
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 8872–8886
November 12-16, 2024 ©2024 Association for Computational Linguistics

MOSEL: Inference Serving Using Dynamic Modality Selection

Bodun Hu, Le Xu, Jeongyoon Moon, Neeraja Yadwadkar, Aditya Akella
The University of Texas at Austin

{bodunhu, jeongyoonm}@utexas.edu {lexu, akella}@cs.utexas.edu
neeraja@austin.utexas.edu

Abstract

Rapid advancements over the years have helped
machine learning models reach previously hard-
to-achieve goals, sometimes even exceeding hu-
man capabilities. However, achieving desired
accuracy comes at the cost of larger model
sizes and increased computational demands.
Thus, serving predictions from these models
to meet any latency and cost requirements
of applications remains a key challenge, de-
spite recent work in building inference serv-
ing systems as well as algorithmic approaches
that dynamically adapt models based on in-
puts. Our paper introduces a new form of dy-
namism, modality selection, where we adap-
tively choose modalities from inference inputs
while maintaining the model quality. We in-
troduce MOSEL, an automated inference serving
system for multi-modal ML models that care-
fully picks input modalities per request based
on resource availability, as we as user-defined
service level objectives (SLOs). MOSEL exten-
sively leverages modality configurations, im-
proving system throughput by 3.6× with an
accuracy guarantee. It also reduces job com-
pletion times by 11× compared to modality-
agnostic approaches.

1 Introduction
Recent advancements in Deep Learning has en-
abled Deep Neural Networks (DNNs), especially
Transformers, to far exceed human capabilities in
various Computer Vision and Natural Language
Processing tasks (He et al., 2015; Wolf et al., 2019).
However, the computational requirement of the
largest machine learning (ML) models has doubled
every few months, resulting in a 1,000,000× in-
crease from 2012 to 2020 (Sevilla et al., 2021). The
increasing size of the models presents fundamen-
tal challenges in terms of latency and cost when
they are commissioned for inference (Romero et al.,
2021a; Gunasekaran et al., 2022; Gujarati et al.,
2020).

These challenges has driven the development of
inference serving systems. These systems, hosted
by cloud providers, deploy ML models to deliver
fast and accurate responses to queries. Providers
guarantee service level objectives (SLOs) for la-
tency or accuracy while aiming to optimize hard-
ware utilization and maximize throughput.

One approach to mitigate inference overheads
and improve throughput is through accuracy scal-
ing, which adapts model accuracy to varying query
demands. An inference task involves three com-
ponents: system, model, and input. Prior work
focuses on optimizing the system and model as-
pects. System optimizations employ techniques
such as batching (Ahmad et al., 2024; Choi et al.,
2021; Crankshaw et al., 2017a; Shen et al., 2019a),
sharing (LeMay et al., 2020; Romero et al., 2021a),
and scheduling (Romero et al., 2021a; Ahmad et al.,
2024; Crankshaw et al., 2017a). However, these
techniques often require additional computational
resources or powerful accelerators to handle higher
query demands, which may not always be feasi-
ble due to the limited availability and flexibility of
hardware resources. On the other hand, model opti-
mizations often replace a large model with a more
cost-effective variant, typically obtained using ML
compression techniques, such as distillation (Sanh
et al., 2019; Mullapudi et al., 2019), pruning (Lin
et al., 2017; Gordon et al., 2020) and quantiza-
tion (Polino et al., 2018). However, this approach
necessitates multiple model replicas, wasting stor-
age space and introducing overhead for switching
between replicas and execution backends (Romero
et al., 2021a; Ahmad et al., 2024).

In this paper, we propose an orthogonal and com-
plementary perspective on accuracy scaling. In
particular, we propose modulating the input, specif-
ically via selectively using parts of it. We demon-
strate its usefulness in the context of multi-modal
learning (Ngiam et al., 2011; Baltrušaitis et al.,
2018), an emerging and important class of ML

8872

techniques that combine data from different modal-
ities to provide prediction cooperatively, enhancing
prediction accuracy.

As we describe in Section 3, we empirically find
that some modalities (e.g., the audio modality in
the Textless Vision-Language Transformer (TVLT)
model (Tang et al., 2022)) contribute significantly
to prediction accuracy without major resource use
(e.g., memory) and processing time. In contrast,
other modalities (e.g., the video modality in TVLT)
consume significant resources and incur latency
while only marginally improving accuracy.

We leverage the above insight in inference set-
tings and propose that modalities be selectively
enabled or disabled based on application require-
ments and workload patterns, creating novel oppor-
tunities to exploit the trade-off between speed and
accuracy that multi-modality presents. We refer to
it as modality selection, which complements exist-
ing accuracy scaling techniques and can be directly
applied to the original model.

We assume that queries generally favor higher
accuracy whenever resource permits, but can tol-
erate reduced accuracy for timely responses un-
der resource constraints, provided that SLOs are
not violated. This assumption is particularly rel-
evant to applications like recommendation sys-
tems (Fang et al., 2018) or real-time applications,
where response time outweighs the need for accu-
racy (Huang et al., 2015).

We build MOSEL, an automated inference serving
system for multi-modal models that selects input
modalities per request based on user-defined la-
tency and accuracy SLO and system load. Our ap-
proach ensures scaling and performance during in-
ference by dividing it into offline and online compo-
nents. The offline component is designed to quickly
generate a rich repository of modality selection
strategies, enabling the online component to make
informed decisions. For the online component, we
ensure that, at inference time, late-enqueued jobs
meet their latency requirements. We facilitate jobs
ahead in the inference queue by dynamically re-
selecting modalities to ease the queueing load; this
allows later-enqueued jobs to run at the required
accuracy without missing their latency targets.

We evaluate MOSEL on a set of representative
multi-modal models that utilize commonly-seen
architectures (Transformer (Vaswani et al., 2017),
BERT (Devlin et al., 2019), CNN (LeCun et al.,
2015)). We show that MOSEL outperforms modality-
agnostic approaches in resource utilization and

query spike tolerance, reducing job completion
times by up to 11× and handling up to 3.6×
more requests with accuracy guarantees. More-
over, MOSEL achieves up to 4.6× throughput when
combined with quantization techniques.

2 Background

Multi-modal Learning: Multi-modal learning
techniques are shown to surpass unimodal tech-
niques by exploiting the complementary nature of
different modalities, such as text, image, audio,
and video (Ngiam et al., 2011; Baltrušaitis et al.,
2018). The existing techniques can be broadly clas-
sified into two categories: early fusion (Snoek et al.,
2005; Atrey et al., 2010; Katsaggelos et al., 2015)
and late fusion (Snoek et al., 2005; Liu and Yuan,
2018; Abavisani et al., 2019). Early fusion com-
bines modalities at an early stage, blending features
before further processing, as seen in TVLT (Tang
et al., 2022). Late fusion processes each modality
separately and merges outcomes later, exemplified
by the Temporal Binding Network (TBN) (Kazakos
et al., 2019). Some methods attempt to combine
properties from both early and late fusion (Nagrani
et al., 2021; Joze et al., 2020; Perez-Rua et al.,
2019; Vielzeuf et al., 2018; Xue and Marculescu,
2023; Nagrani et al., 2021). We demonstrate in
Figure 1 that multi-modalities present complexities
due to varied resource requirements and perfor-
mance traits.

Inference and its challenges: Increased accuracy
of DNNs has led to their wide adoption in real-
world applications resulting in increased produc-
tion costs (Hazelwood et al., 2018; Gupta et al.,
2020; Romero et al., 2021b; aws). Inference serv-
ing systems use pre-trained ML models for predic-
tions and manage resources to meet diverse user
requests and application requirements (Crankshaw
et al., 2017b; Reddi et al., 2020; Hsieh et al., 2018;
Gog et al., 2022). Additionally, inference serving
systems must manage dynamic workloads for cost
and resource efficiency (Yadwadkar et al., 2019;
Crankshaw et al., 2020, 2017b; Zhang et al., 2023a).
The complexity increases when diverse services,
each with unique Service Level Objectives (SLOs),
contend for shared model resources. Comparing
to serving systems that handle uni-modal mod-
els, serving multi-modal models with resource and
latency-awareness has not been fully explored.

