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Abstract

Numerous previous studies have sought to de-
termine to what extent language models, pre-
trained on natural language text, can serve as
useful models of human cognition. In this
paper, we are interested in the opposite ques-
tion: whether we can directly optimize a lan-
guage model to be a useful cognitive model
by aligning it to human psychometric data. To
achieve this, we introduce a novel alignment
technique in which we fine-tune a language
model to implicitly optimize the parameters
of a linear regressor that directly predicts hu-
mans’ reading times of in-context linguistic
units, e.g., phonemes, morphemes, or words,
using surprisal estimates derived from the lan-
guage model. Using words as a test case, we
evaluate our technique across multiple model
sizes and datasets and find that it improves lan-
guage models’ psychometric predictive power.
However, we find an inverse relationship be-
tween psychometric power and a model’s per-
formance on downstream NLP tasks as well as
its perplexity on held-out test data. While this
latter trend has been observed before (Oh et al.,
2022; Shain et al., 2024), we are the first to
induce it by manipulating a model’s alignment
to psychometric data.

1 Introduction

Language comprehension is thought to be pre-
dictive and incremental. Research on reaction
times (Fischler and Bloom, 1979), fixation patterns
(Ehrlich and Rayner, 1981), and brain activations
(Kutas and Hillyard, 1984; DeLong et al., 2005)
suggests that comprehenders anticipate upcoming
linguistic units based on the context in which they
occur (Kuperberg and Jaeger, 2016).1 In addition,
a large body of evidence shows that when linguis-
tic units are unexpected, they require more cogni-
tive effort to process (Miller and McKean, 1964;
Ehrlich and Rayner, 1981; Balota et al., 1985, inter

*Equal contribution.
1Our code is available at https://github.com/samuki/

reverse-engineering-the-reader.

alia). E.g., reading times of units, e.g., morphemes,
words, and sentences, are taken as a measure of cog-
nitive effort, i.e., the less likely the unit is in context,
the longer it takes to read (Smith and Levy, 2013).

In this study, we are interested in reverse-
engineering the part of the language processing
system responsible for predicting abstract linguis-
tic units and testing it by measuring its ability to
predict reading times.2 To do so, we need, first, to
establish a theoretical link between predictability
and reading times. For this, we draw on surprisal
theory (Hale, 2001; Levy, 2008), which posits that
the cognitive effort to process a unit is proportional
to its surprisal—the unit’s negative log probability
given the preceding context. Implicitly, surprisal
theory assumes that a comprehender maintains a
probability distribution over upcoming units, i.e., it
assumes a human language model. However, this
human language model is a theoretical construct,
and cannot be observed directly. Thus, most
previous work that tests surprisal theory has
done so using probability estimates derived from
a language model trained on large swathes of
human-written text. Under this paradigm, it has
been observed that surprisal estimates derived from
language models, fit with regularized maximum-
likelihood estimation on large corpora, do yield
significant predictors although these findings vary
based on the quality (Goodkind and Bicknell,
2018; Wilcox et al., 2020, 2023b), size, and
training-data set size (Oh et al., 2022; Shain et al.,
2024) of the model. One current line of research
therefore seeks to uncover what characteristics
of pretrained LMs produce better predictors of
human reading times, and what this tells us about
the human language processing system.

Our paper asks a simple question: Instead of
assessing the ability of pretrained LMs to serve as
psycholinguistic predictors, can we directly esti-

2In our experiments, we predict abstract units that corre-
spond to words. However, in order to frame our discussion
more generally and to align it with our mathematical frame-
work, we use the term units instead.
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mate (or fine-tune) a language model so that its
surprisal estimates become better predictors of pro-
cessing effort for linguistic units? We frame this
problem as one of aligning the language model
to human data (Christiano et al., 2017; Schulman
et al., 2017; Ouyang et al., 2022; Ziegler et al.,
2020; Rafailov et al., 2023). However, in contrast
to much previous work, which uses human–model
alignment to obtain improvement on natural lan-
guage processing tasks, e.g., summarizing text (Sti-
ennon et al., 2020) or producing non-toxic outputs
(Li et al., 2024), we seek to align LMs to be better
psychometric predictors. Particularly, we aim to di-
rectly align models to human reading data by opti-
mizing the parameters of the statistical models typ-
ically used to evaluate the psychometric fit. While
recent approaches like direct preference optimiza-
tion (DPO; Rafailov et al., 2023) are designed to op-
timize a model’s parameters based on human prefer-
ences, they rely on pairwise preference data, which
is not applicable to real-valued psychometric data.
Thus, we propose a novel alignment technique that
allows us to directly optimize the language model’s
parameters in such a way that it serves as a better
predictor of real-valued psychometric data. Specifi-
cally, we fine-tune the language model to implicitly
optimize the coefficients of a linear regression that
predicts the reading time of an individual unit.

We test our technique on three English-language
reading datasets and find that it increases the sta-
tistical fit of a linear regressor in terms of the like-
lihood it assigns to reading times on a held-out
test set. We also observe a positive relationship
between a model’s psychological predictive power
and its perplexity. While it has been observed that
better LMs are better psychological models of read-
ing up to a point (Goodkind and Bicknell, 2018;
Wilcox et al., 2020, 2023a), after a certain model
size, their fit to human reading times decreases (Oh
et al., 2022; Shain et al., 2024). In other words, be-
yond an inflection point, better LMs are worse pre-
dictors of human reading times. Through our align-
ment procedure, we are able to demonstrate the con-
trapositive, namely that as we causally make our
language models’ outputs more aligned with read-
ing, they become worse at predicting the next word.

2 Psycholinguistics Background

Put concisely, the goal of this paper is to
reverse-engineer pH, a person’s internal language
model from psychometric data collected through

experimentation. Our reasoning is as follows: if
we can align an existing language model pθ to
more accurately predict such psychometric data,
pθ will also more closely resemble pH.

2.1 Language Models
Let Σ be an alphabet, i.e., a finite, non-empty set,
and let Σ def

= Σ∪{EOS} be the alphabet augmented
with a distinguished end-of-string symbol not in Σ.
A language model pθ is a probability distribution
over Σ∗, which is the set of all strings over Σ.
Further, following Opedal et al. (2024), we define
the normalized prefix probability

πθ(c)
def
=

1

Zπθ

∑

u∈Σ∗
pθ(cu), (1)

which is a probability distribution over prefixes
c ∈ Σ∗, where cu is the concatenation of c
and u. The normalization constant Zπθ

= 1 +∑
u∈Σ∗ pθ(u)|u| ensures that all probabilities sum

to one. Here |u| denotes the length, i.e., the num-
ber of units in a string u. Note that Eq. (1) is only
well-defined in an LM with finite expected length.

2.2 Psychometric Measurements
Let ψ(u, c) ∈ R denote a measurement for a unit
u ∈ Σ appearing in context c ∈ Σ∗. In this paper,
ψ(u, c) represents various reading time measure-
ments for a given unit, such as gaze duration, first
fixation duration, and total fixation duration, which
are standard approximations to the processing
effort of a linguistic unit in context (Miller and
McKean, 1964; Just and Carpenter, 1980; Frazier
and Rayner, 1982; Rayner, 1998, inter alia).

2.3 Surprisal Theory
Surprisal theory furnishes us with an easy-to-
compute predictor of processing effort that is de-
rived from a pretrained language model. Formally,
surprisal theory predicts that the time it takes to
process a linguistic unit u ∈ Σ in context c ∈ Σ∗ is
an affine3 function of the unit’s contextual surprisal
under the human language model pH, defined as

ιH(u | c) def
= − log2 pH(u | c). (2)

Surprisal theory has been supported by numerous
empirical studies, which have found that surprisal is
predictive of reading times across multiple datasets

3Previous work has often described the relationship as
linear. However, we use affine here due to the additive constant
required to link the two.
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(Smith and Levy, 2013; Wilcox et al., 2020; Shain
et al., 2024), types of reading time measurements
(Pimentel et al., 2023), and languages (Kuribayashi
et al., 2021; Meister et al., 2021; Wilcox et al.,
2023b). Typically, pH is approximated using a LM
estimated from corpus data, i.e., we substitute

ιθ(u | c) def
= − log2 pθ(u | c) (3)

in for ιH when predicting processing effort.

2.4 Linear Modeling
We now discuss how empirical support for surprisal
theory is typically adduced. Following previous
work, we assume an affine function links a linguis-
tic unit’s contextual surprisal and that unit’s reading
time4 (Smith and Levy, 2013; Wilcox et al., 2023b;
Shain et al., 2024) and apply linear regression to
predict reading times based on contextual surprisal.
In mathematical jargon, both the psychometric mea-
surements ψ(u, c) : Σ × Σ∗ → R and our predic-
tors xθ(u, c) : Σ× Σ∗ → RD are real-valued ran-
dom variables. In the case of the predictor, given
a unit u ∈ Σ and a context c ∈ Σ∗, we define the
predictor as a D-dimensional real column vector

xθ(u, c) = [ιθ(u | c), x2, . . . , xD]⊤, (4)

which, as depicted, includes our surprisal estimate
ιθ(u | c); the additional variables x2, . . . , xD are
considered to be baseline predictors and are chosen
at the modeler’s discretion depending on what they
seek to test. Given a parameter (column) vector
βθ ∈ RD, we define the following linear model

ψ(u, c) ∼ fβθ
(· | xθ(u, c)) (5a)

= N (ψ̂βθ
(u, c), σ2), (5b)

where the linear function

ψ̂βθ
(u, c) = xθ(u, c)

⊤βθ (6)

constitutes the mean and σ2 is the variance.
We evaluate the predictive power of our model

by fitting fβθ
on a training set and measuring the

log-likelihood of the test set; higher log-likelihood
indicates greater predictive power of the model.
To assess how much surprisal contributes to the
predictive power, we fit two regression models
based on two predictors. The baseline predictor
xb(u, c), defined identically to Eq. (4), but with the

4Although, see Hoover et al. (2023) for a different per-
spective on the shape of the linking function.

estimated surprisal zeroed out, typically consists
of a unit’s unigram surprisal, i.e., its negative log
unigram probability5 and a unit’s length (in char-
acters). The target predictor, denoted by xθ(u, c),
includes the same set of baseline predictors
together with the estimated surprisal of the unit u.

To quantify the predictive power of contextual
surprisal, we compute the delta log-likelihood ∆llh
between the two models, which is the average unit-
level difference in log-likelihood assigned by the
two predictors to the reading time measurements.
For a single unit–context pair, we compute:

∆llh(u, c) = log fβθ
(ψ(u, c) | xθ(u, c))

− log fβb
(ψ(u, c) | xb(u, c)),

(7)

where βb and βθ are the coefficients for the base-
line and target models, respectively, and are esti-
mated separately. Intuitively, a higher ∆llh indi-
cates that the estimated surprisals contribute more
to the predictive power or psychometric accuracy
of the model over reading times, compared to the
baseline predictors (Frank and Bod, 2011).

