotion distribution across train, validation,
and test sets for GoEmotions with Normal labeling.
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Emotion train valid test
Anger 3877 464 504

Anticipation 2944 360 336
Disgust 1334 164 179

Fear 1448 186 181
Joy 5801 707 669

Sadness 4928 643 607
Surprise 7472 944 951

Trust 8125 956 994

Table 6: Emotion distribution across train, validation,
and test sets for GoEmotions with Plutchik labeling.

‘Secondary‘, and ‘Tertiary’ dyads, which, when
decomposed, satisfy criterion 1. As a result, we
selected SemEval-2018 (Mohammad et al., 2018)
and GoEmotions (Demszky et al., 2020).

SemEval-2018 contains tweets, each labeled
with one or more of 11 emotions, or marked as Neu-
tral. GoEmotions consists of 58K Reddit comments
from 2005 to 2019, each labeled with one or more
of 27 emotions, or marked as Neutral. The rules
for applying Plutchik labeling to these datasets are
detailed in Tables 1 and 2.

For a fair comparison, we excluded data for emo-
tions not covered by Plutchik’s 8 basic emotions
or their dyads, as well as Neutral, in all experi-
ments. The final datasets are detailed in Tables 3,
4, 5, and 6. We fine-tuned the classification models
using the training sets and evaluated their perfor-
mance on the test sets.

5 Results

5.1 Main Results

Tables 7 and 8 present the F1-scores of our pro-
posed methods on two datasets. Table 7 shows
the performance for different k values when ap-
plying MoE in Normal Labeling. For SemEval-
2018, the macro-F1 indicates the model exceeds
baseline performance at k=2, achieving the highest
performance. In GoEmotions, the Mistral model
surpasses the baseline across all k values, peaking
at k=4, while the Llama2 model underperforms
at all k values. The micro-F1 shows the highest
performance at k=4 in all cases.

Overall, SemEval-2018 shows a consistent trend
in macro-F1 changes with varying k values, un-
like GoEmotions. This inconsistency, as shown
in Table 5, is due to significant label imbalance
in GoEmotions. Elbayad et al. (2023) and Fedus
et al. (2022) explain that MoE models tend to over-

Top-k SemEval-2018 GoEmotions
miF1 maF1 miF1 maF1

baseline 70.7 56.4 64.2 58.7
1 70.6 56.4 63.5 58.5
2 70.8 57.0 63.8 58.0
3 70.7 56.1 63.8 58.0
4 70.8 55.9 64.3 58.7

baseline 70.3 55.4 63.7 58.2
1 70.5 55.4 63.8 58.9
2 70.3 55.5 64.1 58.9
3 69.6 54.7 64.0 59.2
4 70.7 54.6 64.2 59.3

Table 7: F1 scores of the models with Normal Labeling.
Upper: Llama2, Lower: Mistral

fit on low-resource data, suggesting that the experts
in the MoE model failed to learn effectively for
certain emotions due to extreme imbalance. Addi-
tionally, grief and pride have significantly fewer
test samples, leading to high variance in perfor-
mance metrics. Thus, performance comparisons
using macro-F1 in GoEmotions may not be accu-
rate.

Table 8 presents the performance of MoE with
Plutchik Labeling varying the k values . With
SemEval-2018, the highest macro-F1 was obtained
at k=3, outperforming the baseline model. In GoE-
motions, the Mistral model achieved the highest
score at k=4, while the Llama2 model exceeded
the baseline at k=1. The highest micro-F1 score
was generally obtained at k=3, except for the Mis-
tral model on GoEmotions, which showed different
patterns.

Plutchik Labeling resulted in more stable and
superior performance than Normal Labeling, espe-
cially in GoEmotions, mitigating the effects of se-
vere label imbalance. The MoE-trained model con-
sistently outperformed the baseline model across
various k values.