8873

TVLT TBN HuBERTViLT MMSA
0.0

0.5

1.0
No

rm
al

ize
d

La
te

nc
y

TVLT TBN HuBERTViLT MMSA
0.0

0.5

1.0

No
rm

al
ize

d
M

em
or

y

TVLT TBN HuBERTViLT MMSA
0.0

0.5

1.0

Ac
cu

ra
cy

all audio video image video+audio image+video image+audio text audio+text video+text

0.73 0.74

500

1000

La
te

nc
y

(m
s)

(a) TVLT

0.35 0.40 0.45 0.50

200

400

(b) ViLT

0.5 0.6 0.7
Accuracy

250

500

750

1000

(c) TBN

0.6 0.8

400

600

800
(d) HuBERT

0.6 0.7 0.8
22.5

25.0

27.5

30.0

(e) MMSA

Figure 1: Performance comparison of different modalities for models discussed in Table 1: (Upper Left) Normalized
latency for modalities, obtained by dividing each modality’s latency by the modality-agnostic baseline. (Upper
Middle) The normalized memory footprint of different modalities. (Upper Right) Accuracy comparison using
different modalities. (Bottom) Minimum latency required to achieve different levels of accuracy across various
models using combinations of modalities.

3 Opportunities & Challenges

Accuracy Across Modalities: In multi-modal
DNNs, the importance of each modality can vary
based on task, data, and model architecture (Ma
et al., 2021, 2022; Tang et al., 2022; Nagrani et al.,
2021). Figure 1(left) illustrates that some models,
like TVLT, can achieve high accuracy without us-
ing all modalities. This shows data of different
modalities contribute differently to the model accu-
racy.
System Implications: Different modalities
uniquely impact latency and memory consumption
due to their distinct data representations and pro-
cessing methods. For example, in TVLT, the audio
modality is more efficient than video in memory
usage and latency, with minimal accuracy trade-
offs, shown by Figure 1 (left, middle). Memory
consumption scales with sequence length in atten-
tion mechanisms (Vaswani et al., 2017), selectively
using subset of input modalities means shorter se-
quences and reduced memory usage. Many re-
cent works (Tang et al., 2022; Shi et al., 2021;
Nagrani et al., 2021; Harwath et al., 2016; Lu et al.,
2019; Sun et al., 2019) adopt similar attention-
based multi-modal models, which can also benefit
from using fewer modalities to reduce latency and
memory consumption.
Opportunities: Applications provide inference
systems with varying SLOs for accuracy and la-
tency. These varying requirements offer opportu-
nities for adaptive multi-modal selection, which
previous systems haven’t explored. Modalities can
be enabled or disabled based on application needs
(e.g., serving latency) and resource availability. For
instance, under high load, prioritizing ultra-low la-

tency to prevent resource contention is crucial. In
such scenarios, employing only the audio modality
in TVLT helps reduce latency by 11×with minimal
accuracy loss, as shown in Figure 1. Conversely,
under low load, using both video and audio ensured
highest accuracy due to resource availability. We
refer to this method as accuracy scaling (Ahmad
et al., 2024), which adapts the inference accuracy
to meet varying query demands. Fully achieving
accuracy scaling raises the following challenges.
Challenge 1: find optimal modalities to use. Fig-
ure 2 illustrates the challenges of multi-modal in-
ference. Each job, consisted of multiple requests
submitted by an application, has specific accuracy
and latency SLOs. Job 1 with an audio modality
runs from time 0 to 20, Job 2 arrives at 10 and starts
at 20, and Job 3 arrives shortly after 20. All jobs are
executed in the order they arrive (a First-In-First-
Out, FIFO, manner). Each job requires a modality
selection strategy to determine the modalities to
use for each request. Figure 2 shows six possible
strategies for Job 2 or Job 3. For example, S1 uses
both modalities for both requests, while S4 uses
only the audio modality.

The number of strategies can be large and grow
exponentially with the number of requests and the
number of modalities. For a job with 20 requests
and 3 modalities, there are 231 possible strate-
gies. Some strategies may be infeasible, failing
to meet accuracy or latency SLOs. For instance,
only two of the six strategies for Job 2 satisfy the
accuracy SLO (0.71) and the latency SLO (140).
To achieve faster model deployment, efficient meth-
ods are needed to prune infeasible strategies and
estimate latency for feasible ones.
Challenge 2: handle resource contention. Fig-

8874

s1 s2 s3 s4 s5 s6
Available
Policies

Acc: 0.7
Latency: 30

Acc: 0.67
Latency: 20

Acc: 0.8
Latency: 60

20 40 60 80 100

Job 2
(S1)

Job 3
(?)

Job 3
(S4)

Job 2
(S3)

Job 2
(S6)

Job 3

Acc: 0.685 < 0.71

Acc: 0.735 > 0.71

120 140 160

Waiting time

Execution Timeline

Arrival
Time Deadline Accuracy

Target

Job 2 10 140 0.71

Job 3 20 150 0.67

Job 2
(S3)

Acc: 0.67 = 0.67

Acc: 0.735 > 0.71

Acc: 0.685 > 0.67

Job 1

Plan 4Job 3
(S6)

Plan 1

Plan 2

Plan 3

Figure 2: : Job 1 runs from timestamp 0 to 20. Job 2
arrives at timestamp 10 and starts at 20 after existing
Job 1 finishes. One of Job 2’s strategies, s6, has an ac-
curacy of 0.67+0.7

2 = 0.685, failing to meet its accuracy
SLO (Plan 1). Similarly, s4 also fails with an accuracy
of 0.67. Job 3 arrives shortly after 20 with a deadline
of 150. If Job 2 selects s1, it occupies the system until
140, leaving Job 3 unable to meet its deadline (Plan 2).
By selecting a lower accuracy modality, Job 2 can free
up resources for Job 3 (Plan 3) allowing Job 3 to use a
higher accuracy video modality (Plan 4).

ure 2 illustrates that multiple strategies can yield
valid accuracy. But we note that some strategies
that create opportunities for a job potentially come
at the cost of other jobs. In particular, greedily
increasing accuracy for a job comes at the cost of
increased resource consumption that may in turn
hurt other jobs. This is illustrated by Plan 2 in Fig-
ure 2: it offers great accuracy for Job 2 by selecting
both modalities for both requests (effective accu-
racy of 0.8) and finishing exactly by 140 time units.
But, it leaves no room for Job 3 to finish by its
deadline. On the other hand, by lowering accuracy
for some jobs, we are left with extra resources that
can be used to improve the outcomes for other jobs;
e.g., in Plan 3, we use just the audio modality for
one of Job 2’s requests, yielding an effective accu-
racy of 0.735, which allows Job 3 to start at time
100 and use the audio modality for both its requests
in order to finish by time 140 with an accuracy of
0.67. In fact, we can improve Job 3 – by picking
a higher-accuracy modality (video) for one of its
requests, Job 3 achieves an effective accuracy of
0.685 (Plan 4), while finishing at its deadline of
150.

The upshot is that we may have to look for

The Online Stage

1 2 ...

30 45
10 15
60 85

0.6 0.72 ...

1 :10 :60
2 :45 :70
...

A+V

J1 J2

(a) Profile (latency) (b) Optimal modality selection
strategies (plan : latency)

A+V

J1 J2
A+V

J3

A A+V

A A

A+V

J1 J2

A+V

A

A+V

J3

A

A+V

A A A+V

J1 J2
A+V

J3

optimize

optimize

(1) queue (2) new job

(3) Search for alternatives

(4) Finalize strategy

The Offline Stage

batch
modality (accuracy) batch

accuracy

V

A+V

A

A A + V

A A A A + V

A+V A+V A+V A+V A+V

A A+V A A

A A A+V A+V

A A A+V A+VA+V A+V A+V A+V

(0.7)
(0.6)
(0.8)

A+V A+V

Se
ar

ch

Figure 3: MOSEL During the offline phase, MOSEL first (a)
profiles latency for different accuracy-batch size pairs,
then (b) constructs the optimized modality selection
strategy matrix based on profile. In the online phase, it
uses this matrix to dynamically derive modality selection
strategies for different jobs.

less-than-optimal strategies for some jobs in the
queue to enable other later-coming jobs to meet
their objectives. To tackle the challenges for mod-
els that dynamically adapt to input data, we need
techniques that adapt to the changing SLOs and
query load across jobs. Existing inference serv-
ing systems leverage various techniques, includ-
ing autoscaling (Microsoft Azure; Amazon Web
Services), model switching (Romero et al., 2021a;
Zhang et al., 2020), batching (Crankshaw et al.,
2017a), predictive serving (Gujarati et al., 2020)
and preemption (Zhang et al., 2023a). Inference
systems for multi-modality such as (Li et al., 2021)
focus on speculatively executing modalities using
augmented data. All of these techniques are agnos-
tic to input data modalities and to the possibility of
exploiting them for efficiency.