Having established a metric, delta log-likelihood,
to measure how much contextual surprisal con-
tributes to predicting reading times, we are now
ready to answer the question we posed at the begin-
ning: Can we fine-tune a language model such that
surprisal estimates derived from it become better
predictors of reading times?

3 Aligning LMs to Psychometric Data

As discussed in §2.4, the psychometric predictive
power of a language model is typically evaluated
by assessing the predictive power of surprisal
estimates ιθ(u | c) of a linguistic unit u in a
context c with respect to human reading times.
Rather than evaluating a language model’s
psychometric predictive power, in this study, we
ask whether we can fine-tune language models to
increase their psychometric predictive power.

We treat this as an alignment problem (Chris-
tiano et al., 2017; Schulman et al., 2017; Ouyang
et al., 2022; Ziegler et al., 2020; Rafailov et al.,
2023). Let pref denote a pretrained language model
that will serve as a reference. Further, let pθ
denote the language model we seek to fine-tune,
generally initialized to pref. Our goal is to align pθ
such that its surprisal estimates are more directly
correlated with psychometric data in comparison

5See Opedal et al. (2024) for a detailed explanation of
this predictor variable.
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to pref. By means of implicit differentiation, we
derive an objective that allows us to perform such
psychometric alignment.

3.1 Deriving an Objective

Reward Function. We draw inspiration from di-
rect preference optimization, which implicitly opti-
mizes the parameters of a reward model for predict-
ing the outcomes of pairwise comparisons between
items. However, rather than implicitly fitting a
Bradley–Terry model (Bradley and Terry, 1952) to
model pairwise preferences given by human anno-
tators, we implicitly fit a linear regressor fβθ

to
model psychometric measurements. Following the
notation developed in §2.4, let xθ(u, c) denote the
predictor vector, which includes the contextual sur-
prisal derived from the model pθ. To optimize the
parameters of fβθ

, we define our reward function
as the negative6 minimum of the expected mean
squared error (MSE) between the observed psy-
chometric data ψ(u, c) and the predicted values
ψ̂βθ

(u, c) = xθ(u, c)
⊤βθ as defined in Eq. (6).

The reward is then given by

r(θ)
def
= − min

βθ∈RD
E

(u,c)∼πref

(
ψ(u, c)− ψ̂βθ

(u, c)
)2
,

(8)
where πref, as defined in Eq. (1), is the normalized
prefix probability. Note that under our linear model
specified in Eq. (5), maximizing r(θ) is equivalent
to maximizing the ∆llh in Eq. (7).7

Regularization with KL Divergence. To pre-
vent the fine-tuned model pθ from diverging exces-
sively from the pretrained reference model pref, we
regularize our objective with the Kullback–Leibler
(KL) divergence, as is typically done in RLHF
(Schulman et al., 2017; Ziegler et al., 2020; Sti-
ennon et al., 2020; Ouyang et al., 2022). More
specifically, the regularization term is defined as:

φ(θ)
def
= E

c∼πref
KL

(
pref(· | c) || pθ(· | c)

)
(9a)

= E
c∼πref

∑

u∈Σ
pref(u | c) log pref(u | c)

pθ(u | c) . (9b)

where πref is the normalized prefix probability of
the reference distribution pref.

6We use a negative sign to ensure that maximizing the
reward corresponds to minimizing the prediction error.

7This is equivalent to maximum likelihood estimation.
We omit fβb since it does not depend on θ.

Putting it All Together. We now combine the
reward and the KL regularization to define an ob-
jective for aligning LMs to psychometric data as

J (θ)
def
= r(θ)︸︷︷︸

reward

−λ · φ(θ)︸ ︷︷ ︸
KL reg.

, (10)

where λ ≥ 0 is a hyperparameter, which de-
termines the strength of the KL regularization.
Because optimizing r(θ) corresponds to opti-
mizing ∆llh, J (θ) trades off better alignment
with human psychometric data against the KL
divergence from the pretrained model pref.

3.2 Approximation of the Reward Function
In practice, we use a Monte Carlo estimate of
N unit–context pairs (un, cn) ∼ πref to approx-
imate the expectation in Eq. (8). Let ψ =
[ψ(u1, c1), . . . , ψ(uN , cN )]⊤ ∈ RN denote the
real column vector of N reading time observations.
Then we define the approximate reward as

r̃(θ)
def
=− min

βθ∈RD

1

N

N∑

n=1

(
ψ(un, cn)− ψ̂βθ

(un, cn)
)2

(11a)

=− min
βθ∈RD

1

N
||ψ −Xθβθ||2, (11b)

where Xθ is an N ×D real matrix, with each row
corresponding to a predictor vector, as defined in
Eq. (4). Leveraging a well-known closed-form solu-
tion (see App. A.1), we directly compute Eq. (11b).
To ensure that X⊤

θ Xθ is invertible, we add a small
regularization term ρI with ρ > 0, leading to the
following coefficients

β⋆
θ =

(
X⊤

θ Xθ + ρI︸ ︷︷ ︸
always invertible

)−1
X⊤

θψ. (12)

This results in the simple reward term:

r̃(θ) = − 1

N
||ψ −Xθβ

⋆
θ||2. (13)

Notably, the optimal coefficients are now parame-
terized by the language model’s parameters θ.8

4 Experimental Design

In this section, we discuss how we experiment with
fine-tuning a language model using the objective
defined in Eq. (10) and the reward approximation

8To compute the optimal coefficients β⋆
θ in Eq. (12) effi-

ciently, we use the Cholesky decomposition; see App. A.2.
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Figure 1: Learning curves for the MSE (top) and ∆llh (10−2 nats, bottom) on the test datasets throughout fine-tuning.
Bands show the standard error across random seeds. MSE tends to decrease, while ∆llh increases, showing better
prediction of reading times.

given in Eq. (13). Specifically, we design experi-
ments to evaluate the effectiveness of our objective
for improving a model’s psychometric accuracy,
i.e., how well it predicts human reading times.
Additionally, we assess the impact of our objective
on a model’s quality, as measured through its
perplexity on test data and its performance on
downstream NLP tasks.

4.1 Models

We use the GPT-2 family of models (Radford et al.,
2019) and conduct experiments on the small,
medium, and large versions of the model available
on the HuggingFace hub (Wolf et al., 2020).

4.2 Data

While our objective given in Eq. (10) assumes
unit–context pairs sampled from pref, we lack psy-
chometric data for LM-generated text. Instead, we
use text from existing eye-tracking datasets, which
we take to be a reasonable approximation, given
pref assigns a high probability to the respective
texts. However, future work should investigate this
assumption more thoroughly. We fine-tune and
evaluate models on three widely used eye-tracking
corpora: The Dundee Corpus (Kennedy et al.,
2003), which includes eye-movement data from
10 English-speaking participants reading 2368
sentences of newspaper articles from The Indepen-
dent, the Provo Corpus (Luke and Christianson,
2018), which contains eye-tracking data from 84
participants who read 55 paragraphs of texts from
various sources, including fiction and non-fiction,
and the ZuCo Corpora (ZuCo 1.0 (Hollenstein
et al., 2018) and ZuCo 2.0 (Hollenstein et al.,
2020)), which contain data from 12 and 18
participants, respectively, reading sentences from

Wikipedia articles and movie reviews.
Similar to previous work (Wilcox et al., 2020,

2023b), we focus on the gaze duration, defined
as the total time of a reader’s first pass fixations
on a unit u before they fixate on a different unit;
see App. B.1 for details. In addition, we conduct
experiments using the total reading duration and
first fixation duration (App. D.1). We further
verify that our results are not due to random effects
through additional experiments with random
reading times (App. D.2). We create test sets by
sampling 40% of the data from each corpus. Then,
to construct various test sets, we randomly sample
70% of the remaining 60% of the data according
to 3 random seeds. We can view this procedure
as a simple bootstrapping procedure, from which
we can approximate error bars (Efron, 1979).
We fine-tune and evaluate models on all pairs of
eye-tracking corpora, resulting in 9 unique data
splits as shown in Tab. 4.

4.3 Fine-Tuning

We compute the contextual surprisal of each unit
in a sentence, excluding units with zero reading
times and zero frequencies, during fine-tuning. It
is common practice in psycholinguistics literature
to drop words that were skipped on the first pass
during reading and, therefore, have a first pass read-
ing time of zero (Smith and Levy, 2013; Oh and
Schuler, 2023b). Across all experiments, the pre-
dictor Xθ consists of a unit’s contextual surprisal,
its unigram surprisal, estimated using Speer’s
(2022) toolkit, and its length. We opt not to include
coefficients for spillover. We do so because reading
times in eye-tracking studies have been observed to
be less susceptible to spillover than other reading
modalities, for example, self-paced reading (Shain
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Configuration Train Size Test Size

Dundee (D) → Provo (P) 20894.7 1114
Dundee (D) → Dundee (D) 20894.7 20207
Dundee (D) → ZuCo (Z) 20894.7 7715

ZuCo (Z) → Provo (P) 7761 1114
ZuCo (Z) → Dundee (D) 7761 20207
ZuCo (Z) → ZuCo (Z) 7761 7715

Provo (P) → Provo (P) 1113.7 1114
Provo (P) → Dundee (D) 1113.7 20207
Provo (P) → ZuCo (Z) 1113.7 7715

Table 1: Data splits and configurations for fine-tuning
and evaluation. Numbers indicate the mean number of
tokens in each split across our random seeds.

and Schuler, 2021). Although, we acknowledge
that this is a limitation of our study. For all configu-
rations, we fine-tune models for 5k steps and repeat
each run using three different random seeds. For
an overview of all hyperparameters, see App. B.3.

4.4 Evaluation

We evaluate the predictive power of the estimated
surprisal values for predicting reading times every
50 steps using our test data splits. During each
evaluation phase, we first obtain surprisal estimates
on the test data from the aligned language model.
Using these estimates, we perform a 5-fold cross-
validation on the test data, where we fit baseline and
target linear regressors using ordinary least squares
and use them to compute the unit-level mean ∆llh.

5 Results

We now return to our main question: Does our
objective align language models more closely
to human reading times compared to pretrained
models? We first analyze the effect of maximizing
the unregularized reward and later, in §5.4, extend
our analysis to the KL-regularized objective.

5.1 Predicting Reading Times

Are fine-tuned models pθ better predictors of
reading times compared to pretrained models
pref? To answer this question, we examine both
the mean square error (MSE) and the delta
log-likelihood ∆llh computed at each evaluation
step on the test data using cross-validation. While
the ∆llh is our main metric for measuring a
model’s psychometric accuracy, we use the MSE
to compare the magnitude of prediction errors. The
MSE is computed similarly to the unregularized
objective, given in Eq. (10), except we calculate
the MSE through cross-validation on the entire

Model GPT2-L GPT2-M GPT2-S

D → D 55.291 32.822 42.880
P → D 23.294 24.233 29.898
Z → D 9.084 11.077 16.598

D → P 31.356 4.928 17.780
P → P 45.273 15.621 24.769
Z → P 2.116 6.460 1.999

D → Z 36.577 11.950 24.502
P → Z 15.012 5.730 20.094
Z → Z 81.390 41.801 61.196

Table 2: Percentage increase between the initial and
maximum ∆llh for each model. For exact start and
maximum ∆llh values, see Tab. 7.

test set using linear regression to evaluate the
predictive power of surprisal estimates.