Figure 4 depicts the changes in macro-F1 perfor-
mance across both datasets with varying k values.
When applying Plutchik Labeling, there is a sig-
nificant improvement in performance compared to
Normal Labeling, both in the baseline and all MoE
configurations. Notably, in SemEval-2018, when
k is set to 1, the performance improvement with
Plutchik Labeling is less pronounced compared to
the baseline and other k values. This suggests that
selecting two or more experts in SemEval-2018
allows for better interpretation of emotions.
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Figure 4: The macro-F1 scores of the MoE model across each datasets, k values, and labeling methods.

Top-k SemEval-2018 GoEmotions
miF1 maF1 miF1 maF1

baseline 74.9 68.0 75.6 70.9
1 61.2 57.8 75.7 71.3
2 74.7 68.0 75.6 70.8
3 75.0 68.4 75.8 71.1
4 74.6 67.4 75.7 71.0

baseline 74.4 67.1 75.0 70.4
1 60.6 56.2 74.5 69.8
2 74.7 67.0 74.9 70.3
3 74.9 67.6 74.6 70.1
4 74.6 67.0 75.1 70.7

Table 8: F1 scores of the models with Plutchik Labeling.
Top: Llama2, Bottom: Mistral.

The optimal k values for classification varied
across datasets, likely due to differences in the av-
erage number of labeled emotions. For instance,
the SemEval-2018 dataset has 2-3 labels per in-
stance, whereas the GoEmotions dataset has 1-2.

5.2 Underperforming Emotions

To assess the effectiveness of Plutchik Labeling,
we tested whether it could enhance the classifica-
tion of underperforming emotions, defined as those
with F1-scores below 0.6 in the Normal Labeling
dataset.

Table 91 presents the F1-scores for underper-
forming Emotions in SemEval-2018. When apply-
ing Plutchik Labeling, pessimism is decomposed
into anticipation and sadness, resulting in the re-
moval of the pessimism label. For basic Emotions,

1AN: Anger, ANO: Annoyance, ANT: Anticipation, CO:
Confusion, CUR: Curiosity, DIS: Disappointment, DAP: Dis-
approval, DIG: Disgust, EXC: Excitement, GRF: Grief, LO:
Love, OPT: Optimism, PES: Pessimism, PRI: Pride, REM:
Remorse, SUR: Surprise, TRU: Trust

Weak
Emot.

Llama2 Mistral
Norm. Plut. Norm. Plut.

ANT 24.0 66.8 24.3 69.4
PES 33.1 - 32.6 -
SUR 28.3 27.9 25.7 24.2
TRU 12.8 57.8 11.2 58.3
maF1 24.6 42.7 23.4 50.6

Table 9: F1-scores of underperforming emotions in
SemEval-2018.

both anticipation and trust showed significant im-
provement in classification performance due to data
augmentation. However, in the case of surprise, the
transition from Normal Labeling to Plutchik Label-
ing did not benefit from data augmentation.

Table 101 presents the F1-scores for the un-
derperforming emotions in GoEmotions. Basic
emotions such as anger, disgust, and surprise—
identified as underperforming emotions— demon-
strated substantial improvement with Plutchik La-
beling. However, many of the other underperform-
ing emotions in GoEmotions are either complex
emotions or represent varying intensities (mild or
intense), making direct comparisons with Plutchik
Labeling more difficult.

By comparing the macro-F1 scores of underper-
forming emotions between Normal Labeling and
Plutchik Labeling in Tables 9 and 10, we observe
a significant overall improvement in classification
performance across both datasets. This enhance-
ment suggests that our proposed method effectively
improves the classification of emotions that are typ-
ically harder to classify accurately. We believe that
this demonstrates the potential of Plutchik Labeling
to enhance the robustness and accuracy of emotion
classification systems.
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Weak
Emot.

Llama2 Mistral
Norm. Plut. Norm. Plut.

