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Abstract

Compositionality is a core property of natural
language, and compositional behavior (CB) is
a crucial goal for modern NLP systems. The
research literature, however, includes conflict-
ing perspectives on how CB should be defined,
evaluated, and achieved. We propose a concep-
tual framework to address these questions and
survey researchers active in this area.

We find consensus on several key points. Re-
searchers broadly accept our proposed defini-
tion of CB, agree that it is not solved by current
models, and doubt that scale alone will achieve
the target behavior. In other areas, we find the
field is split on how to move forward, identify-
ing diverse opportunities for future research.

1 Introduction

Compositionality — the ability to correctly pro-
cess wholes given the ability to correctly process
their parts — is a core property of language (Mon-
tague, 1973; Fodor and Pylyshyn, 1988), enabling
unbounded expressivity through the “infinite use
of finite means” (von Humboldt 1836, as quoted by
Chomsky 1965). In the past decade, artificial neu-
ral network models of natural language have made
impressive progress toward human-like language
use; however, it is not clear whether their language
use consistently demonstrates human-like compo-
sitional behavior, especially during generalization
(Lake et al., 2019; Hupkes et al., 2020, 2022). This
question has been the subject of considerable de-
bate in the field of natural language processing
(NLP), as researchers have proposed diverse meth-
ods to model and assess compositionality (Pavlick,
2022; Donatelli and Koller, 2023).

We contribute a conceptual organization of cur-
rent issues surrounding compositionality in artifi-
cial neural network models, and use this framework
to survey researchers active in this area. We find
consensus (roughly 75%+ concordance) on several
crucial points. Researchers broadly agree with our

S11 Discrete symbols solve

S10 Model−internal solves

S9 Model−external solves

S8 Scale solves

S7 Currently fine

S6 Grounding needed

S5 Interpretable processing needed

S4 Interpretable representations needed

S3 Processing analysis suffices

S2 Representation analysis suffices

S1 Behavior analysis suffices

S0 CB Definition

0.00 0.25 0.50 0.75 1.00

Strongly agree

Agree

Somewhat agree

Somewhat disagree

Disagree

Strongly disagree

Figure 1: Overview of survey responses. We find con-
sensus (i.e. ∼75%+ concordance on “agree" or “dis-
agree") for 7 of the 12 surveyed claims.

proposed definition of compositional behavior (CB,
§2.1). They also agree that CB is not a solved prob-
lem: current models do not achieve compositional
behavior, and scale alone is unlikely to get us there
— a perspective consistent with findings from the
recent NLP Metasurvey (Michael et al., 2023).

In other areas, we find the field is split on how to
move forward. In terms of evaluation, researchers
disagree on whether current behavioral methods
can assess a model’s capability for compositional
behavior, and remain divided on how best to pursue
implementation. We believe there is value for the
research community in identifying points of shared
understanding and dispute, particularly on a topic
foundational to the study of language.

2 Framing Compositional Behavior

We conceptually frame our compositionality survey
around three key themes, expressed in a series of
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statements, S0-S11. Respondents provide a graded
level of dis/agreement, from Strongly Agree to
Strongly Disagree. We first define compositional
behavior (CB; S0) and ask participants whether
they agree with our definition. Given this defini-
tion, we then ask which methods are necessary and
sufficient to evaluate models’ capacity for CB (S1-
S6). Finally, we ask whether current neural models
achieve CB (S7), and if not, which interventions
are needed (S8-S11).

Here, we briefly review the relevant literature
informing each of these sections, and present the
corresponding statements in the form that they ap-
pear on the survey. Further methodological details
of the survey are presented in §3.

2.1 Defining Compositional Behavior
Compositionality (Szabó, 2022) has been a topic of
extensive debate in the literature on linguistics and
philosophy of language. Gottlob Frege is widely
recognized as the first philosopher to articulate the
concept (Frege, 1914), although his views have
been subject to conflicting interpretations (Pelletier,
2001; Herbelot, 2020; Russin et al., 2024). Our
goal in this paper is to review the empirical expec-
tations of researchers in computational linguistics,
and NLP more broadly; for this reason, our frame-
work focuses on the target behavior we would ex-
pect a compositional system to exhibit. In so do-
ing, we deliberately sidestep various theoretical
and formal distinctions. Here we briefly review
our framing of the problem, our proposed defini-
tion of compositional behavior, and how it relates
to key concepts in the research literature. Many
survey participants gave thoughtful and detailed
feedback on this definition, which we consider in
our discussion (§5).

Framing the survey To reduce ambiguity, we
asked participants to focus their answers on one
particular combination of model and domain. The
“current" neural model under consideration is the
Transformer and related variants, not including sig-
nificant changes to the original architecture pro-
posed by Vaswani et al. (2017). The domain under
consideration comprises all tasks using natural lan-
guage (e.g., language modeling, natural language
understanding, machine translation, paraphrasing,
etc.), formal language (e.g., arithmetic, program-
ming languages, domain-specific languages for spe-
cialized tasks such as SCAN and COGS, etc.), or
both (e.g., semantic parsing); we exclude other do-
mains such as vision.

Definition: Compositional Behavior (CB)

(CB) When a model receives an input
I that humans conceive as composed of
component parts, if the model produces
correct outputs for those parts (in isola-
tion or in other combinations), then it
will also produce a correct output for I .

Our intended interpretation of (CB) has several key
properties. In the following section, sentences in
italics were presented to survey participants along
with the proposed CB definition.

