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Abstract

How can we precisely estimate a large language
model’s (LLM) accuracy on questions belong-
ing to a specific topic within a larger question-
answering dataset? The standard direct esti-
mator, which averages the model’s accuracy
on the questions in each subgroup, may ex-
hibit high variance for subgroups (topics) with
small sample sizes. Synthetic regression mod-
eling, which leverages the model’s accuracy
on questions about other topics, may yield bi-
ased estimates that are too unreliable for large
subgroups. We prescribe a simple yet effec-
tive solution: an empirical Bayes (EB) esti-
mator that balances direct and regression es-
timates for each subgroup separately, improv-
ing the precision of subgroup-level estimates of
model performance. Our experiments on mul-
tiple datasets show that this approach consis-
tently provides more precise estimates of the
LLM performance compared to the direct and
regression approaches, achieving substantial
reductions in the mean squared error. Confi-
dence intervals for EB estimates also have near-
nominal coverage and are narrower compared
to those for the direct estimator. Additional ex-
periments on tabular and vision data validate
the benefits of this EB approach.

1 Introduction

Accurate evaluation of large language models
(LLMs) is crucial for identifying their strengths
and weaknesses. While broad topics like math or
history often have lots of data available for testing,
specific topics may lack suitable test data. For ex-
ample, we may not be able to collect queries for
niche subjects, such as a particular historical event,
legal terms from specific jurisdictions, rare medical
conditions, or regional dialects. Consequently, we
may fail to reliably assess the LLM’s understand-
ing of these topics. When gathering more data is
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Figure 1: Estimates of LLM accuracy and their 95% con-
fidence intervals for predictions made by Gemma-2b across
various subgroups on a subset of HellaSwag. The empirical
Bayes estimates have precision similar to the direct estimator
for some subgroups (e.g., clean and jerk) and higher preci-
sion for others (e.g., high jump). This approach also provides
tighter confidence intervals for the estimates; e.g., see running
and sports topics.

not an option, practitioners must rely on existing
datasets to measure the model’s performance.

To illustrate this problem, consider a randomly
sampled subset of HellaSwag (Zellers et al., 2019),
a dataset with multiple-choice questions on various
topics or subgroups; e.g., see Figure 1. Our goal is
to precisely estimate the accuracy of the answers
given by the LLM in each subgroup using only the
limited data available. Traditionally, we estimate
model performance via a direct estimator (DT),
which computes the average accuracy in each sub-
group separately. However, when a subgroup has
only a few questions, the DT estimates can exhibit
high variance and become unreliable.

One may expect the performance of the LLM
on related subgroups to be associated. Synthetic
estimation aims to exploit this relationship via re-
gression modeling (SR) (Rao and Molina, 2015).
For example, we can incorporate the LLM’s knowl-
edge of sports to aid in estimating its accuracy on
questions about running. The resulting estimates
will generally exhibit less variance compared to
direct estimation but may be biased, and thus they
may be imprecise for subgroups with large sizes.
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Empirical Bayes (EB) approaches combine DT
and SR estimates, adjusting the contribution of
each for every subgroup separately (Efron and Mor-
ris, 1977). In theory, they hold the promise to im-
prove the precision of these baselines (Ignatiadis
and Wager, 2019) and allow for the construction
of confidence intervals (Armstrong et al., 2022);
e.g., see again Figure 1. However, to the best of
our knowledge, an extensive empirical evaluation
of the validity of this approach for precise model
benchmarking is missing.

In this work, we empirically assess the preci-
sion of EB estimates of LLM performance on sub-
groups (domains, tasks, topics, etc.) across multiple
benchmark datasets. Our results in Section 4 show
that EB estimates are consistently more precise
than those of DT and SR. Their confidence inter-
vals have good coverage and substantially smaller
widths than those of DT. Additional experiments
on vision and tabular data validate these findings
(Appendix C).

