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Abstract

Static word embeddings are ubiquitous in com-
putational social science applications and con-
tribute to practical decision-making in a va-
riety of fields including law and healthcare.
However, assessing the statistical uncertainty
in downstream conclusions drawn from word
embedding statistics has remained challenging.
When using only point estimates for embed-
dings, researchers have no streamlined way of
assessing the degree to which their model selec-
tion criteria or scientific conclusions are subject
to noise due to sparsity in the underlying data
used to generate the embeddings. We introduce
a method to obtain approximate, easy-to-use,
and scalable reconstruction error variance es-
timates for GloVe (Pennington et al., 2014),
one of the most widely used word embedding
models, using an analytical approximation to a
multivariate normal model. To demonstrate the
value of embeddings with variance (GloVe-V),
we illustrate how our approach enables princi-
pled hypothesis testing in core word embedding
tasks, such as comparing the similarity between
different word pairs in vector space, assessing
the performance of different models, and ana-
lyzing the relative degree of ethnic or gender
bias in a corpus using different word lists.

1 Introduction

Over the past decade, vector representations of
words, or “word embeddings,” have become stan-
dard ways to quantify word meaning and seman-
tic relationships due to their high performance on
natural language tasks (Mikolov et al., 2013b; Pen-
nington et al., 2014; Levy et al., 2015). Word em-
beddings are now ubiquitous in a wide variety of
downstream computational social science applica-
tions, including charting the semantic evolution of
words over time (Hamilton et al., 2016), generat-
ing simplifications of scientific terminology (Kim

*Equal contribution.
†Corresponding author.

et al., 2016), comparing the information density of
languages (Aceves and Evans, 2024), assisting in
legal interpretation (Choi, 2024), and detecting so-
cietal biases in educational texts (Lucy et al., 2020),
historical corpora (Garg et al., 2018; Charlesworth
et al., 2022), legal documents (Matthews et al.,
2022; Sevim et al., 2023), political writing (Knoche
et al., 2019), and annotator judgments (Davani
et al., 2023). Task performance metrics using word
embeddings also factor prominently into the evalu-
ation of more sophisticated, multimodal artificial
intelligence systems, such as brain-computer inter-
faces (Tang et al., 2023) and adversarial text-to-
image generation (Liu et al., 2023).

Though a vast amount of research has relied on
a relatively narrow set of word embedding models,
no unified framework has emerged for represent-
ing statistical uncertainty in how accurately the
word embeddings reconstruct the relationships im-
plied by the sample of word co-occurrences. In-
tuitively, we should be less certain about a word’s
position in vector space the less data we have on
its co-occurrences in the raw text (Ethayarajh et al.,
2019a,b). While it is generally standard practice in
the social and natural sciences to check results for
statistical significance, the vast majority of appli-
cations have relied exclusively on point estimates
of embeddings, ignoring uncertainty even when
training vectors over smaller corpora (e.g., Sevim
et al., 2023; Knoche et al., 2019). In select applica-
tions, approaches have ranged from a bootstrap on
the documents in the training corpus (Lucy et al.,
2020), to permutations of the word list or lexicon
(Caliskan et al., 2017; Garg et al., 2018). While
useful, such bootstrap and permutation approaches
are computationally intractable on large datasets.
Moreover, they address uncertainty from document
or lexicon selection, even though embeddings are
parameters of a data generating process on word
co-occurrences, not on collections of documents
or sets of words (Ethayarajh et al., 2019b). Until
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now, accounting for the fundamental uncertainty
from the data-generating process has eluded the
NLP community.

To fill this gap, we develop GloVe-V, a scalable,
easy-to-use, computationally efficient method for
approximating reconstruction error variances for
the GloVe model (Pennington et al., 2014), one
of the most widely used word embedding models.
Our approach leverages the core insight that if con-
text vectors and constant terms are held fixed at
optimal values, GloVe word embeddings are the
optimal parameters for a multivariate normal prob-
ability model on a weighted log transformation of
the rows of the co-occurrence matrix. If we assume
that the rows of the co-occurrence matrix are inde-
pendent given their context vectors and constant
terms, the word embedding variances according
to this likelihood are computationally tractable on
large vocabularies. This assumption is reasonable
and is also employed in other settings, such as
measuring the influence of particular documents
on downstream embedding statistics (Brunet et al.,
2019). Such variance estimates enable researchers
to conduct rigorous assessments of model perfor-
mance and principled statistical hypothesis tests
on downstream tasks, responding to the need to
account for statistical uncertainty and significance
testing in natural language processing and machine
learning (Card et al., 2020; Dror et al., 2020; Liao
et al., 2021; Bowman and Dahl, 2021; Ulmer et al.,
2022).

Our contributions are threefold: (a) we provide
the statistical foundations for a principled notion
of reconstruction error variances for GloVe word
embeddings; (b) we show that incorporating uncer-
tainty can change conclusions about textual similar-
ities, model selection, and textual bias; (c) we pro-
vide a data release including pre-computed word
embeddings and variances for the most frequently
occurring words in the Corpus of American English
(COHA), the largest corpus of historical American
English that is widely used to track the usage and
linguistic evolution of English terms over time (e.g.,
Ng et al., 2015; Newberry et al., 2017; Garg et al.,
2018; Xiao et al., 2023; Charlesworth and Hatzen-
buehler, 2024).1

1Our code (github.com/reglab/glove-v) and data
(nlp.stanford.edu/projects/glove) repositories include
data, tutorials, documentation and code to apply the GloVe-
V framework to any downstream task. To make our ap-
proach more readily accessible to researchers, we release
pre-computed embeddings and variances for COHA (1900-
1999), intended for academic use. We also plan to make these

2 Background on GloVe

We use upper case bold letters for matrices X,
lower case bold letters for vectors x, and regular
non-bolded letters for scalars x, except when in-
dexing into a matrix or vector (i.e., the ijth entry
of the matrix X is Xij). Sets are represented by
script letters X .

Word embedding models learn a shared vector
space representation of words in a corpus. The
training data are word co-occurrences in the corpus,
which can be represented by a V ×V co-occurrence
matrix X, where Xij is the weighted number of
times word j appears in the context of word i,2

and V is the number of words in the vocabulary.
A word embedding is a vector representation of a
given word that emerges from the model.