Behavior CB concerns only behavior, and states
nothing about the internal structure or processes of
a system or model. We may consider it situated at
Marr’s top ‘computational’ level of analysis (Marr,
1982): CB identifies inputs, outputs, and overall
goals, but no particular algorithmic or implementa-
tional realization.

Parts CB refers informally to the human concep-
tion of inputs and outputs as composed from compo-
nent parts (conceptual parts, not low-level neural
subvector parts), but it does not demand scientific
determination of exactly what those parts are. It
does, however, require those parts to be identifiable
in more than one context: not only in the input I
under consideration, but also in isolation or within
another complex expression. The Meaningful Parts
Principle (Nefdt, 2020) stipulates that the existence
of “meaningful,” i.e. composition-relevant, com-
ponent parts is necessary for any understanding
of compositionality. We concur (though see fol-
lowing discussion to clarify “meaning” as distinct
from “semantics”), and therefore require identifi-
able parts to enable CB evaluation. Furthermore,
in our stated problem domain of natural and for-
mal language, human-identifiable parts necessarily
comprise symbolic sequences and subsequences
rather than vector representations.1

The broad appeal to human judgment means that
CB is not committed to any particular process of
linguistic composition. For instance, CB is equally
compatible with a bottom-up process which strictly
determines a complex expression from its parts
(what Pelletier, 2012, calls “building block” com-
positionality), as with a top-down contextual pro-
cess which may yield a whole “greater than the sum

1Neural network processing is always compositional in
the trivial sense that the activation directly resulting from an
activation vector is the sum of the activations directly resulting
from the subvectors comprising the vector’s left and right
halves. A useful definition must exclude this trivial sense.
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of its parts” (Pelletier’s “functional compositional-
ity”). CB also does not require Nefdt’s Knowable
Parts Principle: the component parts we identify
as meaningful for CB evaluation are not required
to be similarly meaningful or homomorphic with
respect to a model’s internal computation. From
a practical standpoint, CB is satisfied so long as a
human observer deems a model output for input I
to be consistent with that same model’s outputs for
parts of I .2

Independence from semantic meaning CB does
not focus narrowly on the computation of the mean-
ing of expressions; that is merely one case of the
highly general phenomenon being targeted. Com-
positionality was first developed as a research topic
within semantics (Katz and Fodor, 1963), and much
current literature reflects this historical focus. For
instance, Hupkes et al. (2022) define compositional
generalization as a mapping from linguistic input
forms to some meaning in a distinct output space,
such as in the NLP tasks of semantic parsing or ma-
chine translation. They distinguish this from struc-
tural generalization occurring entirely within the
space of linguistic forms, such as the production of
syntactically or morphologically correct sequences.
In our proposed definition, however, both of these
concepts instantiate compositional behavior. To
take a famous example, although the sentence Col-
orless green ideas sleep furiously (Chomsky, 1957)
resists truth-conditional semantic interpretation, it
recognizably follows the composition structure of
English syntax. Another non-linguistic example
would be route planning: if a route is known from
X to Y and Y to Z, CB entails a known route from
X to Z.

Independence from learning CB does not fo-
cus on learning — it states nothing about whether
the model has previously encountered input I , and
only characterizes the target behavior of the model.
In a learning context, the type of compositional
generalization in which the model has not previ-
ously seen I is a special case of compositional
behavior [bolding added here]. This aspect of CB
contrasts with most current literature, which inves-
tigates how models might learn to generalize novel
input combinations (e.g., Hupkes et al., 2020; Kim

2Our intended sense of “correct" in the proposed CB defi-
nition relies upon human judgment to determine not only the
correctness of the input decomposition, but also the correct-
ness of the corresponding outputs; however, only the former
is explicitly stated in the definition as written. We discuss this
further in §5.

S0. (CB) is a satisfactory working definition of compo-
sitional behavior, an important aspect of compositional
generalization.

Table 1: Survey statement on defining CB (§2.1).

and Linzen, 2020). We agree that the generaliza-
tion scenario presents the key research question;
however, defining “generalization” is sufficiently
challenging in its own right (e.g., Hupkes et al.,
2022). We avoid this challenge by focusing our
definition on behavior which covers both known
and novel inputs.

After reading the proposed CB definition and the
clarifications above, survey respondents evaluate
statement S0 (Table 1).

2.2 Evaluating Compositional Behavior
If we accept the above definition of compositional
behavior, which evaluation methods can confirm
that a given model is capable of CB? Broadly speak-
ing, there are two main approaches: behavioral
and representational. Behavioral evaluation takes
a model-external view of a system as a black box,
relying on carefully designed challenge data and
often tightly controlled training data to test per-
formance. Representational evaluation instead fo-
cuses on model-internal structures and processes.
Although researchers often combine behavior and
representation analysis in practice, we treat them
as distinct here for conceptual clarity.

Evaluating behavior In recent years, behavioral
evaluation has been used to demonstrate both suc-
cesses and critical limits in neural models’ capac-
ity for compositional generalization. The SCAN
dataset (Lake and Baroni, 2018) has been a particu-
larly influential system benchmark (e.g., Dessì and
Baroni, 2019; Akyürek et al., 2020; Tan et al., 2020;
Newman et al., 2020; Soulos et al., 2020; Kim,
2021; Patel et al., 2022). Like most behavioral
challenge sets, SCAN is procedurally generated by
a formal language specification. Other notable eval-
uation datasets generated in this manner include
PCFG (Hupkes et al., 2020) to distinguish aspects
of combinatory generalization; Colors (Lake et al.,
2019; Lake and Baroni, 2023) to compare machine
and human few-shot learning; and HANS (McCoy
et al., 2019) to address confounds in natural lan-
guage inference.