As visualized in Fig. 1, the MSE values are
relatively high because our reading times are in mil-
liseconds; an MSE of 4,000 corresponds to a pre-
diction that is off by only about 1/20th of a second.
We observe that the MSE decreases for all models
across all held-out datasets over the course of
fine-tuning. An exception to this is the MSE for the
data splits Dundee → Provo and ZuCo → Provo,
where we do not observe consistent decreases in
MSE, potentially due to the small size of the test
set. Models evaluated on the ZuCo dataset have
the lowest MSE, followed by Provo and Dundee.
Further, in Fig. 1, we visualize the ∆llh of regres-
sors evaluated on our test dataset over the course
of fine-tuning. In line with our observed decreases
in MSE, we find that ∆llh increases on most data
splits, with the exception of models fine-tuned on
Dundee or ZuCo and evaluated on Provo. Smaller
models start with higher ∆llh, which is consistent
with previous literature (Oh and Schuler, 2023b).
In Tab. 2, we compare the percentage increase
from each model’s start ∆llh to the maximum
∆llh it achieves over the course of the fine-tuning,
averaged over three random seeds. Interestingly,
GPT2-S shows higher percentage increases
compared to GPT2-M, suggesting that model size
alone does not fully account for these differences.

5.2 Coefficient Estimates

Additionally, we want to know what the fine-tuned
models have implicitly learned about the role of
surprisal, as well as the baseline features, over the
course of fine-tuning. To examine this, in Fig. 3,
we visualize the regressor coefficients βθ from
cross-validation on the whole test set. We observe
the following tendencies: The coefficients for a
unit’s contextual surprisal and length are positive,

9372



4.0 4.4 4.8 5.2
Log Perplexity

0.6

1.2

1.8

2.4

Start ∆llh Maximum ∆llh

GPT2-L D →  D
GPT2-L P →  P
GPT2-L Z →  Z

GPT2-M D →  D
GPT2-M P →  P
GPT2-M Z →  Z

GPT2-S D →  D
GPT2-S P →  P
GPT2-S Z →  Z

Start ∆llh Maximum ∆llh

∆
ll
h
(1

0
−

2
n
at

s)

Figure 2: Perplexity vs. ∆llh. We compare model per-
plexity at the start of fine-tuning to the point where they
achieve the highest mean ∆llh. Optimizing models using
J increases perplexity. See Fig. 6 for all data splits.

indicating that, as units become less predictable
and longer, they take more time to read. The pos-
itive coefficient for unigram surprisal means more
frequent units take less time to read. These results
align with the previous literature, e.g., those from
Wilcox et al., 2023b. Interestingly, we observe that
over the course of fine-tuning, the coefficient for
surprisal tends to increase, while the coefficient
for length decreases. For unigram surprisal and
our bias term, i.e., the intercept of the regression,
we observe mixed results, with coefficients for
unigram surprisal decreasing for models evaluated
on the Dundee and ZuCo datasets and increasing
for models evaluated on Provo. Overall, the
coefficient’s trajectories suggest that the predictive
power of surprisal for predicting reading times
increases throughout fine-tuning. For coefficients
across data splits, as well as coefficients for the
regularized objective, see App. E.

5.3 Perplexity vs. Quality

Several recent papers have found that, above a
certain size, as a language model’s perplexity de-
creases, its predictive power increases (Oh et al.,
2022; Shain et al., 2024). Follow-up work has
suggested that this is due to the super-human pre-
dictive abilities of the models, especially for low-
frequency nouns such as named entities (Oh and
Schuler, 2023b). An open question remains re-
garding the causal factors behind these dynamics.
So far, studies have tested the relationship by ma-
nipulating a language model’s quality either by
choosing different sizes of pretrained models as
in Oh and Schuler (2023b) or by training succes-
sively smaller and smaller models as in Wilcox et al.
(2023a). However, our fine-tuning methods allow
us to flip the causal arrow. As we make a language
model more closely aligned with human reading
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Figure 3: Mean Coefficients of unit-level features
over fine-tuning. Smoothed values (window size 5) are
shown, with unsmoothed values in a pale version of the
color. Coefficients corresponding to surprisal tend to
increase over the course of fine-tuning.

times, what happens to its quality? To investigate
this question, in Fig. 2, we show the perplexity and
∆llh both at the start of fine-tuning and when the
model achieves its maximum ∆llh, which is typi-
cally near the end of fine-tuning. We find that in-
creases in ∆llh generally correspond to increases in
perplexity. These results indicate that as we make
a language model’s predictions more aligned with
reading times, it becomes worse at modeling text.

5.4 Kullback–Leibler Regularization

Next, we analyze the effect of adding KL regu-
larization to our objective in Eq. (10). Specifi-
cally, we compare the trajectories of ∆llh, KL diver-
gence and log perplexity for KL coefficients λ ∈
{0, 5, 50, 500}. The coefficients used in this paper
are larger than the ones normally used in RLHF
studies (Schulman et al., 2017; Ziegler et al., 2020;
Stiennon et al., 2020; Ouyang et al., 2022) because
of the large magnitude of our reward in Eq. (13),
which is the negative mean squared error. Fig. 4
shows a clear trend: Higher coefficients lead to
lower increases in perplexity and KL divergence, as
well as lower increases in ∆llh. We observe higher
coefficients reduce the divergence of pθ from their
initial distribution pref. While higher coefficient
come at the cost of lower ∆llh increases, we still
observe consistent increases over the baseline; see
Fig. 9 for results on all data splits with λ = 500.

6 Additional Analyses

Previous work has found that language models fine-
tuned on cognitive data, such as eye tracking (Yang
and Hollenstein, 2023; Deng et al., 2023) and brain
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Figure 4: Trajectories of ∆llh, KL divergence and log perplexity for KL coefficients λ ∈ {0, 5, 50, 500}. Higher
coefficients lead to lower perplexity increases as well as lower ∆llh increases, showing that the KL regularization
constrains pθ from diverging too much from pref.

data (Toneva and Wehbe, 2019) can improve per-
formance on downstream NLP tasks. In this sec-
tion, we evaluate our fine-tuned language models—
based on the lowest loss on the test dataset—on sev-
eral such tasks. We observe no such improvement.

6.1 Targeted Syntactic Evaluation
We evaluate models on the Benchmark of Lin-
guistically Minimal Pairs (BLiMP; Warstadt et al.,
2020).9 BLiMP assesses whether language models’
behavior is consistent with human preferences
for grammatical sentences across a range of
grammatical phenomena. In BLiMP, items come
in grammatical and ungrammatical variants; we
report model accuracy for assigning a higher prob-
ability to the grammatical version. Models’ scores
on BLiMP are visualized in Fig. 5. Even though KL
regularization helps mitigate the drop in accuracy,
we observe that our fine-tuned models generally
exhibit slightly lower accuracy than their non-fine-
tuned counterparts, indicating that our fine-tuning
procedure does not lead to a better generalization
about English grammatical rules in our models.

6.2 Text Generation
Additionally, we analyze how our objective affects
the ability of fine-tuned models to generate text
and focus on two aspects: the uniformity of
information and the diversity of the generations.
To assess uniformity, we draw on the uniform
information density (UID) hypothesis (Fenk and
Fenk, 1980; Levy and Jaeger, 2006), which posits
that language users prefer information to be evenly
distributed throughout an utterance. A recent study
by Meister et al. (2021) provides empirical support

9We use the LM Evaluation Harness (Gao et al., 2024).

for the UID hypothesis in naturally occurring
corpora and shows a link between linguistic
acceptability and information uniformity. Here,
we ask whether aligning models to human reading
times encourages them to generate text with greater
uniformity of information.

We test this by generating completions for pre-
fixes from the CNN/DailyMail dataset (Hermann
et al., 2015; See et al., 2017). In Tab. 3, we report
the mean surprisal variance (UIDv) and unique
unigram ratio (1-Gram%) across all completions;
see App. F for more details. Models without reg-
ularization (λ = 0) show higher surprisal variance
compared to the pretrained models, indicating less
uniformly distributed information in the genera-
tions. However, under regularization (λ = 500),
this trend is reversed, and we observe lower
variance with the exception of GPT2-L: Dundee
→ Dundee. We further observe a decrease in the
unique unigram ratio, indicating that fine-tuned
models generate more repetitive text. Overall,
these findings suggest that aligning models to hu-
man reading times might promote a more uniform
information distribution, though further research
is needed to explore the connection between the
UID hypothesis and alignment with reading times.

7 Discussion

We now discuss the broader implications of our
results with respect to both cognitive modeling and
natural language processing. One recurring theme
in this paper is the relationship between pθ, a
probability distribution over strings estimated from
large corpora, and pH, the distribution implicated
during cognitive tasks. In terms of cognitive model-
ing, it is widely accepted that it is useful to obtain a

9374



GPT2-L

D →
 D
P →

 P
Z →

 Z

GPT2-M
D →

 D
P →

 P
Z →

 Z

GPT2-S

D →
 D
P →

 P
Z →

 Z
0.5
0.6
0.7
0.8
0.9

Ac
cu

ra
cy

GPT2-L λ= 0

GPT2-L λ= 500

GPT2-M λ= 0

GPT2-M λ= 500

GPT2-S λ= 0

GPT2-S λ= 500

Figure 5: Results for BLiMP. Non-fine-tuned models
are shown with hatching. Error bars are standard errors
across random seeds. Fine-tuning leads to a decrease in
accuracy. For results on all data splits, see Fig. 7.

pθ that is as close as possible to pH in order to test
and refine psychological theories. While previous
work has proposed alignment procedures between
LMs and brain data (Toneva and Wehbe, 2019),
within the realm of psycholinguistics, researchers
have generally opted for whatever model is the
current state of the art. Only recently have contri-
butions started to search for which combinations of
training data, model size, and model architecture
produce the best cognitive alignment (Oh and
Schuler, 2023a; Steuer et al., 2023). Our results
suggest an alternative to this search by directly
aligning language models to psychometric data.
We are optimistic that such aligned models will en-
able a more precise evaluation of psycholinguistic
theories. Of course, it remains an open question
to what extent alignment on reading generalizes
to other cognitive tasks. We have discussed
pH in terms of a single hypothesized construct,
but it is likely that people’s predictions change
with task demands, e.g., when skimming versus
proofreading a text. Testing whether our results
hold for other types of psychometric predictive
tasks is an important question for future research.