The GloVe word embedding model (Pennington
et al., 2014) learns two embeddings wk,vk ∈ RD

for each word k, by minimizing the following cost
function for Xij > 0:

J =
V∑

i=1

V∑

j=1

f(Xij)(w
T
i vj + bi + cj − logXij)

2

(1)

where f(Xij) is a non-negative weighting function
with properties that ensure that very rare or very
frequent co-occurrences do not receive too much
weight, bi and cj are constant terms associated with
word i and j respectively.3 The vectors vk are
called “context” vectors and wk are called “cen-
ter” vectors, representing that word co-occurrences
are defined based on words that appear within a
fixed context window around a center word. The
original implementation computed wk + vk in a
post-processing step to obtain a single embedding
for a word k. In this paper, we focus on the center
vector wk as the embedding of interest for word k.4

data products available for general use for larger corpora (e.g.
Wikipedia & Gigaword).

2Co-occurrence terms are usually weighted by the inverse
of their distance from the center word.

3We follow the approach of the original authors and use

f(x) =

{
(x/100)3/4 if x < 100
1 otherwise

4While summing the context and center vectors can give
useful performance gains, it is not always even a win. See
the extensive discussion in (Assylbekov and Takhanov, 2019;
Levy et al., 2015, secs. 3.3 and 6).
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Figure 1: Conceptual diagram of the Glove-V method for one word. The top two rows illustrate the structural form
and estimation of the original GloVe model (Pennington et al., 2014), which models each row of a logged, weighted
co-occurrence matrix as the product of a word vector and context vectors, plus constant terms. As shown in the third
row, GloVe-V creates a distribution for the optimal GloVe word vector using the reconstruction error found through
the GloVe minimization procedure. These distributions can be efficiently computed word-by-word by assuming
conditional independence between words given the optimal context vectors and constants.

3 Variance Derivation for GloVe-V

We now derive the GloVe-V variance estimator by
recasting the optimization problem and recovering
a probabilistic interpretation of GloVe embeddings.

3.1 Reformulating the GloVe optimization
problem

The GloVe optimization problem using the cost
in Equation 1 is an element-wise weighted low-
rank approximation problem that can be broken
into outer and inner minimization problems (e.g.,
Markovsky, 2012):

min
b∈RV ,
c∈RV ,

V∈RD×V

min
W∈RD×V

∥F1/2 ⊙R∥2F

s.t.

Rij =

{
logXij −wT

i vj − bi − cj , Xij > 0

0, otherwise

(2)

where Fij = f(Xij), wi and vj are the ith and jth

columns of matrices W and V respectively, bi and
cj are the ith and jth elements of vectors b and c
respectively, ⊙ is the element-wise product, and
∥ · ∥2F is the squared Frobenius norm.

Holding the choice of (b, c,V) from the outer
minimization fixed at their globally optimal val-
ues (b∗, c∗,V∗), the inner minimization to find
the optimal center vectors W∗ decomposes to V
weighted least squares objectives that can be solved

independently:

min
W∈RD×V ,

b=b∗
c=c∗
V=V∗

∥F1/2 ⊙R∥2F =
∑

i

min
wi∈RD,
b=b∗
c=c∗
V=V∗

∥F1/2ri∥22

=
∑

i

min
wi∈RD,
b=b∗
c=c∗
V=V∗

∥F1/2
Ki

[logxi 9V∗T
Ki

wi 9 b∗i1 9 c∗Ki
]∥22

(3)

where ri is the ith row of R, Ki = {j : Xij >
0}, the set of column indices with non-zero co-
occurrences for word i, V∗

Ki
is a matrix whose

columns belong to the set {v∗
j : j ∈ Ki}, c∗Ki

is a
vector whose elements belong to the set {c∗j : j ∈
Ki}, FKi = diag({Fij : j ∈ Ki}), and xi is the
vector whose elements belong to the set {Xij : j ∈
Ki}.

3.2 The closest natural probabilistic model
Recasting the GloVe problem as a collection of in-
dependent weighted least squares objectives allows
us to take advantage of a standard probabilistic
interpretation that corresponds to weighted least
square models (Romano and Wolf, 2017). Equa-
tion 3 implies that, conditional on the optimal con-
text vector subspace spanned by V∗ and optimal
constant vectors (b∗, c∗), the optimal center vec-
tors W∗ are also optimal for a multivariate normal
model on the non-zero elements of the rows of X:

logxi|b∗i , c∗Ki
,V∗

Ki
= b∗i1+ c∗Ki

+V∗T
Ki

wi + ei

ei ∼ N (0,F−1
Ki

σ2
i ) (4)
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where we always have (FKi)kk > 0 for k =
1, . . . , |Ki| due to the fact the Xij > 0 for j ∈
Ki, and we assume that the rows of logX are
independent given the optimal parameters, i.e.,
logxi|b∗, c∗,V∗ ⊥ logxj |b∗, c∗,V∗ for i ̸= j.5

Then, under standard assumptions for weighted
least squares estimators (see Romano and Wolf,
2017), the covariance matrix for W simplifies into
a V D × V D block diagonal matrix with the ith

D ×D block given by:

Σi = σ2
i


∑

j∈Ki

f(Xij)v
∗
j (v

∗
j )

T




−1

(5)

We can then estimate σ2
i , the reconstruction error

for word i, with the plug-in estimator:

σ̂2
i =

1

|Ki| −D

∑

j∈Ki

f(Xij)(R
∗
ij)

2

where R∗
ij = logXij − w∗T

i v∗
j − b∗i − c∗j is the

residual error of co-occurrence term ij using the
optimal GloVe parameters. Figure 1 summarizes
the full approach.

3.3 Estimation

The covariance estimator in Equation 5 is only valid
for words that co-occur with a greater number of
unique context words |Ki| than the dimensional-
ity of the vectors D. A simple way to increase
the coverage of the variances in smaller corpora
is to reduce the dimensionality of the word vec-
tors. However, when |Ki| ≈ D, numerical prob-
lems with computing the inverse in Equation 5
are likely to occur even if it is technically pos-
sible to compute an inverse. To address these
numerical issues, for each word whose Hessian
block Hi =

∑
j∈Ki

f(Xij)v
∗
j (v

∗
j )

T has a condi-
tion number that implies numerical error in excess
of 1e-10 in its inverse, we instead compute the
Moore-Penrose pseudo-inverse of Hi as VΛ+UT

(Golub and Van Loan, 2013), where Hi = UΛVT

is the singular value decomposition of Hi and
Λ+

jj = 1/Λjj if Λjj > 1e-3 × maxj Λjj and 0
otherwise. This technique effectively drops dimen-
sions that are predominantly noise when computing
the inverse.