While evaluation on formal language data per-
mits fine-grained researcher control, its research
implications for natural language performance can
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be less clear (cf. Chaabouni et al., 2021). This
has motivated the creation of more naturalistic
benchmarks to evaluate compositional generaliza-
tion, such as CFQ (Keysers et al., 2020; Shaw
et al., 2021). Though also procedurally generated,
COGS (Kim and Linzen, 2020) and recent exten-
sions (Li et al., 2023; Wu et al., 2023) stand out
as the most cognitively-motivated benchmarks of
this type, with a range of compositional general-
ization tasks informed by the literature on child
language acquisition. Language modeling arguably
provides a more cognitively valid objective, but
pre-trained language models present further eval-
uation challenges, as it is difficult to control their
exposure (Kim et al., 2022). Survey statement S1
(Table 2) asks respondents whether the sort of cur-
rent behavioral evaluation methods reviewed here
are sufficient to assess a model’s capacity for CB.

Evaluating representations and processing
The external behavior of a model causally depends
upon the representations and processes it imple-
ments internally. This basic fact has led many
researchers to complement behavioral evaluation
with model-internal analysis. Pavlick (2023) in-
vokes the classic Chomskyan distinction between
competence and performance (Chomsky, 1965) to
motivate such approaches, arguing that representa-
tion analysis can reveal underlying model capaci-
ties (competence) when behavioral evaluation (per-
formance) fails.

There are many techniques to analyze model-
internal representations (e.g., Belinkov and Glass,
2019; Sajjad et al., 2022; Madsen et al., 2023). One
prevalent approach is diagnostic probing (reviewed
by Belinkov, 2022), in which an auxiliary model
(“probe”) is trained to predict certain properties
from the internal representations of a main model
of interest, thereby indicating how the main model
encodes that property. Any representational en-
coding, however, must be used by model-internal
processes in order to causally affect the model’s be-
havior. Researchers have explored these causal rela-
tions in various ways, such as ablating the represen-
tational encodings found by diagnostic probes (e.g.,
Tucker et al., 2022; Lovering and Pavlick, 2022;
Lepori et al., 2023), substituting model compo-
nents with corresponding interpretable representa-
tions (e.g., Soulos et al., 2020; Geiger et al., 2021),
and identifying processing circuits associated with
particular behaviors (e.g., Olah et al., 2020; Wang
et al., 2022; Olsson et al., 2022).

S1. Current methods for analyzing the behavior of
neural models are sufficient to assess whether a model
is capable of compositional behavior (CB). For exam-
ple, consider methods used to assess performance on
datasets designed to probe specific aspects of compo-
sitional generalization, such as SCAN, COGs, CFQ,
PCFG, Colors, etc.

S2. Current methods for analyzing the representations
within neural models are sufficient: if a model is ca-
pable of compositional behavior (CB), these analysis
methods can identify the model-internal mechanisms
supporting this behavior. For example, consider di-
agnostic probing, visualization, learning interpretable
approximations of the representation space, etc.

S3. Current methods for analyzing the processing
within neural models are sufficient: if a model is ca-
pable of compositional behavior (CB), these analysis
methods can identify the model-internal mechanisms
supporting this behavior. For example, consider analy-
sis of circuits / induction heads, causal interventions
such as ablation, etc.

S4. Interpretable representations are necessary: we
cannot evaluate whether a model is capable of compo-
sitional behavior (CB) unless we can identify human-
interpretable parts within its representational structure.

S5. Interpretable processing is necessary: we can-
not evaluate whether a model is capable of composi-
tional behavior (CB) unless we can identify human-
interpretable parts within its representational structure,
and establish that the model uses these parts as ex-
pected during processing. That is to say, if we observe
in compositional behavior that certain parts stand in
particular relations to one another, we can confirm that
those parts interact in similar — ideally isomorphic —
ways during the procedure carried out by the model,
at some level of description. For example, consider
the conceptual roles discussed by Piantadosi and Hill
(2022).

S6. External grounding is necessary: we cannot evalu-
ate whether a model is capable of compositional behav-
ior (CB) unless we can identify human-interpretable
parts within its representational structure, and estab-
lish that these parts are grounded with respect to some
model-external structure in the world.

Table 2: Survey statements on evaluating CB (§2.2).

While our proposed definition focuses explicitly
on compositional behavior, one goal of our sur-
vey is to assess how researchers in the field view
the relationship between internal mechanisms and
model performance. Statements S2–S5 (Table 2)
ask whether interpretability in model representa-
tions or processing is necessary to assess a system’s
capacity for CB, and whether current methods for
evaluating representations or processing are suffi-
cient for the same task.

One axis of recent debate has focused on
grounding: while human language exchanges are
grounded (i.e. situated or embedded) in particu-
lar social and physical contexts, models of natural
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language are exposed only to language. Some re-
searchers (e.g., Bender and Koller, 2020; Bisk et al.,
2020) have argued that this lack of grounding seri-
ously impedes language understanding, and Mar-
cus and Murphy (2022) identify this as a key obsta-
cle to compositional generalization. Others (e.g.,
Piantadosi and Hill, 2022; Santoro et al., 2022;
Pavlick, 2023) have argued that, in principle, richly
semantically-structured representations can arise
through linguistic exposure alone. Statement S6
(Table 2) asks whether grounded representations
are necessary to evaluate model capacity for CB.