The main technical contribution of this work is a
technique that aligns language models more closely
to human psychometric data. Inspired by the im-
plicit parameter optimization in DPO, our approach
goes beyond the original Bradley–Terry assump-
tion and demonstrates that it is possible to fine-tune
under other implicit statistical models. Exploring a
wider range of such models goes hand in hand with
exploring new sources of human psychometric data,
as we have done here with reading times. Psycholo-
gists have devised methods for collecting a diverse
array of cognitive signals, including EEG, fMRI,
mouse-tracking, and self-paced reading, to name a
few. Aligning models, using the method proposed
here, on such data or combinations thereof, will

Model λ = 0 λ = 500

↓ UIDv ↑ 1-Gram% ↓ UIDv ↑ 1-Gram%

GPT2-L 6.69 84.84 6.69 84.84
D → D 10.172.93 67.0714.68 8.050.77 82.380.18
P → P 11.271.74 68.911.76 5.140.35 76.750.79
Z → Z 13.850.98 84.601.91 5.610.09 81.120.20

GPT2-M 7.67 84.39 7.67 84.39
D → D 8.940.25 80.820.35 6.630.35 83.221.08
P → P 7.810.46 67.510.78 4.540.17 75.910.85
Z → Z 12.121.42 84.950.86 5.880.05 81.940.91

GPT2-S 5.70 82.53 5.70 82.53
D → D 6.270.52 81.140.95 4.500.11 76.562.02
P → P 6.910.25 72.171.99 4.110.10 69.540.43
Z → Z 7.791.02 79.611.94 4.970.18 75.920.68

Table 3: Surprisal variance (UIDv), and unique unigram
ratios (1-Gram%) of model generated completions. See
Tab. 11 for results on all data splits.

be an important next step in this research.
Finally, what do our results say about the

relationship between cognitive modeling and other
domains in NLP? At first glance, they seem to
suggest that alignment with reading times is not an
effective strategy to broadly boost performance on
NLP tasks. Although KL regularization reduces the
increase of the language model’s perplexity on held-
out data, we still observe decreased performance
on downstream NLP tasks. However, given the
lack of reading time data for LM-generated text, we
relied on pre-existing eye-tracking datasets. Future
studies could experiment with text generated by
language models, particularly as new eye-tracking
datasets for LM-generated text are being developed
(Bolliger et al., 2024). Furthermore, Rafailov
et al. (2023) derive the optimal solution to the KL
regularized RL objective in DPO, while our study
excluded the KL term when deriving optimal coef-
ficients. Future work could investigate approaches
closer to DPO to compute the optimal coefficients.

8 Conclusion

We have presented a novel technique to align
language models with human reading data by im-
plicitly optimizing the parameters of a linear regres-
sion model. Our experiments on held-out test sets
show our method reliably improves the predictive
power of language models with various parameter
counts on human reading times. Furthermore, our
findings confirm previous research on the inverse
relationship between perplexity and psychometric
predictive power. We believe our results pave the
way for better assessment of psychological theories
using more cognitively aligned language models.
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Limitations

Our study has several limitations. First, we only
include predictors for the current unit. Future
research could explore the impact of adding
previous units’ predictors as well as additional
predictors, such as contextual entropy, as suggested
in Pimentel et al. (2023), to the objective. Second,
our study only tests and evaluates English language
data. Expanding these studies to a wider variety of
languages is an important next step in establishing
the generalizability of our methods. Third, we
estimate surprisal based on individual sentences,
whereas surprisal estimated for whole paragraphs
may yield more accurate estimates due to the
additional context.

Ethics Statement

Our study introduces a technique for aligning lan-
guage models to human psychometric data. When
working with human psychometric data, specifi-
cally eye-tracking data, it is important to consider
potential privacy risks (Jäger et al., 2020; Lohr and
Komogortsev, 2022). In this study, we used well-
established datasets (Kennedy et al., 2003; Luke
and Christianson, 2018; Hollenstein et al., 2018,
2020), where personal identifying information had
been anonymized prior to our access. Additionally,
we are aware of the potential biases inherent in lan-
guage models and human reading data. Our goal
is to ensure that our models and evaluations do not
propagate or amplify existing biases.

Acknowledgments

We would like to thank the ARR reviewers and area
chair for their valuable feedback and comments.
Afra Amini is supported by ETH AI Center doc-
toral fellowship. David Robert Reich is supported
by the Swiss National Science Foundation (SNSF)
under grant IZCOZ0_220330/1 (EyeNLG).

References
David A. Balota, Alexander Pollatsek, and Keith Rayner.

1985. The interaction of contextual constraints and
parafoveal visual information in reading. Cognitive
Psychology, 17(3).

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
Usvsn Sai Prashanth, Edward Raff, Aviya Skowron,
Lintang Sutawika, and Oskar Van Der Wal. 2023.
Pythia: A suite for analyzing large language models

across training and scaling. In Proceedings of the
40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning
Research. PMLR.

Lena Sophia Bolliger, Patrick Haller, Isabelle Caro-
line Rose Cretton, David Robert Reich, Tannon Kew,
and Lena Ann Jäger. 2024. Emtec: A corpus of eye
movements on machine-generated texts. Preprint,
arXiv:2408.04289.

Ralph Allan Bradley and Milton E. Terry. 1952. Rank
analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4).

Paul F. Christiano, Jan Leike, Tom Brown, Miljan Mar-
tic, Shane Legg, and Dario Amodei. 2017. Deep
reinforcement learning from human preferences. In
Advances in Neural Information Processing Systems,
volume 30.

Thomas Hikaru Clark, Clara Meister, Tiago Pimentel,
Michael Hahn, Ryan Cotterell, Richard Futrell, and
Roger Levy. 2023. A cross-linguistic pressure for
Uniform Information Density in word order. Trans-
actions of the Association for Computational Linguis-
tics, 11.

Katherine A. DeLong, Thomas P. Urbach, and Marta
Kutas. 2005. Probabilistic word pre-activation dur-
ing language comprehension inferred from electrical
brain activity. Nature Neuroscience, 8.

Shuwen Deng, Paul Prasse, David Reich, Tobias Schef-
fer, and Lena Jäger. 2023. Pre-trained language mod-
els augmented with synthetic scanpaths for natural
language understanding. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, Singapore. Association for Com-
putational Linguistics.

B. Efron. 1979. Bootstrap Methods: Another Look at
the Jackknife. The Annals of Statistics, 7(1).

Susan F. Ehrlich and Keith Rayner. 1981. Contextual
effects on word perception and eye movements dur-
ing reading. Journal of Verbal Learning and Verbal
Behavior, 20(6).

August Fenk and Gertraud Fenk. 1980. Konstanz im
Kurzzeitgedächtnis - Konstanz im sprachlichen In-
formationsfluß? Zeitschrift für experimentelle und
angewandte Psychologie, 27(3).

Ira Fischler and Paul A. Bloom. 1979. Automatic and at-
tentional processes in the effects of sentence contexts
on word recognition. Journal of Verbal Learning and
Verbal Behavior, 18(1).

Stefan L. Frank and Rens Bod. 2011. Insensitivity of the
human sentence-processing system to hierarchical
structure. Psychological Science, 22(6).

Lyn Frazier and Keith Rayner. 1982. Making and cor-
recting errors during sentence comprehension: Eye
movements in the analysis of structurally ambiguous
sentences. Cognitive Psychology, 14(2).

9376

https://doi.org/10.1016/0010-0285(85)90013-1
https://doi.org/10.1016/0010-0285(85)90013-1
https://proceedings.mlr.press/v202/biderman23a.html
https://proceedings.mlr.press/v202/biderman23a.html
https://arxiv.org/abs/2408.04289
https://arxiv.org/abs/2408.04289
http://www.jstor.org/stable/2334029
http://www.jstor.org/stable/2334029
http://www.jstor.org/stable/2334029
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://doi.org/10.1162/tacl_a_00589
https://doi.org/10.1162/tacl_a_00589
https://www.nature.com/articles/nn1504
https://www.nature.com/articles/nn1504
https://www.nature.com/articles/nn1504
https://aclanthology.org/2023.emnlp-main.400
https://aclanthology.org/2023.emnlp-main.400
https://aclanthology.org/2023.emnlp-main.400
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1016/S0022-5371(81)90220-6
https://doi.org/10.1016/S0022-5371(81)90220-6
https://doi.org/10.1016/S0022-5371(81)90220-6
https://pubmed.ncbi.nlm.nih.gov/7434825/
https://pubmed.ncbi.nlm.nih.gov/7434825/
https://pubmed.ncbi.nlm.nih.gov/7434825/
https://doi.org/10.1016/S0022-5371(79)90534-6
https://doi.org/10.1016/S0022-5371(79)90534-6
https://doi.org/10.1016/S0022-5371(79)90534-6
https://doi.org/10.1177/0956797611409589
https://doi.org/10.1177/0956797611409589
https://doi.org/10.1177/0956797611409589
https://doi.org/10.1016/0010-0285(82)90008-1
https://doi.org/10.1016/0010-0285(82)90008-1
https://doi.org/10.1016/0010-0285(82)90008-1
https://doi.org/10.1016/0010-0285(82)90008-1


Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2024. A framework for few-shot language model
evaluation.

Mario Giulianelli, Luca Malagutti, Juan Luis Gastaldi,
Brian DuSell, Tim Vieira, and Ryan Cotterell. 2024.
On the proper treatment of tokenization in psycholin-
guistics. Preprint, arXiv:2410.02691.

Adam Goodkind and Klinton Bicknell. 2018. Predic-
tive power of word surprisal for reading times is a
linear function of language model quality. In Pro-
ceedings of the 8th Workshop on Cognitive Modeling
and Computational Linguistics, Salt Lake City, Utah.
Association for Computational Linguistics.

John Hale. 2001. A probabilistic Earley parser as a psy-
cholinguistic model. In Second Meeting of the North
American Chapter of the Association for Computa-
tional Linguistics.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in Neural Information
Processing Systems, volume 28.

Arthur E. Hoerl and Robert W. Kennard. 1970. Ridge re-
gression: Biased estimation for nonorthogonal prob-
lems. Technometrics, 12(1).

Nora Hollenstein, Federico Pirovano, Ce Zhang, Lena
Jäger, and Lisa Beinborn. 2021. Multilingual lan-
guage models predict human reading behavior. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Online. Association for Computational Linguistics.

Nora Hollenstein, Jonathan Rotsztejn, Marius Troen-
dle, Andreas Pedroni, Ce Zhang, and Nicolas Langer.
2018. ZuCo, a simultaneous EEG and eye-tracking
resource for natural sentence reading. Scientific Data,
5.

Nora Hollenstein, Marius Troendle, Ce Zhang, and
Nicolas Langer. 2020. ZuCo 2.0: A dataset of phys-
iological recordings during natural reading and an-
notation. In Proceedings of the Twelfth Language
Resources and Evaluation Conference, Marseille,
France. European Language Resources Association.