4 MOSEL Overview

4.1 Design Goals

We design MOSEL to achieve three key goals. First,
MOSEL should automate modality selection, allow-
ing users to only focus on high-level SLOs. Second,
MOSEL should dynamically scale inference accu-
racy in response to varying system loads, maximize
accuracy whenever possible while ensuring SLO
compliance. Finally, MOSEL should easily integrate
with existing inference systems for ease of use and
adoption. This section provides an overview of our
approach to meeting these goals and addressing the
challenges outlined in Section 3.

Figure 3 illustrates the two stages of MOSEL’s
approach: offline profiling and online optimiza-
tion. The offline stage generates potential modal-

8875

ity selection strategies, thereby preparing the sys-
tem for varying operational scenarios. During the
online stage, the system selects from these pre-
computed strategies in real-time, adjusting modal-
ity choices to scale accuracy based on system load
and SLOs of active jobs. This two-stage process
ensures that MOSEL can minimize job deadline vi-
olations, enhance inference accuracy, and boost
overall throughput - all without direct user inter-
vention in modality selection.

4.2 The Offline Stage

MOSEL’s offline stage generates a repository of po-
tential modality selection strategies. As discussed
in Section 3, each job has specific SLOs for ac-
curacy and latency. Moreover, the number of re-
quests submitted by different users can vary, re-
sulting in variations in batch sizes. Consequently,
MOSEL must prepare diverse modality strategies to
accommodate diverse request volumes and accu-
racy demanded by users.

However, exhaustively exploring every poten-
tial possible modality selection strategy to identify
those that fulfill the specified criteria is not prac-
tical. Consider a model with three modalities and
jobs sizes ranging from 1 to 64; this results in ap-
proximately 400, 000 distinct strategies, taking up
to 25 hours just for profiling. Moreover, increas-
ing the jobs sizes and the number of modalities
significantly escalates the complexity of the search
space.

Therefore, we adopt an alternative approach:
profiling individual modality combinations and
leveraging the profiled data to synthesize optimized
modality selection strategies. Taking the same
model for example, we can form seven distinct
combinations by selecting one, two, or three modal-
ities. This requires profiling only 448 = 64 × 7
instances — a dramatic reduction from the exhaus-
tive method. This approach decreases the profiling
workload by a factor of 890×, making it signifi-
cantly more efficient. We profile each instance for
latency, documenting the accuracy and batch size.
The latency for each batch-modality pair is stored
as an entry in a profile table (Figure 3(a)).
MOSEL uses the profile table to construct a matrix

of modality selection strategies for different job
sizes and accuracy constraints for a given model,
as shown in Figure 3(b). MOSEL first defines a range
of possible job sizes, as well as a range of po-
tential accuracy SLOs. Then, it uses an integer
non-linear program (INLP) solver to generate an

optimal strategy with minimal latency for a given
accuracy-job size pair, represented by an entry in
Figure 3(b). The construction happens in a one-
time offline phase before the model is deployed.
More details can be found in Section 5.1.

4.3 The Online Stage

MOSEL’s online stage dynamically selects modality
selection strategies, generated during offline stage,
for each job in real-time. As outlined in Section 3,
MOSEL’s goal is to scale accuracy for all requests,
maximizing it during low system load and balanc-
ing it against higher loads, ensuring compliance
with user-defined accuracy and latency SLOs. This
requires an ongoing update of modality strategies
in response to the fluctuating system load and the
SLOs of active jobs.

Once a model is deployed, the system queues all
incoming jobs. MOSEL prioritizes and orders these
jobs by their deadlines, as shown in Figure 3(1)
(bottom half; leftmost panel). By default, Each new
job adopts the strategy with the highest accuracy.
MOSEL monitors the queued jobs and detects if

incoming new jobs may suffer from deadline vi-
olations. For a given job, MOSEL calculates the
total latency by adding the latency of the existing
modality selection strategy used by the job and the
total latency of all preceding jobs. It then checks
whether the sum would exceed the given job’s la-
tency SLO. If a job risks missing its deadline, as
shown in Figure 3(2), MOSEL adjusts the modality
selection strategies for all preceding jobs, poten-
tially sacrificing accuracy, in order to reduce the
wait time for the job at risk of a deadline violation.

When a job is detected to be at risk of a deadline
violation, MOSEL considers the violator and all its
preceding jobs as candidates for potential modal-
ity selection strategy changes. For each candidate
job, MOSEL selects from the pre-computed modality
strategies generated during the offline stage, whose
accuracy are greater than the accuracy SLO speci-
fied for each job, as shown in Figure 3(3). MOSEL
then takes all such strategies for all candidate jobs,
and inputs them into an INLP solver, which reas-
signs a strategy for each candidate job, as shown
in Figure 3(4). If the solver fails to find a solution,
it means MOSEL is unable to reduce the queue time
further without violating the accuracy SLO, and it
will drop the job at risk of a deadline violation.

This approach allows MOSEL to dynamically ad-
just modality selection strategies to accommodate
varying system loads. If the queue becomes rela-

8876

INLP

Modality Strategy
GeneratorProfiler

Modality Metrics

Optimal Modality
Strategies

Strategy Optimizer

INLPJob

1 2
3

5

Worker

Update
Latency

6

7

MOSEL

"Ok"

Offline

Online

4

Figure 4: MOSEL Workflow

tively empty or contains few jobs, MOSEL will at-
tempt to increase the accuracy for all queued jobs
by progressively trying higher-accuracy modality
strategies for each queued job. The modality strat-
egy reassignment process is formulated as an INLP,
detailed in Section 5.2.

5 Formulation
This section outlines how we identify optimal
modality selection strategies to minimize latency
while meeting accuracy SLOs for different job
sizes. We also explain how we dynamically ad-
just these strategies in real-time to adapt to varying
system resources.

5.1 Offline Optimal Strategy Generation

For a given model supporting n modalities and
batch size from 1 to b, we profile the latency for
each modality combination and batch size, yield-
ing, in total, b(2n− 1) results, collectively denoted
as the set D (represented by Figure 3 (a)). Dij rep-
resents the latency using modality combination i
with batch size j.

The submitted requests, with an accuracy SLO
α, and the number of requests |R|, are divided
into multiple batches, denoted as J , each us-
ing a different modality selection strategy from
D. For each batch, we aim to find the modal-
ity combination I, such that the total latency of
all batches

∑
i,j∈I,J Dij is minimized, subject

to two constraints: (1) The sum of all batches
sizes must be equal to the total number of requests:
R| = ∑

j∈J j, and (2) The average accuracy of
all batches must exceed the user-specified accu-
racy SLO α. We use acc(i) to denote the accuracy
achieved by a modality selection strategy i. For-
mally, we have:

∑
i,j∈I,J acc(i)j ≥ α|R

The INLP solver requires only three components
to function: the profiled results D, the request size
R, and the accuracy SLO α. This enables us to
precompute the modality selection strategies com-
pletely offline, reducing the risk of deadline viola-

tions once a model is deployed. Formally, given N
possible request sizes and A accuracy requirements,
we optimize for each of the N · A combinations.
The optimal strategies are denoted as P , where Pij
represents the optimal strategy for a request of size
i with accuracy SLO j) (shown by Figure 3 (b)).
This process has negligible overheads.

5.2 Online Modality Selections and
Adjustment

Once a model is deployed, incoming requests are
enqueud. To ensure no job misses its deadline
(shown in Figure 3), we use T to represent the
maximum allowed time budget. If MOSEL detects
a deadline violation, T is set to the difference be-
tween the violator’s deadline and the start time of
the most recently executed job. Otherwise, T is
set to the difference between the last job’s deadline
and the start time of the most recent job.
MOSEL selects one strategy from P for each job

in the queue, based on the available time budget
T . We denote the set of all such strategies as S,
and the set of all involved jobs as J . Our goal is
to select a strategy for each job in J such that the
total accuracy is maximized:

∑
s,j∈S,J acc(s) · |j|.

We use l(s) to represent the execution latency of
a strategy. To ensure the total latency fits within
the budget T , wee add this constraint to our INLP:∑

s∈S l(s) ≤ T .

6 MOSEL Implementation

MOSEL is implemented in 3k lines of Python code.
The offline profiler uses Pytorch (Paszke et al.,
2019) to execute 1 DNNs on the GPU and pro-
file 2 system metrics through CUDA API. We
use GEKKO (Beal et al., 2018) to generate 3 the
offline modality selection strategies. GEKKO is
an optimizer that solves large-scale mixed-integer
and differential algebraic equations with nonlinear
programming solvers. The generated strategies are
stored in a single pickle object. During model de-
ployment, the monitor process buffers incoming
jobs, 4 retrieves the generated modality plans, 5
uses GEKKO to finalize the modality plan for each
job, and puts the job into a FIFO queue shared
with the worker process. To handle the GEKKO’s
overhead (which takes up to 80 ms), the monitor
process enqueues enough jobs to compensate for
the optimizer overhead. The worker process polls
the FIFO queue, executes 6 the jobs, and reports
the latest 7 execution latency metrics back to the
monitor process for accurate resource estimation.