AN 57.0 66.4 51.2 65.0
ANO 45.3 - 45.2 -
CO 57.7 - 58.0 -
DIS 32.0 - 35.6 -
DAP 57.9 - 57.5 -
DIG 48.9 56.8 46.1 56.8
EXC 47.8 - 50.0 -
GRF 29.5 - 29.4 -
PRI 43.9 - 42.2 -
SUR 60.8 77.5 58.3 76.5
maF1 48.1 66.9 47.4 66.1

Table 10: F1-scores of underperforming emotions in
GoEmotions.

Comp
Emot.

llama2 mistral
baseline k=2 baseline k=2

LO 62.4 61.8 59.0 60.8
OPT 70.7 71.7 71.0 72.4
PES 33.1 37.7 32.6 37.3

maF1 55.4 57.1 54.2 56.8

Table 11: F1-scores of complex emotions in SemEval-
2018.

5.3 Complex Emotions

To assess whether our MoE approach improves the
classification of complex emotions, we compared
the F1-scores of complex emotions between the
baseline and MoE models under Normal Labeling.
As similar trends were observed across various k
values, we focused on the specific k values that
showed the most significant improvement in macro-
F1 scores for each dataset, relative to the baseline.

Table 111 presents the classification performance
of complex emotions in SemEval-2018, compar-
ing the baseline with the Top-2 MoE models. The
MoE approach yielded a substantial improvement
in macro-F1, significantly increasing the perfor-
mance for pessimism, which was previously cate-
gorized as an underperforming emotion.

Table 121 presents the complex emotion clas-
sification performance of the baseline and Top-4
MoE models in GoEmotions. Based on macro-F1,
Llama2 showed a slight improvement, while Mis-
tral had a slight decline. Llama2’s performance
dropped for confusion and pride, whereas Mistral
declined for confusion, curiosity, disappointment,
disapproval, and pride.

Pride, with limited data samples, poses a chal-

Comp
Emot.

llama2 mistral
baseline k=4 baseline k=4

CO 57.7 57.2 58.0 57.3
CUR 67.4 67.6 68.2 67.0
DIS 32.0 33.7 35.6 30.4
DAP 57.9 58.6 57.5 56.6
EXC 47.8 50.7 50.0 54.7
LO 83.3 83.9 84.2 85.6

OPT 68.7 70.3 69.8 69.9
PRI 43.9 38.2 42.2 41.9

REM 70.6 71.9 71.6 72.8
maf1 58.8 59.1 59.7 59.6

Table 12: F1-scores of complex emotions in GoEmo-
tions.

lenge for performance improvement due to signif-
icant data imbalance. Other complex emotions,
particularly those sharing elements with surprise,
also face classification difficulties. According to
Plutchik (1991), confusion, curiosity, disappoint-
ment, and disapproval overlap with surprise. How-
ever, Clore and Ortony (2013) argue that surprise
is a cognitive state, not an emotion, as it lacks
intrinsic valence and can manifest in both posi-
tive and negative contexts, depending on subse-
quent evaluations. This difference in perspective
adds complexity to distinguishing surprise from
related emotions that involve both cognitive and
affective components. As a result, our study faced
challenges applying the MoE model, which likely
struggled to classify surprise and other complex
emotions that range from neutral to evaluative.

6 Analysis

We investigated the relationships between emotions
by analyzing the predominant expert selections for
each. By tracking the output values of the Gate
Layer in a Mixture of Experts (MoE) model, we
identified which Experts were primarily selected
for each emotion.

Our approach involved selecting Experts for
each token and aggregating the selection propor-
tions of the Top-k Experts per token for each input.
The value of k corresponds to the Top-k used in
the MoE, with the selection proportions for each
token summing to 1. Inputs were grouped by their
emotions labels, and the aggregate Expert selec-
tion proportions for each label were computed and
standardized. Using these frequencies of Expert
selections for each emotion, we plotted emotion-
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(a) SemEval-2018 (b) GoEmotions

Figure 5: (a): Emotion correlations in Normal Labeling with Top-2 Gating. (b): Emotion correlations from in
Normal Labeling with with Top-4 Gating.

emotion correlations to examine the relationships
between emotions.