5Brunet et al. (2019) rely on the same assumption to make
their method for approximating the influence of a group of
documents on word association statistics computationally
tractable.

3.4 Propagating uncertainty

With this derivation in hand, propagating vari-
ance to downstream tasks is straightforward. For
differentiable test statistics, such as the cosine
similarity between two word embeddings, the
most computationally efficient approach is to
use the delta method for asymptotic variances
(van der Vaart, 2000). Using a first-order Taylor
series approximation to the test statistic, the delta
method states that if

√
n(W − Ŵ) converges to

N (0,Σ), then
√
n(ϕ(W)− ϕ(Ŵ)) converges to

N (0, ϕ′(W)TΣϕ′(W)), where ϕ(·) is a differen-
tiable function of W and ϕ′(·) is its gradient with
respect to W. If the test statistic only depends on a
subset of words in the vocabulary, the computation
is quite efficient due to the fact that the gradient
will be sparse.

For a broader class of test statistics, researchers
can repeatedly draw from the estimated multivari-
ate normal distribution in Equation 5 and recal-
culate the test statistic of interest (Tanner, 1996),
which is much more computationally efficient than
a bootstrap on the full embedding model.6 This
approach generates very similar results to those of
the delta method, depending on the nature of the
test statistic.7

4 Results

To build intuition and demonstrate the usefulness
of GloVe-V variances, we now provide empirical
results using the Corpus of Historical American
English (COHA) for the 20th century, which con-
tains English-language texts from a balanced set of
genres (fiction, non-fiction, magazines, and news-
papers) from 1900–1999 (Davies, 2012).8

We trained multiple GloVe models for these em-
pirical results. First, we trained a single model on
the unaltered COHA (1900-1999) corpus, which
we use for all of the GloVe-V results. Second, we
trained 100 GloVe models on document-level boot-
strap samples of the COHA (1900-1999) corpus.9

We trained each 300-dimensional GloVe model
(132M parameters for a vocabulary size of approx-

6Appendix A.1 provides example code for the repeated
draws approach, using the cosine similarity of a word pair as
an example.

7For example, differences can arise due to non-linear func-
tions for which E[f(X)] ̸= f(E[X]) (see Jensen, 1906) .

8The data were accessed under a standard academic license
in accordance with the data usage restrictions at https://www.
corpusdata.org/restrictions.asp.

9In both cases, we pre-processed the corpus to lowercase
all tokens and drop non-alphabetic characters.
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Figure 2: Uncertainty in word embedding locations.
Two-dimensional representations of GloVe word em-
beddings trained on COHA (1900–1999), along with
ellipses drawn around 100 draws from the estimated
multivariate normal distribution from Equation 4 for a
random subset of words. Lower frequency words like
“rigs” and “illumination” have more uncertainty in their
estimated positions in the vector space than high fre-
quency words like “she” and “large.”

imately 219,000 words) for 80 iterations, with a
symmetric context window of 8 words, and using
the following default hyperparameters of the of-
ficial GloVe model implementation (Pennington
et al., 2023): initial learning rate of 0.05, and
α = 0.75 and xmax = 100 for the weighting
function. The training of each model consumed
about 40 minutes on a workstation equipped with
an AMD Milan 7543 @ 2.75 GHz processor CPU,
using 48 CPU cores.

The empirical examples we provide in Section 5
show how GloVe-V variances can move researchers
in NLP towards emerging best practices for in-
corporating hypothesis testing in natural language
tasks and downstream analyses (Card et al., 2020).

4.1 Uncertainty in word embedding locations

We first show that the variances can represent re-
construction error uncertainty in the locations of in-
dividual words in vector space due to data sparsity.
Figure 2 plots a two-dimensional representation of
the word embeddings, with ellipses drawn around
100 draws from the estimated multivariate normal
distribution in Equation 4 for a random subset of
words. The size of the ellipses reflects the fact that,
based on the underlying co-occurrence matrix, we
are more certain about the positions of higher fre-

Figure 3: Word-level relationship between GloVe-V
variances and frequency on COHA (1900–1999). L2-
norm of the diagonal of Σ̂ from Equation 5 (x-axis, on
a log10 scale) plotted against logged word frequencies
(y-axis, on a log10 scale) for a subset of 5,000 words
randomly sampled in proportion to word frequency. The
variances for words colored in orange are computed as
discussed in Section 3.3.

quency words like “she” and “large” than lower fre-
quency words like “illumination” and “rigs.” The
higher uncertainty for lower frequency words is a
structural feature of the estimated covariance matri-
ces themselves. Figure 3 demonstrates this feature
by plotting the word-level frequency (x-axis, on a
log10 scale) against the L2-norm of the diagonal
of the estimated Σ̂ from Equation 5 (y-axis, on a
log10 scale) for a random subset of words (sampled
in proportion to their frequency). The magnitude
of the variances for the word embedding param-
eters decreases smoothly as the word frequency
increases. Where |Ki| ≈ D (highlighted in orange
in Figure 3), the estimation approach described in
Section 3.3 provides a reasonable estimate of the
variance.

4.2 Comparison to document bootstrap

We now provide intuition for why the GloVe-V vari-
ances may in many instances be preferable to the
document bootstrap for hypothesis testing on down-
stream test statistics. The document bootstrap is
a computationally intensive approach to capturing
word embedding instability that repeatedly resam-
ples documents from the corpus, recomputes the
word embeddings, and recalculates the test statis-
tic of interest (Antoniak and Mimno, 2018). To
re-purpose this approach in order to conduct a hy-
pothesis test, we must subscribe to the uncertainty
framework that the corpus itself is randomly sam-
pled from a hypothetical population of documents.

9036



GloVe−V

Document bootstrap

0.05

0.10

0.15

F0
[56−126]

F1
[128−292]

F2
[294−978]

F3
[1006−101960]

Frequency Quartile

S
td

. E
rr

or
 o

f C
os

in
e 

S
im

ila
rit

y

Figure 4: Comparison between document bootstrap
and GloVe-V standard errors for cosine similarity.
The average standard error of the cosine similarity be-
tween 1,600 randomly sampled word pairs (y-axis) as a
function of the frequency for the word pair (x-axis with
word frequency ranges in brackets), using the document
bootstrap approach and GloVe-V using the delta method.
The GloVe-V standard errors are more sensitive to word
frequency and are more efficient to compute.