8877

7 Evaluation

To evaluate our implementation, we conduct exper-
iments using realistic workloads and address the
following questions:
Q1: What are the benefits of modality-aware opti-
mizations? (Section 7.1)
Q2: Is MOSEL resilient towards profiling error?
(Section 7.2)
Unless specified otherwise, our experiments use the
following configurations. We explore MOSEL’s com-
patibility with existing model optimization tech-
niques in Appendix C.
Experimental Setup All measurements are con-
ducted on real hardware using a NVIDIA Tesla
A100 GPU (80GB DRAM) and an Intel Xeon Sil-
ver 4314 CPU (2.40GHz, 128GB DRAM). We used
NVIDIA driver version 525.85, CUDA 12.0, and
PyTorch 2.1.0. The operating system is Ubuntu
22.04.1 LTS with 5.15.0 kernel.
Models. Table 1 summarizes the five pretrained Py-
Torch models used for evaluation. The models dif-
fer in size and fusion strategy. All models are fine-
tuned on the task-specific datasets and preloaded
onto the GPU before evaluation.
Workloads. We conducted experiments using both
synthetic and real-world query patterns. For syn-
thetic workloads, we generated queries with con-
stant loads at fixed intervals. For real-world work-
loads, we used timing information from a month-
long 2018 Twitter trace (twi), which reflects realis-
tic inference workloads with diurnal patterns and
spikes (Zhang et al., 2019). For each experiment,
we randomly selected a day from the Twitter trace.

7.1 MOSEL with production workload

Here we show that dynamic modality selection en-
ables MOSEL to improve throughput and utilization
while reducing SLO violations under heavy load.
Experimental setup. We evaluated various models
summarized in Table 1. To account for the vary-
ing processing latency, we adjusted the query per
second (QPS) for each model. The Twitter trace
was mapped to a minimum of 5 QPS. We set the
maximum QPS based on each model’s capacity to
process requests within one second without miss-
ing deadlines: TVLT (60), AVHuBERT (20), TBN
(40), MMSA (100), and ViLT (40). These values
are twice the maximum requests each model can
process per second. Requests were generated fol-
lowing a normal distribution, with a mean of 1 and
a standard deviation of 6, until the total number of

requests matches the QPS. We randomly assigned
each job an accuracy SLO within the model’s per-
formance range, based on the lowest and highest
achievable accuracy using different modalities.

We used four different policies: (a) optimized:
(Section 5.2) uses available resources to achieve the
highest accuracy for all enqueued jobs; (b) random
(Algorithm 1) selects jobs randomly from the queue
and applies the fastest strategy meeting the accu-
racy SLO, repeating until no deadline violations
occur; (c) aggressive applies the fastest strategy
satisfying the accuracy SLO to all enqueued jobs,
regardless of deadline violations; and (d) none
(modality-agnostic) performs no modality modifi-
cation and serves as the baseline.
Results and discussion. Figure 5 shows dynamic
modality selection results in higher throughput
for all models compared to the modality-agnostic
approach. TVLT, AvHUBERT, TBN, MMSA,
and ViLT achieved throughput increase of 5.3×
2.2×, 3.1×, 1.12×, and 4.3×, respectively. At
low request arrival rate, both the modality-aware
and modality-agnostic approaches have similar
throughput. However, the modality-aware methods
can handle higher request arrival rates, while the
modality-agnostic method suffers from high pro-
cessing latency and fluctuation. Note that MMSA
has consistently low processing latency across all
modalities, resulting in similar performance among
different modality strategies.

Figure 5 also shows that all modality-aware tech-
niques have significantly fewer SLO violations
compared to the modality-agnostic approach. The
optimized policy achieves 25%, 18%, 17%, 15%,
and 4% lower average SLO violation ratios for
TVLT, VilT, TBN, AVHuBERT, MMSA, respec-
tively. Note the optimized policy has a slightly
higher SLO violation ratio compared to the aggres-
sive and random policy for models like TVLT and
MMSA, due to processing latency being close the
online optimizer latency. MOSEL compensates for
this with higher accuracy and more consistency
accuracy distributions across jobs, as shown in Fig-
ure 6. For larger models, the online optimizer over-
head is negligible.

7.2 Resilience to Variations

In this section, we show how variations in offline
and online optimizations can affect the inference
process.
Experimental setup. To evaluate the impact of the
offline optimization on accuracy and throughput,

8878

Task Dataset Model Modalities Fusion
Sentiment Analysis MOSEI (Zadeh et al., 2018) TVLT (Tang et al., 2022) audio, video Early
Speech Recognition LRS3 (Afouras et al., 2018) AVHuBERT (Shi et al.,

2022)
audio, video Early

Action Recognition EPIC-KITECHENS (Damen et al.,
2022)

TBN (Kazakos et al.,
2019)

audio, video, im-
age

Late

Sentiment Analysis MOSEI (Zadeh et al., 2018) Self-MM (Yu et al., 2021) text, audio, video Late
Multi-Label Classifica-
tion

MM-IMDb (Ovalle et al., 2017) ViLT (Kim et al., 2021) text, image Early

Table 1: Tasks, datasets used for finetuning and evaluation, model architectures, model sizes, modalities used,
fusion strategy

0 100 200

10
20
30

Re
qu

es
ts

\s

(a) TVLT

0 100 200

20

40

60

(b) ViLT

0 100 200
Time (s)

5

10

15

(c) TBN

0 100 200

5

10

(d) AVHuBERT

0 100 200

20

40

60
(e) mmsa

none rand aggressive optimized

1 2 3 4
0.0

0.5

1.0

SL
O

vi
ol

at
io

n
ra

tio

(a) TVLT

1 2 3 4
0.0

0.5

(b) ViLT

1 2 3 4
Strategy

0.0

0.5

(c) TBN

1 2 3 4
0.0

0.5

1.0
(d) AVHuBERT

1 2 3 4
0.0

0.2

0.4

(e) MMSA

none [1] aggressive [2] rand [3] optimized [4]

Figure 5: Throughput and SLO violation ratio (number of SLO violations by total number of requests), profiled
every 4 seconds. Each box shows the outlier, median, mean, 25%, and 75% quartiles.

none aggressive rand optimized

0.735

0.740

Ac
cu

ra
cy

Figure 6: Accuracy distribution of TVLT with average
accuracy of all jobs using different modality strategies.

0.5 1.0 1.5 2.0
Estimated / Actual Latency

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Th

ro
ug

hp
ut

TVLT
ViLT
HuBERT
TBN
mmsa

0.8× 1.6× 7.5 10.0
Estimated / Actual Latency

0.73

0.74

Ac
cu

ra
cy

Figure 7: Left: demonstrating the effect of the deviation
between the expected and actual execution latency on
models’ normalized throughput. The discrepancy is cal-
culated by estimated latency over actual latency. Right:
accuracy distribution under different discrepancy be-
tween estimated and actual execution latency for TVLT.
The discrepancy is calculated by estimated latency over
actual latency.

we generate optimized modality selection strate-
gies, discussed in Section 4.2. We then vary the
latency from 20% to 250% of the original latency
to simulate discrepancies between estimated and
actual inference latency on real hardware. Using
TVLT with a fixed QPS of 40, we apply optimized
strategy for all experiments.

Results and discussion. As Figure 7 shows, all
models can tolerate underestimated latency and
maintain throughput. TVLT, AVHuBERT, and
MMSA and tolerate up to 50% latency overestima-
tion with negligible sacrifice in throughput. Since
it’s rare to obverse such discrepancy in inference
infrastructures (Gujarati et al., 2020), we believe
MOSEL is robust against estimation errors in most
scenarios. The changing accuracy, as shown in
Figure 7, is attributed to the system having false
impression of resources due to overestimation, thus
dropping jobs prematurely.

8 Conclusions

We modulate the input to a model at inference time
to achieve accuracy scaling. We show the bene-
fits of this approach in multi-modal inference. We
highlight the key challenges and present practical
solutions within MOSEL. We believe that input data
modulation, combined with model and system op-
timization, opens new possibilities in inference lit-
erature. Modifying the input data can lead to sig-
nificant benefits across the inference serving stack,
including reduced network bandwidth, lower pre-
processing costs, energy efficiency, and reduced
operating costs. We envision MOSEL being applied
to many scenarios with high input data variability
that require adaptive optimizations.

