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Abstract

Parameter efficient finetuning methods like low-
rank adaptation (LoRA) aim to reduce the com-
putational costs of finetuning pretrained Lan-
guage Models (LMs). Enabled by these low-
rank settings, we propose an even more effi-
cient optimization strategy: Fast Forward, a
simple and effective approach to accelerate
large segments of training. In a Fast Forward
stage, we repeat the most recent optimizer step
until the loss stops improving on a tiny valida-
tion set. By alternating between regular opti-
mization steps and Fast Forward stages, Fast
Forward provides up to an 87% reduction in
FLOPs and up to an 81% reduction in train time
over standard SGD with Adam. We validate
Fast Forward by finetuning various models on
different tasks and demonstrate that it speeds
up training without compromising model per-
formance. Additionally, we analyze when and
how to apply Fast Forward.

1 Introduction

Modern optimizers provide a spectacular array of
tweaks to stabilize training trajectories and acceler-
ate Stochastic Gradient Descent (SGD). Yet even
with every optimization hack in the modern ma-
chine learning toolkit, the expense of training accu-
mulates. In this paper, we ask: what if we just keep
going in the same direction until it stops helping?

Applying this exceedingly simple approach,
which we call Fast Forward, to low-rank training
(Section 2) allows enormous speedups over stan-
dard optimization. We alternate between Adam
SGD for burn-in and accelerating by line search
with a tiny validation set, which provides an ad-hoc
optimal step size much larger than that determined
by the learning rate. (See Figure 1 and Section 3.)

We experiment with Fast Forward on three fine-
tuning tasks and four language models ranging
from 1.4 to 6.9 billion parameters (Section 4). In
all cases, we find consistent efficiency gains with
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Figure 1: Fast Forward algorithm. We alternate between
SGD and Fast Forward, exiting the Fast Forward stage
when the loss on a tiny validation set stops improving.

Fast Forward (Section 5), reaching the performance
of regular low-rank finetuning 41–87% faster.

While Fast Forward works incredibly well in
low-rank finetuning, it fails to improve full-rank
standard fine-tuning (Section 6). We investigate
possible causes, showing that the low-rank loss sur-
face is smooth and that Fast Forwarding along a
given direction reduces the role of that direction
later in training. We also provide evidence that Fast
Forward could be an even more versatile tool: al-
though we cannot Fast Forward full-rank standard
finetuning, this limitation is not caused solely by
decreased effectiveness on non-attention parame-
ters or in higher dimensional subspaces.

2 Background: Low rank adaptors

Low rank adaptation (LoRA) (Hu et al., 2021) is a
parameter-efficient finetuning method that freezes
the LM weights and injects trainable low-rank de-
compositions into each updated matrix, reducing
the number of trainable parameters. Given a pre-
trained parameter setting W0 ∈ Rd×k, LoRA up-
dates the weight with a low-rank decomposition

W = W0 +BA, (1)
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Figure 2: The percentage of FLOPs saved during (a) LoRA and (b) DoRA finetuning with Fast Forward to match
test loss after 5 epochs of regular Adam SGD training. Fast Forward saves 41–87% FLOPs, depending on the task.
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Figure 3: The percentage of train time saved during
LoRA finetuning with Fast Forward to match test loss
after 5 epochs of regular Adam SGD training. Fast
Forward saves 40–81% of the training time, depending
on the task.

where B ∈ Rd×r, A ∈ Rr×k with the low-rank
dimension r ≪ d, k. Following Hu et al. (2021),
LoRA only updates the attention matrices.

Weight Decomposed Low-Rank Adaptation
(DoRA) (Liu et al., 2024) decomposes the pre-
trained weight matrix into magnitude and direction,
then updates the direction matrix using LoRA.

3 Fast Forward

Our proposal, Fast Forward, is a procedure for ac-
celerating training at regular intervals by selecting
an optimal step size with a line search. Following
warmup, we apply Fast Forward every Tinterval = 6
optimizer steps, as seen in Figure 1. During a Fast
Forward stage, for each trainable parameter, the
difference between weights in the current and pre-
vious timesteps is calculated:

∆W = Wt −Wt−1 (2)

The direction ∆W is used to iteratively update Wt.
In the τ -th Fast Forward step, the updated weight
matrix is given by Wt + τ∆W. The recursive
updates continue until the model’s loss on a small
validation set L(Xval) stops improving. When a
Fast Forward step causes this validation loss to
increase, the Fast Forward stage concludes, and
regular optimization resumes for the next Tinterval
steps before reapplying Fast Forward.