However, this framework does not match the sta-
tistical micro-foundations under which the embed-
dings themselves are estimated as described in Sec-
tion 3. For this reason, the document bootstrap
does not always capture uncertainty due to poor
reconstruction of the original co-occurrences for
different words, while GloVe-V is designed for this
very purpose.

Figure 4 shows that document-level uncertainty
can either underestimate or overestimate the vari-
ance of a downstream test statistic compared to the
reconstruction error uncertainty given by GloVe-V,
depending on the distribution of words across doc-
uments. A word that is used infrequently but in the
same way across many documents may have low
document-level uncertainty because each bootstrap
sample will yield similar (but sparse) co-occurrence
counts for that word, even if the reconstruction er-
ror remains high for each bootstrapped estimate.
Conversely, a word that is extremely common in
only a few documents may have high document-
level uncertainty because many bootstrap samples
will drop the majority of documents containing that
word, even if the reconstruction error is low when
all documents are included. Rather than choose one
over the other, researchers can use each method for
different purposes: tools like the document boot-
strap or more computationally efficient analogs
(e.g., Brunet et al., 2019) can be used to assess
sensitivity of results to particular documents, while
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Figure 5: Nearest neighbors with uncertainty. Health-
care occupations (y-axis) ranked by their cosine simi-
larity with “doctor” (x-axis), with the nearest neighbor
ranking based on the point estimate above each point,
and 95% GloVe-V uncertainty intervals.

GloVe-V can be used to conduct hypothesis tests
under a coherent statistical framework, holding the
corpus fixed.

5 GloVe-V enables principled significance
testing

We now show how GloVe-V enables statistical sig-
nificance testing, addressing the increasing recogni-
tion for NLP to move beyond point estimates alone
(Card et al., 2020; Liao et al., 2021). GloVe-V can
also help researchers assess when a corpus is un-
derpowered for specific inferences, as we illustrate
below.

5.1 Uncertainty in k nearest neighbors

Word similarity, including k nearest neighbor lists,
informs performance evaluation for both embed-
ding models and more sophisticated artificial intel-
ligence systems (e.g., Mikolov et al., 2013a; Levy
and Goldberg, 2014a; Linzen, 2016; Borah et al.,
2021; Tang et al., 2023; Liu et al., 2023). Using
only point estimates to evaluate word similarity,
however, leaves the researcher with no sense of
which word similarities are inherently less certain
because they are based on less co-occurrence data
in the underlying corpus. Uncertainty in neigh-
bor rankings is particularly consequential for word
similarity tasks, which depend on the ranking of
different word pairs, and for word analogy tasks,
which are typically solved by finding nearest neigh-
bors in the embedding space.10 As an example of

10In the case of analogy tasks, the solution typically relies
on the nearest neighbor to some linear transformation of the
word embeddings belonging to the words in the analogy (Levy
and Goldberg, 2014a), rather than the nearest neighbor to a
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Figure 6: Accounting for uncertainty in word embedding performance assessments using the SemEval-2012
Task 2 of Jurgens et al. (2012) on COHA 1900–1999. The task measures the degree of relational similarity of
word pairs using the Spearman correlation and the MaxDiff choice procedure on a taxonomy that comprises 79
types of relations across 10 different classes (e.g., contrast, part-whole, cause-purpose). We present GloVe-V results
on a subset of relations, along with a Random baseline that randomly rates the word pairs in each relation.

this dilemma, Figure 5 plots the cosine similarity
between “doctor” and a list of healthcare occupa-
tion words along with GloVe-V uncertainty inter-
vals. Based on the point estimates, we can assign a
nearest-neighbor rank to each word by their prox-
imity to “doctor” (printed above the point estimate
in Figure 5). However, for the top three neighbors
(and between neighbours 4 through 10), we cannot
statistically distinguish the ranks (e.g., p = 0.10
for the difference in the cosine similarity of “doc-
tor" and “surgeon" relative to that of “doctor" and
“dentist"). Which neighbor is the “nearest” is there-
fore subject to considerable uncertainty that would
be invisible without incorporation of the GloVe-V
variances.

5.2 Uncertainty in model performance
Performance on analogy tasks is a canonical
approach to word embedding model evaluation
(Mikolov et al., 2013b; Pennington et al., 2014;
Levy et al., 2015). Closed-list relational similarity
tasks such as SemEval-2012 (Jurgens et al., 2012)
are structured so that models can be benchmarked
against random baselines, in which pairs of words
are randomly related to each other to establish a
lower bound on expected performance. Figure 6
presents the performance of GloVe compared to
a random benchmark using two evaluation met-
rics on four relational similarity tasks (see Jurgens
et al., 2012, for details on the tasks and metrics).
While the point estimates for performance suggest
that GloVe outperforms the random baseline on all
tasks, adding uncertainty to both point estimates
reveals that we can only claim significantly higher
performance than random on two of the four rela-

specific word as illustrated in our example.

tions (p = 0.08, p < 0.001, p = 0.02, p = 0.08
for relations 1–4, respectively, for the MaxDiff
metric). The GloVe-V intervals also allow us to dis-
tinguish the performance of GloVe across different
relational similarity tasks. While we can say that
GloVe performs better on “Contrast” vs. “Cause-
Purpose” (p = 0.03 for the MaxDiff metric), we
cannot claim that it does better on “Cause-Purpose”
than “Part-Whole” (p = 0.92), even though the
point estimates suggest better performance on the
former task.11

5.3 Uncertainty in word embedding bias
Measurement of societal biases in text is a pop-
ular downstream application using word embed-
dings (e.g., Garg et al., 2018; Lucy et al., 2020;
Charlesworth et al., 2022; Matthews et al., 2022;
Sevim et al., 2023). These types of studies compare
similarity between curated sets of words to test the
prevalence of societal biases in text. For example,
if a set of female-oriented words is closer to a set
of family-oriented words than to career-oriented
words, and this relationship is stronger relative to
the same comparison using male-oriented words,
that is evidence of a gender bias (Bolukbasi et al.,
2016; Caliskan et al., 2017). To represent uncer-
tainty in these comparisons, researchers typically
use a permutation test or bootstrap on the words
included in each set (e.g., Caliskan et al., 2017;

