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Abstract

The most effective techniques to detect LLM-
generated text rely on inserting a detectable
signature—or watermark—during the model’s
decoding process. Most existing watermark-
ing methods require access to the underlying
LLM’s logits, which LLM API providers are
loath to share due to fears of model distilla-
tion. As such, these watermarks must be imple-
mented independently by each LLM provider.
In this paper, we develop POSTMARK, a modu-
lar post-hoc watermarking procedure in which
an input-dependent set of words (determined
via a semantic embedding) is inserted into the
text after the decoding process has completed.
Critically, POSTMARK does not require logit
access, which means it can be implemented
by a third party. We also show that POST-
MARK is more robust to paraphrasing attacks
than existing watermarking methods: our ex-
periments cover eight baseline algorithms, five
base LLMs, and three datasets. Finally, we
evaluate the impact of POSTMARK on text
quality using both automated and human as-
sessments, highlighting the trade-off between
quality and robustness to paraphrasing. We
release our code, outputs, and annotations at
https://github.com/lilakk/PostMark.

1 Introduction

Large language models (LLMs) are increasingly
being deployed for malicious applications such
as fake content generation. The consequences of
such applications for the web as a whole are dire:
modern LLMs are known to hallucinate (Xu et al.,
2024), and their outputs may contain biases and ar-
tifacts that are a product of their training data (Nav-
igli et al., 2023). If the web is flooded with millions
of LLM-generated articles, how can we trust the
veracity of the content we are reading? Addition-
ally, do we want to train LLMs of the future on
text generated by LLMs of the present (Shumailov
et al., 2023)?

To combat this emerging problem, researchers
have developed several LLM-generated text detec-
tion techniques that leverage watermarking (Aaron-
son and Kirchner, 2022; Kirchenbauer et al., 2023),
outlier detection (Mitchell et al., 2023), trained
classifiers (Tian, 2023), or retrieval-based meth-
ods (Krishna et al., 2023). Among these, water-
marking methods that embed detectable signatures
into model outputs tend to be the most effective
and robust (Krishna et al., 2023). However, most
watermarking algorithms require access to the log-
its of the underlying LLM, which means that they
can only be implemented by individual LLM API
providers such as OpenAI or Google (Yang et al.,
2023). Furthermore, while these methods are able
to achieve high detection rates with minimal false
positives, their effectiveness goes down when the
LLM-generated text is modified through paraphras-
ing, translation, or cropping (Krishna et al., 2023;
He et al., 2024; Kirchenbauer et al., 2024).

In this work, we develop POSTMARK, a wa-
termarking approach with relatively high detec-
tion rates even in the presence of paraphrasing
attacks. POSTMARK is a post-hoc watermark
that given some model-generated text, finds words
conditioned on the semantics of the text using an
embedding model, then calls a separate instruction-
following LLM to insert these words into the text
without appreciably modifying its meaning. Unlike
prior methods, POSTMARK only requires access to
the outputs of the underlying LLM (i.e., no logits).

Overall, our contributions are threefold: 1. We
propose POSTMARK, a novel post-hoc watermark-
ing method that can be applied by third-party enti-
ties to outputs from an API provider like OpenAI.
2. We conduct extensive experiments across eight
baseline algorithms, five base LLMs, and three
datasets, showing that POSTMARK offers superior
robustness to paraphrasing attacks compared to ex-
isting methods. 3. We verify through a human
evaluation that the words inserted by POSTMARK
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Figure 1: The POSTMARK watermarking and detection procedure. Given some unwatermarked input text, we
generate its embedding using the EMBEDDER and compute its cosine similarity with all word embeddings in the
SECTABLE, performing top-k selection and additional semantic similarity filtering to choose a list of words. Then,
we instruct the INSERTER to watermark the text by rewriting it to incorporate all selected words. During detection,
we similarly obtain a watermark word list and check how many of these words are present in the input text.

during watermarking cannot be reliably detected
by humans. We also conduct comprehensive qual-
ity evaluations encompassing coherence, relevance,
and interestingness for various watermarking meth-
ods. Notably, we also assess factuality, an aspect
that has not been evaluated in prior work. Our
findings reveal that relatively robust watermarks all
negatively affect factuality.

2 POSTMARK: a post-hoc watermark

Most existing watermarking algorithms embed the
watermark during the LLM’s decoding process.
For example, the watermark of Kirchenbauer et al.
(2023, KGW) partitions an LLM’s vocabulary into
two lists (a green list and a red list) at each de-
coding timestep based on a hash of the previous
word, and then upweights the green tokens such
that they are more likely to be sampled than red
tokens. These watermarks have several issues: (1)
they require access to the LLM’s logits; (2) because
they rely on modifications to the next-token prob-
ability distribution, their effectiveness diminishes
on LLMs that produce lower-entropy distributions,
such as those that have undergone RLHF (Bai et al.,
2022); and (3) they show limited robustness to para-
phrasing attacks as demonstrated by our results

in Section 3.2 and supported by findings from prior
work (Krishna et al., 2023; Sadasivan et al., 2024).

In response, we develop POSTMARK, a water-
marking method that does not require logit access,
maintains high detection rates on low-entropy mod-
els and tasks, and exhibits improved robustness to
paraphrasing attacks. Unlike existing watermarks,
POSTMARK requires access to just the text gen-
erated by the underlying LLM, not the next-token
distributions. The rest of this section fully specifies
POSTMARK’s operation.

Intuition and terminology: At a high level,
POSTMARK is based on the intuition that a text’s
semantics should not drastically change after water-
marking or paraphrasing. Thus, we can condition
our watermark on a semantic embedding of the in-
put text that ideally changes only minimally when
paraphrasing is applied. To make this work, we rely
on three modules: an embedding model EMBED-
DER, a secret word embedding table SECTABLE,
and an insertion model INSERTER implemented
via an instruction-following LLM.

Figure 1 illustrates POSTMARK’s watermark-
ing and detection pipelines. First, we generate the
embedding of an input text using the EMBEDDER.
We then compute the cosine similarity between
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this embedding and all of the word embeddings in
SECTABLE, performing top-k selection and filter-
ing to form a watermark word list. Next, we prompt
INSERTER to smoothly incorporating the selected
words into the input to create the watermarked text.
During detection, we follow similar steps to obtain
a word list, and check how many of the words are
present in the input text.

Embedding model EMBEDDER: The EMBED-
DER needs to be capable of projecting both words
and documents into a high-dimensional latent
space. In our main experiments, we use OpenAI’s
TEXT-EMBEDDING-3-LARGE (OpenAI, 2024b), a
powerful model that demonstrates strong perfor-
mance on the MTEB benchmark (Muennighoff
et al., 2023). However, any embedding model can
be used here. In Section 3.2, we also experiment
with NOMIC-EMBED (Nussbaum et al., 2024), an
open-source model.