2.3 Achieving Compositional Behavior

Our third set of questions (Table 3) asks whether
current models already achieve CB, and if not, how
to move forward.3

Non-intervention The first two statements in this
section consider the possibility that we shouldn’t
worry too much. Perhaps standard architecture
modifications and/or pre-training let current mod-
els already achieve CB (e.g., Csordás et al., 2021;
Ontañón et al., 2022; Lepori et al., 2023; Mueller
et al., 2022; Murty et al., 2023; Petty et al., 2024),
or perhaps CB will be achieved simply as a byprod-
uct of scale — i.e. given the trajectory of current
research. Scale facilitates a wide range of model ca-
pabilities (Kaplan et al., 2020; Brown et al., 2020;
BIG{-}bench{ }authors, 2023), including compo-
sitional generalization (Qiu et al., 2022b); how-
ever, the scale paradigm has been criticized (e.g.,
Linzen, 2020), and the NLP Metasurvey (Michael
et al., 2023) reveals widespread skepticism among
researchers about scale’s potential. Statement S7
(Table 3) asks respondents whether current mod-
els already show sufficient compositional behavior,
while S8 asks whether scale will suffice to attain
CB.

Model-external intervention The next state-
ment posits that targeted intervention is required,
but model-external intervention — i.e. modifica-
tions to data and tasks rather than model architec-
ture — will achieve CB. Compositional generaliza-
tion has been successfully facilitated by approaches
such as targeted data augmentation (Andreas, 2019;
Akyürek et al., 2020; Qiu et al., 2022a; Patel et al.,
2022; Akyurek and Andreas, 2023), auxiliary task
supervision (Jiang and Bansal, 2021; Dan et al.,

3In this section, once respondents answered in the affirma-
tive (i.e. agreed that some approach would solve CB), they
could skip later statements.

S7. Current neural models show a sufficient degree of
compositional behavior (CB); we don’t need to assign
high priority to further research on this topic.

S8. Current neural models do not show a sufficient de-
gree of compositional behavior (CB), but this issue will
likely be resolved as a byproduct of increasing model
capacity (i.e. larger models and/or larger datasets). In
other words, scale will solve this problem, and we
don’t need additional interventions to improve compo-
sitional behavior.

S9. Current neural models do not show a sufficient
degree of compositional behavior (CB), and some in-
tervention is required, but model-external interventions
— as opposed to the model-internal interventions con-
sidered in the next claim — are likely to satisfactorily
resolve this problem. Examples of model-external
interventions include prompt engineering; strategic
manipulation or augmentation of training data; and
auxiliary tasks during training, pre-training, or fine-
tuning.

S10. Current neural models do not show a sufficient
degree of compositional behavior (CB), and model-
external interventions are unlikely to resolve this issue.
Model-internal interventions or novel architectures,
focused on model representations/processing/learning,
will be necessary to solve the problem.

S11. Current neural models do not show a sufficient
degree of compositional behavior (CB), and model-
internal interventions or novel architectures that in-
corporate explicit discrete symbolic computation (e.g.,
program synthesis) will be necessary to solve the prob-
lem.

Table 3: Survey statements on achieving CB (§2.3).

2022), and prompt-tuning (Qiu et al., 2022b; Hahn
and Goyal, 2023; An et al., 2023). Statement S9
(Table 3) asks whether such model-external inter-
ventions will suffice.4

Model-internal intervention Statement S10 (Ta-
ble 3) posits that novel architectures or other model-
internal mechanisms are necessary for CB. Many
modeling innovations facilitate compositional gen-
eralization, including specialized attention mecha-
nisms (Russin et al., 2019; Li et al., 2019; Korrel
et al., 2019; Oren et al., 2020; Bergen et al., 2021),
intermediate steps in decoding (Zheng and Lapata,
2021; Ruiz et al., 2021), structured latent variables
(Tan et al., 2020; Wang et al., 2021; Herzig and Be-
rant, 2021; Lindemann et al., 2023), and structured
distributed representations (Gordon et al., 2020;
Smolensky et al., 2022; Soulos et al., 2023). Some

4We note that several effective approaches have paired
data-focused interventions with augmented model architec-
tures, such as an auxiliary structure-aware loss function (Yin
et al., 2021), memory bank (Lake, 2019), and/or meta-learning
objective (Conklin et al., 2021; Lake and Baroni, 2023). We
consider such approaches primarily dependent upon the model-
external component (e.g., task sampling in the case of meta-
learning), and therefore part of this category; however, we
note that survey respondents may disagree.
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interventions promote compositionality by incor-
porating discrete symbolic structure, for instance
through program synthesis (Nye et al., 2020) or
other neuro-symbolic methods (e.g., Chen et al.,
2020; Yao and Koller, 2022). Statement S11 (Table
3) posits the necessity of symbolic computation.

3 Survey Methodology

This framework (§2) structures the survey which
we circulated to active researchers working in
the general area of compositionality, with IRB
approval from the University of Edinburgh (RT
541309). The anonymized dataset is available by
request for research purposes.

Distribution Our target respondent pool for the
survey comprised all researchers currently publish-
ing on the topic of compositionality in machine
learning. We compiled a list of relevant research
publications from three sources:

1. Publications in the ACL anthology5 since
2019 with “composition”, “compositional” or
“compositionality” in the title.

2. Publications identified by Hupkes et al. (2023)
on the topic of compositional and structural
generalization.6

3. Publications in prominent machine learning
and natural language processing venues (e.g.„
NeurIPS, ICML, ICLR, AAAI, *CL, etc.)
which cite Lake and Baroni (2018).7

We combined and filtered these three lists, result-
ing in 246 publications in total.8 We then extracted
all author names with listed contact emails, yield-
ing a contact list of 574 individual researchers.