8879

Limitations
MOSEL presents two limitations in order to lever-
age the opportunity (§3) in a profitable way. First,
MOSEL only considers the strategies that select the
same modality for every request in a single job.
This may lead to sub-optimal decisions. For exam-
ple, Plan 4 in Figure 2 cannot be chosen. However,
this design choice is inevitable otherwise the of-
fline phase incurs prohibitive profiling costs. In the
online phase, MOSEL may adopt a greedy heuristic
that could be sub-optimal. We introduce it because
solving the optimization problem online imposes
a non-negligible latency overhead. We empirically
show that the proposed heuristic works well and is
close to the solver-based approach.

References
Accelerating inference with sparsity using the nvidia

ampere architecture and nvidia tensorrt. https://
shorturl.at/wCHI3.

Deliver high performance ml inference with
aws inferentia. https://d1.awsstatic.com/
events/reinvent/2019/REPEAT_1_Deliver_
high_performance_ML_inference_with_AWS_
Inferentia_CMP324-R1.pdf.

Twitter stream. https://archive.org/details/
archiveteam-twitter-stream-2018-04.

M. Abavisani, H. Joze, and V. M. Patel. 2019. Im-
proving the performance of unimodal dynamic hand-
gesture recognition with multimodal training. In
2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1165–1174, Los
Alamitos, CA, USA. IEEE Computer Society.

Triantafyllos Afouras, Joon Son Chung, and An-
drew Zisserman. 2018. Lrs3-ted: a large-scale
dataset for visual speech recognition. arXiv preprint
arXiv:1809.00496.

Sohaib Ahmad, Hui Guan, Brian D. Friedman, Thomas
Williams, Ramesh K. Sitaraman, and Thomas Woo.
2024. Proteus: A high-throughput inference-serving
system with accuracy scaling. In Proceedings of the
29th ACM International Conference on Architectural
Support for Programming Languages and Operat-
ing Systems, Volume 1, ASPLOS ’24, page 318–334,
New York, NY, USA. Association for Computing
Machinery.

Amazon Web Services. Amazon SageMaker. https:
//aws.amazon.com/sagemaker/.

Pradeep K. Atrey, M. Anwar Hossain, Abdulmotaleb El
Saddik, and M. Kankanhalli. 2010. Multimodal fu-
sion for multimedia analysis: a survey. Multimedia
Systems, 16:345–379.

Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe
Morency. 2018. Multimodal machine learning: A
survey and taxonomy. IEEE transactions on pattern
analysis and machine intelligence, 41(2):423–443.

Logan D. R. Beal, Daniel C. Hill, R. Abraham Martin,
and John D. Hedengren. 2018. Gekko optimization
suite. Processes, 6(8).

Lingjiao Chen, Matei Zaharia, and James Zou. 2023.
Frugalgpt: How to use large language models while
reducing cost and improving performance. CoRR,
abs/2305.05176.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. 2017.
A survey of model compression and acceleration for
deep neural networks. arXiv preprint.

Seungbeom Choi, Sunho Lee, Yeonjae Kim, Jongse
Park, Youngjin Kwon, and Jaehyuk Huh. 2022. Serv-
ing heterogeneous machine learning models on multi-
gpu servers with spatio-temporal sharing. In 2022
USENIX Annual Technical Conference, USENIX ATC
2022, Carlsbad, CA, USA, July 11-13, 2022, pages
199–216. USENIX Association.

Y. Choi, Y. Kim, and M. Rhu. 2021. Lazy batching: An
sla-aware batching system for cloud machine learn-
ing inference. In 2021 IEEE International Sympo-
sium on High-Performance Computer Architecture
(HPCA), pages 493–506, Los Alamitos, CA, USA.
IEEE Computer Society.

Daniel Crankshaw, Gur-Eyal Sela, Xiangxi Mo, Corey
Zumar, Ion Stoica, Joseph Gonzalez, and Alexey
Tumanov. 2020. Inferline: Latency-aware provision-
ing and scaling for prediction serving pipelines. In
Proceedings of the 11th ACM Symposium on Cloud
Computing, SoCC ’20, page 477–491, New York,
NY, USA. Association for Computing Machinery.

Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J.
Franklin, Joseph E. Gonzalez, and Ion Stoica. 2017a.
Clipper: A Low-Latency online prediction serv-
ing system. In 14th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI
17), pages 613–627, Boston, MA. USENIX Associa-
tion.

Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J
Franklin, Joseph E Gonzalez, and Ion Stoica. 2017b.
Clipper: A {Low-Latency} online prediction serv-
ing system. In 14th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI
17), pages 613–627.

Dima Damen, Hazel Doughty, Giovanni Maria Farinella,
Antonino Furnari, Jian Ma, Evangelos Kazakos, Da-
vide Moltisanti, Jonathan Munro, Toby Perrett, Will
Price, and Michael Wray. 2022. Rescaling egocentric
vision: Collection, pipeline and challenges for epic-
kitchens-100. International Journal of Computer
Vision (IJCV), 130:33–55.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep

8880

https://shorturl.at/wCHI3
https://shorturl.at/wCHI3
https://d1.awsstatic.com/events/reinvent/2019/REPEAT_1_Deliver_high_performance_ML_inference_with_AWS_Inferentia_CMP324-R1.pdf
https://d1.awsstatic.com/events/reinvent/2019/REPEAT_1_Deliver_high_performance_ML_inference_with_AWS_Inferentia_CMP324-R1.pdf
https://d1.awsstatic.com/events/reinvent/2019/REPEAT_1_Deliver_high_performance_ML_inference_with_AWS_Inferentia_CMP324-R1.pdf
https://d1.awsstatic.com/events/reinvent/2019/REPEAT_1_Deliver_high_performance_ML_inference_with_AWS_Inferentia_CMP324-R1.pdf
https://archive.org/details/archiveteam-twitter-stream-2018-04
https://archive.org/details/archiveteam-twitter-stream-2018-04
https://doi.org/10.1109/CVPR.2019.00126
https://doi.org/10.1109/CVPR.2019.00126
https://doi.org/10.1109/CVPR.2019.00126
https://doi.org/10.1145/3617232.3624849
https://doi.org/10.1145/3617232.3624849
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://api.semanticscholar.org/CorpusID:6387482
https://api.semanticscholar.org/CorpusID:6387482
https://doi.org/10.3390/pr6080106
https://doi.org/10.3390/pr6080106
https://doi.org/10.48550/ARXIV.2305.05176
https://doi.org/10.48550/ARXIV.2305.05176
https://doi.org/10.48550/ARXIV.1710.09282
https://doi.org/10.48550/ARXIV.1710.09282
https://www.usenix.org/conference/atc22/presentation/choi-seungbeom
https://www.usenix.org/conference/atc22/presentation/choi-seungbeom
https://www.usenix.org/conference/atc22/presentation/choi-seungbeom
https://doi.org/10.1109/HPCA51647.2021.00049
https://doi.org/10.1109/HPCA51647.2021.00049
https://doi.org/10.1109/HPCA51647.2021.00049
https://doi.org/10.1145/3419111.3421285
https://doi.org/10.1145/3419111.3421285
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://doi.org/10.1007/s11263-021-01531-2
https://doi.org/10.1007/s11263-021-01531-2
https://doi.org/10.1007/s11263-021-01531-2
https://arxiv.org/abs/1810.04805

bidirectional transformers for language understand-
ing. Preprint, arXiv:1810.04805.

Biyi Fang, Xiao Zeng, and Mi Zhang. 2018. Nestdnn:
Resource-aware multi-tenant on-device deep learn-
ing for continuous mobile vision. Proceedings of
the 24th Annual International Conference on Mobile
Computing and Networking.

Ionel Gog, Sukrit Kalra, Peter Schafhalter, Joseph E
Gonzalez, and Ion Stoica. 2022. D3: a dynamic
deadline-driven approach for building autonomous
vehicles. In Proceedings of the Seventeenth Euro-
pean Conference on Computer Systems, pages 453–
471.

Mitchell Gordon, Kevin Duh, and Nicholas Andrews.
2020. Compressing BERT: Studying the effects of
weight pruning on transfer learning. In Proceedings
of the 5th Workshop on Representation Learning for
NLP, pages 143–155, Online. Association for Com-
putational Linguistics.

Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao,
Antoine Kaufmann, Ymir Vigfusson, and Jonathan
Mace. 2020. Serving dnns like clockwork: Per-
formance predictability from the bottom up. In
14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 20), pages 443–462.
USENIX Association.