Secret word embedding table SECTABLE: The
core idea behind POSTMARK is to use an LLM
to insert a list of watermark words into the input
text without appreciably modifying the quality or
meaning of the text, where the words in the list
are selected by computing the cosine similarity
between the text embedding and a word embedding
table SECTABLE. The construction of SECTABLE

involves two main steps, which we detail below:
> Step 1. Choosing a vocabulary V: To decide
which words to include in SECTABLE, we use
the WikiText-103 corpus (Merity et al., 2017) as
our base vocabulary. To avoid inserting arbitrary
words that make little sense, we remove all function
words, proper nouns, and infrequent rare words.
This refined set forms our final vocabulary, V. We
provide more details on this filtering process in §A.
> Step 2. Mapping words in V to embeddings: To
make it difficult for attackers to recover our embed-
ding table, we construct SECTABLE by randomly
assigning each word in the vocabulary to an em-
bedding produced by EMBEDDER; the resulting
mapping acts as a cryptographic key.1 More specif-
ically, we generate a set of embeddings D for a
collection of random documents using EMBEDDER

and then randomly map each word in V to a unique
document embedding in D to produce SECTABLE.2

1We could also just use EMBEDDER’s word embeddings
as SECTABLE directly. However, this can easily be recovered
by an attacker, and our experiments show that it also reduces
POSTMARK’s effectiveness due to many words already being
present in the input text even before insertion.

2The selection of these documents is flexible. In our ex-

Insertion model INSERTER: The INSERTER

needs to have instruction-following capabilities,
and its purpose is to rewrite the input text to in-
corporate words from the watermark word list.
We use GPT-4O (OpenAI) as the INSERTER in
our main experiments, and later show in Sec-
tion 3.2 that open-source models like LLAMA-3-
70B-INST (AI@Meta, 2024) also show promising
performance.

2.1 Inserting the watermark

> Step 1. Deciding how many words to insert: How
many words should we insert into a given text? We
define a hyperparameter called the insertion ratio
r that determines this number. The insertion ratio
represents the percentage of the input text’s word
count: for example, if r = 10% and the input text
has 50 words, we will insert 5 words.
> Step 2. Obtaining a watermark word list: Sup-
pose that the watermark list should contain k
words. To create the watermark word list given
the input text, we first compute the input’s em-
bedding et = EMBEDDER(t). Next, we com-
pute CosineSimilarity(et, SECTABLE) and select
the top k′ most similar words, then perform seman-
tic similarity filtering to obtain the final k words.3

We present an analysis on how frequently a word
is chosen as an watermark word in §A.
> Step 3. Inserting words into the text: To wa-
termark the text, we instruct INSERTER to rewrite
it via zero-shot prompting, incorporating words in
the watermark word list while keeping the rewritten
text coherent, factual, and concise.4 The prompt
can be found in §B.

2.2 Detecting the watermark

During detection, given some text, the goal is to
find out if the text contains a watermark. Similar to
the watermarking procedure, we embed the candi-
date text using EMBEDDER, form a word list, and
then check how many words in the list are present
in the text by computing a presence score p:

periments, we randomly sample 250-word snippets from the
RedPajama dataset’s English split (Computer, 2023).

3Due to the random nature of the word-to-embedding map-
ping of T , the top k′ words might include highly irrelevant
words (e.g., “hotel” in Figure 1). Thus, we refine the top-k′

list by selecting the top k words whose actual embeddings (as
determined by EMBEDDER) are most similar to et.

4In practice, we find that dividing a long word list into
sublists of 10 words each and then iteratively asking the IN-
SERTER to incorporate each sublist ensures a high insertion
success rate. This may not be necessary if the INSERTER has
better instruction-following capabilities.
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p =
|{w ∈ list s.t. ∃w′ ∈ text, sim(w′, w) ≥ 0.7}|

|list|

A word w is marked present in the text if there
is any other word w′ with an embedding cosine
similarity greater than a threshold that we set to
0.7. We choose this method over exact match to
ensure additional robustness against paraphrasing.5

If p is larger than a certain threshold, it is likely
that the text has been watermarked. As later dis-
cussed in Section 3.1, the primary metric we use to
measure detection accuracy is the true positive rate
at a fixed 1% false positive rate. We thus set the
threshold to ensure a 1% FPR, same as what we do
for all baselines in our main experiments.

3 Experiments

In this section, through extensive experiments
on three datasets and five language models, we
demonstrate that POSTMARK consistently outper-
forms both logit-free and logit-based methods in
terms of robustness to paraphrasing attacks, es-
pecially on low-entropy models that have under-
gone RLHF alignment. Furthermore, we showcase
POSTMARK’s modular design by testing an open-
source variant, which achieves promising results.

3.1 Experimental setup

Baselines: We compare POSTMARK against 8
baseline algorithms, more detailed descriptions can
be found in §D. (1) KGW (Kirchenbauer et al.,
2023): Partitions the vocabulary into “green” and
“red” lists based on the previous token, then boosts
the probability of green tokens during generation.
(2) Unigram (Zhao et al., 2023): A more robust
variant of KGW that uses a fixed partition for all
generations. (3) EXP (Aaronson and Kirchner,
2022): Uses exponential sampling to bias token se-
lection with a pseudo-random sequence. (4) EXP-
Edit (Kuditipudi et al., 2024): A variant of EXP
that uses edit distance during detection. (5) Sem-
Stamp (Hou et al., 2023): A sentence-level algo-
rithm that partitions the sentence semantic space.
(6) k-SemStamp (Hou et al., 2024): Improves Sem-
Stamp by using k-means clustering to partition the

5We use the PARAGRAM word embedding model devel-
oped by Wieting et al. (2015) to compute cosine similarity for
this step. This model is chosen for its superior performance
in assigning high similarity scores to close synonyms and low
scores to unrelated words, more details in §C.

semantic space. (7) SIR (Liu et al., 2024b): Gen-
erates watermark logits from the semantic embed-
dings of preceding tokens then adds them to the
model’s logits. (8) Blackbox (Yang et al., 2023):
This method, like ours, works in a blackbox setting
where only model outputs are visible. It substi-
tutes words representing bit-0 in a binary encoding
scheme with synonyms representing bit-1.

Hyperparameters: The key hyperparameter for
POSTMARK is the insertion ratio r, which controls
how many words are inserted during the watermark-
ing process. We set r to 12% as preliminary experi-
ments suggest that this value strikes a good balance
between quality and robustness. Section 4.1 ex-
plores different POSTMARK configurations that
vary r. In all following discussion and tables, we
refer to these configurations with the naming con-
vention “POSTMARK@r”. We carefully tune all
baselines’ hyperparameters to maximize their ro-
bustness to paraphrasing; more details in §D.

Base models: Our experiments involve five gen-
erative models: LLAMA-3-8B (AI@Meta, 2024),
LLAMA-3-8B-INST (AI@Meta, 2024), MISTRAL-
7B-INST (Jiang et al., 2023), GPT-4 (OpenAI,
2024a), and OPT-1.3B (Zhang et al., 2022).
Among these, LLAMA-3-8B-INST, MISTRAL-7B-
INST, and GPT-4 have been aligned with human
preferences. For details on model checkpoints and
generation length, see §E. We do not run OPT-
1.3B ourselves but directly use its unwatermarked
outputs provided by Hou et al. (2024). Due to dif-
ficulties in running SemStamp, k-SemStamp, and
SIR,6 we apply POSTMARK directly to these out-
puts and compare our results with the published
numbers in Hou et al. (2024).

Datasets: Our main experiments use three
datasets: (1) OpenGen, a dataset collected by Kr-
ishna et al. (2023) designed for open-ended genera-
tion that consists of two-sentence chunks sampled
from the validation set of WikiText-103; (2) LFQA,
a dataset collected by Krishna et al. (2023) for
long-form question answering that contains ques-
tions sampled from the r/explainlikeimfive
subreddit that span multiple domains; and (3) Re-
alNews (Raffel et al., 2020), a subset of the C4
dataset that includes news articles gathered from a
wide range of reliable news websites.