3.1 Review of related approaches

Intermittent schedulers are common in optimiza-
tion, from classic approaches like the Alternating
Direction Method of Multipliers (Boyd et al., 2011)
to modern cyclic hyperparameters. In contrast with
our approach of repeatedly maximizing the learn-
ing rate, Lialin et al. (2023) improve low-rank train-
ing by repeatedly dropping the learning rate.

Our work is not the first to train a neural network
using line search (Vaswani et al., 2019; Truong and
Nguyen, 2018) or its dual form of trust region opti-
mization (Sherborne et al., 2023). Coordinate de-
scent (Wright, 2015), which identifies a coordinate
system for the surface and line searches repeatedly
along each coordinate, is similar to our approach
but does not apply Adam SGD intervals between
searches. By retaining historical gradients from
the prior SGD stage and changing optimizers when
necessary, we can escape saddle points that would
trap coordinate descent.

4 Experiments

Models and data. We experiment on three fine-
tuning tasks. For each task, we hold out 1K samples
as test and 32 examples as the tiny validation set
that determines when to stop Fast Forward.

9554



• Medical-domain Tuning: We train on 37K
examples from the Clinical Guidelines corpus
(Chen et al., 2023).

• Instruction Tuning: We train on 109K ex-
amples from the decontaminated Evol dataset
(Luo et al., 2023) comprising pairs of code
instructions and corresponding outputs.

• Chat Tuning: We train on 208K examples
from the filtered ultrachat dataset (Ding et al.,
2023) of dialogues generated by ChatGPT on
various conversational topics.

Our models include the open-source Llama-3
8B model (AI@Meta, 2024) as well as the 1.4B,
2.8B, and 6.9B parameter models from the Pythia
suite (Biderman et al., 2023), a family of autore-
gressive transformer language models trained on
the Pile dataset (Gao et al., 2020). We train these
models using the next token prediction objective
for each finetuning corpus. For the instruction tun-
ing task, loss is only based on response completion.
Further training hyper-parameters are specified in
Appendix E.

Training and Evaluation Procedure For a given
model and dataset pair, we finetune the model using
standard low-rank training for 5 epochs as a base-
line, recording the final loss LWf

(Xtest) as a target
and the total training time and number of floating
point operations (FLOPs) performed during train-
ing. We assume a 1:2 ratio of FLOPs between
forward and backward passes (Kaplan et al., 2020;
Hoffmann et al., 2022).

We then retrain the model with intermittent Fast
Forward steps until it reaches a test loss within ϵ =
10−4 of LWf

(Xtest). During this stage, we record
the total training time and number of FLOPs from
all computation, including Adam SGD updates,
inference on the small validation set during Fast
Forward, and setting model parameters.

5 Results

Fast Forward accelerates training across low rank
methods, in all three datasets and all four models.
As Figure 2a shows, Fast Forwarding LoRA cuts
41–66% of finetuning FLOPs for our largest model
(Lllama-3 8B) and 65–86% for our smallest (Pythia
1.4B). Fast Forwarding DoRA, meanwhile, cuts 42–
69% of finetuning FLOPs for Lllama-3 8B and
66–85% for Pythia 1.4B (Figure 2b). In terms of
train time, Fast Forwarding LoRA cuts 63–78% of
Pythia 1.4b training time and 41–65% of Llama-3
8b training time (Figure 3). Although Fast Forward
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Figure 4: Training Pythia-6.9B on the chat tuning task,
with other models in Appx A. Red dots represent SGD
steps and green dots represent Fast Forward steps. The
blue line shows vanilla Adam SGD training.

is more effective on Pythia than Llama, we see
no clear trend as to whether it is generally more
effective at smaller scales.

As seen in Figure 4, Fast Forward accelerates
segments of training by simulating predicted SGD
steps. Although it requires more total steps than
vanilla training (counting SGD interval steps and
simulated Fast Forward steps), the efficiency of
Fast Forward leads to substantial reductions in com-
putation cost—and Appendix D suggests that we
could see even greater gains from Fast Forwarding
even more often. Fast Forward is more effective
earlier in training (see Appendix B for details), but
below we find that even after training converges,
we see substantial savings.