11The relations contain about about 27 to 45 word pairs:
1) Contrast - Contrary: pairs of opposite words (e.g., “dull"
and “bright"); 2) Part-Whole - Event: Feature: pairs in which
one word is a part of the event given by the first word (e.g.,
“carnival" and “rides"); 3) Attribute - Object: Typical Action:
pairs in which one word is a characteristic action of the other
(e.g., “heart" and “beat"); 4) Cause-Purpose - Agent: Goal:
pairs in which one word is a typical objective of the agent
given by the first word (e.g., “painter" and “portrait").
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Figure 7: Ethnicity and gender bias scores. a) Average Asian bias scores with GloVe-V uncertainty using the
cosine bias score of Garg et al. (2018) in COHA 1900–1999 for different Asian surname lists. The gray line and
shaded gray area represent the point estimate and 95% GloVe-V uncertainty interval, respectively, of the bias score
on a master list of Asian surnames. The points and error bars in blue represent the bias score computed on different
subsets of the list, grouped according to the number of times they appear in the corpus. b) Gender bias scores for
three types of bias tests using the WEAT effect size of Caliskan et al. (2017) with GloVe-V uncertainty.

Garg et al., 2018), but others have noted that these
types of uncertainty measures (which account for
uncertainty in word selection) are not designed to
account for the sparsity of word co-occurrences
that form the basis for the comparisons (Ethayarajh
et al., 2019b).

It is especially important to account for uncer-
tainty due to sparsity in applications where the anal-
ysis relies on infrequently occurring words such
as surnames, which are often used to measure de-
mographic bias (e.g., Caliskan et al., 2017; Garg
et al., 2018; Swinger et al., 2019). Researchers typ-
ically drop lower frequency surnames altogether
from their analyses (e.g., Garg et al., 2018) be-
cause they have no way of representing the higher
uncertainty in the embedded positions for lower fre-
quency surnames using only point estimates. But
such curation runs the risk of sacrificing the rep-
resentativeness of the word lists involved and the
generalizability of the conclusions (Antoniak and
Mimno, 2021). Using a measure of anti-Asian bias
in the COHA corpus based on Garg et al. (2018),
the left panel of Figure 7 shows how GloVe-V vari-
ances can automatically provide information on
co-occurrence sparsity for researchers.12 The bias
measure on the y-axis computes the average cosine
similarity between a set of Asian surnames and a
set of 20 Otherization words,13 relative to a set of
White surnames. A more positive bias score indi-

12Appendix A.2 provides delta method derivations for the
bias statistics used in Figure 7.

13This word list is primarily composed of adjectives used
to describe people as outsiders, such as monstruous, devious,
and bizarre.

cates that Asian surnames are more closely related
to these negative Otherization words compared to
White surnames.

Figure 7 shows that the anti-Asian bias estimate
in COHA becomes more positive for more fre-
quently appearing surnames, such that relying only
on the most frequent surnames produces an exag-
gerated result relative to the full set of Asian sur-
names.14 This is likely due to the fact that the most
frequently occurring surnames tend to be from his-
torical figures such as “Ghandi,” “Mao,” and “Mo-
hammed,” which are clearly not representative of
the entire class of Asian surnames. Using GloVe-V,
low and high frequency words can be seamlessly
combined into a single bias interval that represents
the combined uncertainty in all the estimated word
positions (shown as a gray interval on the plot),
without having to drop any surnames and sacrifice
generalizability.15

GloVe-V intervals can also be useful for studying
high frequency word lists because they allow re-
searchers to make statistical comparisons between
types of bias. The right panel of Figure 7 pro-
vides an example of three gender bias queries with
GloVe-V intervals for the Word Embedding Associ-
ation Test (WEAT) effect size, a cosine-similarity-

14See Appendix A.3 for details on how we compiled this
surname list.

15GloVe-V intervals can also help researchers determine
when a bias time trend can be supported by the co-occurrence
data. Estimating the anti-Asian bias separately for each decade
of COHA with GloVe-V uncertainty intervals, for example,
reveals no significant trend in the bias score over time, sug-
gesting that time trends such as those reported in Garg et al.
(2018) should also be checked for statistical significance.
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based test (Caliskan et al., 2017): (a) male vs. fe-
male names and words related to career vs. family;
(b) male vs. female terms and words related to math
vs. arts; and (c) male vs. female terms and words
related to science vs. arts. While the point estimate
for type (a) is higher than those for both (b) and
(c), the GloVe-V intervals allow us to reject the
null that (a) is equal to (b) (p < 0.001), but not
the null that (a) is equal to (c) (p = 0.11). In this
case, the GloVe-V intervals guard against making
unsubstantiated claims about which types of bias
are strongest.

6 Conclusion

In this paper, we have derived, computed, and
demonstrated the utility of GloVe-V, a new method
to represent uncertainty in word embedding loca-
tions using the seminal GloVe model. The GloVe-V
variances provide researchers with the ability to eas-
ily propagate uncertainty in the word embeddings
to downstream test statistics of interest, such as
word similarity metrics that are used in both eval-
uation and analyses involving word embeddings.
Unlike methods such as the document and word list
bootstrap, the method is computationally efficient
even on large corpora and represents uncertainty
due to sparsity in the underlying co-occurrence ma-
trix, which is often invisible in downstream analy-
ses that use only the estimated word embeddings.

As we have shown in Section 5, incorporating
uncertainty into downstream analyses can have con-
sequential impacts on the conclusions researchers
draw, and should be a best practice moving forward
for studies that use word embeddings to infer se-
mantic meaning. Finally, while outside the scope
of the current study, we note that the contextual
word and passage representations of transformer
large language models are also point estimates and
similar questions of embedding uncertainty apply
when using such models as well.

Limitations

While useful in many applications, the GloVe-V
method comes with certain limitations. First, the
variances can only be computed for words whose
number of context words exceeds the embedding
dimensionality. This limitation can easily be mini-
mized by reducing the dimensionality of the vectors
for small corpora; for example, variances can be
computed for 96% of the word embeddings in the
relatively small New York Times Annotated Cor-

pus (NYT) with 50-dimensional vectors, compared
to 36% of embeddings with 300-dimensional vec-
tors. Second, researchers need access to the co-
occurrence matrix if they wish to compute the vari-
ances themselves, since it relies on an empirical
estimate of the reconstruction error. Third, the
methodology in this paper applies solely to the
GloVe embedding model because of its statistical
foundations. That said, this model is one of the
most-cited word embedding models in current use
and has been shown to have better stability and
more intuitive geometric properties than competing
models (Mimno and Thompson, 2017; Wendlandt
et al., 2018).