Figure 5a shows that joy, love, and optimism
exhibit strong correlations, indicating that posi-
tive emotions are closely interconnected in the
SemEval-2018 dataset. In contrast, anger, sad-
ness, and disgust show strong positive correlations
with each other, as well as with fear and pessimism,
forming a cluster of negative emotions. Addition-
ally, optimism and pessimism, as well as love and
sadness, show strong negative correlations with
each other, indicating that these emotions have op-
posite characteristics. Furthermore, love tends to
have high correlations with joy and trust, optimism
with joy, and pessimism with anticipation and sad-
ness. These patterns also allow us to understand the
similarities between complex emotions and their
component basic emotions.

In GoEmotions, as shown in Figure 5b, joy, love,
optimism, and admiration exhibit strong positive
correlations, indicating their close interrelation as
positive emotions. Conversely, anger, annoyance,
excitement, fear, grief, and pride form a group
of negative emotions, with admiration and anger
showing a strong negative correlation, highlight-
ing their opposing nature. Additionally, the com-
plex emotions disappointment and curiosity corre-
late highly with sadness and surprise, respectively,
while anger correlates strongly with annoyance
and sadness with grief. These patterns reveal the
similarities between complex emotions and their
component emotions, as well as the relationships
between basic emotions and their milder or more
intense counterparts.

Overall, while the selection of Experts for each
emotion does not perfectly align with Plutchik’s
emotion theory, the results show a significant de-
gree of similarity. This suggests that our approach
is effective for emotion analysis. These findings
contribute to a deeper understanding of emotional
interrelations and can aid in improving emotion
prediction models.

7 Conclusion

Our approach, grounded in Plutchik’s emotion the-
ory and utilizing the MoE architecture, significantly
enhances the performance of multi-label emotion
classification tasks. The proposed methodologies
were evaluated against baseline models, demon-
strating significant improvements in classification
accuracy. Notably, our approach excelled in iden-
tifying emotions that are traditionally difficult to
classify and showed superior performance in rec-
ognizing complex emotions.

Moreover, the analysis of expert selection ten-
dencies, based on emotion correlations, revealed
that our model’s behavior closely aligns with
Plutchik’s emotion theory. This alignment not only
enhances classification accuracy but also provides
a theoretically grounded insight into emotional in-
teractions.

Thus, we believe that our research presents a
robust framework for multi-label emotion classifi-
cation, integrating psychological theories and ad-
vanced machine learning techniques in emotion
recognition tasks. Future research could focus on
refining the classification of mild and intense varia-
tions of emotions.
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Limitations

This study acknowledges several limitations. First,
utilizing Plutchik’s emotion theory requires the
dataset to include all eight basic emotions defined
by the theory, posing a challenge for datasets lack-
ing these emotions. Furthermore, excluding emo-
tions not covered by Plutchik’s emotion theory can
be inefficient, making careful selection of datasets
crucial. Future research could improve the label-
ing method by incorporating additional emotion
models, such as the OCC model (Clore and Ortony,
2013).

Second, during the application of MoE, we en-
countered a known issue where tokens clustered
around specific experts. This imbalance suggests
the model may not fully leverage all experts. We
plan to design a more sophisticated MoE structure
to address this in the near future.

Acknowledgments

This work was partly supported by the National
Research Foundation of Korea grant funded by
the Korean government(MSIT) (No. RS-2024-
00357849), Institute of Information & communi-
cations Technology Planning & Evaluation(IITP)
grant funded by the Korea government(MSIT) (RS-
2019-II190421, AI Graduate School Support Pro-
gram(Sungkyunkwan University)), the Korea Plan-
ning & Evaluation Institute of Industrial Technol-
ogy (KEIT) grant funded by the Korea government
(MOTIE) (No.RS-2024-00413839).