5.1 FF does not harm long-term accuracy.

Many efficiency methods accelerate training until
a fixed threshold accuracy, but ultimately harm
final performance. We find that Fast Forward has
no such disadvantage. To check, we finetune the
Pythia 1.4B model on the medical domain dataset
until the loss stopped improving on the test set. We
permanently switch to standard Adam SGD after
Fast Forward fails to improve the loss on the 32-
sample tiny validation set L(Xval) three times in a
row—though at this point, training ends after only
6 more SGD steps. Fast Forward converges to a
slightly better loss while allowing us to save 56%
of FLOPs.

5.2 FF does not harm performance on a
standard benchmark.

We evaluated whether FF-trained models match
the performance of regularly-trained models on a
standard benchmark. On the PubMedQA dataset,
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Figure 5: Test loss on the plane intersecting the pre-
trained model W0 and the models trained with Adam
SGD WSGD, and with Fast Forward WFF. Axis scale
corresponds to the norm of differences ∥WFF −W0∥2.

we evaluated two Llama-3 8b models that were
fine-tuned on the medical domain, one that was
regularly trained and one with FF. We tested the
models on a subset of 1K examples using few-shot
in-context learning. As context, all models received
the same prompt of 3 randomly chosen examples,
one with the answer yes, one with the answer no
and one with the answer maybe, in an arbitrary
order. The regularly trained model achieved an
accuracy of 49.75%, whereas FF trained model
achieved an accuracy of 50.95%. This shows that
FF does not harm standard benchmark results.

6 When does Fast Forward work?

Our proposed method alternates between conven-
tional Adam SGD and line search, a classic opti-
mization technique. This approach is not only ef-
fective, but exceptionally straightforward—so why
is it, to our knowledge, undiscovered and unused in
modern neural networks? Both line search and in-
termittent optimizer schedules are well-understood.
Why aren’t similar approaches standard practice?

The answer may lie in the recent rise of low-rank
methods such as LoRA: Fast Forward is of little use
in full-rank standard training. Even one simulated
step increases loss, wasting any compute used for
inference on the validation set. The remainder of
this section focuses on our efforts to understand
why our method only works with low rank training.

6.1 Why can’t we Fast Forward at full rank?

Fast Forward takes advantage of a relatively simple
loss surface structure that does not rely on nonlin-
ear paths around barriers. The LoRA loss surface
shown in Figure 5 is roughly convex on the plane
that intersects both Fast Forward and SGD direc-
tions. Although SGD travels a similar distance,
Fast Forward finds a flatter point central to its basin.

Given these conditions, which limit interactions
between bases, Fast Forward accelerates to a persis-
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Figure 6: The cosine similarity between gradients in
different time steps, in regular training and training with
Fast Forward. At each timestep, we measure similarity
between the current gradient and all previous saved
gradients (shown individually in transparent lines). Fast
Forward leads to lower average similarity (shown in
opaque lines) with previous gradients.

tently good value for some direction on the surface.
As shown in Figure 6, once we Fast Forward in
a particular direction, subsequent optimizer steps
become less similar to previous steps; because Fast
Forward accelerates learning for a specific direc-
tion, future optimization steps no longer need to
search in that direction.

Attempting to understand the conditions that per-
mit Fast Forward to speculatively optimize along a
direction, we consider—and subsequently reject—
two hypotheses explaining its failure under stan-
dard training. Recall the two primary differences
between standard training and LoRA or DoRA: the
low-dimensional subspace and the restriction to
training only attention matrices. First, we posit that
Fast Forward functions only at low rank, meaning
that its gains deteriorate as we increase rank. Sec-
ond, we posit that restricting training to attention
will permit Fast Forward even at full rank. As we
will demonstrate in this section, neither prediction
holds in practice, forcing us to conclude that Fast
Forward ceases to improve performance due to the
projection matrices added by LoRA.

Fast Forward works better as we increase the
rank of LoRA. Because Fast Forward fails on
full-rank standard training, we might assume that
it generally degrades with increased rank. In other
words, as we add dimensions to LoRA, Fast For-
ward would become less effective until it stops
working—explaining its failure in full-rank stan-
dard training. To the contrary, Figure 7 illustrates
that the efficiency gains from Fast Forward increase
monotonically with rank between 1 and 64 dimen-
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Figure 7: The total number of FLOPs consumed during
training Pythia 1.4B on the clinical finetuning task for
different LoRA ranks. Gray area is the compute saved
with Fast Forward.
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Figure 8: Test loss for full-rank standard finetuning re-
stricted to attention layers. Each time we Fast Forward,
loss increases immediately at the first simulated step.

sions. In addition, we compared regular training
to FF training on LoRA full rank setting (we set
the LoRA rank r to be equal to the weight ma-
trix W dimension). On the Pythia 410m model,
FF training reduced 74% of the FLOPs compared
to regular training. Therefore, we cannot confirm
the hypothesis that Fast Forward fails at full rank
training because of the dimension.