2 Problem Setup

Consider a dataset D = {(Xg, Zg)}Gg=1, where
Xg ∈ X represents the features of subgroup g and
Zg indicates the performance measure for that sub-
group. For example, Xg could be the description of
the topic of the questions in the subgroup, while Zg

could denote the LLM’s average empirical classi-
fication accuracy or Brier score on such questions.
Our goal is to use D to obtain estimates of sub-
group performances {µg}Gg=1 as accurate as if we
had infinite data for each subgroup. Formally, we
define µg := limng→∞ Zg, where ng denotes the
subgroup size. The objective is to find estimators
{µ̂g}Gg=1 that minimize the average mean squared
error (MSE) across all subgroups:

1

G

G∑

g=1

mse(µ̂g) =
1

G

G∑

g=1

E[(µ̂g − µg)
2]. (1)

We say that estimators with lower average MSE
are more precise. By standard arguments, the MSE
for each subgroup g decomposes into bias and vari-
ance components: mse(µ̂g) = bias2(µ̂g)+var(µ̂g),
where bias(µ̂g) := E[µ̂g] − µg and var(µ̂g) :=
E[(µ̂g − E[µ̂g])

2]. In the following, we consider
three estimation methods.

3 Methods

Direct estimator (DT). The standard approach
for estimating µg is the direct estimator, where we

use µ̂g = Zg which is the subgroup-conditional
empirical average. This estimator is unbiased and
its MSE is equal to its variance, i.e., mse(µ̂g) =
var(µ̂g). When the subgroup size ng is large, this
variance is typically small, resulting in a precise
estimate. However, for small ng, DT suffers from
high variance, leading to less reliable estimate. To
quantify the uncertainty of these estimates, we use
Wilson score intervals for binomial proportions
(e.g., binary accuracy) (Brown et al., 2001) and
Student’s t-intervals for other continuous outcomes
(e.g., F1 score).

Synthetic regression (SR). Synthetic regression
estimators leverage information from related sub-
groups by learning a regression function f(Xg) =
E[Zg |Xg]. This is a common approach in the small
area estimation literature (Rao and Molina, 2015).
The estimator is then given by µ̂g = f̂(Xg), where
f̂ is the fitted regression model. We use XGBoost
with cross validation (Chen and Guestrin, 2016),
a flexible method that reduces variance through
regularization. As features, we employ the text em-
beddings of Xg, LLM confidence scores, as well
as task- and model-specific intercepts; other ap-
proaches are possible, see Appendix A for more
details. While f̂(Xg) may introduce bias, the hope
is that it significantly reduces variance compared
to DT, especially for groups with small ng’s. This
would result in var(µ̂g) ≪ bias(µ̂g). SR provides
the greatest improvements in precision over the DT
estimator when the regression fit is good and the
subgroup metric Zg has high variance.

Empirical Bayes estimator (EB). The empirical
Bayes estimator combines the strengths of DT and
SR. The estimator is formally given by:

µ̂g =
σ̂2
g

σ̂2
g + Â

· f̂(Xg) +
Â

σ̂2
g + Â

· Zg, (2)

where σ̂2
g = V̂ar(Zg) is an estimate of the variance

of Zg, and Â = {G−1
∑G

g=1[(Zg − f̂(Xg))
2 −

σ̂2
g ]}+. The EB estimator dynamically balances

the DT and SR estimates, aligning more closely
with SR when f̂(Xg) approximates µg accurately
and with DT otherwise. Theoretical results from
Ignatiadis and Wager (2019) show that, under cer-
tain regularity conditions and parameter estima-
tion through sample splitting, EB has lower MSE
compared to DT and SR. Additionally, confidence
intervals can be obtained for EB estimates, as de-
tailed in Armstrong et al. (2022). We fdescribe their
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Figure 2: Comparison of methods to estimate the accuracy of LLMs across datasets. The plot shows the ratios of the
estimates MSEs, obtained using regression (SR) and empirical Bayes (EB) methods, relative to the direct estimator (DT) for
the LLM’s accuracies on LLM-task subgroups (in parenthesis when pre-defined). Lower ratio values indicate more accurate
estimates compared to DT. EB consistently provides more precise estimates than both SR and DT across most evaluations.

construction in Appendix A.

4 Results

In this section, we present the core set of results,
conveying our key takeaways. We defer to Ap-
pendix C for additional experiments, including a
comparison with other baselines and other data
modalities.