Jacob Louis Hoover, Morgan Sonderegger, Steven T.
Piantadosi, and Timothy J. O’Donnell. 2023. The
Plausibility of Sampling as an Algorithmic Theory
of Sentence Processing. Open Mind, 7.

Lena A. Jäger, Silvia Makowski, Paul Prasse, Sascha
Liehr, Maximilian Seidler, and Tobias Scheffer. 2020.
Deep Eyedentification: biometric identification using

micro-movements of the eye. In Machine Learn-
ing and Knowledge Discovery in Databases, Cham.
Springer International Publishing.

Marcel A. Just and Patricia A. Carpenter. 1980. A the-
ory of reading: From eye fixations to comprehension.
Psychological Review, 87(4).

Alan Kennedy, Robin Hill, and Joël Pynte. 2003. The
Dundee corpus. In In Proceedings of the 12th Euro-
pean Conference on Eye Movement.

Gina R. Kuperberg and T. Florian Jaeger. 2016. What do
we mean by prediction in language comprehension?
Language, Cognition and Neuroscience, 31(1).

Tatsuki Kuribayashi, Yohei Oseki, Takumi Ito, Ryo
Yoshida, Masayuki Asahara, and Kentaro Inui. 2021.
Lower perplexity is not always human-like. In Pro-
ceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), Online. Asso-
ciation for Computational Linguistics.

Marta Kutas and Steven A. Hillyard. 1984. Brain po-
tentials during reading reflect word expectancy and
semantic association. Nature, 307.

Roger Levy. 2008. Expectation-based syntactic compre-
hension. Cognition, 106(3).

Roger Levy and T. Florian Jaeger. 2006. Speakers opti-
mize information density through syntactic reduction.
In Advances in Neural Information Processing Sys-
tems, volume 19, Cambridge, MA, USA. MIT Press.

Xiaochen Li, Zheng-Xin Yong, and Stephen H. Bach.
2024. Preference tuning for toxicity mitigation gener-
alizes across languages. Preprint, arXiv:2406.16235.

Dillon Lohr and Oleg V. Komogortsev. 2022. Eye know
you too: Toward viable end-to-end eye movement
biometrics for user authentication. IEEE Transac-
tions on Information Forensics and Security, 17.

Ilya Loshchilov and Frank Hutter. 2017. SGDR:
Stochastic gradient descent with warm restarts. In In-
ternational Conference on Learning Representations.

Steven G. Luke and Kiel Christianson. 2018. The provo
corpus: A large eye-tracking corpus with predictabil-
ity norms. Behavior Research Methods, 50.

Clara Meister, Tiago Pimentel, Patrick Haller, Lena
Jäger, Ryan Cotterell, and Roger Levy. 2021. Revis-
iting the uniform information density hypothesis. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, Online.
Association for Computational Linguistics.

George A. Miller and Kathryn Ojemann McKean. 1964.
A chronometric study of some relations between sen-
tences. Quarterly Journal of Experimental Psychol-
ogy, 16(4).

9377

https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://arxiv.org/abs/2410.02691
https://arxiv.org/abs/2410.02691
https://doi.org/10.18653/v1/W18-0102
https://doi.org/10.18653/v1/W18-0102
https://doi.org/10.18653/v1/W18-0102
https://aclanthology.org/N01-1021
https://aclanthology.org/N01-1021
https://proceedings.neurips.cc/paper_files/paper/2015/file/afdec7005cc9f14302cd0474fd0f3c96-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/afdec7005cc9f14302cd0474fd0f3c96-Paper.pdf
http://www.jstor.org/stable/1267351
http://www.jstor.org/stable/1267351
http://www.jstor.org/stable/1267351
https://doi.org/10.18653/v1/2021.naacl-main.10
https://doi.org/10.18653/v1/2021.naacl-main.10
https://doi.org/10.1038/sdata.2018.291
https://doi.org/10.1038/sdata.2018.291
https://aclanthology.org/2020.lrec-1.18
https://aclanthology.org/2020.lrec-1.18
https://aclanthology.org/2020.lrec-1.18
https://doi.org/10.1162/opmi_a_00086
https://doi.org/10.1162/opmi_a_00086
https://doi.org/10.1162/opmi_a_00086
https://link.springer.com/chapter/10.1007/978-3-030-46147-8_18
https://link.springer.com/chapter/10.1007/978-3-030-46147-8_18
https://doi.org/10.1037/0033-295x.87.4.329
https://doi.org/10.1037/0033-295x.87.4.329
https://doi.org/10.1080/23273798.2015.1102299
https://doi.org/10.1080/23273798.2015.1102299
https://doi.org/10.18653/v1/2021.acl-long.405
https://www.nature.com/articles/307161a0
https://www.nature.com/articles/307161a0
https://www.nature.com/articles/307161a0
https://doi.org/10.1016/j.cognition.2007.05.006
https://doi.org/10.1016/j.cognition.2007.05.006
https://proceedings.neurips.cc/paper_files/paper/2006/file/c6a01432c8138d46ba39957a8250e027-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2006/file/c6a01432c8138d46ba39957a8250e027-Paper.pdf
https://arxiv.org/abs/2406.16235
https://arxiv.org/abs/2406.16235
https://doi.org/10.1109/TIFS.2022.3201369
https://doi.org/10.1109/TIFS.2022.3201369
https://doi.org/10.1109/TIFS.2022.3201369
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx
https://link.springer.com/article/10.3758/s13428-017-0908-4
https://link.springer.com/article/10.3758/s13428-017-0908-4
https://link.springer.com/article/10.3758/s13428-017-0908-4
https://arxiv.org/abs/2109.11635
https://arxiv.org/abs/2109.11635
https://doi.org/10.1080/17470216408416385
https://doi.org/10.1080/17470216408416385


Byung-Doh Oh, Christian Clark, and William Schuler.
2022. Comparison of structural parsers and neural
language models as surprisal estimators. Frontiers in
Artificial Intelligence, 5.

Byung-Doh Oh and William Schuler. 2023a.
Transformer-based language model surprisal
predicts human reading times best with about
two billion training tokens. In Findings of the
Association for Computational Linguistics: EMNLP
2023, Singapore. Association for Computational
Linguistics.

Byung-Doh Oh and William Schuler. 2023b. Why
does surprisal from larger transformer-based lan-
guage models provide a poorer fit to human reading
times? Transactions of the Association for Computa-
tional Linguistics, 11.

Byung-Doh Oh and William Schuler. 2024. Leading
whitespaces of language models’ subword vocabulary
poses a confound for calculating word probabilities.
Preprint, arXiv:2406.10851.

Andreas Opedal, Eleanor Chodroff, Ryan Cotterell, and
Ethan Gotlieb Wilcox. 2024. On the role of context in
reading time prediction. Preprint, arXiv:2409.08160.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F. Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Ngoc Quan Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernández. 2016. The LAMBADA dataset: Word
prediction requiring a broad discourse context. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), Berlin, Germany. Association for Com-
putational Linguistics.

Tiago Pimentel and Clara Meister. 2024. How to
compute the probability of a word. Preprint,
arXiv:2406.14561.

Tiago Pimentel, Clara Meister, Ethan G. Wilcox,
Roger P. Levy, and Ryan Cotterell. 2023. On the Ef-
fect of Anticipation on Reading Times. Transactions
of the Association for Computational Linguistics, 11.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8).

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Advances in
Neural Information Processing Systems, volume 36.

Keith Rayner. 1998. Eye movements in reading and
information processing: 20 years of research. Psy-
chological Bulletin, 124(3).

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Prox-
imal policy optimization algorithms. Preprint,
arXiv:1707.06347.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Vancouver,
Canada. Association for Computational Linguistics.

Cory Shain, Clara Meister, Tiago Pimentel, Ryan Cot-
terell, and Roger Levy. 2024. Large-scale evidence
for logarithmic effects of word predictability on read-
ing time. Proceedings of the National Academy of
Sciences, 121(10).

Cory Shain and William Schuler. 2021. Continuous-
time deconvolutional regression for psycholinguistic
modeling. Cognition, 215.

Nathaniel J. Smith and Roger Levy. 2013. The effect
of word predictability on reading time is logarithmic.
Cognition, 128(3).

Robyn Speer. 2022. rspeer/wordfreq: v3.0.

Julius Steuer, Marius Mosbach, and Dietrich Klakow.
2023. Large GPT-like models are bad babies: A
closer look at the relationship between linguistic com-
petence and psycholinguistic measures. In Proceed-
ings of the BabyLM Challenge at the 27th Conference
on Computational Natural Language Learning, Sin-
gapore. Association for Computational Linguistics.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. 2020. Learn-
ing to summarize with human feedback. In Ad-
vances in Neural Information Processing Systems,
volume 33.

Mariya Toneva and Leila Wehbe. 2019. Interpreting and
improving natural-language processing (in machines)
with natural language-processing (in the brain). In
Neural Information Processing Systems.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R.
Bowman. 2020. BLiMP: The benchmark of linguis-
tic minimal pairs for English. Transactions of the
Association for Computational Linguistics, 8.

Ethan Wilcox, Clara Meister, Ryan Cotterell, and Tiago
Pimentel. 2023a. Language model quality correlates
with psychometric predictive power in multiple lan-
guages. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
Singapore. Association for Computational Linguis-
tics.

9378

https://doi.org/10.3389/frai.2022.777963
https://doi.org/10.3389/frai.2022.777963
https://doi.org/10.18653/v1/2023.findings-emnlp.128
https://doi.org/10.18653/v1/2023.findings-emnlp.128
https://doi.org/10.18653/v1/2023.findings-emnlp.128
https://doi.org/10.1162/tacl_a_00548
https://doi.org/10.1162/tacl_a_00548
https://doi.org/10.1162/tacl_a_00548
https://doi.org/10.1162/tacl_a_00548
https://arxiv.org/abs/2406.10851
https://arxiv.org/abs/2406.10851
https://arxiv.org/abs/2406.10851
https://arxiv.org/abs/2409.08160
https://arxiv.org/abs/2409.08160
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://doi.org/10.18653/v1/P16-1144
https://doi.org/10.18653/v1/P16-1144
https://arxiv.org/abs/2406.14561
https://arxiv.org/abs/2406.14561
https://doi.org/10.1162/tacl_a_00603
https://doi.org/10.1162/tacl_a_00603
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://doi.org/10.1037/0033-2909.124.3.372
https://doi.org/10.1037/0033-2909.124.3.372
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.1073/pnas.2307876121
https://doi.org/10.1073/pnas.2307876121
https://doi.org/10.1073/pnas.2307876121
https://doi.org/10.1016/j.cognition.2021.104735
https://doi.org/10.1016/j.cognition.2021.104735
https://doi.org/10.1016/j.cognition.2021.104735
https://doi.org/10.1016/j.cognition.2013.02.013
https://doi.org/10.1016/j.cognition.2013.02.013
https://doi.org/10.5281/zenodo.7199437
https://doi.org/10.18653/v1/2023.conll-babylm.12
https://doi.org/10.18653/v1/2023.conll-babylm.12
https://doi.org/10.18653/v1/2023.conll-babylm.12
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://api.semanticscholar.org/CorpusID:167217728
https://api.semanticscholar.org/CorpusID:167217728
https://api.semanticscholar.org/CorpusID:167217728
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.18653/v1/2023.emnlp-main.466
https://doi.org/10.18653/v1/2023.emnlp-main.466
https://doi.org/10.18653/v1/2023.emnlp-main.466


Ethan G. Wilcox, Tiago Pimentel, Clara Meister, Ryan
Cotterell, and Roger P. Levy. 2023b. Testing the pre-
dictions of surprisal theory in 11 languages. Transac-
tions of the Association for Computational Linguis-
tics, 11.