All of the listed researchers were contacted and
invited to participate in the survey, which was open
from November 15 to December 15, 2022.9 We
extended further invitations based on personal con-
tacts and the recommendation of other survey re-
spondents, inviting 603 researchers in total. Of
these, 57 email addresses were no longer valid, so
we assume the invitation reached 546 researchers.

5https://aclanthology.org/
6https://genbench.org/references
7Collected via Semantic Scholar: https://www.

semanticscholar.org/
8For transparency, we release the list of papers along

with further supplementary material at https://github.
com/kmccurdy/CBsurvey.

9Note that participants could start the survey during this
window and finish it at a later time.

136 (25%) of those researchers opened the link to
the survey, and of those, 79 completed the survey.
This gives us an overall completion rate of 57%
of those who started the survey, representing 13%
of the original invitees. While this subsample can-
not fully represent the range of views in our target
population, we note that these response rates are
relatively high with respect to other surveys of edu-
cated professionals (Sudman, 1985; Barnhart et al.,
2021); for instance, responses to the NLP Metasur-
vey (Michael et al., 2023) are estimated to cover
about 5% of the target demographic.

Incentives We invited researchers to contribute
their expertise to our survey in a professional capac-
ity; as such, we did not offer any incentives directly
to individual respondents. Instead, we committed
to donate $10 USD to a charitable organization10

for each survey completion.11

Survey presentation Each statement (cf. Tables
1, 2, 3) was presented with the following possible
responses: Strongly disagree, Disagree, Somewhat
disagree, Somewhat agree, Agree, Strongly agree,
with the option to write additional free-form text
commentary for each response. Participants gave
consent both at beginning of the survey, and at the
end, when they were additionally asked to approve
use of their name; see Appendix A for details.

Update period Our initial data collection pe-
riod in November 2022 coincided with the release
of ChatGPT,12 followed a few months later by
the release of GPT-4 (OpenAI, 2023). These re-
leases received extensive media and public atten-
tion, and prompted some research publications re-
assessing neural models’ capacities (e.g., Bubeck
et al., 2023). In light of these developments, we
offered survey takers the chance to update their
responses.

Of the 79 respondents completing the survey, 65
left their email address for follow-up contact. We
reached out to these respondents, allowing them
to update their original survey responses between
July 15 and August 15, 2023. Of the 15 respon-
dents who replied, 10 reported that their views had
not changed. Five participants gave updated re-
sponses to specific questions, and of those, only
two changed their views enough to switch to a dif-

10Helen Keller International: https://helenkellerintl.
org/

11Thanks to generous funding from Microsoft, $1000 was
ultimately donated.

12https://chat.openai.com
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Figure 2: Aggregate survey results ordered from most
consensus (top) to most division of opinion (bottom); cf.
original presentation order (Figure 1).

ferent cluster (cf. §B).13 In sum, the respondents
to our update message — roughly 20% of survey
participants — largely retain their original views.
We take this as evidence that the opinions gathered
in the survey remain representative, recent techno-
logical developments notwithstanding.

4 Survey Results

Aggregate responses are shown in Figure 2 (see
also Figure 1 for presentation in survey order).
To our surprise, we found much more agreement
across the community than expected, with re-
searchers expressing a consensus opinion for 7 of
the 12 statements listed on the survey.

We define “consensus" as survey statements for
which roughly 75% or more of respondents con-
verge on agreement (i.e. Strongly agree, Agree, or
Somewhat agree) or disagreement. 81% of respon-
dents agree with the statement S0, our proposed
definition of Compositional Behavior (CB). We
also find near-consensus agreement for statement
S10: 73% of respondents agree that model-internal
interventions are likely necessary to achieve CB.

Otherwise, we found consensus on disagree-
ment. On the topic of interpretable representations,
82% of respondents judge that current methods are
not sufficient to evaluate CB (S2), but 74% also
judge that interpretable representations are not nec-

13For the five participants who updated their responses,
Figure 3 plots their new position and cluster assignment.

essary for this evaluation (S4), and 75% do not find
grounded representations necessary (S6). On the
topic of achieving CB, 88% of respondents agree
that current models do not achieve CB (S7), and
81% do not think it will be achieved by scale (S8).

The scale result mirrors findings from the larger
NLP Metasurvey (Michael et al., 2023, 16336):
83% of their 327 respondents disagree with the
view that scaling up would solve “practically any
important problem in NLP,” and 71% believe that
NLP research is excessively focused on scale. We
interpret these convergent findings as evidence
that skepticism about scale is not restricted to re-
searchers focused on compositionality, but charac-
teristic of the broader NLP community.

Points of division Some statements show a near
even split of opinion. Researchers are divided on
the adequacy of current behavioral methods to eval-
uate CB (S1), with 53% finding them acceptable.
Opinions also differ on how to achieve CB; 43%
think that model-external interventions will be suf-
ficient (S9), but 40% consider discrete symbolic
structure necessary (S11).

To better represent fine-grained differences in
opinion, we performed principal component analy-
sis. Figure 3 visualizes the two main axes of varia-
tion in responses: on the necessity of interpretable
processes and representations, and on the adequacy
of current methods — especially behavioral meth-
ods — for evaluating CB. We additionally identi-
fied respondents with one of six clusters, ordered
from largest to smallest: Default View, Minimal In-
terventionist, Current Analysis Suffices, Grounded
Symbolic Interpretability, Minimal Interpretability,
and Non-interventionist. For details on the cluster
analysis, see Appendix B.

