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Abstract
Efficient state space models (SSMs), includ-
ing linear recurrent neural networks and linear
attention variants, have emerged as potential
alternative language models to Transformers.
While efficient, SSMs struggle with tasks re-
quiring in-context retrieval, such as text copy-
ing and associative recall, limiting their useful-
ness in practical settings. Prior work on how
to meet this challenge has focused on the in-
ternal model architecture and not investigated
the role of the training procedure. This paper
proposes a new training procedure that improve
the performance of SSMs on retrieval-intensive
tasks. This novel pre-training procedure com-
bines a bidirectional processing of the input
with dynamic mixtures of pre-training objec-
tives to improve the utilization of the SSM’s
fixed-size state. Our experimental evaluations
show that this procedure significantly improves
performance on retrieval-intensive tasks that
challenge current SSMs, such as phone book
lookup, long paragraph question-answering,
and infilling tasks. Our findings offer insights
into a new direction to advance the training of
SSMs to close the performance gap with Trans-
formers.1

1 Introduction

Due to their scaling properties (Hoffmann et al.,
2022) and in-context learning (Garg et al., 2023),
large Transformer models using attention (Bah-
danau, 2014; Vaswani et al., 2017) are now promi-
nent in natural language processing (NLP) and
achieve effective performance in natural language
generation tasks (NLG), including language mod-
eling, machine translation, and question and an-
swering (Q&A) (Yue et al., 2022; Xie et al., 2022;
Kumar et al., 2021). However, the softmax atten-
tion mechanism cost scales quadratically with se-
quence length during training, and its key-value

1All code and pre-trained models are available at
https://www.github.com/samblouir/birdie, with support for
JAX and PyTorch.

(KV) cache grows linearly with sequence length
during inference. This leads to increasing costs for
training and deployment as model providers con-
tinue to increase the context length (Dubey et al.,
2024; Reid et al., 2024).

This trend in increasing context length has
sparked a strong interest in developing efficient al-
ternative sequence models. The goal is to maintain
high performance while scaling effectively with
longer sequences. Recent work has focused on
recurrent models which offer two key advantages:
subquadratic scaling for parallel processing and
a fixed state size (in contrast to the growing KV
cache in Transformer models) that enables constant-
cost inference per step. These models come in
different forms, ranging from state space model
(SSM)-based methods, such as S4 (Gu et al., 2022),
S5 (Smith et al., 2023), or Mamba (Gu and Dao,
2023)), to linear RNNs, such as RWKV (Peng et al.,
2023), HGRU (Qin et al., 2023), and Hawk (De
et al., 2024), to linear attention variants, such as
RetNet (Sun et al., 2023) and GLA (Yang et al.,
2024). These different methods vary in their exact
parameterization and parallel computation, but all
have an efficient, fixed-state size recurrence for in-
ference. For brevity, we will generally refer to all
of these methods as SSMs regardless of their exact
parameterization or parallel computation path.

While some studies have shown the ability of
SSMs to match Transformers in perplexity and
some public benchmarks, an increasing line of
work shows that current SSMs struggle on tasks
that require long-range in-context abilities (Park
et al., 2024), such as long-range retrieval (Wen
et al., 2024), multi-query associative recall (Arora
et al., 2023, 2024), and copying (Jelassi et al.,
2024). These tasks are critical in NLP, where the
ability to maintain and manipulate long-term depen-
dencies is key to generating coherent text, follow-
ing directions, copying sequences, and responding
accurately to multiple queries. A typical approach
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to address these weaknesses has been to formulate
hybrid models (Poli et al., 2024) that interleave
SSM layers with global attention layers (Mehta
et al., 2023; Fu et al., 2023a; Park et al., 2024),
or sliding window attention (Beltagy et al., 2020;
Arora et al., 2024; De et al., 2024).2 However, mod-
els with global attention layers still scale quadrati-
cally with sequence length and have a growing KV
cache. Models that rely on sliding window atten-
tion also fail to perform in-context retrieval outside
of the sliding window length (Arora et al., 2024;
De et al., 2024).