Jashwant Raj Gunasekaran, Cyan Subhra Mishra,
Prashanth Thinakaran, Bikash Sharma, Mahmut Tay-
lan Kandemir, and Chita R Das. 2022. Cocktail:
A multidimensional optimization for model serv-
ing in cloud. In 19th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI
22), pages 1041–1057.

Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim
Naumov, Brandon Reagen, David Brooks, Bradford
Cottel, Kim Hazelwood, Mark Hempstead, Bill Jia,
et al. 2020. The architectural implications of face-
book’s dnn-based personalized recommendation. In
2020 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), pages 488–
501. IEEE.

David Harwath, Antonio Torralba, and James Glass.
2016. Unsupervised learning of spoken language
with visual context. In Advances in Neural Informa-
tion Processing Systems, volume 29. Curran Asso-
ciates, Inc.

Kim Hazelwood, Sarah Bird, David Brooks, Soumith
Chintala, Utku Diril, Dmytro Dzhulgakov, Mohamed
Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, et al.
2018. Applied machine learning at facebook: A data-
center infrastructure perspective. In 2018 IEEE Inter-
national Symposium on High Performance Computer
Architecture (HPCA), pages 620–629. IEEE.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification.
In 2015 IEEE International Conference on Computer
Vision (ICCV), pages 1026–1034.

Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik,
Shivaram Venkataraman, Paramvir Bahl, Matthai
Philipose, Phillip B Gibbons, and Onur Mutlu. 2018.
Focus: Querying large video datasets with low la-
tency and low cost. In 13th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 18), pages 269–286.

Yanxiang Huang, Bin Cui, Wenyu Zhang, Jie Jiang,
and Ying Xu. 2015. Tencentrec: Real-time stream
recommendation in practice. In Proceedings of the
2015 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’15, page 227–238,
New York, NY, USA. Association for Computing
Machinery.

H. Vaezi Joze, A. Shaban, M. L. Iuzzolino, and
K. Koishida. 2020. Mmtm: Multimodal transfer mod-
ule for cnn fusion. In 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 13286–13296, Los Alamitos, CA, USA. IEEE
Computer Society.

Aggelos K. Katsaggelos, Sara Bahaadini, and Rafael
Molina. 2015. Audiovisual fusion: Challenges
and new approaches. Proceedings of the IEEE,
103(9):1635–1653.

Evangelos Kazakos, Arsha Nagrani, Andrew Zisserman,
and Dima Damen. 2019. Epic-fusion: Audio-visual
temporal binding for egocentric action recognition.
In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 5492–5501.

Wonjae Kim, Bokyung Son, and Ildoo Kim. 2021. Vilt:
Vision-and-language transformer without convolu-
tion or region supervision. In International Con-
ference on Machine Learning, pages 5583–5594.
PMLR.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
2015. Deep learning. nature, 521(7553):436.

M. LeMay, S. Li, and T. Guo. 2020. Perseus: Character-
izing performance and cost of multi-tenant serving
for cnn models. In 2020 IEEE International Con-
ference on Cloud Engineering (IC2E), pages 66–72,
Los Alamitos, CA, USA. IEEE Computer Society.

Tianxing Li, Jin Huang, Erik Risinger, and Deepak
Ganesan. 2021. Low-latency speculative inference
on distributed multi-modal data streams. In Proceed-
ings of the 19th Annual International Conference on
Mobile Systems, Applications, and Services, pages
67–80.

Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. 2017.
Runtime neural pruning. Advances in neural infor-
mation processing systems, 30.

Mengyuan Liu and Junsong Yuan. 2018. Recognizing
human actions as the evolution of pose estimation
maps. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1159–1168.

8881

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://api.semanticscholar.org/CorpusID:52978791
https://api.semanticscholar.org/CorpusID:52978791
https://api.semanticscholar.org/CorpusID:52978791
https://doi.org/10.18653/v1/2020.repl4nlp-1.18
https://doi.org/10.18653/v1/2020.repl4nlp-1.18
https://www.usenix.org/conference/osdi20/presentation/gujarati
https://www.usenix.org/conference/osdi20/presentation/gujarati
https://proceedings.neurips.cc/paper_files/paper/2016/file/82b8a3434904411a9fdc43ca87cee70c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/82b8a3434904411a9fdc43ca87cee70c-Paper.pdf
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1145/2723372.2742785
https://doi.org/10.1145/2723372.2742785
https://doi.org/10.1109/CVPR42600.2020.01330
https://doi.org/10.1109/CVPR42600.2020.01330
https://doi.org/10.1109/JPROC.2015.2459017
https://doi.org/10.1109/JPROC.2015.2459017
https://doi.org/10.1109/IC2E48712.2020.00014
https://doi.org/10.1109/IC2E48712.2020.00014
https://doi.org/10.1109/IC2E48712.2020.00014
https://doi.org/10.1109/CVPR.2018.00127
https://doi.org/10.1109/CVPR.2018.00127
https://doi.org/10.1109/CVPR.2018.00127

Zhenhua Liu, Yunhe Wang, Kai Han, Siwei Ma, and
Wen Gao. 2022. Instance-aware dynamic neural net-
work quantization. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR
2022, New Orleans, LA, USA, June 18-24, 2022,
pages 12424–12433. IEEE.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee.
2019. ViLBERT: Pretraining Task-Agnostic Visi-
olinguistic Representations for Vision-and-Language
Tasks. Curran Associates Inc., Red Hook, NY, USA.

Mengmeng Ma, Jian Ren, Long Zhao, Davide Testug-
gine, and Xi Peng. 2022. Are multimodal transform-
ers robust to missing modality? In 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 18156–18165.

Mengmeng Ma, Jian Ren, Long Zhao, Sergey Tulyakov,
Cathy Wu, and Xi Peng. 2021. Smil: Multimodal
learning with severely missing modality. Preprint,
arXiv:2103.05677.

Microsoft Azure. Azure Machine Learn-
ing. https://azure.microsoft.com/en-us/
products/machine-learning.

Ravi Teja Mullapudi, Steven Chen, Keyi Zhang, Deva
Ramanan, and Kayvon Fatahalian. 2019. Online
model distillation for efficient video inference. In
Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 3573–3582.

Vishvak Murahari, Carlos E Jimenez, Runzhe Yang,
and Karthik R Narasimhan. 2022. DataMUX: Data
multiplexing for neural networks. In Thirty-Sixth
Conference on Neural Information Processing Sys-
tems.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad,
Yelysei Bondarenko, Mart Van Baalen, and Tijmen
Blankevoort. 2021. A white paper on neural network
quantization. arXiv preprint arXiv:2106.08295.

Arsha Nagrani, Shan Yang, Anurag Arnab, Aren Jansen,
Cordelia Schmid, and Chen Sun. 2021. Attention
bottlenecks for multimodal fusion. In Advances in
Neural Information Processing Systems, volume 34,
pages 14200–14213. Curran Associates, Inc.

Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan
Nam, Honglak Lee, and Andrew Y Ng. 2011. Mul-
timodal deep learning. In Proceedings of the 28th
international conference on machine learning (ICML-
11), pages 689–696.

John Edison Arevalo Ovalle, Thamar Solorio, Manuel
Montes-y-Gómez, and Fabio A. González. 2017.
Gated multimodal units for information fusion. In 5th
International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017,
Workshop Track Proceedings. OpenReview.net.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca

Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-
jie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. CoRR, abs/1912.01703.

Juan-Manuel Perez-Rua, Valentin Vielzeuf, Stephane
Pateux, Moez Baccouche, and Frederic Jurie. 2019.
Mfas: Multimodal fusion architecture search. In
2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 6959–6968.

Antonio Polino, Razvan Pascanu, and Dan Alistarh.
2018. Model compression via distillation and quanti-
zation. arXiv preprint arXiv:1802.05668.

Vijay Janapa Reddi, Christine Cheng, David Kanter,
Peter Mattson, Guenther Schmuelling, Carole-Jean
Wu, Brian Anderson, Maximilien Breughe, Mark
Charlebois, William Chou, et al. 2020. Mlperf infer-
ence benchmark. In 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture
(ISCA), pages 446–459. IEEE.

Francisco Romero, Qian Li, Neeraja J Yadwadkar, and
Christos Kozyrakis. 2021a. {INFaaS}: Automated
model-less inference serving. In 2021 USENIX An-
nual Technical Conference (USENIX ATC 21), pages
397–411.

Francisco Romero, Qian Li, Neeraja J Yadwadkar, and
Christos Kozyrakis. 2021b. {INFaaS}: Automated
model-less inference serving. In 2021 USENIX An-
nual Technical Conference (USENIX ATC 21), pages
397–411.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Jaime Sevilla, Pablo Villalobos, and
Juan Cerón. 2021. Parameter counts
in Machine Learning. https://www.
lesswrong.com/posts/GzoWcYibWYwJva8aL/
parameter-counts-in-machine-learning.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc V. Le, Geoffrey E. Hinton, and
Jeff Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. In 5th
International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net.

Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao,
Bingyu Kong, Matthai Philipose, Arvind Krishna-
murthy, and Ravi Sundaram. 2019a. Nexus: A gpu
cluster engine for accelerating dnn-based video anal-
ysis. SOSP ’19, pages 322–337.

Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao,
Bingyu Kong, Matthai Philipose, Arvind Krishna-
murthy, and Ravi Sundaram. 2019b. Nexus: A gpu

8882

https://doi.org/10.1109/CVPR52688.2022.01211
https://doi.org/10.1109/CVPR52688.2022.01211
https://doi.org/10.1109/CVPR52688.2022.01764
https://doi.org/10.1109/CVPR52688.2022.01764
https://arxiv.org/abs/2103.05677
https://arxiv.org/abs/2103.05677
https://azure.microsoft.com/en-us/products/machine-learning
https://azure.microsoft.com/en-us/products/machine-learning
https://openreview.net/forum?id=UdgtTVTdswg
https://openreview.net/forum?id=UdgtTVTdswg
https://proceedings.neurips.cc/paper_files/paper/2021/file/76ba9f564ebbc35b1014ac498fafadd0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/76ba9f564ebbc35b1014ac498fafadd0-Paper.pdf
https://openreview.net/forum?id=S12_nquOe
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://doi.org/10.1109/CVPR.2019.00713
https://www.lesswrong.com/posts/GzoWcYibWYwJva8aL/parameter-counts-in-machine-learning
https://www.lesswrong.com/posts/GzoWcYibWYwJva8aL/parameter-counts-in-machine-learning
https://www.lesswrong.com/posts/GzoWcYibWYwJva8aL/parameter-counts-in-machine-learning
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://doi.org/10.1145/3341301.3359658

cluster engine for accelerating dnn-based video anal-
ysis. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, SOSP ’19, page
322–337, New York, NY, USA. Association for Com-
puting Machinery.

Bowen Shi, Wei-Ning Hsu, Kushal Lakhotia, and Ab-
delrahman Mohamed. 2021. Learning audio-visual
speech representation by masked multimodal cluster
prediction. In International Conference on Learning
Representations.

Bowen Shi, Wei-Ning Hsu, Kushal Lakhotia, and Ab-
delrahman Mohamed. 2022. Learning audio-visual
speech representation by masked multimodal cluster
prediction. arXiv preprint arXiv:2201.02184.

Cees GM Snoek, Marcel Worring, and Arnold WM
Smeulders. 2005. Early versus late fusion in seman-
tic video analysis. In Proceedings of the 13th annual
ACM international conference on Multimedia, pages
399–402.

C. Sun, A. Myers, C. Vondrick, K. Murphy, and
C. Schmid. 2019. Videobert: A joint model for
video and language representation learning. In 2019
IEEE/CVF International Conference on Computer
Vision (ICCV), pages 7463–7472, Los Alamitos, CA,
USA. IEEE Computer Society.

Zineng Tang, Jaemin Cho, Yixin Nie, and Mohit Bansal.
2022. Tvlt: Textless vision-language transformer.
Advances in Neural Information Processing Systems,
35:9617–9632.

Surat Teerapittayanon, Bradley McDanel, and H. T.
Kung. 2017. BranchyNet: Fast Inference via Early
Exiting from Deep Neural Networks. arXiv e-prints,
arXiv:1709.01686.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Valentin Vielzeuf, Alexis Lechervy, Stéphane Pateux,
and Frédéric Jurie. 2018. Centralnet: a multi-
layer approach for multimodal fusion. Preprint,
arXiv:1808.07275.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Haojun Xia, Zhen Zheng, Yuchao Li, Donglin Zhuang,
Zhongzhu Zhou, Xiafei Qiu, Yong Li, Wei Lin, and
Shuaiwen Leon Song. 2023. Flash-llm: Enabling
cost-effective and highly-efficient large generative
model inference with unstructured sparsity. Preprint,
arXiv:2309.10285.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020. DeeBERT: Dynamic early exiting
for accelerating BERT inference. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 2246–2251, Online.
Association for Computational Linguistics.

Ji Xin, Raphael Tang, Yaoliang Yu, and Jimmy Lin.
2021. BERxiT: Early exiting for BERT with better
fine-tuning and extension to regression. In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 91–104, Online. Association for
Computational Linguistics.

Zihui Xue and Radu Marculescu. 2023. Dynamic multi-
modal fusion. Preprint, arXiv:2204.00102.

Neeraja J Yadwadkar, Francisco Romero, Qian Li, and
Christos Kozyrakis. 2019. A case for managed and
model-less inference serving. In Proceedings of the
Workshop on Hot Topics in Operating Systems, pages
184–191.

Peifeng Yu and Mosharaf Chowdhury. 2020. Fine-
grained gpu sharing primitives for deep learning ap-
plications. Proceedings of Machine Learning and
Systems, 2:98–111.

Wenmeng Yu, Hua Xu, Ziqi Yuan, and Jiele Wu. 2021.
Learning modality-specific representations with self-
supervised multi-task learning for multimodal sen-
timent analysis. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 35, pages
10790–10797.

AmirAli Bagher Zadeh, Paul Pu Liang, Soujanya Poria,
Erik Cambria, and Louis-Philippe Morency. 2018.
Multimodal language analysis in the wild: Cmu-
mosei dataset and interpretable dynamic fusion graph.
In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2236–2246.

Chengliang Zhang, Minchen Yu, Wei Wang, and Feng
Yan. 2019. MArk: Exploiting cloud services for
Cost-Effective, SLO-Aware machine learning infer-
ence serving. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19), pages 1049–1062,
Renton, WA. USENIX Association.

Hong Zhang, Yupeng Tang, Anurag Khandelwal, and
Ion Stoica. 2023a. SHEPHERD: Serving DNNs
in the wild. In 20th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI
23), pages 787–808, Boston, MA. USENIX Associa-
tion.

Jeff Zhang, Sameh Elnikety, Shuayb Zarar, Atul Gupta,
and Siddharth Garg. 2020. {Model-Switching}:
Dealing with fluctuating workloads in {Machine-
Learning-as-a-Service} systems. In 12th USENIX
Workshop on Hot Topics in Cloud Computing (Hot-
Cloud 20).

8883

https://doi.org/10.1145/3341301.3359658
https://doi.org/10.1145/3341301.3359658
https://doi.org/10.1109/ICCV.2019.00756
https://doi.org/10.1109/ICCV.2019.00756
https://arxiv.org/abs/1709.01686
https://arxiv.org/abs/1709.01686
https://arxiv.org/abs/1808.07275
https://arxiv.org/abs/1808.07275
https://arxiv.org/abs/2309.10285
https://arxiv.org/abs/2309.10285
https://arxiv.org/abs/2309.10285
https://doi.org/10.18653/v1/2020.acl-main.204
https://doi.org/10.18653/v1/2020.acl-main.204
https://doi.org/10.18653/v1/2021.eacl-main.8
https://doi.org/10.18653/v1/2021.eacl-main.8
https://arxiv.org/abs/2204.00102
https://arxiv.org/abs/2204.00102
https://www.usenix.org/conference/atc19/presentation/zhang-chengliang
https://www.usenix.org/conference/atc19/presentation/zhang-chengliang
https://www.usenix.org/conference/atc19/presentation/zhang-chengliang
https://www.usenix.org/conference/nsdi23/presentation/zhang-hong
https://www.usenix.org/conference/nsdi23/presentation/zhang-hong

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen,
Gang Chen, and Sharad Mehrotra. 2023b. Draft
& verify: Lossless large language model ac-
celeration via self-speculative decoding. CoRR,
abs/2309.08168.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian
McAuley, Ke Xu, and Furu Wei. 2020. Bert loses
patience: Fast and robust inference with early exit. In
Advances in Neural Information Processing Systems,
volume 33, pages 18330–18341. Curran Associates,
Inc.