6Their code is available but not runnable yet. We look
forward to running these methods ourselves once the issues
are resolved.
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Paraphrasing attack setup: Following prior
work (Hou et al., 2023, 2024; Kirchenbauer et al.,
2024; Liu et al., 2024b), we use GPT-3.5-TURBO

as our paraphraser. We use a sentence-level
paraphrasing approach where the model iterates
through each sentence of the input text, using all
preceding context to paraphrase the current sen-
tence. See §F for more details on this setup.

Metric for measuring detection performance:
In addition to the true positive rate, a low false
positive rate is critical for LLM-generated detec-
tion. Thus, following prior detection work (Krishna
et al., 2023; Zhao et al., 2023; Hou et al., 2023,
2024; Liu et al., 2024b), we use TPR at 1% FPR
as our primary metric.

3.2 Results
We present our main experimental results on ro-
bustness to paraphrasing attacks in Table 1, and
discuss our main findings below. Runtime analysis
and API cost estimates can be found in §G.

POSTMARK is an effective and robust water-
mark. POSTMARK consistently achieves a high
TPR before paraphrasing (> 90%), outperform-
ing baselines like Blackbox, KGW, and EXP-Edit.
Additionally, POSTMARK achieves higher TPR
after paraphrasing compared to other baselines, in-
cluding Blackbox, the only other method that op-
erates under the same logit-free condition. The
only settings that POSTMARK is not the most ro-
bust model under paraphrasing is with LLAMA-
3-8B and OPT-1.3B, where Unigram and EXP
respectively exhibit more robustness. We note
that Unigram is much more vulnerable to reverse-
engineering than POSTMARK because it uses a
fixed green/red list partition for all inputs, which
can be exploited with repetition attacks.7 Both
Unigram and EXP’s effectiveness diminish with
low-entropy models. In §I and §J, we also observe
that both methods significantly degrade text quality,
leading to excessive repetitions.

Logit-based baselines perform worse on low-
entropy models and tasks, while POSTMARK
stays relatively unaffected. Results from Ta-
ble 1 demonstrate that logit-based baselines (i.e.,

7For Unigram, detection works by comparing the number
of green tokens present in the input text to the expected count
under the null hypothesis of no watermarking. The adversary
can pick a word “apple” and submit a long repeating sequence
of this word (e.g., “apple apple apple...”) to the watermark
detection service. If it says this sequence is watermarked, then
“apple” must be in the green list.

all baselines except Blackbox) generally perform
worse on aligned models (LLAMA-3-8B-INST and
MISTRAL-7B-INST) compared to the non-aligned
LLAMA-3-8B, and worse on LFQA than on Open-
Gen. This performance difference is consistent
with findings from prior work (Kuditipudi et al.,
2024) and can be attributed to the lower entropy of
aligned models resulting from RLHF or instruction-
tuning, as well as the inherently lower entropy
of the LFQA task. The “Avg Entropy” column
of Table 1 illustrates these entropy differences. In
contrast, POSTMARK consistently outperforms all
baselines in terms of robustness against paraphras-
ing attacks in these low-entropy scenarios.

Open-weight POSTMARK shows promise.
While our main experiments use GPT-4O as the
INSERTER and OpenAI’s TEXT-EMBEDDING-3-
LARGE as the EMBEDDER, we show in Table 2
that an open-weight combination of LLAMA-3-
70B-INST and NOMIC-EMBED can also achieve
promising robustness to paraphrasing attacks. The
modular design of POSTMARK allows for flexible
experimentation with various components. As
each module’s capabilities advance, POSTMARK’s
robustness will likewise improve.

4 Impact of watermarking on text quality

POSTMARK modifies text during watermarking by
inserting new words, which often results in longer
watermarked text. 8 Table 3 shows several com-
mon types of edits made by POSTMARK during
watermarking.9 Although edits adding new content
are expected to hurt quality, this quality degrada-
tion is not unique to POSTMARK. Prior work has
found that all watermarking methods negatively
affect text quality to some extent (Singh and Zou,
2023). For logit-based methods like KGW, qual-
ity degradation occurs because relevant words can
be downweighted during decoding. While exist-
ing papers on watermarking often lack extensive
quality evaluations, we conduct both automatic and
human evaluations to assess the quality of water-
marked text (relevance, coherence, interestingness,
and factuality) in this section.

Semantic meaning preservation To check
whether POSTMARK preserves the general seman-
tic meaning of the original unwatermarked text, we
compute the average cosine similarity between the

8A full table of length comparison is in §H.
9Summarized based on a small-scale qualitative analysis.
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Metric → TPR at 1% FPR (Before Paraphrasing / After Paraphrasing)
Model ↓ Dataset ↓ Avg Entropy ↓ POSTMARK@12 Blackbox KGW Unigram EXP EXP-Edit SIR SemStamp k-SemStamp

LLAMA-3-8B OpenGen 3.6 99.7 / 63.5 81.2 / 2.2 100 / 74.8 99.8 / 93.4 99.8 / 36.6 97.3 / 73.3 - - -
LFQA 3.5 97.8 / 72.5 82.8 / 1.6 99.8 / 25.6 99.8 / 79.6 99.8 / 12.4 83 / 41 - - -

LLAMA-3-8B-INST OpenGen 1.6 99.4 / 46.4 91.8 / 1 98.2 / 21.6 99.6 / 41.4 99.6 / 4.8 47.8 / 2.2 - - -
LFQA 1.3 96 / 65.7 86.2 / 3 85.8 / 19 98.6 / 31.8 98.4 / 0.6 21.1 / 0.6 - - -

MISTRAL-7B-INST OpenGen 1.4 99.2 / 69.2 98.4 / 0.4 100 / 16 99.8 / 56 99.4 / 5 33 / 1.5 - - -
LFQA 1.1 99.6 / 56.4 89.8 / 0.4 99.4 / 23.6 97.2 / 41.2 97.4 / 0.8 20.1 / 2.1 - - -

GPT-4 OpenGen - 99.4 / 59.4 99.4 / 1.4 - - - - - - -
LFQA - 99.4 / 65 99.2 / 0.4 - - - - - - -

OPT-1.3B RealNews 3.6 98.2 / 67.2 1.2 / 0 99.2 / 40.8 98.8 / 77.2 99.4 / 80.7 69.6 / 46.7 99.4 / 24.7 93.9 / 33.9 98.1 / 55.5

Table 1: Comparison of POSTMARK and baselines. All numbers are computed over 500 generations. Each entry
shows the TPR at 1% FPR before paraphrasing and after paraphrasing. The “Avg Entropy” column shows the
average token-level entropy (in bits) of each model on each dataset.

POSTMARK@12 Impl. TPR at 1% FPR

Closed 99.4 / 59.4
Open 100 / 52.1

Table 2: TPR at 1% FPR before and after paraphrasing.
The open-source implementation of POSTMARK@12
with NOMIC-EMBED as the EMBEDDER and LLAMA-
3-70B-INST as the INSERTER shows promising perfor-
mance on OpenGen with GPT-4 as the base LLM.

embeddings unwatermarked and watermarked out-
puts in Table 4, and find the similarity score to be
consistently around 0.95.