4.1 Tasks and models
We access the accuracy of LLMs across multiple-
choice question-answering (MC QA) datasets, in-
cluding a subset of BIG-bench (Srivastava et al.,
2022), HellaSwag (Zellers et al., 2019), MedM-
CQA (Pal et al., 2022), MMLU (Hendrycks et al.,
2020), PROST (Aroca-Ouellette et al., 2021), Tox-
igen (Hartvigsen et al., 2022), XNLI (Conneau
et al., 2018), and XCOPA (Ponti et al., 2020). Each
dataset is analyzed independently, with subgroups
defined by topics, domains, or tasks defined in the
data. Additionally, we also examine ANLI (Nie
et al., 2020), ARC (Clark et al., 2018), MathQA
(Amini et al., 2019), and Swag (Zellers et al., 2018),
which do not have pre-defined categories. On these
datasets, we form subgroups through unsupervised
clustering of the text embeddings via k-means,
choose the number via the silhouette score, and
then aggregate smaller subgroups. Lastly, we also
consider tasks involving text generation included
in BIG-bench, SQuAD2.0 (Rajpurkar et al., 2018),
and TriviaQA (Joshi et al., 2017). The number of
subgroups G varies between 40 (PROST) and more
than 200 (BIG-bench).

In terms of LLMs, we use Mistral-7B-Instruct-
v0.2 (Jiang et al., 2023) Google Gemma-2b (Team
et al., 2024), Microsoft Phi-3-Mini-4K-Instruct
(Abdin et al., 2024), and OpenLLama-3B-v2 (Geng

and Liu, 2023). All text embeddings are generated
using an off-the-shelf BERT encoder (Devlin et al.,
2018).

4.2 Experimental setup

To mimic what a practitioner would do, we consider
each dataset separately but benchmark multiple
LLMs at the same time. Thus, our evaluation pro-
cess is as follows: (i) Data sampling. Sample evalu-
ation data from the entire dataset proportionally to
subgroup sizes, ensuring that the smallest subgroup
with at least 50 observations includes a minimum
of ng = 10 observations in the sample. We also
experiment with ng = 10, 20, 50 for all subgroups,
see Appendix C.1. (ii) Model tuning and estima-
tion. Tune regression models via cross-validation,
estimate the subgroup metrics µ̂g on the evaluation
data using DT, SR, and EB for all LLMs, and com-
pute the corresponding confidence intervals. (iii)
Repeated sampling and evaluation. Repeat the pro-
cess 1000 times and compute the MSE for each
subgroup. “Ground truth” subgroup metrics µg are
estimated on the entire dataset. We compare the
methods by their average MSE as in (1). A lower
average MSE indicates a better method.

EB estimation. Our implementation of the EB
approach is based on the standard cross-fitting pro-
cedure of Ignatiadis and Wager (2019) and is sum-
marized in the following steps. (1) Estimate σ̂2

g for
all g’s. (2) Split the sample into two folds, D1 and
D2. (3) Fit SR on D1, obtain SR estimates on on
D2 and compute Â. (4) Use these to obtain EB
estimate for each g in D2. (5) Repeat the process
with the folds inverted to generate the EB estimates
{µ̂g}Gg=1.
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Figure 3: Comparison of subgroup MSEs across methods.
The plot compares the MSEs across all subgroups (LLM-
domain pairs) across four datasets. SR tends to perform better
than DT on small subgroups but not always on larger ones. EB
performs better than both on either. An MSE= 0.01 means
that, on average, we have |µ̂g − µg| = 0.1.

4.3 Results

Accuracy estimation in MC QA. Figure 2 gives a
finegrained view of our results, showing the ratio of
the MSE for the EB and SR estimators compared
to the DT estimator, across various models and
datasets. The EB estimator consistently performs
as well as or better than the two baselines, achiev-
ing on average 20% and 30% lower MSEs than
SR and DT respectively. SR generally outperforms
DT, although there are exceptions, e.g., BIG-bench,
where most of the subgroups are large (and there-
fore DT estimates are precise). On other datasets
(e.g., ANLI), SR outperforms DT, but EB typically
still emerges as the most precise estimator.

Figure 3 separates the MSE for larger (> 15
questions) and smaller (≤ 15 questions) subgroups.
We observe that DT generally provides more accu-
rate estimates than SR on the former due to small
subgroup variances σ2

g . In these cases, EB estimates
align closely with those from DT. For the smaller
subgroups, SR tends to present lower MSE than
DT. In these cases, EB estimates mostly align with
SR’s, resulting in improved precision compared to
DT. Thus, by shrinking the estimates of SR more
heavily towards those of DT’s when subgroup sizes
are large (e.g., Big-bench) or when the regression
fit is poor (e.g., MMLU, PROST), implying that
Â/σ̂2 is large, EB yields more precise estimates
compared than the baselines.