Fast Forward doesn’t work in full rank settings
even when restricted to the attention layer. Can
we be sure that Fast Forward requires the low-
dimensional subspace of LoRA? LoRA doesn’t
only reduce the dimension of training, but also re-
stricts weight movements to the attention layers.
We therefore consider, but ultimately reject, the
hypothesis that Fast Forward takes advantage of
this module constraint rather than low dimension-
ality. As seen in Figure 8, Fast Forward performs
poorly for full-rank standard finetuning even when
restricting updates to the attention matrices.

7 Conclusions and Future Work

We have presented Fast Forward, a simple approach
to accelerating low-rank finetuning. Our method re-
duces cost by 41–87% FLOPs in matching 5-epoch
Adam SGD loss and 56% at loss convergence.

A variety of tweaks on our approach are likely to
convey further benefits. Rather than using a fixed
tiny validation set throughout training, we might
introduce new ways of sampling that introduce lit-
tle overhead but avoid the possibility of overfitting.
Other future work may schedule the SGD interval
lengths dynamically or predict the optimal duration
for Fast Forward, reducing the required number of
inference runs on the validation set.

One reading of our findings is that current op-
timizers like Adam are poorly designed for low-
rank approaches. Future optimizers might improve
these standard approaches by aligning momentum
with the known low-rank basis or applying other
methods that select better step sizes at low dimen-
sions. As one example of an issue with momentum
alignment, Hayou et al. (2024) proves that LoRA’s
uniform learning rate is suboptimal and proposes a
fix; however, their modified optimizer requires sub-
stantial tuning and may not significantly increase
training efficiency for a full training run.

Limitations

Our approach, as discussed, does not appear to
accelerate full-rank standard training and therefore
may not be usable as-is when training from scratch.
Although our experiments are limited to finetuning,
low-rank pretraining methods like GaLoRe (Zhao
et al., 2024) might also benefit from this type of
acceleration.

Fast Forward is highly efficient, but the acceler-
ation step itself is serialized. In order to improve
its parallelization, further work is needed. While
we do not focus on this efficiency improvement,
other optimizers that search different subspaces at
regular intervals have been parallelized (Wei and
Ozdaglar, 2012), and perhaps Fast Forward could
be as well.

To measure compute, we use FLOPs, a metric
that does not always reflect caching and other over-
head elements and does not take into account par-
allelization.

All experiments are conducted on English lan-
guage datasets with conventional autoregressive
LLMs. Our results are also limited to next token
prediction finetuning objectives.
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A Loss throughout training on all models

Figure 9 shows that all models exhibit a similar pat-
tern wherein the simulated steps briefly accelerate
the drop in loss between each SGD interval.
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Figure 9: Training each model on the chat tuning task.
Red dots represent SGD steps and green dots represent
Fast Forward steps. The blue line shows vanilla Adam
SGD training.

B How long can we Fast Forward?

Figure 10 illustrates that the loss is convex under
Fast Forward, meaning that we can identify a vertex
by searching linearly until loss begins to rise on our
32-sample tiny validation set. The vertex along a
particular update direction is that direction’s locally
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Figure 10: Test loss for the first Fast Forward on the chat
tuning task, run for a duration of 100 simulated steps.
Within this range, the resulting loss curves are convex
with respect to the number of Fast Forward steps.
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Figure 11: The optimal number of Fast Forward steps
performed as a function of the Fast Forward stage dur-
ing training. Darker points represent stages earlier in
training. As training continues, the number of Fast For-
ward steps performed decreases.

optimal step size—that is, the step size that leads
to the greatest immediate decrease in loss.

At each step during normal training, the
gradient—and consequently the change in weights
∆W between steps—is modified by Adam and
other optimizer components. We consider a number
of possible factors determining the optimal number
of simulated steps before the loss begins to increase,
τ∗ = argmaxτ Wt+τ∆W. As seen in Figure 11,
τ∗ declines over the course of training, meaning
that Fast Forward becomes less productive.