Setting up quality evaluations: Prior work on
watermarking has predominantly used perplexity
as a measure for text quality (Kirchenbauer et al.,
2023; Zhao et al., 2023; Yang et al., 2023; Liu
et al., 2024b; Hu et al., 2024; Hou et al., 2023,
2024). However, perplexity alone has been shown
to be an unreliable indicator of quality (Wang et al.,
2022). Some studies have explored alternative
methods, such as LLM-based evaluations (Singh
and Zou, 2023) and human assessments (Kirchen-
bauer et al., 2024). Here, we evaluate the quality
of watermarked text using automated and human
evaluations, aiming to address four key questions:
> Q1: How does POSTMARK compare to other
baselines in terms of impact on text quality?
> Q2: What is the quality-robustness trade-off for
POSTMARK?
> Q3: How often do humans think that POSTMARK

watermarked texts are at least as good as their
unwatermarked versions?
> Q4: Are words inserted by POSTMARK easily
detectable by humans?

4.1 Automatic evaluation

In this section, we compare POSTMARK with other
baselines regarding impact on quality (Q1) and

address the quality-robustness trade-off of POST-
MARK (Q2).

Pairwise preference evaluation setup: We
adopt the LLM-as-a-judge (Zheng et al., 2023)
setup to perform a pairwise comparison task. We
choose GPT-4-TURBO as our judge as it is the
high-ranked evaluator model on the Reward Bench
leaderboard (Lambert et al., 2024)10 that we can
easily access. Given 100 OpenGen prefixes and
corresponding pairs of anonymized unwatermarked
and watermarked responses, the model evaluates
each pair and chooses which response it prefers,
where ties are allowed. The model is instructed to
consider the relevance, coherence, and the inter-
estingness of the responses when making a judg-
ment. The full prompt can be found in §K. Then,
we compute the soft win rate of various baselines
in Table 6 and several POSTMARK configurations
in Table 7, which equals the number of ties plus
the number of wins for the watermarked response.

Factuality evaluation setup: To assess factual-
ity, an essential aspect not addressed in the previous
pairwise comparisons or previous watermarking re-
search, we use FactScore (Min et al., 2023), an
automatic metric that measures the percentage of
atomic claims in an LLM-generated biography that
are supported by Wikipedia. We generate biogra-
phies for the entities in the FactScore dataset and
comparing the FactScores of the outputs before
and after watermarking. Results are reported in Ta-
ble 5. Before watermarking, LLAMA-3-8B-INST

achieves a score of 40.2. Running KGW, Unigram,
POSTMARK@12, and POSTMARK@6 all results
in slight reductions in FactScore. Overall, less ro-
bust methods (KGW and POSTMARK@6) have

10The current leaderboard is hosted on huggingface. GPT-
4-TURBO’s high ranking indicates that it is a relatively robust
and reliable LLM evaluator.
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TYPE BEFORE WATERMARK AFTER WATERMARK

Rewriting existing content

Rewording Her decision to quit the opera, however, did
not lessen the engulfing sadness which veiled
her once radiant joy.

Her decision to resign from the opera, however, did not
lessen the engulfing sadness which veiled her once radiant
joy.

Clarification Since the charges concerned violation of civil
rights and not actual murder, the defendants
received surprisingly light sentences, ranging
from three to ten years.

Since the charges concerned violation of civil rights and
not actual murder, the defendants received surprisingly light
sentences, ranging from three to ten years of imprisonment.

Adding new content

Metaphors In fact, despite Mount Elbert’s somewhat min-
imal precipitation, it displays a remarkable
ability to sustain life.

In fact, despite Mount Elbert’s somewhat minimal precipita-
tion, it displays a remarkable ability to sustain life, almost as
if it wears an armor of resilience, immune to the challenges
it faces.

Interpretive
claims

He swiftly plants timed explosives around the
warehouse, ensuring to place a few on the
largest weapon caches for maximum effect.

He swiftly plants timed explosives around the warehouse,
ensuring to place a few on the largest weapon caches for
maximum effect. The depth of his planning was a testament
to his expertise in defense tactics.

New details Headlam had the ability to foster a culture of
discipline, camaraderie and respect among
the airmen under his command, reflecting his
firm belief in focused team effort and mutual
support.

Headlam had the ability to foster a culture of discipline,
camaraderie and respect among the airmen under his com-
mand, reflecting his firm belief in focused team effort and
mutual support. His attention to detail was evident in every
aspect of the unit’s operations.

Table 3: Example edits made by POSTMARK during the watermarking process. Changes are highlighted in orange,
and watermark words are in bold.

Base LLM SIM

LLAMA-3-8B 94.2
LLAMA-3-8B-INST 94.8
MISTRAL-7B-INST 94.6
GPT-4 95.3

Table 4: Average cosine similarity between the embed-
dings of unwatermarked and POSTMARK@12 water-
marked outputs on OpenGen. Embeddings are obtained
using TEXT-EMBEDDING-3-LARGE. Numbers are aver-
aged over 500 pairs.

less negative impact on factuality.

> Q1: POSTMARK does not affect quality as
much as other baselines. Results from Table 6
show that POSTMARK performs exceptionally well
in pairwise comparisons across models. In contrast,
despite Unigram’s strong robustness to paraphras-
ing—sometimes even outperforming POSTMARK

when tested on LLAMA-3-8B —it has a signifi-
cantly lower soft win rates, especially on LLAMA-
3-8B (17%). This low score is likely due to fre-
quent repetitions in Unigram outputs, as detailed
in §I. Regarding factuality, KGW, Unigram, and
POSTMARK@12 all show similar levels of neg-
ative impact as their FactScores are respectively
37.8, 37.2, and 37.3.

FactScore

LLAMA-3-8B-INST 40.2
+ KGW 37.8
+ Unigram 37.2
+ POSTMARK@12 37.3
+ POSTMARK@6 38.3

Table 5: FactScore evaluation results based on 100 gen-
erations with LLAMA-3-8B-INST as the base generator
LLM. All four evaluated methods impact factuality neg-
atively to some extent, with less robust methods causing
a lesser negative impact.

> Q2: Inserting more words enhances robust-
ness but hurts quality, and vice versa. We first
use the pairwise comparison setup to evaluate the
quality-robustness trade-off of POSTMARK with r
set to six different values: 6, 8, 12, 15, 20, and 30.
Results in Table 7 reveal a strong inverse correla-
tion between quality and robustness, with a Pearson
coefficient of -0.98. FACTSCORE@6 also achieves
a higher FactScore (38.3) than FACTSCORE@12
(37.3). In practical applications, the choice of r
should be based on the desired balance between
quality and robustness.

4.2 Human evaluation
While LLM-based evaluators serve as good proxies
for human judgments in several cases (Zheng et al.,
2023), their results should be interpreted with cau-
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Metric → Soft Win Rate
Method → KGW Unigram EXP EXP-Edit Blackbox POSTMARK@12
LLAMA-3-8B 37 17 23 49 45 74
LLAMA-3-8B-INST 52 52 59 57 55 68
MISTRAL-7B-INST 57 54 49 54 46 64
GPT-4 - - - - 53 64

Table 6: Soft win rates computed based on the pair-
wise comparison evaluation with GPT-4-TURBO as the
judge, measured over 100 pairs of unwatermarked and
watermarked OpenGen outputs from various LLMs (first
column). POSTMARK@12 outperforms all baselines.

Configuration Soft Win Rate TPR After Para.

POSTMARK@6 84 20.8
POSTMARK@8 79 28.2
POSTMARK@12 64 59.4
POSTMARK@15 67 61.9
POSTMARK@20 62 82.8
POSTMARK@30 55 98

Table 7: Quality-robustness trade-off. All soft win rates
are averaged over 100 pairs of unwatermarked and wa-
termarked texts judged by GPT-4-TURBO. All para-
phrased TPR numbers at 1% FPR are computed over on
500 OpenGen instances.

tion, as they can be biased to certain aspects of the
text such as length (Wang et al., 2023) or overlap
between the generator and the judge model (Pan-
ickssery et al., 2024). Thus, we hire two annotators
fluent in English and conduct two human annota-
tion studies detailed below, addressing Q3 and Q4.
More details on annotator qualifications, payment,
and each annotation setup can be found in §L.