To determine the drivers of the precision gains
of SR over DT, we refit SR removing groups of
features one at a time, following the LOCO (Leave
Out COvariates) approach of Lei et al. (2018); we
refer readers to Verdinelli and Wasserman (2023)
for comparisons between this strategy and Shapely
values (Lundberg, 2017). Across all datasets, we

0.70

0.85

0.95

1.00

0.25 0.30 0.35 0.40
Average width

A
ve

ra
ge

 c
ov

er
ag

e

Method DT EB

Figure 4: Average coverage and width of 95% confidence
intervals for DT and EB estimates of LLM accuracy across
datasets. EB intervals maintain high coverage and are gener-
ally narrower than those of DT.

find that removing model-specific intercepts as well
as confidence scores leads to the largest increase in
MSE, which we attribute to variations in the accu-
racy of the LLMs. The removal of embeddings and
task-related features do not appear to be strongly
associated with the precision of the estimates.

Overall, we find that due to strong regulariza-
tion, SR estimates vary across LLMs but remain
consistent across tasks for the same LLM. This
strategy is effective only when subgroup perfor-
mance is similar within a given LLM, aligning with
our observation that most features are not highly
informative. Considering also the sizes of the sub-
groups—typically large in BIG-bench and small in
MMLU—this explains the performance differences
between SR and DT. Lastly, benchmarking LLMs
separately only slightly decreases the efficiency of
EB, which still outperforms DT. Thus, even if only
one LLM is evaluated, EB should be used.

Coverage and width of confidence intervals.
We evaluate confidence intervals in terms of their
coverage (i.e., the frequency with which they cap-
ture µg) and their width, averaged across all sub-
groups. Since EB estimates are more precise than
SR, we focus on comparing DT and EB. Ideally,
confidence intervals should achieve nominal cov-
erage and be as narrow as possible. As shown in
Figure 4, DT intervals consistently achieve nominal
coverage (here 95%), while EB intervals also main-
tain high coverage, with most exceeding ≥ 90%.
However, the average width of EB intervals is on
average 20% smaller than those of DT, indicating
that EB estimates come with tighter confidence
intervals.

Estimation for general tasks. Finally, we ex-
tend our comparison of estimation methods to
tasks beyond MC QA. Table 1 summarizes the

9566



Data/MSE×103 DT SR EB

BIG-bench (exact match) 1.0 19.5 1.6
SQuAD2.0 (F1 score) 246.0 178.0 109.5

Trivia QA (exact match) 12.2 12.8 9.6

Table 1: Estimation method comparison on general tasks.
The table compares the average MSEs of the estimates of all
LLM performances across different datasets (with respective
evaluation metrics) by the different methods. EB consistently
achieves similar or lower MSE than DT and SR.

average MSE of each method on the BIG-bench,
SQuAD2.0, and Trivia QA datasets. While DT out-
performs SR on BIG-bench, SR outperforms DT on
SQuAD2.0. Their performance is similar on Trivi-
aQA. EB remains the best-performing estimator on
two datasets and its performance is close to that of
DT on BIG-bench.

5 Discussion

Our investigation contributes to a growing body of
work on model evaluation in presence of resource
constraints (Fogliato et al., 2024; Zrnic and Candès,
2024; Herlihy et al., 2024). Our results show that
an EB estimator, which combines DT and SR esti-
mates, consistently provides more precise estimates
of subgroup-level model performances compared
to DT and SR alone. When subgroups are large,
the estimates of EB align with those of DT. The
uncertainty of EB estimates can also be effectively
quantified via confidence intervals, which achieve
near-nominal coverage and are consistently tighter
than those derived for DT estimates (although see
limitations in Appendix B). Overall, EB proves to
be a simple and useful method for model evaluation
when estimating performance for lots of subgroups
with (many or) few observations.
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This serves as an appendix to the paper “Precise
Model Benchmarking with Only a Few Observa-
tions.” The content of the appendix is organized as
follows.

Organization

• In Appendix A, we provide additional details
about the methods used in our paper. In particu-
lar, we discuss in detail the following methods:

– Appendix A.1: synthetic regression
– Appendix A.2: empirical Bayes

• In Appendix B, we discuss the limitations of the
methods.

• In Appendix C, we present additional experi-
ments to further validate our results. In particu-
lar, we show results on the following data types:

– Appendix C.1: additional LLMs
– Appendix C.2: computer vision tasks
– Appendix C.3: image captioning task
– Appendix C.4: tabular data

A Additional Details on Methods

In this section, we provide additional details on
the methods discussed in the main text and dis-
cuss other baselines. While the main body of the
manuscript focuses on an essential comparison,
here we also present methods proposed by previous
work.