Finally, the uncertainty captured by GloVe-V
intervals maps onto the extent to which the em-
beddings are able to reconstruct the underlying
co-occurrence matrix, which is only one of many
types of uncertainty one could consider in embed-
ded locations for words. Other types of uncertainty
that are held fixed in GloVe-V include instability
due to the documents included in the corpus (e.g.,
Antoniak and Mimno, 2018), uncertainty due to the
hyper-parameters of the model (e.g., Borah et al.,
2021), and statistical uncertainty in the estimated
context vector positions and bias terms, which are
treated as constants in the variance computation
for computational tractability. Along with the con-
ditional independence assumption on words, treat-
ing these terms as constants is necessary to reduce
the number of free parameters in the model and
allow a tractable variance computation. Holding
free parameters fixed may underestimate the to-
tal variance in the GloVe optimization procedure.
However, these sorts of independence assumptions
are becoming standard practice to enable compu-
tational efficiency for models with a large number
of parameters – the same assumption, for example,
has been successfully employed to develop a com-
putationally efficient approximation to a document
bootstrap (Brunet et al., 2019).

Despite these limitations, we found by trying
a number of other approaches (detailed in Ap-
pendix A.4) that GloVe-V strikes a desirable bal-
ance between maintaining the model’s probabilis-
tic foundations for enhanced statistical rigor, and
preserving computational tractability for practical
purposes.
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A Appendix

A.1 Code Demonstration: Using GloVe-V for
Word Pair Cosine Similarity

In this section, we illustrate how to leverage our
GloVe-V variances to easily and quickly compute
the distribution of a downstream test statistic. For
our demonstrative example, we calculate the mean
and standard deviation of the cosine similarity of
a pair of words using the Method of Composition
(MOC) (Tanner, 1996) or repeated draws approach
discussed in Section 3.4. This represents the same
downstream task as the nearest neighbor with uncer-
tainty analysis presented in Figure 5 and discussed
in Section 5.1.

As noted in the code, in this demonstration
we randomly generate the GloVe embeddings and
the GloVe-V variances for simplicity of exposi-
tion. However, we make available pre-computed
variances for various corpora (including COHA
1900-1999) and software for users to easily down-
load and interact with these data products in our
code (github.com/reglab/glove-v) and data
(nlp.stanford.edu/projects/glove) reposito-
ries.

import numpy as np

# Parameters
# * K: Number of samples to draw
K = 100 _000
# * d: Embedding dimensionality
d = 300

# Helper functions
def cosine_similarity(v1, v2):

"""
Computes the cosine similarity for a

pair of vectors.
"""
return np.dot(v1, v2) / (np.linalg.

norm(v1) * np.linalg.norm(v2))

def random_psd_mat(n):
"""
Generates a random positive semi -

definite matrix.
"""
A = np.random.randn(n, n)
return A.T @ A

def sample_vector(vector , variance , n):
"""
Returns a matrix of n samples for a

word from the Multivariate
Normal distribution given by the
vector and covariance matrix.

"""
v_sam = np.random.

multivariate_normal(mean=vector ,
cov=variance , size=n)

return v_sam
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# For simplicity , in this example we
randomly generate the embeddings and
GloVe -V variances. In our code (

github.com/reglab/glove -v) and data
(nlp.stanford.edu/projects/glove)
repositories , we provide code to
download pre -computed variances for
several corpora.

np.random.seed (42)
vectors = {

'word1 ': np.random.randn(d, ),
'word2 ': np.random.randn(d, )

}
variances = {

'word1 ': random_psd_mat(d) * 1e-4,
'word2 ': random_psd_mat(d) * 1e-4

}

# Draw K multivariate normal samples for
each word

sample_matrix_w1 = sample_vector(
vector=vectors['word1 '],
variance=variances['word1 '],
n=K

)
sample_matrix_w2 = sample_vector(

vector=vectors['word2 '],
variance=variances['word2 '],
n=K

)

# Method of composition: compute the
statistic of interest using each
sample

moc_cs = np.sum(sample_matrix_w1 *
sample_matrix_w2 , axis =1)

moc_cs /= (np.linalg.norm(
sample_matrix_w1 , axis =1) * np.
linalg.norm(sample_matrix_w2 , axis
=1))

# Compute mean and standard deviation of
the statistic

print(f"Statistic␣on␣the␣trained␣
embeddings:␣{round(cosine_similarity
(vectors['word1 '],␣vectors['word2 '])
,␣3)}")

print(f"MOC␣Mean:␣{round(np.mean(moc_cs)
,␣3)}")

print(f"MOC␣Standard␣deviation:␣{round(
np.sqrt(np.var(moc_cs)),␣3)}")

Output:

Statistic on the trained embeddings: -0.04
MOC Mean: -0.039
MOC Standard deviation: 0.014

A.2 Variance Estimator Derivation for Bias
Measures Using the Delta Method

A.2.1 Cosine Similarity Bias

The cosine similarity bias function of Garg et al.
(2018) is the following:

f(v1, . . . ,vk,MA,MW ) =

1

K

∑

i

cos(vi,MA)−
1

K

∑

i

cos(vi,MW )

where vi is the word vector for otherization word
i, MA is the mean word vector over all Asian sur-
names (using pre-normalized vectors), and MW

is the mean word vector over all White surnames
(using pre-normalized vectors). There are K other-
ization words.

In general, the partial derivative of the cosine
similarity between two vectors a and b with respect
to a is:

∂ cos(a,b)

∂a
=

∂aTb/∂a

∥b∥∥a∥ − cos(a,b)

∥a∥ · ∂∥a∥/∂a

If we take a to be an otherization word vi, this
gives us:

∂ cos(vi,MA)

∂vi
=

MA

∥MA∥∥vi∥
− cos(vi,MA) ·

vi

∥vi∥2

If we take a to be an Asian surname vector aj ,
where MA = 1

m

∑
j

aj

||aj || , this gives us:

∂ cos(vi,MA)

∂aj
=

1

m

(
I

||aj ||
−

aja
T
j

||aj ||3
)

[
vi

||vi||||MA||
− cos(vi,MA) ·

MA

||MA||2
]

=
1

m||aj ||||MA||
XT

aj (ṽi − cos(vi,MA) · M̃A)

where Xaj = I− ãj ã
T
j .