Although we consider some possible factors de-
termining the optimal Fast Forward duration in
Figures 12a and 12b, neither the norm nor the
condition number of the gradient provide predic-
tive power beyond knowing the current training

timestep. While both are clearly correlated, that
correlation depends on a confounder with both fac-
tors: the duration of training.
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(a) The number of Fast Forward steps performed as a function
of the gradients’ norm. The norms are of the gradients right
before a new Fast Forward stage is performed.
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(b) The number of Fast Forward steps performed as a function
of the gradients’ condition number. The condition numbers
are of the gradients right before a new Fast Forward stage is
performed.

Figure 12: Potential factors in determining the opti-
mal Fast Forward step count. Darker points represent
stages earlier in training, whereas lighter points repre-
sent stages later in training. The experiment was per-
formed on the Pythia 1.4B model on medical finetuning
task.

C Consistency of gradients

Based on the conceptualization of Fast Forward
as literally being a simulation of the next steps of
training, one might expect that it would work better
if the gradients were similar for different batches.
Under this expectation, the direction that encom-
passes multiple batches will generalize across the
entire dataset and therefore work better than a di-
rection that only applies to the most recent batch
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Figure 13: Gradient consistency across batches vs the
length of the optimal Fast Forward stage. Gradient
consistency is given by cosine similarity between the
gradients of different batches, as measured immediately
before a Fast Forward Stage.

selected. Such a heuristic could choose when to
Fast Forward by identifying times when we could
execute more steps.

The fundamental assumption here is that direc-
tions on the loss surface which are “wide” (that is,
applying even under slight distribution changes, as
occur between batches) must also be “long” (that
is, we can follow that gradient further and continue
to improve loss).

To the contrary, Figure 13 shows no significant
correlation between batch-wise gradient consis-
tency and the optimal length of a Fast Forward.
The implications around loss surface geometry are
intriguing: Even the most broadly applicable gra-
dient steps might be useful only briefly, and imme-
diately encounter obstacles that require nonlinear
paths.

D How soon can we Fast Forward?

How long should we train for in between Fast For-
wards? Here, we identify the point in training at
which a conventional optimizer has temporarily
settled into a consistent direction which can be ex-
trapolated without damaging performance. The
more Fast Forward steps we can take, the more
effective Fast Forward is at a given point in time.
We set different values for Tinterval, from 1 to 10,
and measured the number of Fast Forward steps
performed in that point of training. Experiment
was performed on the Pythia 1.4B model on the
medical finetuning task.

Figure 14 illustrates the relationship between the
duration of the SGD interval stage and the duration
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Figure 14: Optimal number of Fast Forward steps per-
formed at the second Fast Forward stage, as a function
of the number of SGD steps performed in the interval
since the last Fast Forward stage. (One step is equiva-
lent to extending the previous FF stage.)

Learning
rate

Micro batch
size

Global batch
size

LoRA
r

Pythia
1.4b 4.0e-5 2 128 8

Pythia
2.8b 4.0e-5 1 128 8

Pythia
6.9b 4.0e-5 1 128 8

Llama-3
8b 4.0e-5 1 128 8

Table 1: Medical tuning hyper-parameters

of the subsequent Fast Forward stage. Before the
second Fast Forward stage, training for an interval
of up to 4 SGD steps extends the optimal number of
Fast Forward steps. Continuing to run the default
optimizer further begins to limit Fast Forward.

Note that we can start benefiting from Fast
Forward—that is, loss decreases a nonzero
amount—immediately after running a pair of SGD
interval steps. We might therefore save even more
compute, depending on the setting, by running
SGD for even less time early in training.

E Training hyper parameters

Hyperparameters used for training different models
and tasks. Table 1 shows the hyper-parameters
used for medical-domain tuning, Table 2 shows the
hyper-parameters used for instruction tuning and
Table 3 shows the hyper-parameters used for chat
tuning.
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Learning
rate

Micro batch
size

Global batch
size

LoRA
r

Pythia
1.4b 5.0e-6 2 64 8

Pythia
2.8b 5.0e-6 1 64 8

Pythia
6.9b 5.0e-6 1 64 8

Llama-3
8b 5.0e-6 1 64 8

Table 2: Instruction tuning hyper-parameters

Learning
rate

Micro batch
size

Global batch
size

LoRA
r

Pythia
1.4b 2.0e-5 2 512 64

Pythia
2.8b 2.0e-5 2 512 64

Pythia
6.9b 2.0e-5 1 512 64

Llama-3
8b 2.0e-5 1 512 64

Table 3: Chat tuning hyper-parameters
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