A.1 Synthetic regression (SR)
The term “synthetic” is taken from the small area
literature, where it is used to indicate estimators
that leverage information from large subgroups
about a target quantity to derive estimates on
smaller subgroups under the assumption that these
subgroups share similar characteristics associated
with the target quantity (Ghosh and Rao, 1994; Rao
and Molina, 2015).

Implementation. In principle, the synthetic re-
gression approach can utilize any family of predic-
tive models (e.g., boosted trees, linear regression,
neural nets). We use a XGBoost regressor predic-
tor to predict Zg, tuning the number of trees and
the depth via 2-fold cross-validation, stratifying by
the task type. In the covariates X̃g, we include (i)
the values of the embeddings averaged across all
observations in the subgroup, (ii) the average LLM
confidence scores, (iii) intercepts for each model

being evaluated and (iv) for each task. Other feature
construction methods are also possible and might
lead to better results; we focus on these regression
features because they are intuitive and straightfor-
ward to obtain.

Structured regression. A special case of SR is
structured regression, which has recently been pro-
posed by Herlihy et al. (2024). This approach in-
volves fitting a Lasso regression model (Tibshirani,
1996) to minimize the following loss function:

argmin
β0∈R,β1∈Rp

G∑

g=1

1

σ2
g

(β⊤X̃g−Zg)
2+λ

p∑

i=1

|βi|, (3)

where β = (β0, . . . , βp)
⊤ ∈ Rp. We include

subgroup-level intercepts in the feature set X̃g (e.g.,
on for each LLM-task pair), along with other ex-
planatory features as in SR (e.g., the embeddings).
We tune λ via cross-validation and estimate σ2

g us-
ing the plug-in estimator, e.g., Zg(1− Zg)/ng for
accuracy metrics. Note that if the number of fea-
tures outnumbers the number of observations as it
occurs in our experiments, we should expect that
the predictions of this approach will converge to
Zg as λ → 0+. This is because the estimator in
(3) “interpolates” the training data and, among all
such interpolators, it has the minimum ℓ1-norm;
see, e.g., Patil et al. (2022).

Methods comparison. We distinguish SR from
structured regression to emphasize the fact that any
modeling approach and feature construction can
be used in the former. For example, we arbitrarily
choose not to include subgroup-level intercepts in
our regression model. Structured regression rep-
resents an alternative to our EB approach, where
shrinkage is integrated directly into SR instead of
explicitly through the Â and σ2

g parameters. Over-
all, we find that EB is more flexible because prac-
titioners can use any predictive model and feature
set, making it easier to implement. In practice, we
will see that, when both approaches use Lasso re-
gression, their performance is similar.

A.2 Empirical Bayes (EB)
The empirical Bayes estimator in our work is mo-
tivated by the following generative model (Arm-
strong et al., 2022): For 1 ≤ g ≤ G, assume that

µg | Xg, σ
2
g ∼ N (f(Xg), A), (4)

Zg | µg, Xg, σ
2
g ∼ N (µg, σ

2
g) (5)

9571



where A > 0. Estimator (2) is derived from the
posterior distribution of this data-generation mech-
anism. We recall it here:

µ̂g = f̂(Xg) +
Â

σ̂2
g + Â

· (Zg − f̂(Xg)), (6)

where

Â =

(
1

G

G∑

g=1

ε2g − σ̂2
g

)

+

. (7)

Here, εg = Zg − f̂(Xg), σ̂2
g is estimated as in the

SR approach, and (x)+ denotes the positive part of
a real number x.

Boundary behavior. Observe the following two
extreme cases:

• If σ̂2
g ≪ Â, EB estimates will be close to DT.

This case can occur when ng is large or SR does
not explain well the µg’s.

• If σ̂2
g ≫ Â, EB estimates align with SR. This

case can occur when Zg has high variance.