Figure 2: Pairwise preference human evaluation results
on POSTMARK@12 and POSTMARK@6. For both
configurations, the watermarked text is at least as good
as its unwatermarked counterpart the majority of the
time in all aspects.

> Q3: POSTMARK watermarked texts are at
least as good as their unwatermarked counter-
parts the majority of the time. We first evaluate

the impact of POSTMARK on quality through a pair-
wise comparison task, similar to the setup in Sec-
tion 4.1. Each annotator reads 20 OpenGen prefixes
and the corresponding pairs of anonymized water-
marked and unwatermarked responses generated
by GPT-4. We then ask them to indicate their pre-
ferred response overall, as well as their preferences
in terms of relevance, coherence, and interesting-
ness, allowing for ties. Results in Figure 2 indicate
that for POSTMARK@12 and POSTMARK@6, wa-
termarked responses are at least as good as their
unwatermarked counterparts the majority of the
time (i.e., total percentage of wins and ties ≥ 50%).
As expected, reducing the insertion rate to 6% im-
proves quality, especially in the coherence aspect.11

To put things in perspective, a previous human eval-
uation study by Kirchenbauer et al. (2024) found
that annotators preferred KGW-watermarked text
over unwatermarked text only 38.4% of the time.

> Q4: Annotators struggle to identify the words
inserted by POSTMARK. A primary concern
with POSTMARK is whether the words inserted into
the watermarked text will be conspicuous enough
for humans to identify, making it easy for attackers
to remove them. To measure this, we create an
anonymized mixture of 20 unwatermarked12 and
20 watermarked responses generated for 20 pre-
fixes in OpenGen with GPT-4 as the base LLM.13

We then ask annotators to highlight out-of-place
words that they think might have been inserted post-
hoc after the initial generation. Overall, annotators
achieve a F1 of merely 0.06 (0.46 precision, 0.03
recall). On average, they highlight 2.2 words in
each unwatermarked response, and 3.45 words in
each watermarked response. Thus, even when an-
notators are aware of the insertion of words, they
cannot pinpoint the specific words.

5 Related work

Early research on watermarking: Our work is
relevant to early work on watermarking text docu-
ments, either using the text document image (Bras-
sil et al., 1995; Low et al., 1998), syntactic transfor-
mations (Atallah et al., 2001; Meral et al., 2009),

11While soft win rates computed from human annotations
are much lower than those from GPT-4-TURBO’s judgments,
both judges agree that a smaller r improves quality.

12We include unwatermarked responses in this evaluation
as a baseline. For fairness, we regenerated unwatermarked
texts to roughly match the length of the watermarked texts.

13These 20 prefixes are different from the ones they see in
the pairwise comparison evaluation.
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or semantic changes (Atallah et al., 2003; Top-
kara et al., 2006). Later work also explores water-
marking machine-generated text (Venugopal et al.,
2011).

Watermarking LLM-generated text: Recent
research has primarily focused on watermarking
LLM-generated outputs. Most existing approaches
operate in the whitebox setting, assuming access to
model logits and the ability to modify the decoding
process (Fang et al., 2017; Kaptchuk et al., 2021;
Aaronson and Kirchner, 2022; Kirchenbauer et al.,
2023; Zhao et al., 2023; Liu et al., 2024a,b) or in-
ject detectable signals without altering the original
token distribution (Christ et al., 2023; Kuditipudi
et al., 2024). Alternatively, Hou et al. (2023, 2024)
watermark at the sentence level via rejection sam-
pling. Prior blackbox methods access only model
outputs (like POSTMARK), but rely on simple lexi-
cal substitution (Abdelnabi and Fritz, 2021; Qiang
et al., 2023; Yang et al., 2023; Munyer et al., 2024).

Evading watermark detection: Our work also
relates to prior work on text editing attacks
designed to evade watermark detection. He
et al. (2024) propose a cross-lingual attack,
while Kirchenbauer et al. (2024) studies a copy-
paste attack that embeds watermarked text into
a larger human-written document. Krishna et al.
(2023) train a controllable paraphraser that al-
lows for control over lexical and syntactic diver-
sity. Sadasivan et al. (2024) design a recursive
paraphrasing attack that repeatedly rewrites wa-
termarked text. Similar to our work, several studies
directly prompt an instruction-following LLM to
paraphrase text (Zhao et al., 2023; Hou et al., 2023,
2024; Liu et al., 2024b; Kirchenbauer et al., 2024).

Quality-robustness trade-off: Relevant to our
discussion in Section 4, several recent papers high-
light the impact of watermarking on quality. In
line with our conclusions, Singh and Zou (2023)
and Molenda et al. (2024) both find that less robust
watermarks tend to have less negative impact on
text quality.

6 Conclusion

We propose POSTMARK, a novel watermarking
approach that only requires access to the under-
lying model’s outputs, making it applicable by
third-party entities to outputs from API providers.
Through extensive experiments acorss eight base-
line algorithms, five base LLMs, and three datasets,

we show that POSTMARK is more robust to para-
phrasing attacks than existing methods. We con-
duct a human evaluation to show that words in-
serted by POSTMARK are not easily identifiable
by humans. We further run comprehensive quality
evaluations covering coherence, relevance, interest-
ingness, and factuality, and find that POSTMARK

preserves text quality relatively well. Future work
could look into further optimizing each of the three
modules in POSTMARK, evaluating POSTMARK

on attacks other than paraphrasing, or making logit-
based methods less entropy-dependent.

Limitations

In this section, we address the primary limitations
of our work.

Other attacks: Our work focuses on evaluat-
ing robustness of various watermarking methods
against paraphrasing attacks. However, there are
many other interesting and practical attacks that we
do not consider, such as the copy-paste attack and
the recursive paraphrasing attack discussed in Sec-
tion 5. We anticipate that POSTMARK will be less
effective when the watermarked text is embedded
in a larger human-written document or when it
undergoes repeated paraphrasing, similar to other
watermarking methods. We leave the exploration
of these other types of attacks to future work.

Runtime and API costs: The POSTMARK im-
plementation used in all our main experiments re-
lies on closed-source models from OpenAI (TEXT-
EMBEDDING-3-LARGE and GPT-4O). As a re-
sult, the runtime and costs of running POSTMARK

are heavily dependent on the API provider. Our
cost estimate in §G suggests that watermarking
100 tokens with the default POSTMARK@12 con-
figuration costs around $1.2 USD. However, the
framework is highly flexible in terms of module
selection. In fact, as demonstrated in Section 3.2,
an open-source implementation can perform nearly
as well as the closed-source version. We leave the
optimization of open-source implementations of
POSTMARK to future work.

Ethical considerations

Our human study was determined exempt by IRB
review. All annotators have consented to the re-
lease of their annotations, and we ensured they
were fairly compensated for their valuable contri-
butions. Scientific artifacts are implemented for
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their intended usage. The risks associated with our
framework are no greater than those already present
in the large language models it utilizes (Weidinger
et al., 2021).
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A More details on the vocabulary V of the
SECTABLE

In this section, we provide more details on the cre-
ation of SECTABLE, and address how often a word
in the SECTABLE can be selected as a watermark
word.