So the partial derivatives with respect
to each type of vector are the following:
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∂f

∂vi
=

1

K||vi||(
[M̃A − M̃W ]− [cos(vi,MA)− cos(vi,MW )] · ṽi

)
:= dv

∂f

∂aj
=

1

Km||MA||

(
I

||aj ||
−

aja
T
j

||aj ||3
)

∑

i

(
ṽi − cos(vi,MA) · M̃A

)

=
1

Km||aj ||||MA||
XT

aj

∑

i

(
ṽi − cos(vi,MA) · M̃A

)
:= da

∂f

∂wj
= − 1

Kn||MW ||

(
I

||wj ||
−

wjw
T
j

||wj ||3
)

∑

i

(
ṽi − cos(vi,MW ) · M̃W

)

= − 1

Kn||wj ||||MW ||X
T
wj

∑

i

(
ṽi − cos(vi,MW ) · M̃W

)
:= dw

where ã is the normalized version of vector a.

A.2.2 WEAT effect size

For two sets of attributes, V and Z, of equal size
(k) the WEAT effect size of Caliskan et al. (2017)
is the following:

f(v1, . . . ,vk, z1, . . . , zk,a1, . . . ,aA,w1, . . . ,wW )

=

1
|V |
∑

i s(vi,W,A)− 1
|Z|
∑

i s(zi,W,A)

std. devx∈V ∪Zs(x,W,A)
:=

H

G

where

H =
∑

i

(
1

W

∑

j

cos(vi, wj)−
1

A

∑

j

cos(vi, aj)

)

−
∑

i

(
1

W

∑

j

cos(zi, wj)−
1

A

∑

j

cos(zi, aj)

)

=
∑

v∈V
s(v,W,A)−

∑

z∈Z
s(z,W,A)

and

G2 =
1

|V ∪ Z| − 1

∑

x∈V ∪Z

(
s(x,W,A)− 1

|Z ∪ V |
∑

y

s(y,W,A)

)2

:=
1

|V ∪ Z| − 1

∑

x∈V ∪Z
(s(x,W,A)− E)2

Let c′a(a,b) = ∂ cos(a,b)
∂a . We first define the

following derivatives:

∂s(vi,W,A)

∂vi
=

1

W

∑

j

c′vi
(vi,wj)−

1

A

∑

j

c′vi
(vi,aj)

∂s(zi,W,A)

∂zi
=

1

W

∑

j

c′zi(zi,wj)−
1

A

∑

j

c′zi(zi,aj)

∂s(x,W,A)

∂wj
=

1

W
c′wj

(wj ,x) , for x ∈ {vi, zi}

∂s(x,W,A)

∂aj
=

−1

A
c′aj

(aj ,x) , for x ∈ {vi, zi}
The partial derivatives with respect to

each type of vector are the following:

∂f

∂vi
=

(
1

G|V | −
H

G
5
2

· (s(vi,W,A)− E)

|V ∪ Z|

)
∂s(vi,W,A)

∂vi

∂f

∂zi
=

( −1

G|Z| −
H

G
5
2

· (s(zi,W,A)− E)

|V ∪ Z|

)
∂s(zi,W,A)

∂zi

∂f

∂wj
=

1

G
·
(

1

|V |
∑

v

∂s(vi,W,A)

∂wj
− 1

|Z|
∑

z

∂s(zi,W,A)

∂wj

)

− H

G
5
2

1

|V ∪ Z| − 1

∑

x∈V ∪Z

(
(s(x,W,A)− E) ·

(
∂s(x,W,A)

∂wj
− ∂E

∂wj

))

∂f

∂aj
=

1

G
·
(

1

|V |
∑

v

∂s(vi,W,A)

∂aj
− 1

|Z|
∑

z

∂s(zi,W,A)

∂aj

)

− H

G
5
2

1

|V ∪ Z| − 1

∑

x∈V ∪Z

(
(s(x,W,A)− E) ·

(
∂s(x,W,A)

∂aj
− ∂E

∂aj

))

where

∂E

∂wj
=

1

|V ∪ Z|
∑

x∈V ∪Z

∂s(x,W,A)

∂wj

∂E

∂aj
=

1

|V ∪ Z|
∑

x∈V ∪Z

∂s(x,W,A)

∂aj

A.2.3 Delta Method
Using the derivatives computed in the sections
above, the variance of the bias calculation is:

var(h) =
∑

i

(dt)
T
i Σi(dt)i

where h ∈ [f, g] is the bias function, t is the type of
word i (e.g., t = a for Asian surnames, t = w for
White surnames, t = v for Otherization words in
the case of the cosine similarity metric), and Σi is
the variance-covariance matrix for the parameters
of word i (Equation 5).

A.3 Asian Surname List Generation
To explore the behavior of anti-Asian bias scores
on words with varying frequencies in the COHA
(1900–1999) corpus (Section 5.3), we compile a
novel Asian surname list with the objective of cap-
turing a broader and more representative set of
surnames that would be present in a historic corpus
such as COHA.

We build on two existing and widely used sur-
name lists for ethnic bias measurement. First, a
list of 20 Asian last names curated by Garg et al.
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(2018). This was designed to include the most
common surnames in the United States for this eth-
nicity, as measured by 2000 Census data, as well as
the surnames that had higher average frequencies
in the Google Books and COHA corpora studied
by the authors (largely covering the 1800–1999 pe-
riod). As a result of this curation process, the list is
solely focused on higher frequency last names, and,
by primarily comprising Chinese surnames, may
not be wholly representative of the Asian ethnicity
and of the historic appearances of Asian surnames
in this corpus. Second, a list of 200 Asian Pa-
cific Islander surnames collected by Matthews et al.
(2022) from the 2010 U.S. decennial census, sam-
pled from last names that had a probability of 90%
or larger of belonging to this ethnicity.