A Greedy Heuristic

Algorithm 1 Random modality strategy selection

1: function RAND(jobQ,P)
2: S← {}
3: if deadlineViolation(jobQ) then
4: J ← jobsBeforeViolator(jobQ)
5: else
6: J ← jobQ
7: end if
8: deadline← overhead(J) + currT ime
9: while deadline > violatorDeadline do

10: j ← randomJob(J)
11: s← P|j|, accuracy(j)
12: deadline← update(deadline, s)
13: S.append(s)
14: end while
15: return S
16: end function

During the online stage (discussed in Sec-
tion 5.2), the INLP solver may take up to 70 ms
to assign modality selection strategies for each en-
queued job, posing challenges for jobs with ex-
tremely low latency SLOs, such as MMSA. To ad-
dress this issue, we propose a greedy heuristic that
adapts the accuracy of enqueued jobs by randomly
applying the fasted modality selection strategies
meeting the minimum SLO for jobs preceding the
deadline violator. We repeat this process until the
total queue wait time is within the violator’s dead-
line. The steps are described in Algorithm 1. We
present the evaluation setup and the performance
of the random heuristic in Section 7.

B Related Work
System-level dynamic optimization (Crankshaw
et al., 2017a) proposes dynamic input batching to
improve serving throughput by amortizing GPU
kernel execution costs across multiple requests. It
dynamically selects the largest profitable batch size
that meets latency constraints.

Serving systems dynamically assign GPUs to
jobs based on their SLOs and request rates. Some
of them (Shen et al., 2019b; Yu and Chowdhury,
2020; Choi et al., 2022) consider GPU sharing to
improve GPU utilization and goodput. (Zhang
et al., 2023a) proposes burst-tolerant resource pro-
visioning by mapping multiple jobs to a group of
resources at runtime. (Zhang et al., 2023a) ar-
gues that preemption is necessary to maximize a
serving system’s goodput and their system makes
preemption decisions at runtime providing formal
guarantees on goodput.

(Romero et al., 2021a) introduces a new dy-
namism layer, model-variants. A user specifies a
task, accuracy, and latency requirements, and the
proposed serving system automatically and dynam-
ically explores the accuracy-latency tradeoff space
of model-variants for the same task. (Chen et al.,
2023) generates cost-effective LLM cascade ex-
ecution plans, leveraging different cost-accuracy
characteristics of different LLMs.

(Li et al., 2021) focused on dealing with the
delayed communication of input data in the case
of multi-modal inference on streaming sensor data.
Their proposed approach generates an input modal-
ity that is delayed based on the available input using
a generative adversarial network (GAN) instead of
waiting for the delayed input. They assume that
dropping a modality always causes a significant
accuracy drop.
Model-level optimization A number of ML com-
pression techniques (Cheng et al., 2017) includ-
ing pruning (Xia et al., 2023; sem) and quantiza-
tion (Nagel et al., 2021) reduce both a model’s
memory and computational costs by reducing
model weights or precision. They are usually ap-
plied before deployment, but recent work shows
that runtime quantization bit-width decision is ben-
eficial (Liu et al., 2022).

Early exiting (Xin et al., 2020; Zhou et al., 2020;
Teerapittayanon et al., 2017; Xin et al., 2021) adds
task-specific layers (e.g. classification) to exist-
ing models, and stops inference early based on a
given confidence level. (Zhang et al., 2023b) uses
layer skipping and output verification for LLMs. It
dynamically skips layers to reduce per-token infer-
ence time.

In mixture-of-experts (MoE) models (Shazeer
et al., 2017), a model is partially activated during
its forward pass. A gating network selects the ex-
pert networks that will be activated based on input.
This architecture allows a model’s parameters to

8884

https://doi.org/10.48550/ARXIV.2309.08168
https://doi.org/10.48550/ARXIV.2309.08168
https://doi.org/10.48550/ARXIV.2309.08168
https://proceedings.neurips.cc/paper/2020/file/d4dd111a4fd973394238aca5c05bebe3-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d4dd111a4fd973394238aca5c05bebe3-Paper.pdf

0 50 100
0.0

0.5

1.0
SL

O
vi

ol
at

io
n

ra
tio (a) TVLT

0 50 100
0.0

0.5

1.0
(b) ViLT

0 25 50 75
QPS

0.0

0.5

1.0
(c) TBN

0 10 20
0.0

0.5

1.0
(d) AVHuBERT

0 100 200 300

0.5

1.0
(e) MMSA

fp32 fp16 dynamic+fp16

Figure 8: SLO violation ratio using FP32, FP16, and dynamic modality selection combined with FP16.

scale while avoiding the prohibitive forward pass
execution costs of a dense model with the same
number of parameters.

Data multiplexing (Murahari et al., 2022) adds
multiplexing and demultiplexing layers at the be-
ginning and end of the original model. The former
transforms inputs into a succinct encoding and the
latter does the opposite at the output. This improves
throughput as the original model only runs on the
more succinct encoding space. This technique is
complementary to our approach that drops portions
of the input data.

C Complimenting Existing Approaches

We show that MOSEL can be seamlessly incorpo-
rated into existing model optimization techniques
to further improve inference throughput.
Experiment Setup. We use quantization to show
how modality-aware techniques can be combined
with other model optimization techniques to fur-
ther reduce inference latency and satisfy SLOs.
Quantization reduces the precision of numerical
values in a model (Nagel et al., 2021), reducing
memory footprint and speed up the inference pro-
cess. We perform evaluation using two data types:
float32, and float16. To study the effects under
varying system loads, we select a range of QPS for
each model. For modality selection, we use the
optimized policy, employing the INLP solver dur-
ing the online stage (as discussed in Section 5.2).
The maximum QPS is set where the deadline viola-
tion ratio reaches 99%.
Results and discussion. Figure 8 shows that quan-
tization allows all models to handle higher QPS
before the deadline violation ratio increases sig-
nificantly. For instance, AVHuBERT, when solely
using quantization, fails to increase its process-
ing throughput. However, with the combined use
of quantization and dynamic modality selection,
AVHuBERT can process up to 7× more requests
before reaching a 99% violation ratio. This shows
our approach is complimentary to existing model
optimization techniques and can significantly im-
prove inference processing throughput.

D MOSEL’s decision overheads
In the offline profiling stage, MOSEL performs two
tasks: (a) it measures the latency of different modal-
ities under various batch sizes, and (b) it generates
the optimal modality selection strategies for each
batch size. Table 2 shows the median latency of
these tasks and the speedup achieved by MOSEL over
a brute-force search. Generating a single optimal
modality offline selection strategy takes only 12ms.

Profile(s) Optimize(s) Speedup
32 45 31×

Table 2: The amount of time TVLT spends in both sys-
tem metrics profiling and modality generations, as well
as speedup compared to brute force search for optimal
modality generations.

In the online stage, MOSEL does two things: (a)
it searches for the pre-computed optimal modality
strategies that match the SLOs of each enqueued
job, and (b) it finds the best modality selection
strategy for each job. The optimizer’s overhead
varies from 12 ms to 80 ms. Note that this not on
the critical path on job execution, as we overlap
the optimization process with the job execution by
having enough jobs enqueued by worker, as dis-
cussed in Section 6. For models with extremely
low processing latency, we also propose a heuris-
tic based method with lower latency, discussed in
Appendix A.

E Modality Distribution
Figure 9 illustrates the distribution of modality us-
age derived from the Twitter trace discussed in
Section 7.1. Usage is defined as the number of
corresponding modalities used divided by the total
number of requests within a 4-second time win-
dow. For both AVHuBERT and TVLT, the audio
modality consistently shows nearly 100% usage,
primarily due to its significant enhancement of ac-
curacy. Additionally, in TVLT, audio requires less
computational time, making it the preferred modal-
ity. TBN frequently drops the image modality more
than both audio and video. This is because the im-

8885

0 100 200
Time (s)

0.0

0.5

1.0

M
od

al
ity

 U
sa

ge
(a) TVLT

audio
video

0 100 200
Time (s)

0.0

0.5

1.0

M
od

al
ity

 U
sa

ge

(b) ViLT

text
image

0 100 200
Time (s)

0.0

0.5

1.0

M
od

al
ity

 U
sa

ge

(c) TBN

audio
video
image

0 100 200
Time (s)

0.0

0.5

1.0

M
od

al
ity

 U
sa

ge

(d) AVHuBERT

audio
video

0 100 200
Time (s)

0.0

0.5

1.0

M
od

al
ity

 U
sa

ge

(e) MMSA

video
audio
text

Figure 9: Modality usage profiled every 4 seconds.

age modality, along with its combinations, results
in the lowest accuracy, leading to its frequent omis-
sion. Although audio is dropped less often than
images, it is still dropped more frequently than
video due to its lower accuracy and higher latency
compared to video. ViLT maintains 100% usage
of the text modality, as text dominates in terms of
accuracy. In ViLT, the image modality is dropped
even when the request arrival rate is low, due to the
model’s high computational demands and sensitiv-
ity to job arrival rates. For MMSA, both video and
audio modalities experience significant drops un-
der heavy load, similarly due to the text modality’s
superior accuracy.

8886