Ethan Gotlieb Wilcox, Jon Gauthier, Jennifer Hu, Peng
Qian, and Roger Levy. 2020. On the predictive power
of neural language models for human real-time com-
prehension behavior. In Proceedings of the Cognitive
Science Society.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, Online. Association for Computa-
tional Linguistics.

Duo Yang and Nora Hollenstein. 2023. Plm-as: Pre-
trained language models augmented with scanpaths
for sentiment classification. Proceedings of the
Northern Lights Deep Learning Workshop.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B.
Brown, Alec Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. 2020. Fine-tuning lan-
guage models from human preferences. Preprint,
arXiv:1909.08593.

9379

https://doi.org/10.1162/tacl_a_00612
https://doi.org/10.1162/tacl_a_00612
https://arxiv.org/abs/2006.01912
https://arxiv.org/abs/2006.01912
https://arxiv.org/abs/2006.01912
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://septentrio.uit.no/index.php/nldl/article/view/6797/7021
https://septentrio.uit.no/index.php/nldl/article/view/6797/7021
https://septentrio.uit.no/index.php/nldl/article/view/6797/7021
https://arxiv.org/abs/1909.08593
https://arxiv.org/abs/1909.08593


A Derivations

A.1 Deriving Optimal Coefficients
We now discuss how we estimate the optimal coefficient β⋆ to approximate the reward, as described in
§3.2. We start with finding the optimal coefficients

β⋆
θ = argmin

β∈RD

1

N
∥ψ −Xθβθ∥2. (14)

Assuming
(
X⊤

θ Xθ

)−1 is invertible, we take the derivative with respect to βθ, set it to 0 and solve for β⋆
θ:

− 2

N
X⊤

θ

(
ψ −Xθβ

⋆
θ

)
= 0 (15a)

⇔ −X⊤
θψ +X⊤

θ Xθβ
⋆
θ = 0 (15b)

⇔ X⊤
θ Xθβ

⋆
θ = X⊤

θψ (15c)

⇔ β⋆
θ =

(
X⊤

θ Xθ

)−1
X⊤

θψ. (15d)

In theory,
(
X⊤

θ Xθ

)−1 may not always be invertible, which is why we add a regularization term ρI, where
I is the identity matrix and ρ > 0 is a parameter determining the strength of the regularization. The
resulting estimator β⋆

θ =
(
X⊤

θ Xθ + ρI
)−1

X⊤
θψ is known as the ridge regression estimator (Hoerl and

Kennard, 1970) and presents the solution to the following problem:

β⋆
θ = argmin

βθ∈RD

1

N
∥ψ −Xθβθ∥2 + γ∥βθ∥2, (16)

where γ > 0. We define ρ = Nγ. Then setting the derivative of Eq. (16) to zero leads to

− 2

N
X⊤

θ

(
ψ −Xθβ

⋆
θ

)
+ 2γβ⋆

θ = 0 (17a)

⇔ 2

N
X⊤

θ Xθβ
⋆
θ + 2γβ⋆

θ =
2

N
X⊤

θψ (17b)

⇔ X⊤
θ Xθβ

⋆
θ +Nγβ⋆

θ = X⊤
θψ (17c)

⇔ X⊤
θ Xθβ

⋆
θ + ρβ⋆

θ = X⊤
θψ (17d)

⇔ β⋆
θ =

(
X⊤

θ Xθ + ρI
)−1

X⊤
θψ. (17e)

A.2 Solving for Optimal Coefficients
To compute the regression coefficients efficiently, we use the Cholesky decomposition to solve for β⋆

θ

given as

β⋆
θ = (X⊤

θ Xθ + ρI)−1X⊤
θψ, (18)

where ρ is the regularization parameter, which we set ρ = 1e − 5 and I is the identity matrix. Since
X⊤

θ Xθ + ρI is symmetric and positive definite, we compute the Cholesky decomposition

X⊤
θ Xθ + ρI = LL⊤, (19)

where L ∈ RD×D is a lower triangular matrix. To solve for β⋆
θ, we first solve for an intermediate vector z

Lz = X⊤
θψ (20)

We then solve for β⋆
θ

L⊤β⋆
θ = z. (21)
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B Datasets, Reading Times & Parameters

B.1 Datasets
Here, we provide additional details on the datasets and reading time measurements used during our
analysis. We fine-tune and evaluate models on the Dundee (Kennedy et al., 2003), Provo (Luke and
Christianson, 2018), and ZuCo corpora. For the ZuCo corpus, we use data from tasks 1 and 2 from the
ZuCo 1.0 corpus (Hollenstein et al., 2018) and task 1 from the ZuCo 2.0 corpus (Hollenstein et al., 2020).
All data used in our analysis is publicly available. For the Dundee and ZuCo corpora, we process the
data used by Hollenstein et al. (2021), which contains word-level means for fixation counts and reading
durations, averaged over all participants, and split into individual sentences.10 For the Provo corpus, we
compute the mean reading times from the official repository. 11 From all datasets, we remove duplicate
sentences and short sentences with less than four words. The mean number of sentences and words for
train and test sets are given in Tab. 4.

Configuration Train Tokens Train Sents Test Tokens Test Sents

Dundee (D) → Provo (P) 20894.7 980 1144 54
Dundee (D) → Dundee (D) 20894.7 980 20207 931
Dundee (D) → ZuCo (Z) 20894.7 980 7715 424

ZuCo (Z) → Provo (P) 7761 451 1144 54
ZuCo (Z) → Dundee (D) 7761 451 20207 931
ZuCo (Z) → ZuCo (Z) 7761 451 7715 424

Provo (P) → Provo (P) 1113.7 56 1144 54
Provo (P) → Dundee (D) 1113.7 56 20207 931
Provo (P) → ZuCo (Z) 1113.7 56 7715 424

Table 4: Data splits and configurations for fine-tuning and evaluation. Numbers indicate the mean number of tokens
and sentences in each train and test split across random seeds.

B.2 Reading Times
For Dundee and ZuCo, we extract the mean first pass duration over the participants, which is defined as
“the sum of all fixations on w from the first time a subject fixates w to the first time the subject fixates
another token”(Hollenstein et al., 2021, p.109). Similarly, for Provo, we compute the mean gaze duration
defined as the “Dwell time (i.e., summation of the duration across all fixations) of the first run within the
current interest area” (Luke and Christianson, 2018, Tab. 2). While these two definitions are very similar,
they may not be exactly identical. In Tab. 5, we compare the mean and standard deviation of reading times
as well as the number of zero reading times. We observe that while Dundee and Provo exhibit relatively
similar means and standard deviations, ZuCo shows overall lower mean reading times. Unlike Dundee
and ZuCo, Provo contains no instances of words with zero reading times, likely due to the high number of
participants.

Dataset Mean Reading Times STD Reading Times Zero Count

Dundee 140.59 88.49 854
Provo 164.16 77.77 0
ZuCo 92.28 52.21 176

Table 5: Mean, standard deviation, and zeros count for the reading times from Dundee, Provo, and ZuCo.

B.3 Fine-Tuning Parameters
For all runs, we use the parameter configurations in Tab. 6 and repeat each experiment 3 times with
random seeds (42, 8, and 64). We fine-tune and evaluate three GPT-2 models: GPT-2 Small with 117
million parameters, GPT-2 Medium with 345 million parameters, and GPT-2 Large with 762 million

10https://github.com/DS3Lab/multilingual-gaze
11https://osf.io/sjefs/
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parameters. All models are fine-tuned for 5k data steps using a batch size of 1 and gradient accumulation
of 2, leading to a total of 2.5k optimization steps. To adjust the learning rate during fine-tuning, we use a
cosine annealing learning rate schedule12 (Loshchilov and Hutter, 2017) with a maximum learning rate of
1.5e-5, minimum learning rate of 2e-7. During each cycle, we decrease the learning by a factor of 0.8 and
increase the cycle length by a factor of 1.8. For all experiments, we use NVIDIA GeForce RTX 3090,
RTX 4090, and RTX 2080 Ti GPUs. The GPU times vary depending on the model’s parameter counts and
the size of the data splits, taking a minimum of approximately 12 minutes for GPT-2 Small fine-tuned
on Provo and evaluated on Provo and a maximum of 4 hours for GPT-2 Large fine-tuned on Dundee and
evaluated on Dundee.

Parameter Setting

Optimizer AdamW
Scheduler Cosine Annealing With Warm Restarts
Batch Size 1
Grad. Accumulation 2
Total Steps 5000
Optimizer Steps 2500
Max Learning Rate 1.5e-5
Min Learning Rate 2.0e-7
Decrease Rate of Max Learning Rate 0.8
Cycle Steps Magnification 1.8
Warm Up Steps 100

Table 6: Fine-tuning parameters used consistently across different runs.

B.4 Evaluation
We perform evaluation every 50 steps on the held-out test splits in Tab. 4, during which we compute the
surprisal estimates, the regressors’ coefficients, and the language model’s perplexity for each batch. Using
the surprisal estimates we compute the ∆llh by performing a 5-fold cross-validation on the test data, where
we fit baseline and target linear regressors using ordinary least squares.13 Note that we do not scale the
predictor variables to maintain consistency between the linear regression and the calculation of our reward
in Eq. (13), where batch-level surprisal estimates prevent global scaling.