5 Discussion

Beyond the quantitative overview in §4, many sur-
vey respondents provided highly thoughtful written
comments. We regret our inability to thoroughly
engage all of the excellent points raised. Here,
we discuss three key statements — our proposed
definition of CB (S0), the adequacy of behavioral
evaluation (S1), and the need for interpretable rep-
resentations (S4) — in light of the nuanced per-
spectives found in the comments. We focus on the
role of model interpretability and the adequacy of
current evaluation because these concepts roughly
correspond to the main axes of variation identified
in our principal components analysis (Figure 3).

9329



+ 
M

od
el−

int
er

na
l In

te
rv

en
tio

n

Nee
de

d 
for

 C
B

Andrew Lampinen

Ian Porada

Marco Baroni

Taylor Webb

Ruiqi Zhong

Chunchuan Lyu

Gautier Dagan

Emmanuel Dupoux

Felix Hill

Jake Russin

Raphaël Millière

Tom McCoy

Sam Spilsbury

Gijs Wijnholds

Yonatan Bitton

Mirella Lapata
Jacob Andreas

Paul Smolensky

James L. McClelland

Jingfeng Yang

Atticus Geiger

Naomi Saphra 

Runxin Sun

Michael White

Arjun Reddy Akula

Elia Bruni

Henry Conklin

Jesus Calvillo

Yuanpeng Li

Tomotake Sasaki

Paul Soulos

Ellie Pavlick

Brenden Lake

Dieuwke Hupkes

Jianfeng GaoKate McCurdy

−10

−5

0

5

10

−10 0 10
+ Interpretability Needed for CB

+
 C

ur
re

nt
 E

va
lu

at
io

n 
S

uf
fic

es
 fo

r 
C

B

cluster

a

a

a

a

a

a

Grounded Symbolic
Interpretability

Minimal 
Interpretability

Default View

Minimal 
Interventionist

Current Analysis
Suffices

Non−interventionist
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Defining CB As discussed in §2.1, we propose
defining compositional behavior (CB) with respect
to an informal human-like conception of wholes
and parts. Though a few commenters consider such
human-level perceptibility an irrelevant constraint,
most agree with the criterion; many of those who
agree, however, nonetheless find CB too vague, or
insufficiently formal for useful research. Several
highlight the difficulty of finding consensus in hu-
man judgments. For instance, Andrew Lampinen
cites Gleitman and Gleitman (1971)’s finding that
educational level affects semantic composition in
compound words, and Lake and Baroni (2023) ob-
serve considerable variability in the composition
rules used by human participants in a highly con-
strained experimental setting. We recognize the
diverse nature of human judgment, and the chal-
lenge for scientific evaluation.

We also thank respondents for highlighting an
overlooked ambiguity in our proposed CB defini-
tion: while we intend our appeal to human judg-
ment to apply to both a) the decomposition of an
input I into parts and b) the correctness of the re-
spective model output, the definition as written only
states (a) explicitly. Dieuwke Hupkes, James L.
McClelland, and Andrew Lampinen each propose

amended CB definitions which directly incorporate
(b). Many other comments raise related points: that
correct decomposition of the input does not entail
correct composition of the output, that decomposi-
tion and composition are contextually variable in
natural language, that partial composition is pos-
sible, and that the meaning of composed expres-
sions in natural language often rely upon factors
beyond the contents of input parts. We find these
observations insightful, and consider them at least
partly addressed by deferring to human judgment
of compositional outcomes, despite the challenges
outlined above.

A final key point raised by several commenters
is the central importance of generalization. El-
lie Pavlick, Jake Russin, Dieuwke Hupkes, and
Emmanuel Dupoux, inter alia, note that a model
which achieves compositional behavior on a given
dataset through memorization would not be inter-
esting from a research perspective, as we would
not expect it to extend CB to other datasets and
domains. This contention highlights the central
challenge of CB evaluation for machine learning:
how can we be sure that compositional behavior
arises for the right reasons?
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Behavioral evaluation Survey respondents are
almost perfectly divided on the adequacy of current
methods for behavioral evaluation. 53% agree that
current behavioral methods are sufficient to estab-
lish CB — though as noted by Raphaël Millière and
others, this requires proper experimental design:
careful control of training data, such that the model
is not exposed to the generalizations necessary to
succeed on the test set. Behavioral evaluation also
permits greater ecological validity, as we can often
directly compare human performance on the same
behavioral task.

The other 47% of respondents are more skeptical.
Marco Baroni and Andrew Lampinen character-
ize current behavioral methods as "necessary, but
not sufficient;" many other commenters note that
behavioral evaluation on a limited phenomenon
or domain cannot establish fully general CB, and
raise concerns about synthetic tasks which may
not reflect performance in more realistic settings.
We note that many respondents who agree with
S1 nonetheless raise similar concerns in their com-
ments. Researchers have a shared view of the limi-
tations of current behavioral evaluation, but differ
on whether these limitations prevent these methods
from sufficiently demonstrating CB.