Filtering the SECTABLE vocabulary V: Specif-
ically, we restrict V to only include lowercase
nouns, verbs, adjectives, and adverbs that occur
at least 1,000 times in the WikiText-103 training
split. This results in a final vocabulary of 3,266
words.

Frequency of words chosen as watermark
words: In Figure 3, we plot the frequency dis-
tribution of all watermark words obtained for 500
OpenGen outputs (generated with GPT-4 as the
base LLM). We find that the majority of the words
are only selected as watermark words for less than
5% of all outputs, while two major hub words are
selected in more than 20% of the outputs. Over-
all, the hubness problem is not too severe, but it
could be mitigated by a more careful selection of
the embeddings used in the SECTABLE.

Figure 3: Watermark word frequency distribution over
500 OpenGen outputs. The majority of the words are
chosen as watermark words less than 5% of the time.
There are only two major hub words that are selected
more than 20% of the time.

B Prompt for the INSERTER

Given below are a piece of text and a
word list. Rewrite the text to incorporate
all words from the provided word list.
The rewritten text must be coherent
and factual. Distribute the words from
the list evenly throughout the text,
rather than clustering them in a single

SIM(positive) SIM(negative)

PARAGRAM 64.8 2.4
GLOVE 60.7 16.4
NOMIC-EMBED 59.9 33.2
TEXT-EMBEDDING-3-LARGE 64.2 29.8

Table 8: Cosine similarity between embeddings of posi-
tive pairs (word + its synonym) and between negative
pairs (word + irrelevant word) computed with different
embedding models, averaged over 174 tuples of (word,
synonym, irrelevant word).

section. When rewriting the text, try your
best to minimize text length increase.
Only return the rewritten text in your
response, do not say anything else.

Text: {}

Word list: {}

Rewritten text:

C More details on cosine similarity word
matching during detection

We use the PARAGRAM word embedding model
developed by Wieting et al. (2015) to perform co-
sine similarity word matching during detection. We
find this model to be superior at distinguishing se-
mantically related words from irrelevant words, see
details in Table 8.

D More details on baselines

In this section, we provide more details on how we
run our baselines.

D.1 Expanded descriptions of baselines
(1) KGW (Kirchenbauer et al., 2023): Partitions
the vocabulary into “green” and “red” lists based
on the previous token, then boosts the probability
of green tokens during generation. Detection is
done by comparing the number of green tokens
present to the expected count under the null hy-
pothesis of no watermarking. (2) Unigram (Zhao
et al., 2023): A variant of KGW that uses a fixed
green-red partition for all generations instead of re-
partitioning the vocabulary at each token, making it
more robust to editing attacks. (3) EXP (Aaronson
and Kirchner, 2022): Uses exponential sampling
to embed a watermark by biasing token selection
with a pseudo-random sequence during text gener-
ation. Detection measures the correlation between
the generated text and the sequence to identify
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the watermark. (4) EXP-Edit (Kuditipudi et al.,
2024): A variant of the EXP watermark that incor-
porates edit distance to measure the correlation. (5)
SemStamp (Hou et al., 2023): A sentence-level
algorithm that partitions the semantic space us-
ing locality-sensitive hashing with arbitrary hyper-
planes, assigning binary signatures to regions and
accepting sentences that fall within “valid” regions,
which enhances robustness against paraphrase at-
tacks. (6) k-SemStamp (Hou et al., 2024): Im-
proves upon SemStamp by using k-means cluster-
ing to partition the semantic space. (7) SIR (Liu
et al., 2024b): Generates watermark logits from the
semantic embeddings of preceding tokens using
an embedding language model and a trained water-
mark model. These logits are added to the language
model’s logits. Detection works by averaging these
watermark logits for each token and identifying a
watermark if the average is significantly greater
than zero. (8) Blackbox (Yang et al., 2023): While
all other baseline methods require access to model
logits, this method focuses on the blackbox setting
where only the model output is observable, similar
to our assumption. It encodes words as binary bits,
replaces bit-0 words with synonyms representing
bit-1, and detects watermarks through a statistical
test identifying the altered distribution of binary
bits.

D.2 Hyperparameters for baselines
All baselines are run with nucleus sampling with
p = 0.9 unless otherwise specified.

KGW: We run KGW in the LeftHash configura-
tion with γ = 0.5 and δ = 4.0, using the original
authors’ implementation. These hyper-parameters
control the size of the green token list and the
strength of the watermark, respectively. While δ
is typically set to 2.0 in prior literature, we chose
δ = 4.0 based on findings by Kirchenbauer et al.
(2024). They found that δ = 4.0 made the water-
mark more robust to paraphrasing attacks in their
experiments with Vicuna, a supervised instruction-
finetuned model. Given that our experiments also
focus on lower-entropy models aligned through
RLHF or instruction tuning, we adopt the same
value for δ.

Unigram: To align with the setup of KGW, we
set γ = 0.5 and δ = 4.0 for Unigram as well.
While the authors open-source their code, we
ran into unexpected performance issues, where
Unigram could not even achieve a TPR at 1%

FPR higher than 70% even before any attacks on
OpenGen with LLAMA-3-8B as the base model.
Thus, we switched to the implementation in Mark-
LLM (Pan et al., 2024), an open-source watermark-
ing toolkit. With this implementation, Unigram’s
TPR before attacks became close to 100% and the
TPR after attacks stayed above 90%, in line with
results reported in the Unigram paper (Zhao et al.,
2023).

EXP: We run EXP with prefix length set to 1
using the MarkLLM implementation.

EXP-Edit: Using the authors’ implementation,
we run EXP-Edit with γ = 0.5, watermark key
length = 256, block size = sequence length = 300,
and number of resamples = 100. This method is
run with multinomial sampling (the default setting
in the authors’ code), because we find that adding
a nucleus sampling logits wrapper on top signifi-
cantly hurts its performance. For LLAMA-3-8B-
INST and MISTRAL-7B-INST, we find that this
method cannot reach a TPR at 1% FPR above 70%
even before attacks. We tried several values for
γ, the hyperparameter that controls the statistical
power of the watermark, but it did not improve the
results. Increasing the number of resamples to 500
also had little effect.

Blackbox: We run Blackbox with τ = 0.8 and
λ = 0.83 using fast detection with the authors’
implementation. Empirically, we find that fast de-
tection offers a significant speed advantage with
negligible impact on performance when compared
to precise detection. On 200 OpenGen outputs with
GPT-4 as the base LLM, using precise detection
yields TPR of 100 before paraphrasing and 3.5 af-
ter paraphrasing, whereas fast detection yields 99
and 0.5.

E More details on base models

In this section, we provide more details on how we
run the base generator models.

Model checkpoints: We detail the checkpoint
we use for each base model in Table 9.

Generation length: For all aligned models
(LLAMA-3-8B-INST, MISTRAL-7B-INST, and
GPT-4), we generate free-form text until the model
outputs an EOS (end-of-sequence) token to simu-
late the downstream setting. For LLAMA-3-8B, we
set the maximum token limit to 300, as generating
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Model Checkpoint

LLAMA-3-8B Meta-Llama-3-8B
LLAMA-3-8B-INST Meta-Llama-3-8B-Instruct
MISTRAL-7B-INST Mistral-7B-Instruct-v0.2
GPT-4 OpenAI API (gpt-4-0613)

Table 9: Base model checkpoints.

freely until reaching EOS often leads to meaning-
less repetitions, sometimes even exceeding 8,000
tokens. We do not run OPT-1.3B ourselves.