12https://github.com/katsura-jp/pytorch-cosine-annealing-with-warmup
13https://www.statsmodels.org/stable/generated/statsmodels.regression.linear_model.OLS.html
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C Detailed Results

C.1 ∆llh Change

GPT2-L GPT2-M GPT2-S
Data ∆start

llh ∆max
llh % Increase ∆start

llh ∆max
llh % Increase ∆start

llh ∆max
llh % Increase

D → D 0.63 0.98± 0.09 55.29 0.68 0.90± 0.06 32.82 0.78 1.11± 0.01 42.88
P → D 0.63 0.78± 0.04 23.29 0.68 0.84± 0.00 24.23 0.78 1.01± 0.02 29.90
Z → D 0.63 0.69± 0.01 9.08 0.68 0.75± 0.03 11.08 0.78 0.91± 0.04 16.60
D → P 1.67 2.19± 0.37 31.36 2.04 2.14± 0.05 4.93 2.14 2.52± 0.09 17.78
P → P 1.67 2.43± 0.14 45.27 2.04 2.36± 0.10 15.62 2.14 2.67± 0.15 24.77
Z → P 1.67 1.71± 0.03 2.12 2.04 2.18± 0.03 6.46 2.14 2.18± 0.01 2.00
D → Z 1.17 1.59± 0.15 36.58 1.37 1.53± 0.06 11.95 1.41 1.75± 0.06 24.50
P → Z 1.17 1.34± 0.09 15.01 1.37 1.45± 0.08 5.73 1.41 1.69± 0.07 20.09
Z → Z 1.17 2.12± 0.10 81.39 1.37 1.94± 0.04 41.80 1.41 2.26± 0.14 61.20

Table 7: Mean start and maximum ∆llh(10
−2 nats) for Tab. 2, including standard errors across random seeds,

rounded to two decimal places.

C.2 Perplexity and ∆llh
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Figure 6: Relationship between log perplexity and ∆llh(10
−2 nats) for all models and data splits. Increases in ∆llh

correspond to increases in perplexity.
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Figure 7: Results for all models on BLiMP. Baseline (i.e., non-fine-tuned) models are shown with hatching. Error
bars are standard errors across the three random seeds. We observe a drop in accuracy as a result of fine-tuning.

C.4 Narrative Understanding
To measure models’ abilities to track entities and produce text that is consistent with narrative structure,
we evaluate them on LAMBADA (Paperno et al., 2016). This dataset requires that models produce the
final word of a narrative. People can easily achieve higher performance on this task if they are given the
full narrative context, but not if they are only given the previous sentence. Thus, performing well requires
an understanding of broader contexts. The performance of our models is visualized in Fig. 8. As with
BLiMP, we find that fine-tuned models perform slightly worse at this task compared to non-fine-tuned
baselines.

C.5 Results for the Regularized Objective
In this section, we present additional results for fine-tuning models using the KL regularized objective
with a regularization coefficient of λ = 500. As shown in Tab. 8, the maximum ∆llh values and percentage
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Figure 8: Results for LAMBADA. Baseline (i.e., non-fine-tuned) models are shown with hatching. Error bars are
standard errors across the three random seeds. As with BLiMP, performance tends to decrease with fine-tuning.

increases tend to be lower compared to those for the unregularized objective in Tab. 7. However, standard
errors for the maximum ∆llh are consistently lower, suggesting that fine-tuning is more stable across
random seeds when regularizing the reward. Additionally, when visualizing the MSE and ∆llh throughout
fine-tuning (Fig. 9), we observe more consistent improvements for Dundee → Provo and ZuCo → Provo
compared to the trajectories for the unregularized objective in Fig. 1.

GPT2-L GPT2-M GPT2-S
Data ∆start

llh ∆max
llh % Increase ∆start

llh ∆max
llh % Increase ∆start

llh ∆max
llh % Increase

D → D 0.63 0.81± 0.00 28.27 0.68 0.85± 0.03 25.49 0.78 1.02± 0.01 30.72
P → D 0.63 0.71± 0.01 12.69 0.68 0.71± 0.00 5.62 0.78 0.93± 0.01 19.34
Z → D 0.63 0.69± 0.00 8.63 0.68 0.71± 0.02 5.24 0.78 0.88± 0.00 13.22
D → P 1.67 2.09± 0.03 24.91 2.04 2.18± 0.03 6.87 2.14 2.36± 0.03 10.47
P → P 1.67 1.98± 0.04 18.70 2.04 2.25± 0.07 10.00 2.14 2.37± 0.02 10.95
Z → P 1.67 1.86± 0.03 11.13 2.04 2.19± 0.00 7.38 2.14 2.19± 0.01 2.58
D → Z 1.17 1.36± 0.03 16.86 1.37 1.50± 0.07 9.52 1.40 1.69± 0.02 20.01
P → Z 1.17 1.35± 0.04 16.14 1.37 1.52± 0.01 11.24 1.40 1.76± 0.03 25.34
Z → Z 1.17 1.58± 0.07 35.24 1.37 1.78± 0.01 29.88 1.40 1.98± 0.06 41.12

Table 8: Mean start and maximum ∆llh(10
−2 nats) values using the KL regularized objective with λ = 500,

including standard errors across random seeds, rounded to two decimal places.
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Figure 9: MSE and ∆llh(10
−2 nats) changes for all data splits using the KL regularized objective with λ = 500.

Bands show the standard error across seeds. Compared to the results for the unregularized objective in §5.1, we
observe smaller but consistent decreases in MSE and increases in ∆llh for almost all configurations.
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D Reading Times

D.1 Total Reading Duration & First Fixation Duration
Throughout this work, we have focused on predicting gaze durations. Here, we extend our analysis by
fine-tuning models to predict total reading durations—which are the summed durations of all fixations on
a unit u—and first fixation durations, which are the durations of the first fixation on a unit u. As shown in
Tab. 9, models predicting total reading durations start at higher ∆llh values, while models predicting first
fixation durations start with lower ∆llh values compared to those predicting gaze durations. On average,
we observe lower percentage increases for total reading durations and lower increases for first fixation
durations. Similar to the trajectories for gaze duration in Fig. 1, the trajectories for total reading durations
in Fig. 10 show decreasing MSE and increasing ∆llh for most configurations. The trajectories for the first
fixation durations (Fig. 11) are less consistent, particularly for models fine-tuned on the ZuCo corpus,
where the MSE tends to increase throughout fine-tuning.

GPT2-L GPT2-M GPT2-S
Data ∆start

llh ∆max
llh % Increase ∆start

llh ∆max
llh % Increase ∆start

llh ∆max
llh % Increase

Total Reading Duration

D → D 1.11 1.93± 0.33 73.20 1.18 1.62± 0.07 37.48 1.35 1.83± 0.07 35.41
P → D 1.11 1.22± 0.04 9.20 1.18 1.38± 0.03 17.26 1.35 1.60± 0.01 18.62
Z → D 1.11 1.28± 0.07 15.01 1.18 1.27± 0.01 7.83 1.35 1.54± 0.04 14.47
D → P 3.11 3.79± 0.20 21.90 3.45 3.63± 0.06 5.29 3.86 4.27± 0.05 10.61
P → P 3.11 4.16± 0.16 33.64 3.45 4.29± 0.11 24.43 3.86 4.59± 0.16 18.70
Z → P 3.11 3.89± 0.33 24.95 3.45 3.50± 0.02 1.42 3.86 3.91± 0.00 1.33
D → Z 2.82 3.38± 0.54 19.93 2.98 2.99± 0.02 0.19 2.89 3.25± 0.19 12.47
P → Z 2.82 2.85± 0.01 1.31 2.98 3.03± 0.01 1.64 2.89 2.98± 0.01 3.10
Z → Z 2.82 5.28± 0.79 87.40 2.98 3.92± 0.14 31.35 2.89 4.23± 0.23 46.37

First Fixation Duration

D → D 0.08 1.21± 0.47 1397.26 0.07 0.12± 0.02 64.10 0.09 0.14± 0.01 52.02
P → D 0.08 0.11± 0.02 35.25 0.07 0.13± 0.01 81.56 0.09 0.20± 0.04 121.22
Z → D 0.08 0.10± 0.02 25.05 0.07 0.07± 0.00 1.10 0.09 0.10± 0.01 9.49
D → P 1.29 5.07± 1.77 292.36 1.51 1.57± 0.13 3.87 1.37 1.55± 0.20 13.46
P → P 1.29 2.13± 0.08 64.61 1.51 2.50± 0.05 66.19 1.37 2.55± 0.31 86.55
Z → P 1.29 1.44± 0.41 11.26 1.51 1.51± 0.01 0.33 1.37 1.38± 0.02 1.01
D → Z 0.20 1.37± 0.46 591.38 0.21 0.31± 0.01 51.38 0.18 0.25± 0.02 40.97
P → Z 0.20 0.21± 0.01 8.20 0.21 0.23± 0.01 13.14 0.18 0.32± 0.06 75.49
Z → Z 0.20 0.55± 0.37 175.48 0.21 0.25± 0.08 21.36 0.18 0.28± 0.04 52.88

Table 9: Mean start and maximum ∆llh(10
−2 nats) values using total reading durations and first fixation

durations, including standard errors across random seeds, rounded to two decimal places.
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Figure 10: MSE and ∆llh changes for total reading durations. Bands show standard errors across seeds.

D.2 Random Reading Times
Here we conduct additional experiments using random reading times to verify that the observed decreases
in MSE and increases in ∆llh are due to aligning language models with human reading times and not
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Figure 11: MSE and ∆llh changes for first fixation durations. Bands show standard errors across seeds.

due to random noise or other confounding factors. Instead of fitting coefficients based on the reading
times from the respective training dataset D, we sample reading times from a Gaussian distribution, where
the mean and standard deviation match those of the training dataset D. The results in Fig. 12 show that
fine-tuning on random reading times tends to have the opposite effect compared to fine-tuning on real
reading times, leading to increasing MSE and decreasing ∆llh throughout fine-tuning. Additionally, as
in Tab. 7, we compare the start and maximum ∆llh values, as well as the percentage increases. Tab. 10
shows that fine-tuning with random reading times only leads to minimal or no increases. These results
show that random reading times do not improve language models at predicting reading times and confirm
the effectiveness of our technique for aligning models to human reading times.
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Figure 12: MSE and ∆llh(10
−2 nats) changes using random reading times sampled according to a normal

distribution. Bands show the standard error across seeds. MSE increases, and ∆llh decreases for most configurations,
indicating that models become worse at predicting reading times throughout fine-tuning.