References
Zahra Ahanin, Maizatul Akmar Ismail, Narinderjit

Singh Sawaran Singh, and Ammar AL-Ashmori.
2023. Hybrid feature extraction for multi-label emo-
tion classification in english text messages. Sustain-
ability, 15(16).

Hassan Alhuzali and Sophia Ananiadou. 2021.
SpanEmo: Casting multi-label emotion classification
as span-prediction. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
1573–1584, Online. Association for Computational
Linguistics.

J R Averill. 1999. Individual differences in emo-
tional creativity: structure and correlates. J. Pers.,
67(2):331–371.

Lisa Feldman Barrett. 2006. Solving the emotion para-
dox: Categorization and the experience of emotion.
Personality and Social Psychology Review, 10(1):20–
46. PMID: 16430327.

Christos Baziotis, Athanasiou Nikolaos, Alexan-
dra Chronopoulou, Athanasia Kolovou, Geor-
gios Paraskevopoulos, Nikolaos Ellinas, Shrikanth
Narayanan, and Alexandros Potamianos. 2018. Ntua-
slp at semeval-2018 task 1: Predicting affective con-
tent in tweets with deep attentive rnns and transfer
learning. In Proceedings of The 12th International
Workshop on Semantic Evaluation. Association for
Computational Linguistics.

Michel Cabanac. 2002. What is emotion? Behavioural
Processes, 60(2):69–83.

D. Candland. 2003. Emotion. Core books in psychol-
ogy. Authors Choice Press.

Yuyang Chai, Zhuang Li, Jiahui Liu, Lei Chen, Fei
Li, Donghong Ji, and Chong Teng. 2024. Compo-
sitional generalization for multi-label text classifica-
tion: A data-augmentation approach. Proceedings
of the AAAI Conference on Artificial Intelligence,
38(16):17727–17735.

Kai Chen, Zihao He, Rong-Ching Chang, Jonathan May,
and Kristina Lerman. 2023. Anger breeds contro-
versy: Analyzing controversy and emotions on reddit.
In Social, Cultural, and Behavioral Modeling, pages
44–53, Cham. Springer Nature Switzerland.

Aidan Clark, Diego de Las Casas, Aurelia Guy, Arthur
Mensch, Michela Paganini, Jordan Hoffmann, Bog-
dan Damoc, Blake Hechtman, Trevor Cai, Sebastian
Borgeaud, et al. 2022. Unified scaling laws for routed
language models. In International conference on ma-
chine learning, pages 4057–4086. PMLR.

Gerald Clore and Andrew Ortony. 2008. Handbook of
emotions. Appraisal theories: How cognition shapes
affect into emotion, pages 628–642.

Gerald L Clore and Andrew Ortony. 2013. Psychologi-
cal construction in the OCC model of emotion. Emot.
Rev., 5(4):335–343.

Antonio R Damasio. 1998. Emotion in the perspec-
tive of an integrated nervous system1published on
the world wide web on 27 january 1998.1. Brain
Research Reviews, 26(2):83–86.

Dorottya Demszky, Dana Movshovitz-Attias, Jeongwoo
Ko, Alan Cowen, Gaurav Nemade, and Sujith Ravi.
2020. GoEmotions: A dataset of fine-grained emo-
tions. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
4040–4054, Online. Association for Computational
Linguistics.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information
Processing Systems, 36.

David Eigen, Marc’Aurelio Ranzato, and Ilya Sutskever.
2013. Learning factored representations in a deep
mixture of experts. arXiv preprint arXiv:1312.4314.