F Paraphrasing attack setup

In this section, we provide more details on the
paraphrasing attack we use for all experiments.

Prompt for sentence-level paraphrasing: We
build on the prompt used by Hou et al. (2023, 2024)
and include more clarification on what to return:

Given some previous context and a sentence
following that context, paraphrase the
current sentence. Only return the
paraphrased sentence in your response.

Previous context: {}
Current sentence to paraphrase: {}
Your paraphrase of the current sentence:

Why sentence-level paraphrasing? We choose
a sentence-level paraphrasing setup for two reasons.
First, Hou et al. (2023, 2024) use a sentence-level
paraphrasing setup to evaluate the robustness of
their method. Since we are unable to run their
method directly, adopting the same paraphrasing
setup allows for a fair comparison with their results.
Second, as observed by Kirchenbauer et al. (2024),
naively prompting GPT-3.5-TURBO to rewrite the
entire input text often results in significant loss of
important content. While the authors developed
a sophisticated prompt to mitigate this issue, we
empirically find that paraphrasing at a sentence
level achieves a similar effect.

G POSTMARK runtime and API cost
estimates

Runtime: We compare the runtime of several
POSTMARK configurations with other baselines
in Table 10. Recall that in our experiments, we
find insertion success rate to be higher if we divide
the watermark word list into sublists of 10 words,
then ask the INSERTER to insert one sublist at a
time. This iterative insertion process can have some

Method Avg Time / Output

POSTMARK@6 29.2
POSTMARK@12 36.6
POSTMARK@12 (no iter.) 25.3
KGW 17.5
Unigram 18.5
EXP 18.4
EXP-Edit 17.3
Blackbox 21.6

Table 10: Average time (in seconds) it takes to generate
one watermarked instance with LLAMA-3-8B-INST as
the base LLM. Runtime is averaged over 10 outputs,
with an average token count of 280. For POSTMARK
and Blackbox, the runtime includes the time it takes
for LLAMA-3-8B-INST to generate the initial unwater-
marked output. POSTMARK@12 (no iter.) refers to the
setup where instead of breaking up the watermark word
list into sublists and iteratively asking the INSERTER
to insert one sublist at a time, we directly ask the IN-
SERTER to insert all words in the list.

negative impact on runtime, but it may become
unnecessary in the future when the INSERTER has
better instruction-following capabilities.

API costs: Under the default POSTMARK@12
configuration with GPT-4O as the INSERTER and
TEXT-EMBEDDING-3-LARGE as the EMBEDDER

watermarking 500 outputs with around 300 tokens
costs around $18.5 USD, which means that water-
marking 100 tokens costs about $1.2 on average.

H POSTMARK length comparison

We present a comparison between output length
(before and after watermarking) for various water-
marking methods in Table 11.

I Unigram repetitions

We present several examples of Unigram’s repet-
itive watermarked outputs in Table 12, generated
with LLAMA-3-8B as the base LLM.

J EXP repetitions

We present several examples of EXP’s repetitive
watermarked outputs in Table 13, generated with
OPT-1.3B as the base LLM.

K Prompt for the LLM-based pairwise
evaluation setup

Please act as an impartial judge and
evaluate the quality of the text
completions provided by two large
language models to the prefix displayed
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Metric → Number of Tokens (Before / After Watermarking)
Methods → KGW Unigram EXP EXP-Edit Blackbox POSTMARK@12

LLAMA-3-8B 239.6 / 226.6 237.6 / 250.7 232.5 / 269.8 213 / 225.7 239.6 / 244.8 239.6 / 381.2

LLAMA-3-8B-INST 251.2 / 234.6 259.5 / 261.6 259 / 282.6 251.3 / 255 251.2 / 256.4 251.2 / 431

MISTRAL-7B-INST 315.3 / 588.2 318 / 321 317.4 / 247.8 248.7 / 249.5 315.3 / 320.6 315.3 / 552.2

GPT-4 - - - - 301.2 / 305.7 301.2 / 507.1

Table 11: Length comparison between different watermarking methods before and after watermarking, averaged
over 500 OpenGen outputs.

below. Assess each response according
to the criteria outlined. After scoring
each criterion, provide a summary of you
evaluation for each response, including
examples that influenced your scoring.
Additionally, ensure that the order in
which the responses are presented does
not affect your decision. Do not allow the
length of the responses to influence your
evaluation. Be as objective as possible.

Criteria:
1. Relevance to the prefix
2. Coherence
3. Interestingness

Start with a brief statement about which
response you think is better overall.
Then, for each criterion, state which
response is better, or if there is a
tie, followed by a concise justification
for that judgment. At the very end
of your response, declare your verdict
by choosing one of the choices below,
strictly following the given format:
"[[A]]" if assistant A is better overall,
"[[B]]" if assistant B is better overall,
or "[[C]]" for a tie.

[Prefix]
{}

[Response A]
{}

[Response B]
{}

L Human evaluation setup and costs

Hiring annotators: We hire two annotators from
Upwork. Both annotators are fluent in English,

have 100% job success rates, and have demon-
strated exceptional professionalism in their com-
munications with us.

Pairwise evaluation: The interface we use for
this task, built with Label Studio, is shown in Fig-
ure 4. For this task, we pay each annotator $2 USD
per pair, and they spend around 5-10 minutes per
pair.

Identifying watermark words: The interface
we use for this task is shown in Figure 5. For this
task, we pay each annotator $1.5 USD per output,
and they spend around 3-5 minutes on each output.
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Prefix Without Watermarking After Unigram Watermarking

Unlike mountains of simi-
lar altitude elsewhere, El-
bert lacks both a per-
manent snowpack and
a prominent north-facing
cirque, which can be at-
tributed to its position
among other mountains
of similar height, caus-
ing it to receive relatively
small quantities of precip-
itation. Mount Elbert was
named by miners in honor
of Samuel Hitt Elbert,
the governor of the then-
Territory of Colorado, be-
cause he brokered a treaty
in September 1873 with
the Ute tribe that opened
up more than of reserva-
tion land to mining and
railroad activity.

Mount Elbert Mountain, United States of
America: Elevation: 4401 meters/ 14434
feet: USGS Map Name: Mountain Elbert:
Latitude: 39° 07’ 17” N Longitude: 106°
26’ 08” W Latitude/Longitude (WGS84) 39°
7’ 17” N 106° 26’ 8” W (39.1213939, -
106.4355046) Elevation: 4400+ft. Name Co-
ordinates: Elevation Elbert, Mount: 39° 07’
17” N 106° 26’ 08” W: 4,401 m (14,440 ft)
Location: Colorado, United States: Parent
peak: Uncompahgre Peak: Elevation gain:
4,419 ft (1,348 m) Coordinates: 39° 07’ 17"
N, 106° 26’ 08" W; OS grid reference: Coor-
dinates: Denomination: From the list below,
please choose the region you would like to
visit Elbert, Mount, and we’ll show you the
times of departure and scheduled arrival, in
addition to realistic information about guar-
antees, time change schedules, and delays for
this train. Mount Elbert, the highest moun-
tain in Colorado, stands at 4,401m.