GPT2-L GPT2-M GPT2-S
Data ∆start

llh ∆max
llh % Increase ∆start

llh ∆max
llh % Increase ∆start

llh ∆max
llh % Increase

D → D 0.63 0.67± 0.23 6.31 0.68 0.68± 0.00 0.00 0.78 0.83± 0.03 6.42
P → D 0.63 0.66± 0.00 3.84 0.68 0.68± 0.00 0.00 0.78 0.82± 0.03 5.67
Z → D 0.63 0.64± 0.01 0.88 0.68 0.68± 0.01 1.30 0.78 0.78± 0.00 0.00
D → P 1.67 1.67± 0.00 0.00 2.04 2.06± 0.01 0.56 2.14 2.14± 0.00 0.00
P → P 1.67 1.74± 0.01 4.06 2.04 2.04± 0.00 0.00 2.14 2.22± 0.02 3.87
Z → P 1.67 1.71± 0.02 2.44 2.04 2.08± 0.01 1.66 2.14 2.14± 0.01 0.03
D → Z 1.17 1.17± 0.00 0.00 1.37 1.37± 0.00 0.17 1.41 1.50± 0.04 6.48
P → Z 1.17 1.20± 0.02 3.20 1.37 1.37± 0.00 0.00 1.41 1.53± 0.01 9.14
Z → Z 1.17 1.20± 0.01 2.98 1.37 1.42± 0.03 3.40 1.41 1.45± 0.04 2.86

Table 10: Mean start and maximum ∆llh(10
−2 nats) values for random reading times, including standard errors

across random seeds, rounded to two decimal places.
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E Coefficients

Fig. 13a shows the trajectory of coefficients for all data splits during fine-tuning using the unregularized
objective. While the results for unigram surprisal and bias coefficients are mixed, the coefficients for
surprisal tend to increase during fine-tuning, and those for length tend to decrease. These trends are more
consistent in experiments with the largest increases in ∆llh, i.e., where the training and test splits come
from the same datasets. In contrast, the coefficients in experiments involving domain shift (where the
training and test splits come from different datasets) do not have such a clear pattern, particularly those
without consistent increases in ∆llh (Dundee → Provo and ZuCo → Provo).

Additionally, we visualize all coefficients from models trained with the regularized objective (λ = 500).
As shown in Fig. 9, regularization leads to lower ∆llh increases but more consistent trajectories across
configurations, which is why we also hypothesize more consistent trajectories of the coefficients. As
shown in Fig. 13b, the coefficients for surprisal and bias show a clear upward trend throughout fine-tuning,
while the coefficients for unigram surprisal show a clear downward trend.
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Figure 13: Mean coefficients of unit-level features over fine-tuning for all data splits. Smoothed values (window
size 5) are shown, with unsmoothed values in a pale version of the color.
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F Text-Generation

Here we expand on the text-generation experiments described in §6.2. We sample 500 prefixes c, each
consisting of the first three words from the CNN/DailyMail dataset (Hermann et al., 2015; See et al.,
2017), and generate completions u ∼ pθ(· | c) of up to 50 tokens using our fine-tuned language models.
For a completion u of length N , we write un to denote the nth unit of u. Further, let cn be the context
of un in u, including the prefix c. We exclude short completions with |u| < 3 and estimate surprisal
with a separate language model, Pythia-70m (Biderman et al., 2023) using the code from Pimentel and
Meister (2024).14 Recently, Oh and Schuler (2024); Pimentel and Meister (2024) have argued that leading
whitespaces from tokenization pose a confound to surprisal calculations and that the probability of trailing
whitespaces should be included instead. However, we do not include a unit’s trailing whitespace in our
surprisal calculation; see Giulianelli et al. (2024). Then, following previous work (Meister et al., 2021;
Clark et al., 2023), we measure the uniformity of information of a generated completion u given the prefix
c using the mean surprisal variance

UIDv(u | c) = 1

N

N∑

n=1

(ιθ(un | cn)− µιθ(u | c))2, (22)

where the mean surprisal µιθ(u | c) is given by

µιθ(u | c) = 1

N

N∑

n=1

ιθ(un | cn). (23)

Additionally, we calculate the mean local surprisal variance:

UIDlv(u | c) = 1

N − 1

N∑

n=2

(
ιθ(un | cn)− ιθ(un−1 | cn−1)

)2
. (24)

To evaluate the diversity of the generations, we calculate the mean unique n-gram ratio (n-Gram%) over
completions u. In Tab. 11, we report the mean surprisal, surprisal variance, local surprisal variance,
and unique n-gram ratios across all data splits. For models fine-tuned without regularization (λ = 0),
surprisal variance and local variance tend to increase compared to the pretrained models, with a few
exceptions, particularly for GPT2-M, where the variance and local variance remain close to the pretrained
models. Overall, this indicates that information becomes less uniformly distributed. However, under
KL regularization (λ = 500), this trend is reversed, and we observe more uniform information in the
generated text with the exception being GPT2-L: Dundee → Dundee. Additionally, we observe a decline
in the ratio of unique unigrams compared to the pretrained models, indicating that fine-tuned models
generate more repetitive text. However, diversity and uniformity of information are not necessarily linked,
as models fine-tuned without regularization tend to generate less diverse and less uniform text.

14https://github.com/tpimentelms/probability-of-a-word
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Model ↓ µιθ ↓ UIDv ↓ UIDlv ↑1-Gram% ↑2-Gram% ↑3-Gram%

GPT2-L 3.00 6.69 14.25 84.84 94.16 95.86
GPT2-M 2.94 7.67 16.62 84.39 93.07 94.83
GPT2-S 2.62 5.70 11.65 82.53 91.63 93.35

λ = 0

GPT2-L D → D 3.380.35 10.172.93 20.586.94 67.0714.68 74.7916.37 76.7116.32
GPT2-L P → D 2.960.03 11.291.74 23.764.66 68.881.50 79.781.48 82.791.53
GPT2-L Z → D 3.490.21 9.711.35 20.153.03 78.024.05 92.402.04 95.481.26
GPT2-L D → P 3.030.45 9.402.49 19.264.80 76.413.92 85.804.50 88.174.39
GPT2-L P → P 2.970.04 11.271.74 23.814.64 68.911.76 79.911.66 82.881.65
GPT2-L Z → P 3.710.27 11.222.87 23.385.82 86.740.79 96.360.42 97.980.49
GPT2-L D → Z 3.240.20 7.721.57 14.484.86 61.6519.46 68.3821.10 70.1621.20
GPT2-L P → Z 2.970.03 6.600.08 14.060.19 82.931.91 92.891.27 95.000.86
GPT2-L Z → Z 3.990.12 13.850.98 27.722.46 84.601.91 94.712.05 96.391.68

GPT2-M D → D 3.270.03 8.940.25 18.220.71 80.820.35 91.370.63 93.820.73
GPT2-M P → D 3.040.07 7.810.47 15.851.21 75.820.24 87.770.17 90.910.26
GPT2-M Z → D 3.270.24 7.950.92 16.701.74 83.371.59 93.871.44 95.811.15
GPT2-M D → P 2.830.09 6.961.02 14.732.40 81.051.78 90.151.62 92.251.45
GPT2-M P → P 2.990.04 7.810.46 14.521.42 67.510.78 78.710.55 82.190.68
GPT2-M Z → P 3.080.09 7.250.60 15.181.32 84.680.70 93.700.89 95.370.81
GPT2-M D → Z 2.890.02 7.610.80 15.621.20 81.180.69 91.210.98 93.461.00
GPT2-M P → Z 2.920.03 7.450.45 15.530.79 76.634.35 87.133.91 89.823.52
GPT2-M Z → Z 3.780.13 12.121.42 24.122.59 84.950.86 94.300.85 96.000.80

GPT2-S D → D 2.720.13 6.270.52 13.091.52 81.140.95 89.131.19 91.021.22
GPT2-S P → D 2.940.05 7.030.31 13.920.58 71.912.60 83.592.19 86.611.83
GPT2-S Z → D 2.890.13 7.240.79 14.021.19 79.212.10 89.311.04 91.610.73
GPT2-S D → P 2.720.10 6.540.27 13.050.59 77.083.04 85.982.90 88.302.66
GPT2-S P → P 2.950.07 6.910.25 13.790.93 72.171.99 83.911.42 86.871.19
GPT2-S Z → P 2.620.04 5.490.32 11.210.49 81.921.03 90.860.94 92.630.76
GPT2-S D → Z 2.540.07 5.810.25 11.250.30 76.732.73 85.562.60 87.842.33
GPT2-S P → Z 2.580.01 5.230.27 10.590.73 77.172.97 87.902.13 90.461.60
GPT2-S Z → Z 2.960.13 7.791.02 15.402.02 79.611.94 89.082.34 91.212.32

λ = 500

GPT2-L D → D 3.010.04 8.050.77 16.541.34 82.380.18 92.390.40 94.260.43
GPT2-L P → D 2.480.03 5.230.40 10.350.65 76.240.66 86.370.62 88.850.60
GPT2-L Z → D 2.700.02 5.640.01 12.000.10 80.910.63 91.110.39 93.150.33
GPT2-L D → P 2.850.01 5.970.07 12.620.16 83.480.60 92.490.63 94.230.63
GPT2-L P → P 2.460.03 5.140.35 9.950.55 76.750.79 86.680.50 89.010.38
GPT2-L Z → P 2.820.05 6.120.31 13.060.72 83.110.83 92.960.61 94.750.52
GPT2-L D → Z 2.880.03 6.370.19 13.640.41 83.040.71 91.950.71 93.690.63
GPT2-L P → Z 2.340.01 4.460.07 8.840.09 73.860.99 84.260.90 86.960.84
GPT2-L Z → Z 2.750.02 5.610.09 11.960.30 81.120.20 91.510.42 93.630.48

GPT2-M D → D 2.850.02 6.630.35 13.980.78 83.221.08 92.170.33 94.090.14
GPT2-M P → D 2.700.03 5.730.54 11.741.14 79.410.88 90.140.48 92.640.31
GPT2-M Z → D 2.720.04 6.070.17 12.760.30 81.520.78 91.550.64 93.720.56
GPT2-M D → P 2.800.07 6.790.83 14.412.03 83.001.39 91.461.04 93.410.91
GPT2-M P → P 2.460.03 4.540.17 9.160.42 75.910.85 86.710.59 89.650.56
GPT2-M Z → P 2.720.03 6.000.04 12.590.10 81.541.14 91.270.78 93.280.76
GPT2-M D → Z 2.800.06 6.750.14 14.050.34 81.901.04 91.210.82 93.180.80
GPT2-M P → Z 2.570.09 5.320.46 10.820.98 77.081.73 88.041.19 90.780.98
GPT2-M Z → Z 2.720.03 5.880.05 12.170.21 81.940.91 91.530.55 93.520.51

GPT2-S D → D 2.370.09 4.500.11 9.300.17 76.562.02 85.952.28 87.902.23
GPT2-S P → D 2.130.08 4.300.28 8.620.70 68.972.33 78.382.49 81.412.41
GPT2-S Z → D 2.340.02 4.370.05 8.840.13 74.311.18 85.190.79 87.660.66
GPT2-S D → P 2.400.08 4.600.23 9.690.43 79.172.12 87.651.83 89.281.69
GPT2-S P → P 2.150.04 4.110.10 8.340.19 69.540.43 79.130.51 82.080.50
GPT2-S Z → P 2.450.05 5.070.36 10.470.57 79.420.94 88.600.93 90.520.79
GPT2-S D → Z 2.360.05 4.520.12 9.360.29 77.731.12 86.731.04 88.581.02
GPT2-S P → Z 2.170.11 4.220.20 8.650.46 70.472.41 79.942.76 82.952.69
GPT2-S Z → Z 2.350.03 4.970.18 10.250.47 75.920.68 85.660.77 87.760.88

Table 11: Full evaluation results for completions generated on prefixes sampled from CNN/Dailymail.
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