Confidence intervals. There are several methods
for constructing confidence intervals for EB esti-
mates (Laird and Louis, 1987; Rosenman et al.,
2023). We choose the approach of Armstrong et al.
(2022), which is robust to violations of the assump-
tion in (4). More specifically, the confidence in-
tervals are valid even when (4) is replaced by the
following assumption:

E[(µg − f(Xg))
2 | Xg, σ

2
g ] = A. (8)

Their construction is fairly technical but has been
implemented in existing software (Bowen, 2022).
Briefly, let

κ̂ =

G∑

g=1

ε4g − 6σ̂2
gε

2
g + 3σ̂4

g

Â2
. (9)

Then the 1− α confidence interval for µg is given
by:

µ̂g ± cvaα(σ̂2
g/Â, κ̂) · Â

σ̂2
g + Â

· σ̂g, (10)

where the so-called critical value cvα replaces the
traditional percentile of the standard normal distri-
bution in the typical intervals to account for the bias
in the shrinkage (Armstrong et al., 2022). Differ-
ently from the standard intervals that we construct
for DT estimates, these intervals have an “average

coverage” property: While DT intervals cover each
parameter with likelihood at least 1− α, the aver-
age coverage level of EB intervals across all µg’s
is at least 1− α.

More background on composite estimators. Es-
timators of the form (2), which combine DT with
other estimates, are more broadly known as com-
posite estimators (Rao and Molina, 2015). This
class includes the classical James-Stein estimator
(James and Stein, 1992), which shrinks all Zg val-
ues towards the same chosen value, which is gener-
ally taken to be the global mean, e.g., see Section
2 in Efron and Morris (1975). Another estimator
commonly used in small area estimation is the Fay-
Herriot model, which assumes that f(X) is linear
(Fay III and Herriot, 1979). The version of EB that
we study allows for arbitrary SR models and thus
covers these cases. We expect the James-Stein es-
timator to perform similarly in cases where the
regression employs strong regularization.

B Limitations of Methods

Empirical Bayes methods are built on stronger as-
sumptions than the standard direct estimator. These
assumptions can allow us to increase the precision
of the estimates and our experiments have shown
that in general this occurs. However, this is not
guaranteed and, even when it occurs, it may not al-
ways be desirable. For example, if one is interested
in estimating only a subset of the µg’s, then they
should not seek to minimize (1). Another critical
observation is the nature of the confidence intervals
for EB estimates that we discuss. While standard
intervals for DT are constructed to cover each µg

with a given likelihood, EB intervals only have an
average coverage guarantee. This should be noted
when we aim to conduct hypothesis testing on the
µg’s using EB estimates. Practitioners that misun-
derstand this point might risk making erroneous
inference and draw unsupported conclusions. In
addition, the efficacy of EB over DT also hinges on
how well the regression models E[Zg |Xg]. There-
fore, feature construction and model selection are
crucial. Our research has begun to explore these
aspects, but further investigation is needed.

C Additional Experiments

In this section, we provide additional details on our
main set of results and additional experiments to
evaluate the performance of the methods.
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Size/Rel. eff. MSE SR / DT MSE EB / DT

ng = 10 0.90 0.81
ng = 20 1.03 0.84
ng = 50 1.52 0.86

Table 2: Comparison of estimation methods on LLM MC
QA tasks with subgroups of equal size. The table compares
the median over datasets of the relative efficiency (rel. eff.) of
DT with respect to SR and EB, namely the ratio of the average
MSE of SR or EB divided by the average MSE of DT when
all subgroups have size ng . As ng increases, efficiency gains
over DT decrease.

C.1 Additional experiments on LLMs

To generate the LLM confidence scores and asso-
ciated predictions in all our experiments, we use
the code in the lm-evaluation-harness repository
by Eleuther AI (Gao et al., 2023). In this section,
we review the results of additional experiments,
including:

• An experiment where all subgroups have
exactly ng ∈ {10, 20, 50} observations (Ap-
pendix C.1.1), including an analysis of how EB
balances DT and SR estimates

• A comparison between EB and structured re-
gression

C.1.1 Results on all subgroups with equal size

In this benchmarking exercise, we equalize
the number of observations drawn from equal
subgroups, setting either ng = 10, ng = 20, or
ng = 50. We drop all subgroups with less than 4ng

observations. Thus, the experimental setup follows
Section 4.2 with the exception of (i).

The results from this experiment are summarized
in Table 2, which shows the mean relative efficiency
of DT vs. SR or EB across datasets, which is de-
fined as the ratio of the average MSE of SR or
EB estimates over the DT one. We observe that,
as the size of the subgroups increases, the gap in
the precision of SR and DT estimates shrinks. This
occurs because DT estimates become more accu-
rate. EB shows a similar trend that is nonetheless
less remarked: Even for ng = 50, EB estimates
have lower MSEs than those of DT. For this num-
ber of observations, 95% confidence intervals for
DT are fairly large (e.g., µ̂g ± 0.08 for µg = 0.1).
Consequently, the gain in precision can result in
considerable savings for practitioners.