Interpretable representations We were partic-
ularly interested in how researchers view the con-
nection between interpretable representations and
evaluating compositional behavior (CB). The re-
sults reveal a strong consensus that no such con-
nection is necessary. Of those disagreeing with
statement S4 (Table 2), many commenters note
that CB is behavioral by definition, hence model-
agnostic behavioral evaluation must suffice in prin-
ciple, and many additionally observe that we rely
on behavioral rather than representational evidence
of compositionality in humans. Generalization is
important here as well: several commenters note
that full data coverage of the relevant domain is
required for behavioral evaluation to adequately
demonstrate CB. Many of those who disagree with
S4 nonetheless affirm scientific interest in represen-
tational structure, and consider interpretable repre-
sentations informative and helpful, if not required,
for CB evaluation. Among the minority who find
interpretable representations necessary, comments
emphasize the need for formal verification of the
mechanisms supporting CB, and the inadequacy of
behavioral evaluation in this regard.

Toward compositional behavior Based on the
perspectives reviewed here, we see several practical
implications for future research. First, there is sub-
stantial room for progress in the domain of inter-
pretability, as a majority of respondents find cur-
rent approaches inadequate (S2). Even though most
also reject the idea that interpretability is necessary
to establish CB (S4, S5), many comments clarify
that interpretability is still desirable for scientific
purposes (cf. Mosbach et al., 2024), and can help
us distinguish fundamental limitations in model
capabilities from performance failures driven by
other issues (Pavlick, 2023). Second, a key finding
of our survey is that most researchers consider hu-
man behavior an acceptable reference for defining
correct compositional behavior (S0), but differ on
whether current behavioral evaluation methods are
satisfactory (S1). This suggests that behavioral
evaluation could be improved. Respondents iden-
tify diverse approaches such as directly comparing
human and model performance (e.g., Lake and Ba-
roni, 2023; Lampinen, 2022), developing more nat-
uralistic tasks, and evaluating on a broader range
of domains. We note a certain duality in evalua-
tion: establishing CB requires detailed knowledge
of either model-internal workings (to verify com-
positional capacities; e.g., Lepori et al., 2023) or
the full set of training data (to rule out learning non-
compositional shortcuts; e.g., Hupkes et al., 2022).
Third, we see considerable diversity of opinion in
terms of modeling interventions to achieve CB.
While most researchers are skeptical of scale (S8)
and expect internal changes to model architectures
(S10), half of respondents think CB can be achieved
through model-external approaches (S9), but the
other half think that model-internal symbolic pro-
cessing is likely required (S11). Many avenues for
exploration remain open; above all, respondents
strongly agree that the problem of CB is not yet
solved (S7).

6 Conclusion

Compositionality, a foundational aspect of natural
language, has taken on new significance in light
of modern neural models and uncertainty about
their capacities. This paper offers a framework for
defining, evaluating, and achieving compositional
behavior in neural models, and surveys the views
of researchers active in this area. We identify key
points of consensus and division, providing a snap-
shot of the field to inform future research.
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Limitations

There some potentially critical conceptual limita-
tions to our approach. One limitation of our survey
is the fact that all later statements rely upon accep-
tance of the first statement, namely our proposed
definition of CB; therefore, conceptual issues in
this definition may affect the validity of the entire
survey. In the discussion section (§5), we consider
some issues with our wording of the CB defini-
tion, along with proposed amendments raised by
survey respondents. Another possible objection
is that our proposed CB definition is too broad,
and insufficiently specified to elicit meaningful dis-
agreement within the research community. We do
not entirely agree with this objection, as we con-
sider having a shared if underspecified working
definition to be valuable in its own right; however,
we acknowledge that this breadth may limit the
scientific contribution of this work. Finally, we
deliberately limited the architecture under consid-
eration to the Transformer, and the domain under
consideration to natural and formal languages, even
though compositional behavior is also important in
other areas of NLP and AI.

A second set of limitations is methodological.
While we attempted to include a diverse range of
perspectives from the field, including senior and
junior researchers, our survey sample cannot be
perfectly representative and a different recruitment
method may have yielded different results. Another
consideration is in the use of respondents’ names:
while we strove to follow best ethical practices
in this regard (see Appendix A), some may still
raise objections to our use of respondents’ names
in this paper. Finally, a substantial limitation of
this paper submission format is that we have not
had the space to fully engage with the many, many
thoughtful and detailed responses shared by survey

participants. We deeply appreciate the time and
energy that respondents spent on this survey, and
regret our inability to give all the responses the
attention they merit.
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A Consent and Data Use

Our survey is somewhat unusual in that our target
population comprises researchers who have pub-
lished on a particular topic. Therefore, naming spe-
cific individuals and their opinions can be viewed
as part of the broader scientific project; neverthe-
less, personally identifiable data requires sensitive
handling even for purposes in the public interest.
We address this by requesting consent at three dif-
ferent points in the survey process.

Initial consent Before taking the survey, each
participant read an IRB-approved (RT 541309, Uni-
versity of Edinburgh School of Informatics) infor-
mation sheet on the goals and contents of the study,
data protection measures, and contact information.
In order to proceed to the survey, each participant
approved the following statement:

By proceeding with the study, I agree to
all of the following statements:

• I have read and understood the
above information.

• I understand that my participation
is voluntary, and I can withdraw at
any time.

• I consent to my anonymised data
being used in academic publications
and presentations.

• I allow my data to be used in future
ethically approved research.

Retrospective consent At the end of survey, we
asked participants to provide a more detailed form
of consent, including use of their name. We rea-
soned that, after seeing the contents of the survey,
participants would be better able to make an in-
formed decision on choosing whether to be named.
Participants were asked to select one of the follow-
ing options:

Please indicate which uses of your data
you consent to.

• I consent to the analysis and release
of my anonymized data, and you
can use my name to quote my writ-
ten answers.