The predominant focus on architecture to im-
prove performance on long-range in-context abil-
ities misses an opportunity to investigate the role
of the pre-training objective(s) and potential inter-
action with model architecture. We note that prior
work on SSMs predominantly utilizes a causal lan-
guage modeling (CLM) pre-training objective.

In this paper we argue (and show) that in the pres-
ence of a fixed state size, a mixture of pre-training
objectives can bias learning towards pertinent long-
range interactions and that bidirectional processing
of the context allows better utilization of the fixed
state for such interactions. This paper makes the
following key methodological contributions:

(1) We develop novel pre-training objective
mixtures that confer SSMs strong performance
on both standard downstream public benchmarks
and recall and copying-intensive tasks where SSMs
typically struggle, such as phone book retrieval
tasks, infilling, and long paragraph Q&A.

(2) We show that bidirectional processing of
the context combined with the pre-training objec-
tive mixtures can further boost performance. In ad-
dition, we develop a new bidirectional architecture
for SSMs that allows a seamless transition from
bidirectional processing of the context to causal
generation of the response.

(3) To improve the practical ability to experiment
with new pre-training objectives in the mixture, we
propose a dynamic mixture of pre-training ob-
jectives via reinforcement learning (RL). This
allows for maximizing performance while simpli-
fying the objective selection process.

The result is a new training procedure that sig-
nificantly improves the performance of SSMs on
recall-intensive tasks, making them more compet-
itive with Transformers. We refer to this proce-

2The sliding window attention, introduced in Long-
former (Beltagy et al., 2020), can be viewed as a form of
a fixed-state size method.

dure as Birdie. While we do still observe a per-
formance gap with Transformers on some tasks as
the retrieval requirement becomes more difficult
(e.g. increasing the number of retrievals required
per example), our procedure makes the SSM per-
formance degradation in these scenarios much less
severe and expands the regime where these efficient
methods can be useful. More broadly, our work
points to considering the learning dynamics along
with the inductive biases of SSM architectures in
order to make better use of the fixed state size.

2 Background and Related Work

This section relates background and prior work.

2.1 State Space Models

Given a length L sequence of inputs x1:L ∈ RL×D,
a general class of linear recurrences with hidden
states h1:L ∈ RL×N and outputs y1:L ∈ RL×D

can be computed as

hk = Akhk−1 +Bkxk

yk = g(hk,xk)

with state transition matrix Ak ∈ RN×N , input
matrix Bk ∈ RN×U and output function g(·) to
transform the hidden state into an output.

Many recent recurrent models fall within this
SSM framework. Some are time-invariant, such
that the dynamics parameters are static across time,
i.e. Ak = A and Bk = B ∀k. This includes state
space layer/linear RNN variants such as S4 (Gu
et al., 2022), S5 (Smith et al., 2023) and LRU (Orvi-
eto et al., 2023) and as well as linear attention
variants such as linear transformer (Katharopoulos
et al., 2020) and RetNet (Sun et al., 2023). Other
linear recurrent models have input-varying dynam-
ics; these include state space layer/linear RNN
variants such as Liquid-S4 (Hasani et al., 2022),
HGRU (Qin et al., 2023), Mamba (Gu and Dao,
2023), Hawk (De et al., 2024), gated linear atten-
tion (Yang et al., 2024) methods, and prior work
in linear RNNS (Balduzzi and Ghifary, 2016; Mar-
tin and Cundy, 2018; Bradbury et al., 2016; Lei
et al., 2018). The linear (or conditionally linear)
dependencies between time steps allow for efficient
parallelization across the sequence via Fast Fourier
Transforms (Gu et al., 2022; Fu et al., 2023b), paral-
lel scans (Blelloch, 1990; Martin and Cundy, 2018;
Smith et al., 2023) or other structured matrix oper-
ations (Yang et al., 2024) while also allowing for
fast recurrences at inference.
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In this work, we focus on input-varying SSMs,
as they have provided better performance on lan-
guage (Gu and Dao, 2023; De et al., 2024; Yang
et al., 2024) compared to their time-invariant coun-
terparts. This is generally attributed to their ability
to ignore or forget contextually-irrelevant informa-
tion. As an example, consider the Hawk model (De
et al., 2024) which showed strong performance for
attention-free methods on common max-likelihood
evaluations. At its core, Hawk is powered by the
Real-Gated LRU (RG-LRU), an input-dependent
version of LRU. The mathematical formulation of
the RG-LRU is:

rt = σ(Waxt, )

it = σ(Wxxt),

at = σ(Λ)crt

ht = at ⊙ ht−1 +
√
1− a2t ⊙ (it ⊙ xt)

where σ denotes the logistic-sigmoid function, Λ
is a learnable parameter, and the constant c is set
to 8.

2.2 Weaknesses of Current SSMs

While the fixed state size allows for efficient de-
ployment at inference time, this limited state ca-
pacity also creates a tradeoff in how much informa-
tion can be stored and used for in-context retrieval.
These limitations have been characterized both the-
oretically (Arora et al., 2023; Jelassi et al., 2024;
Wen et al., 2024) for simple tasks and empirically
on both synthetic and more realistic tasks.

Park et al. (2024) and Arora et al. (2024) show
that recurrent models struggle to perform synthetic
multi-query associative recall (MQAR) (Arora
et al., 2023) even when trained directly on the task.
Jelassi et al. (2024) compared Pythia (Biderman
et al., 2023) Transformers to Mamba (Gu and Dao,
2023) SSMs pre-trained on the same dataset and
found that Mamba models significantly underper-
formed the Transformer baselines on retrieval tasks,
such as phone-book lookup and long paragraph
question-answering. Similarly, De et al. (2024)
show that Hawk can perform phone-book retrieval
for short lengths but fails to recall the correct phone
number as the length grows. In the same work,
even the Griffin model, which adds sliding win-
dow attention to Hawk struggles to retrieve phone
numbers when the task exceeds the sliding win-
dow length. This phenomenon is also observed
for Based (Arora et al., 2024), a hybrid of linear

attention and sliding window attention on synthetic
MQAR tasks.

Despite their computational appeal, current
SSMs display significant weaknesses on the im-
portant skill of in-context retrieval. This limits
how useful these models can be for practical de-
ployment. We note that these prior works all train
models with a simple CLM objective. These obser-
vations lead us in this work to question the standard
training procedure and rethink it as a potential av-
enue for better utilization of the fixed state size
and improved performance on in-context retrieval
tasks.

2.3 Pre-training Objectives

Pre-training "instills" general-purpose knowledge
and abilities (Raffel et al., 2020). While the default
choice in NLP for a pre-training objective is CLM,
or "next word prediction," several alternative objec-
tives have been proposed that can improve model
performance in general language tasks (Tay et al.,
2022, 2023; Anil et al., 2023), code generation
(Bavarian et al., 2022; Rozière et al., 2024), and
multi-modal audio and vision Transformers (Chen
et al., 2023).

For instance, masked language modeling (MLM)
includes objectives where a limited number of to-
kens are replaced with a mask token, and the model
must predict the original tokens. In its original
conception with BERT (Devlin et al., 2019), each
mask token represented one obfuscated input token.
Span corruption (SC) extends the MLM objective
to generative models (Guo et al., 2022). For a
given input, several spans of tokens are replaced
with unique sentinel tokens. The model then gener-
ates the masked tokens and their respective sentinel
tokens. Prefix language modeling (PLM) does not
calculate a loss on the prefix, and the model is al-
lowed a bidirectional view of the context. During
pre-training, input sequences are randomly split in
two, with the prefix serving as context and the suf-
fix as the target for the direct loss computation (Raf-
fel et al., 2020). The UL2 (Tay et al., 2023) objec-
tives combine PLM and SC.