Setting/Rel. eff. EB Str. Reg.

ming∈[G] ng = 10, prop. 0.62 (0.14) 0.68 (0.34)
ng = 20, equal 0.64 (0.15) 0.73 (0.47)

Table 3: Estimation method comparison on LLM MC QA
tasks of EB with other baselines. The table compares the
mean (standard deviation in parentheses) over datasets of the
relative efficiency (rel. eff.) of DT with respect to three meth-
ods: EB and structured regression.

C.1.2 Comparison with structured regression

We assess the precision of EB estimates against
those of the structured regression estimator de-
scribed in Appendix A. Table 3 shows the corre-
sponding results, for both the setting where sub-
group sizes are proportional to the original data
(ng = 10 for the smallest group) and where all
ng = 20 and all subgroups have the same size. We
find that EB beats structured regression across al-
most all datasets. The relative efficiency of their
estimates, however, reveals that the methods have
comparable efficiency. Thus, practitioners should
choose the method that is easiest to implement.

C.2 Experiments on computer vision tasks

We explore the performance of the methods on a se-
ries of computer vision classification tasks. We con-
sider most of the datasets and tasks included in the
LAION CLIP benchmark (LAION AI, 2024), in-
cluding Caltech 101 (Fei-Fei et al., 2004), Stanford
Cars (Krause et al., 2013), CIFAR-10 (Krizhevsky
et al., 2009), CIFAR-100 (Krizhevsky et al., 2009),
CLEVR (distance and count) (Johnson et al., 2017),
Describable Text Features (Cimpoi et al., 2014),
DR Detection (Emma et al., 2015), DMLab Frames
(Zhai et al., 2020), EuroSAT (Helber et al., 2019),
FGVC aircraft (Maji et al., 2013), Oxford 102
Flower (Nilsback and Zisserman, 2008), GTSRB
(Stallkamp et al., 2011), ImageNet-A (Hendrycks
et al., 2021b), ImageNet-R (Hendrycks et al.,
2021a), ImageNet-1K (Russakovsky et al., 2015),
ImageNet Sketch (Wang et al., 2019), ImageNetV2
(Recht et al., 2019), KITTI Distance (Geiger et al.,
2013), MNIST (Deng, 2012), ObjectNet (Barbu
et al., 2019), Oxford-IIIT Pet (Parkhi et al., 2012),
PASCAL VOC 2007 (Everingham et al., 2007),
PCam (Veeling et al., 2018), Rendered SST-2
(Socher et al., 2013), NWPU-RESISC45 (Cheng
et al., 2017), SmallNorb (Azimuth and Elevation)
(LeCun et al., 2004), STL-10 (Coates et al., 2011),
SUN397 (Xiao et al., 2010), Street View House
Numbers (Netzer et al., 2011).
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Diabetic Retinopathy Detection
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ImageNet Sketch
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ImageNetV2
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Street View House Numbers

SUN397

1 3 10 30
Average MSE of competitor vs. direct estimator

Backbone ViT−B/32 ViT−L/14 Method EB SR

Figure 5: Comparison of methods across datasets to estimate CLIP’s zero-shot accuracies on subgroups of classification
tasks. See the full list of tasks in Appendix C.2. The observations correspond to the ratio between the average MSE of SR or EB
over the average MSE of DT estimates. EB yields more precise estimates than SR and DT across most datasets and models.

We experiment with predictions generated by
CLIP models that employ ViT-B/32 and ViT-L/14
as vision backbones (Ilharco et al., 2021; Schuh-
mann et al., 2022; Radford et al., 2021) in the zero-
shot setting. We form task subgroups via k-means
as in Section 4.1 and sample ng = 20 observations
from all subgroups; we found that sampling pro-
portionally led to only a couple of small groups
and many large ones. Our goal is to estimate the
accuracy of the models on the subgroups. The ex-
perimental evaluation setup is analogous to what
we described in Section 4.2. The setup of SR also
remains unchanged, with the exception that we run
the model on the ViT-B-32’s image embeddings
instead of the text embeddings.