Mount of Snow – Mt. Mt. Canyon Lake High
School alumnus Steve Phelps of Leadville
competes annually on Mount. The summit
of Mt. Because of its high altitude of ap-
proximately Mt. Mt. Hiking Mt. Mounts
of Snow – Mount of Snow is peak of Mount.
Mt. Mount of Snow – Mount of Snow is peak
of Mount. Holly Berry For. Mount of Snow
– Mount of Snow is peak of Mount. Mounts
of Snow – Mount of Snow is peak of Mount.
Mounts of Snow – Mount of Snow is peak of
Mount. Mounts of Snow – Mount of Snow
is peak of Mount. Mounts of Snow – Mount
of Snow is peak of Mount. Mount of Snow
– Mount of Snow is peak of Mount. Mount
of Snow – Mount of Snow is peak of Mount.
Mounts of Snow – Mount of Snow is peak of
Mount. Mt. Mt. Mount of Snow – Mount of
Snow is peak of Mount. Holly Berry For. Mt.
Mount of Snow – Mount of Snow is peak of
Mount. Mount of Snow – Mount of Snow is
peak of Mount. Mounts of Snow – Mount of
Snow is peak of Mount. Mt. Mount of Snow
– Mount of Snow is peak of Mount.

We are not! Like men
in the story of the Good
Samaritan, they pass by
on the other side...

they avoid the God-driven endeavors of the
church. Many modernized men avoid the sto-
ries of the women in the Bible and opt to
ignore Jesus’ directive to be be "transformed
into his image," Colossians 3:10. (Not the
way our men view the world through "Tro-
phyWives Corner"!). But, this is certainly
not all. Now, as of today, we will work with
a modernized spin on God’s word to show
you how Jesus, 2000 years ago, managed to
"reformat" most men through his efforts in
church. But before we start, I must thank
two lovely women who were in my life in
the 1970’s...women who unknowingly were
reformatting the world of a confused young
boy like me. I really appreciate you both, no
matter how confusing you made the world
seem to me then. And by the way, you will
meet a couple of young lads too. I’m sure
your daughters, granddaughters and nieces
will relate to this. This is for all the little
girls out there. Thank you guys, and keep on
telling us men, just like Jesus did, what we
should be like.

of Route 119. But that leaves you to cross
Route 119 without adult supervision. Presum-
ing you’ve had adult supervision all along.
Which is probably true if you haven’t had all
of that adult supervision that ought to have
be all along. The point is that you’re here
to cross Route 119 without adult supervision.
Like the Good Fisherman who nets all of us
into Heaven. The only catch is that you prob-
ably won’t be able to cross without being hurt.
The flip side is that you can probably cross
without hurting anyone else. If you give to
God without doubting that you’ll get what
you give to him then you’ll be able to cross
Route 119 without adult supervision. Giving
to God is almost like going to Heaven be-
cause what we give to him is what we’ll get
back. If you give him bread then you’ll get
bread. If you give him food then you’ll get
food. If you give him money then you’ll get
money. If you give him parents then you’ll
get parents. If you give him teachers then
you’ll get teachers. If you give him insurance
then you’ll get insurance. If you give him
Good Parents then you’ll get Good Parents.
If you give him Good Men then you’ll get
Good Men. If you give him Good Fisherman
then you’ll get Good Fisherman. If you give
him Good Fish then you’ll get Good Fish. If
you give him Good Charismata then you’ll
get Good Charismata.

Table 12: Example repetitive outputs by Unigram with LLAMA-3-8B as the base LLM.
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Prefix Without Watermarking After Unigram Watermarking

Cluster comprises IBM’s
Opteron-based eServer
325 server and systems
management software
and storage devices that
can run Linux and Win-
dows operating systems.

It also supports Oracle, MS-Access, and
B2Vista. The server runs clustered versions
of Unix. It supports Virtual SAN. It has
one onboard hard drive and two externally
attached hard drives. The server has built-
in Web browser and FTP server capabili-
ties. It comes with a Linux-based telnet in-
terface. The user interface is based on the
Konsole language. The software supports
file and directory browsing. It can be con-
figured to run under different operating sys-
tem versions. It supports file transfers. It
supports file copying and editing. It sup-
ports backup and recovery. The software
also supports network connectivity and file
sharing. The user interface and documenta-
tion are in the Linux project’s Make it Web
(http://www.linux.org/makeitweb/). The eS-
erver 325 supports hardware and software
RAID. It supports mirrored drives and RAID
5. It supports RAID 3, HEAF, and RAID
5. It supportsatters and RAID 5’s identical
mirrored copies. Cluster servers can support
multiple users.

This cluster is an addition to the eServer
Performance System from IASC, which con-
tains underlying servers running both Linux
and Windows. This cluster is an addition to
the eServer Performance System from IASC,
which contains underlying servers running
both Linux and Windows. This cluster is
an addition to the eServer Performance Sys-
tem from IASC, which contains underlying
servers running both Linux and Windows.
This cluster is an addition to the eServer
Performance System from IASC, which con-
tains underlying servers running both Linux
and Windows. This cluster is an addition to
the eServer Performance System from IASC,
which contains underlying servers running
both Linux and Windows. This cluster is
an addition to the eServer Performance Sys-
tem from IASC, which contains underlying
servers running both Linux and Windows.
This cluster is an addition to the eServer
Performance System from IASC, which con-
tains underlying servers running both Linux
and Windows. This cluster is an addition to
the eServer Performance System from IASC,
which contains underlying servers running
both Linux and Windows.

An eagerly awaited report
from the World Health Or-
ganization (WHO) states
that processed meats such
as bacon and sausages
cause cancer, and red
meat likely does so too.

An eagerly awaited report from the World
Health Organization (WHO) states that pro-
cessed meats such as bacon and sausages
cause cancer, and red meat likely does so
too. The report is based on data from 44
countries. Two-thirds of the cancers occurred
in women who ate red meat. Three-quarters
of the cancers were in the male-only popula-
tion. Four-fifths of the cancers were in the
female-only population. In addition to bacon
and sausages, high-fat meats such as cream
and butter are also linked to cancer. “This is
a message which has been circulating for a
long time,” said Dr. Margaret Hodge, head
of the WHO’s health department. She cited
evidence that the link goes beyond processed
meats. It is also linked to other risk factors,
including poor nutrition, smoking, and obe-
sity. She said people can make good choices
when it comes to food. For example, they can
limit consumption of red meat, but not pro-
cessed meat. Processed meats are the most
common type of meat in shops and markets
around the world. The WHO’s report lists the
top 10 countries with the highest percentage
of women who eat red meat.

This statement doesn’t make mass damage to
the country’s meat supply quite possible, but
the country’s meat and agriculture industries
have been decimated. This statement doesn’t
make mass damage to the country’s meat sup-
ply quite possible, but the country’s meat and
agriculture industries have been decimated.
This statement doesn’t make mass damage to
the country’s meat supply quite possible, but
the country’s meat and agriculture industries
have been decimated. This statement doesn’t
make mass damage to the country’s meat sup-
ply quite possible, but the country’s meat and
agriculture industries have been decimated.
This statement doesn’t make mass damage to
the country’s meat supply quite possible, but
the country’s meat and agriculture industries
have been decimated. This statement doesn’t
make mass damage to the country’s meat sup-
ply quite possible, but the country’s meat and
agriculture industries have been decimated.
This statement doesn’t make mass damage to
the country’s meat supply quite possible, but
the country’s meat and agriculture industries
have been decimated. This statement doesn’t
make mass damage to the country’s meat sup-
ply quite possible, but the country’s meat and
agriculture industries have been decimated.

Table 13: Example repetitive outputs by EXP with OPT-1.3B as the base LLM.
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Figure 4: Human annotation interface for the pairwise comparison task.

Figure 5: Human annotation interface for the watermark word identification task.
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