In this paper, we consider and build on the above
representative pre-training objectives. As described
in Section 3, we introduce new objectives and dy-
namic mixtures.
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3 Methods

We propose two key methodological components
to reduce the gap between SSMs and Transformers
on in-context retrieval tasks: bidirectional process-
ing of the input prompt or prefix and new mixtures
of pre-training objectives designed to improve the
ability of SSMs to perform retrieval. We then offer
a new pre-training procedure that leverages RL for
dynamic sampling of the pre-training objectives to
reduce the burden of pre-selecting the optimal mix-
ture ahead of time. We combine these components
to define the Birdie training procedure. In the final
part of this section, we also describe a baseline
Gated SSM that allows for a simple implementa-
tion to test our methods.

3.1 Bidirectional processing

Bidirectional processing has shown advantages in
generative Transformers with prefix language mod-
eling objectives (Tay et al., 2023). Given the fixed
state size of SSMs, we propose that bidirection-
ality could be even more advantageous, enabling
SSMs to better triage state capacity, crucial for
retrieval-intensive tasks. Our results indicate that
bidirectional SSMs outperform their unidirectional
counterparts on several such tasks. However, bidi-
rectional processing in SSMs is not trivial. One
needs to maintain their strict temporal coherence
and causality. The state in an SSM represents the
cumulative information up to the current time step.
Incorporating information from the end of the con-
text necessitates a careful approach to defining and
updating the state. Implementation efficiency is
also critical when incorporating bidirectional pro-
cessing into a generative SSM.

We introduce a bidirectional architecture that ad-
dresses these challenges and matches a standard
causal configuration in both compute and parame-
ter count during pre-training. We divide the recur-
rent state into forward and reverse components. For
the reverse state dimensions, we preserve causal-
ity in the causal/decoding region by masking out
the forget gate dimensions that determine the re-
verse dynamics. This causes information traveling
backwards in causal regions to never enter the state.
We provide a mathematical description below3 and

3We provide efficient implementations of this in our code-
base: https://github.com/samblouir/birdie

provide an example in appendix section E.1.

xforward
t = xt,Dforward

hforward
t = At · hforward

t−1 + xforward
t

xrev
t = xt,Drev

h
rev, prefix area
t = At · hrev

t+1 + xrev
t

hrev, causal area
t = 0 ·At · hrev

t+1 + xrev
t

hrev
t = [h

rev, prefix area
t ⊕ hrev, causal area

t ]

ht = [hforward
t ⊕ hrev

t ]

3.2 Pretraining Objectives for SSMs

We hypothesize CLM does not allow an SSM to
learn to fully utilize its state for in-context retrieval.
For the majority of the pre-training corpus, much
of the "next-token prediction" loss can be substan-
tially reduced by using information from local to-
kens. This may prevent the model from learning
to retrieve. Note that while CLM pre-training does
not seem to prevent Transformers from learning
general retrieval skills, SSMs have a different in-
ductive bias due to their relatively limited state. To
improve utilization of this limited state capacity, we
design pre-training objectives that attempt to force
the SSM to learn to compress and retrieve through-
out the pre-training process to improve in-context
retrieval ability downstream.

We list the objectives and mixtures that we inves-
tigate in Table 1. We first briefly describe several
previously proposed objectives that are core to our
new methods:

Full Span Corruption (FSC): The model must
generate the entire de-noised sequence. This is sim-
ilar to BERT’s MLM task, but the model generates
the entire sequence rather than filling in masked
tokens in-place. The same objective, albeit mask-
ing single tokens rather than spans, was included
in an ablation in T5 and was referred to as BERT-
style (Raffel et al., 2020). This tasks the model
with maintaining a state where it can simultane-
ously copy from a context while generating new
text conditioned on the context.