Figure 5 shows the results of this set of experi-
ments. We find that SR beats DT on some datasets
but severely underperforms on others. This is ex-
plained by the fact that (most often) the SR es-
timates are heavily regularized and predictions
are close across subgroups. As we saw in the
case of LLMs, this strategy improves over DT on
datasets where subgroup performances are similar
(e.g., dSprites (x position)) yet it miserably fails
when subgroup performance are far apart (e.g., in
MNIST). In these cases, we observe that the EB
estimates align closely those from DT, as a result
of a large ratio Â/σ̂2. Despite the overall under-

performance of SR, we find that EB still performs
similarly to DT and always better than SR.

C.3 Experiment on image captioning

We assess the performance of EB on evaluating a
BLIP (Li et al., 2022) image captioning model on
a test split (Karpathy and Fei-Fei, 2015) of 5000
images from the COCO Captions dataset (Lin et al.,
2014; Chen et al., 2015), where each of the test
images includes 5 reference captions. We use the
BLIP model to generate a new caption for each
image in the test set and then evaluate the results
using the CLAIR score (Chan et al., 2023). This
score uses an LLM (in our experiments we use a
Mistral 7B model (Jiang et al., 2023)) to predict a
similarity score between the generated caption and
a set of reference captions. For each test image, we
average the CLAIR score over the set of reference
captions to obtain a single score per image.

To evaluate our approach in this setting, we form
subgroups by first generating image embeddings
for each image using CLIP (Radford et al., 2021)
and clustering the embeddings via k-means where
the silhouette score was used to choose the number
of clusters (about 40 in our test case) as in the
previous experiments. The rest of the experimental
setup also follows Section 4.2.

We find that both SR and EB substantially out-
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Figure 6: Subgroup estimates of CLAIR scores across 10
subgroups in VQA data. The dots in orange correspond to
ground truth values, while those in black indicate the estimates
obtained over 100 random draws from the subgroups with the
different approaches.

perform DT, achieving average MSEs that are 70%
and 80% lower than those of DT, respectively. Fig-
ure 6 shows the estimates across 10 randomly sam-
pled subgroups in the data. We observe that, due
to the small subgroup sizes in the evaluation data,
the accuracy estimates of DT have high variance.
Both those of DT and of EB have significantly less
variance and, as our empirical results show, also
happen to have little bias for most of the subgroups.

C.4 Experiments on tabular data
We present results for the subgroup performance es-
timation methods on a host of binary classification
tasks commonly used in the algorithmic fairness
literature. This includes five prediction tasks on
2018 ACS folkstable data from New York (Ding
et al., 2021), the COMPAS dataset (Angwin et al.,
2016), and student performance datasets in math
and Portuguese (Cortez and Silva, 2008). Similar
to Herlihy et al. (2024), we define subgroups by
intersections of protected attributes like race or eth-
nicity, age, and sex. We then retain only those with
at least 20 observations for subgroup performance
estimation.

Predictions on tabular datasets are generated us-
ing XGBoost (Chen and Guestrin, 2016). Each
model is trained with 3-fold cross-validation on
50% of the respective dataset. The other 50% of
the examples are retained for our evaluation set
using the same setup of Section 3.

Figure 7 shows the ratio of the MSE of EB and
SR estimates to the DT estimates across all tabular
datasets. Similar to our observations in the LLM
context, the EB estimator provides estimates that
are just as precise or more precise than SR and
DT estimators for six out of the eight prediction
tasks. The EB estimator’s advantage over SR is
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Figure 7: Comparison of methods across tabular datasets.
The plot shows the ratio of the MSE of the estimates of the
LLM metric on the subgroups obtained through SR and EB
(the competitors) over the MSE of those generated by DT.
Lower values indicate more precise estimates compared to DT.
As metrics, we consider accuracy, cross-entropy, and MSE or
Brier score.

especially pronounced for the ACS Employment
and Income datasets for which SR struggles to out-
perform the DT baseline. EB and SR performances
are virtually identical for the ACS mobility and
travel tasks, implying that SR explains little to no
additional variance in these cases. In the context
of the COMPAS and Student Math datasets, the
SR estimator provides better estimates than the EB
estimator. Both of these datasets have less than
10 distinct subgroups which may lead to poor fits
in computing f̂(X) and Â. Nevertheless, both SR
and EB estimators consistently outperform the DT
baseline.

We thus conclude that, similar to the results in
the main body of the paper, the EB estimator for
tabular data provides more precise subgroup perfor-
mance estimates than DT and also SR when there
are enough distinct subgroups.
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