We expand the set of 211 unique Asian last
names from the Garg et al. (2018) and Matthews
et al. (2022) lists by collecting surnames in immi-
gration arrival cases from the National Archives at
San Francisco, California, from 1910–1940 (Na-
tional Archives at San Francisco). This data in-
cludes over 65,000 cases detailing the country
of birth, arrival date, first and last name, gender
and date of birth of each person. As ethnicity is
not directly reported, we use the country of birth
to compile the Asian surname list, and find over
1,300 unique last names belonging to immigrants
whose reported birthplace is one the following lo-
cations: China, Japan, Korea, Indo-China, India,
Hong Kong, Burma, Philippine Islands, Thailand,
Malaysia, and Mongolia.16

A.4 Alternative Approaches to Word
Embedding Estimation Uncertainty

We explored several approaches to measuring the
reconstruction error of word embeddings, in addi-
tion to the probabilistic model for GloVe that we
presented in this work.

A.4.1 Implicit matrix factorization in the
skip-gram with negative-sampling
(SGNS) model

Per Levy and Goldberg (2014b), the SGNS word
embedding model implicitly factorizes a matrix
that contains the shifted pointwise mutual infor-
mation (PMI) of word and context vectors. Let
w be a word vector for word w, c be a context
vector for word c, VW and VC be the word and
context vocabularies, respectively, k be the number

16We make this surname list available to researchers in our
code repository.

Figure 8: Distribution of word-level estimation error
measures in COHA for different word lists. Using
Levy and Goldberg’s findings for the skip-gram with
negative-sampling (SGNS) model, we compute a word-
level measure of the estimation error in word embed-
dings.

of negative samples, D be the collection of word
and context pairs in a corpus, #(i) be the number
of occurrences of word i in the corpus, and #(i, j)
the number of co-occurrences of the words i and j
in the corpus. Then, for sufficiently large dimen-
sionality of the embeddings, the optimal vectors
according to the SGNS objective are such that:

w · c = log

(
#(w, c) · |D|
#(w) ·#(c)

)
− log k

= PMI(w, c)− log k

In this manner, a measure of error in the esti-
mation of the word embedding for word w could
be obtained by comparing the dot product w · c
and PMI(w, c) across all context words c appear-
ing with word w in the corpus. In particular, we
explored a word-level measure of estimation er-
ror for word w captured by the median of d(w, c),
the context-level percentage of deviation from the
optimal value, over all contexts:

d(w, c) =
w · c− (PMI(w, c)− log k)

PMI(w, c)− log k

By comparing the distribution of this word-level
measure of estimation error over different word
lists, we found that higher frequency word lists,
such as the set of White surnames of Garg et al.
(2018), had much lower estimation errors com-
pared to relatively lower frequency word lists, such
as the set of 20 Asian surnames (see Figure 8).

Though helpful to assess the estimation quality
of word embeddings in a corpus, an important lim-
itation of this method is that it is not a probabilistic
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model, and so offers no obvious way to perform
hypothesis testing in downstream applications ac-
counting for this type of error. For this reason,
we sought a different approach that could provide
not only point estimates for the embeddings, but
accompanying uncertainty measures with a proba-
bilistic foundation.

A.4.2 Bayes by Backprop for the SGNS model
In order to obtain distributions over the word em-
beddings, we explored the Bayes-by-Backprop al-
gorithm of Blundell et al. (2015), a variational
inference approach that learns a distribution over
neural network weights. Han et al. (2018) adapt
this method to obtain approximate posterior dis-
tributions for SGNS word embeddings, incorpo-
rating metadata on document covariates in order
to learn conditional distributions for different cor-
pus subsets (e.g., temporal periods or genres) that
share structural information across these partitions.
Using a Gaussian mixture prior for the parame-
ters of the word and context vectors, this method
computes the following conditional posterior dis-
tribution ww|x for word vectors and unconditional
posterior distribution wc for the context vectors:

ww|x ∼ N(f(µw, µx), σw|c)

wc ∼ N(µ̃c, σ̃c))

where x is the subcorpus on which the embedding
for word w is estimated, f is an affine transfor-
mation that combines corpus-level word vectors
µw and embeddings for each subcorpora µx, and
σw and σ̃c are the diagonal covariance of word
and context vectors, respectively, parameterized as
σw|c = log(1 + eρw) and σ̃c = log(1 + eρ̃c). The
Bayes-by-Backprop algorithm initializes parame-
ters µw, µx, µ̃c, ρw and ρ̃c for all word and con-
text vectors in the vocabulary, and, given (w, c, x)
triplets, performs sequential updates to these pa-
rameters by computing the gradient of the varia-
tional approximation to the posterior.

Unfortunately, training meaningful embeddings
with Bayes-by-Backprop turned out to be chal-
lenging. On the COHA corpus, our best perfor-
mance was a mean accuracy of 0.11 on the Google
analogy task (Mikolov et al., 2013a) and a mean
Pearson similarity statistic of 0.41 on the MEN
similarity task (Bruni et al., 2012), relative to a
benchmark of 0.24 and 0.51, respectively, using the
pre-trained embeddings of Hamilton et al. (2016)
across COHA decades. We explored numerous

Figure 9: Word-level relationship between posterior
standard deviations and frequency in COHA using
the Bayes-by-Backprop approach. Lower-frequency
words displayed poor convergence and their posterior
standard deviations were effectively unchanged during
training.

refinements to improve the training of Bayesian
Neural Networks (Book, 2020), including using
different weight initialization schemes for separate
parameter groups (e.g., Uniform Kaiming scheme),
and both uniformly and dynamically re-weighting
the Kullback-Leibler divergence component of the
cost function, to no greater success.

In addition to the lower quality of the embed-
ding posterior means, we encountered an important
scaling issue in the trained parameters. After train-
ing, the posterior means were one to two orders
of magnitude smaller than the posterior standard
deviations, effectively barring us from drawing
meaningful samples from these distributions. An
analysis of the relationship between the posterior
standard deviations and word-level frequency indi-
cated that there was an inverse relationship between
these (similar to what we document in Figure 3
for GloVe-V); however, this relationship only held
for higher frequency words. For lower frequency
words, the posterior standard deviations were all
equivalent and effectively unmodified from their
initialization value (see Figure 9). Convergence di-
agnostics on this model confirmed that these param-
eters (ρw and ρ̃c) were not training correctly. Fur-
ther work would be required to design priors and
parameter-specific weight initialization schemes
that lead to proper training of the parameters for
this subset of words. Our code for these training
runs is made available at the project repository.

9047