865

https://doi.org/10.3390/su151612539
https://doi.org/10.3390/su151612539
https://doi.org/10.18653/v1/2021.eacl-main.135
https://doi.org/10.18653/v1/2021.eacl-main.135
https://doi.org/10.1207/s15327957pspr1001_2
https://doi.org/10.1207/s15327957pspr1001_2
https://doi.org/10.1016/S0376-6357(02)00078-5
https://books.google.co.kr/books?id=ExILFpIhgpAC
https://doi.org/10.1609/aaai.v38i16.29725
https://doi.org/10.1609/aaai.v38i16.29725
https://doi.org/10.1609/aaai.v38i16.29725
https://doi.org/10.1016/S0165-0173(97)00064-7
https://doi.org/10.1016/S0165-0173(97)00064-7
https://doi.org/10.1016/S0165-0173(97)00064-7
https://doi.org/10.18653/v1/2020.acl-main.372
https://doi.org/10.18653/v1/2020.acl-main.372


Paul Ekman. 1984. Expression and the nature of emo-
tion.

Paul Ekman. 1992a. Are there basic emotions? Psycho-
logical review, 99(3):550–553.

Paul Ekman. 1992b. An argument for basic emotions.
Cognition & Emotion, 6:169–200.

Paul Ekman. 1999. Basic Emotions. John Wiley Sons,
Ltd.

Paul Ekman and Richard J. Davidson, editors. 1994.
The Nature of Emotion: Fundamental Questions. Ox-
ford University Press USA.

Maha Elbayad, Anna Sun, and Shruti Bhosale. 2023.
Fixing moe over-fitting on low-resource languages
in multilingual machine translation. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 14237–14253.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of
Machine Learning Research, 23(120):1–39.

Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew G
Wilson. 2023. Large language models are zero-shot
time series forecasters. In Advances in Neural Infor-
mation Processing Systems, volume 36, pages 19622–
19635. Curran Associates, Inc.

Hussein Hazimeh, Zhe Zhao, Aakanksha Chowdh-
ery, Maheswaran Sathiamoorthy, Yihua Chen, Rahul
Mazumder, Lichan Hong, and Ed Chi. 2021. Dselect-
k: Differentiable selection in the mixture of experts
with applications to multi-task learning. Advances in
Neural Information Processing Systems, 34:29335–
29347.

Zihao He, Siyi Guo, Ashwin Rao, and Kristina Ler-
man. 2024. Whose emotions and moral senti-
ments do language models reflect? arXiv preprint
arXiv:2402.11114.

Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu,
Ruobing Xie, Julian McAuley, and Wayne Xin Zhao.
2024. Large language models are zero-shot rankers
for recommender systems. In European Conference
on Information Retrieval, pages 364–381. Springer.

William James. 1884. II.—WHAT IS AN EMOTION ?
Mind, os-IX(34):188–205.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts. arXiv preprint arXiv:2401.04088.

Michael I. Jordan and Robert A. Jacobs. 1994. Hier-
archical mixtures of experts and the em algorithm.
Neural Computation, 6(2):181–214.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. 2020.
Gshard: Scaling giant models with conditional com-
putation and automatic sharding. In International
Conference on Learning Representations.

Jinfen Li and Lu Xiao. 2023. Multi-emotion recognition
using multi-emobert and emotion analysis in fake
news. page 128–135.

Rui Mao, Qian Liu, Kai He, Wei Li, and Erik Cambria.
2023. The biases of pre-trained language models:
An empirical study on prompt-based sentiment anal-
ysis and emotion detection. IEEE Transactions on
Affective Computing, 14(3):1743–1753.

Harold L. Miller. 2016. The SAGE Encyclopedia of
Theory in Psychology.

Saif Mohammad, Felipe Bravo-Marquez, Mohammad
Salameh, and Svetlana Kiritchenko. 2018. SemEval-
2018 task 1: Affect in tweets. In Proceedings of the
12th International Workshop on Semantic Evaluation,
pages 1–17, New Orleans, Louisiana. Association for
Computational Linguistics.

J. Panksepp. 2004. Affective Neuroscience: The Foun-
dations of Human and Animal Emotions. Series in
Affective Science. Oxford University Press.

Rosalind W. Picard. 1997. Affective computing.

R. Plutchik. 1991. The Emotions. University Press of
America.

Robert Plutchik. 1988. The Nature of Emotions: Clini-
cal Implications, pages 1–20. Springer US, Boston,
MA.