• I consent to the analysis and release
of my anonymized data, and you
can anonymously quote my written
answers.

• I consent to the analysis and release
of my anonymized data, but please
do not quote my written answers.

• I do not consent to any use, please
do not include my data in your anal-
ysis.

Update clarification Following the initial round
of responses, we reached out to survey participants
during an update round as described in §3. In this
follow-up communication, we included the origi-
nal survey responses provided by each individual
participant, and a brief description of the cluster
analysis. We also attached a draft version of Fig-
ure 3 with the participant’s name included, if they
consented to use of their name, or anonymized if
they had not. We clarified to participants that they
had the option to revoke use of their name if they
did not wish to appear on the plot — or, conversely,
they could approve use of their name on the plot if
they had previously opted for anonymity. At this
stage, one participant revoked use of their name,
and one participant granted it.

B Cluster analysis

We performed unsupervised hierarchical cluster-
ing on the responses using the hclust method in
R (R Core Team, 2023). Responses were trans-
formed to a numerical scale and additionally ad-
justed to strongly differentiate agreement from dis-
agreement, yielding a range from 3.5 to 5.5 on the
positive side, and −5.5 to −3.5 on the negative.
We used the “complete linkage” clustering method,
which computes proximity across clusters using
the most distant instances (“furthest neighbors”),
thereby minimizing the upper-bound distance be-
tween members of the same cluster. We found that
the 6-cluster grouping explained 90% of the vari-
ance across responses, and increasing the cluster
count did not produce notable improvements. Fig-
ure 4 shows the distribution of responses within
each cluster and Figure 3 projects each individual
participant to a two-dimensional plane using prin-
cipal component analysis. Here, we describe the

9337

https://doi.org/10.18653/v1/2021.findings-emnlp.88
https://doi.org/10.18653/v1/2021.findings-emnlp.88


Grounded Symbolic
Interpretability

Minimal 
Interpretability Default View Minimal 

Interventionist
Current Analysis

Suffices Non−interventionist

Disa
gr

ee

Agr
ee

Disa
gr

ee

Agr
ee

Disa
gr

ee

Agr
ee

Disa
gr

ee

Agr
ee

Disa
gr

ee

Agr
ee

Disa
gr

ee

Agr
ee

S11 Discrete symbols solve

S10 Model−internal solves

S9 Model−external solves

S8 Scale solves

S7 Currently fine

S6 Grounding needed

S5 Interpretable processing needed

S4 Interpretable representations needed

S3 Processing analysis suffices

S2 Representation analysis suffices

S1 Behavior analysis suffices

S0 CB Definition

cluster

Grounded Symbolic
Interpretability

Minimal 
Interpretability

Default View

Minimal 
Interventionist

Current Analysis
Suffices

Non−interventionist

Figure 4: Distribution of responses for each cluster. Point shows the median response on a transformed scale, line
shows 95% distribution tail, shaded area shows full range of responses per cluster. Clusters are ordered roughly
based on their centroid projection on the first principal component; the reverse order is shown on Figure 3’s x-axis.

six clusters ordered from largest to smallest.

Default View The largest cluster, comprising
29% of respondents, reflects what we call the “de-
fault” position. Like the majority of survey partici-
pants, members of the Default View cluster agree
with our proposed definition of CB (S0), find CB
in current models insufficient (S7), and do not con-
sider the analysis of interpretable representations
currently adequate (S2) or necessary (S5) to evalu-
ate CB. While they show a broader range of views
on other statements, the central tendency of this
cluster typically reflects majority opinion. We de-
scribe the following clusters in terms of how they
deviate from the Default View.

Minimal Interventionist Compared to the De-
fault View, the Minimal Interventionist position
(18%) largely doubts that model-internal interven-
tions (S10) are needed to achieve CB, and sees
model-external interventions (S9) as sufficient. Un-
like Non-interventionists, however, they still see
CB as an open problem (S7). This cluster is also
strongly committed to the majority stance that in-
terpretable (S4, S5) and grounded (S6) representa-
tions are not needed for CB evaluation, and inclined
to favor current analysis methods for processing
(S3). Finally, compared to other clusters, members
of this cluster are most likely to disagree with our
proposed definition of CB (S0).

Current Analysis Suffices Respondents in this
cluster (15%) find that current analysis methods are
sufficient across the board: for behavior (S1), rep-
resentations (S2), and especially processing (S3).
They are also united on the need for model-internal
interventions to achieve CB (S10), and the lack of
necessity for interpretable (S4) or grounded (S6)
representations in evaluation.

Grounded Symbolic Interpretability These re-
spondents (15%) are committed to the need for
symbolic internal modifications of models (S11),
and decisively reject scale as a solution (S8). They
also find interpretability necessary in both repre-
sentations (S4) and processing (S5), and are most
likely to favor grounded representations (S6).

Minimal Interpretability Contrary to the De-
fault View, the Minimal Interpretability position
(11% of respondents) identifies interpretable pro-
cessing (S5) as critical for CB evaluation, and
favors interpretable representations (S4). They
share this view with the Grounded Symbolic Inter-
pretabilty position, but differ in rejecting the need
for grounding (S6) and discrete symbolic structure
(S11). This cluster also firmly rejects the adequacy
of current behavioral methods to evaluate CB (S1).

Non-interventionist Respondents in the smallest
cluster (8%) are most likely to view current mod-
els as already achieving adequate CB (S7). They
consider external interventions (S9) sufficient to
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handle any remaining issues, with no likely need
for internal modifications (S10), especially sym-
bolic computation (S11).
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