Robert Plutchik. 2000. Emotions in the practice of psy-
chotherapy: Clinical implications of affect theories.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

J. Turner. 2000. On the Origins of Human Emotions:
A Sociological Inquiry into the Evolution of Human
Affect. Stanford University Press.

866

https://api.semanticscholar.org/CorpusID:140982571
https://api.semanticscholar.org/CorpusID:140982571
https://doi.org/10.1037/0033-295x.99.3.550
https://api.semanticscholar.org/CorpusID:11771973
https://doi.org/10.1002/0470013494.ch3
https://proceedings.neurips.cc/paper_files/paper/2023/file/3eb7ca52e8207697361b2c0fb3926511-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/3eb7ca52e8207697361b2c0fb3926511-Paper-Conference.pdf
https://doi.org/10.1093/mind/os-IX.34.188
https://doi.org/10.1162/neco.1994.6.2.181
https://doi.org/10.1162/neco.1994.6.2.181
https://doi.org/10.1145/3578503.3583595
https://doi.org/10.1145/3578503.3583595
https://doi.org/10.1145/3578503.3583595
https://doi.org/10.1109/TAFFC.2022.3204972
https://doi.org/10.1109/TAFFC.2022.3204972
https://doi.org/10.1109/TAFFC.2022.3204972
https://doi.org/10.4135/9781483346274
https://doi.org/10.4135/9781483346274
https://doi.org/10.18653/v1/S18-1001
https://doi.org/10.18653/v1/S18-1001
https://books.google.co.kr/books?id=qqcRGagyEuAC
https://books.google.co.kr/books?id=qqcRGagyEuAC
https://api.semanticscholar.org/CorpusID:262931595
https://books.google.co.kr/books?id=JaQauznPoiEC
https://doi.org/10.1007/978-1-4757-1987-1_1
https://doi.org/10.1007/978-1-4757-1987-1_1
https://api.semanticscholar.org/CorpusID:221563319
https://api.semanticscholar.org/CorpusID:221563319
https://books.google.co.kr/books?id=aEeSmDRsXkcC
https://books.google.co.kr/books?id=aEeSmDRsXkcC
https://books.google.co.kr/books?id=aEeSmDRsXkcC


Wenhao Ying, Rong Xiang, and Qin Lu. 2019. Im-
proving multi-label emotion classification by inte-
grating both general and domain-specific knowledge.
In Proceedings of the 5th Workshop on Noisy User-
generated Text (W-NUT 2019), pages 316–321.

Jianfei Yu, Luís Marujo, Jing Jiang, Pradeep Karuturi,
and William Brendel. 2018. Improving multi-label
emotion classification via sentiment classification
with dual attention transfer network. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1097–1102,
Brussels, Belgium. Association for Computational
Linguistics.

Longhui Yu, Weisen Jiang, Han Shi, YU Jincheng,
Zhengying Liu, Yu Zhang, James Kwok, Zhenguo Li,
Adrian Weller, and Weiyang Liu. 2024. Metamath:
Bootstrap your own mathematical questions for large
language models. In The Twelfth International Con-
ference on Learning Representations.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping
Huang, Vincent Zhao, Andrew M Dai, Quoc V Le,
James Laudon, et al. 2022. Mixture-of-experts with
expert choice routing. Advances in Neural Informa-
tion Processing Systems, 35:7103–7114.

Hyperparameter Value
epoch 10

gradient_accumulation_steps 4
learning_rate 1e-4
warmup_ratio 0.1

max_grad_norm 0.3
weight_decay 0.001

batch_Size 8
quant_type nf4

lora_r 8
lora_alpha 8

lora_dropout 0.1
num_expert 8

Table 13: Hyperparameter Settings for our experiments.

A Appendix

A.1 Hyperparameters
Table 13 shows the hyperparameter values applied
to the models used in our experiments. Except for
the k value, all hyperparameters were kept constant
across all experiments. Each condition was tested
five times.
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