Deshuffling: The model is given an input se-
quence with shuffled tokens. The model must
deshuffle the tokens to recreate the original se-
quence. We use two variations: one where 50% of
the input tokens are shuffled, and another where all
inputs tokens are shuffled.

Copying: We include copying tasks that do
not involve denoising an input, inspired by recent
work (Jelassi et al., 2024) that highlights challenges
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with SSMs in copying tasks. In Copying, the model
must recreate the input sequence.

We build on these prior objectives and propose
the following new pre-training objectives:

FSC with Deshuffling (FSC-D): This builds
on FSC by also shuffling the non-corrupted spans,
fusing span corruption, copying, and de-shuffling
into one objective. We hypothesize this may help
thwart over-fitting to unnatural traits of span cor-
ruption, such as always generating masked spans
in the order they were shown.

Text: Bird songs fill the early morning air

Objectives Example
CLM In: –

Tgt: Bird songs fill the early morning air

PLM In: Bird songs fill
Tgt: the early morning air

SC In: Bird [mask] the early [mask]
Tgt: songs fill [mask] air [mask]

FSC In: Bird [mask] the early [mask]
Tgt: Bird songs fill the early morning air

Deshuffling In: morning air early fill Bird songs the
Tgt: Bird songs fill the early morning air

Copying In: Bird songs fill the early morning air
Tgt: Bird songs fill the early morning air

FSC-D In: the early [mask] Bird [mask]
Tgt: Bird songs fill the early morning air

Selective In: [start] C D [end] H [context] A B C D E F G H I

Copying Tgt: E F G [done]

Mixtures

BFR Birdie-Fixed Ratio: A new mixture of the ob-
jectives above at fixed ratios found via abla-
tions.

UL2 Fixed-ratio mixture of PLM and SC (Tay et al.,
2023).

Table 1: CLM: Causal language modeling. PLM: Prefix
language modeling. SC: Span corruption. FSC: Full SC.
FSC-D: FSC with deshuffling. In: input; Tgt: target.
New pre-training objectives and mixtures are bolded.

Selective Copying: We introduce here a novel
variation, Selective Copying, in which the model is
given beginnings and endings of spans in the con-
text. The model must find and copy these spans to
the output. This task strongly differs from standard
copying - not all text is copied, and the spans to
copy are not necessarily found in order. This can
be seen as analog to the downstream phone book
lookup task. The Selective Copying pre-training
objective proposed here is inspired by Olsson et al.
(2022), which introduces a similar version as a
synthetic induction head task.

BFR: A mixture of all the objectives listed in
Table 1 (except the UL2 mixturet) at fixed ratios.
We discuss dynamic ratios in the next section.

3.3 Optimal Mixtures with Objective
Sampling via Reinforcement Learning

Although we observed promising results in pilot
runs, we found it difficult to pre-select optimal task
mixture ratios. We also observed that seemingly
optimal ratios can change during training, and dif-
ferent model architectures benefit from specialized
ratios. Similar challenges in optimally scheduling
and adjusting mixtures rates has been noted in Tay
et al. (2022).

To address this, we propose a dynamic, auto-
mated curriculum that adapts pre-training task mix-
tures according to the evolving needs of the model.
Our approach utilizes a critic model, which we use
to predict rewards for proposed actions, given pre-
vious actions and observed outcomes. We define
actions as training objectives along with their prob-
abilities of being sampled or applied to incoming
training data during training. Overall, this forms
a classic multi-armed bandit framework and is re-
lated to a recent Gaussian Process approach for
dynamic masking rates in MLM (Urteaga et al.,
2023), which we found unable to model our diverse
objectives and needs. We adopt a four-layer Gated
SSM model (See Section 3.4) to directly predict
per-objective rewards based on historical training
data. We generate random actions and pick the
action with greatest predicted reward.

We visualize loss, greedy-decoding accuracy,
and sampling probabilities for training objective
categories in Appendix A Figure 3. We observe
trends, such as the observation that training on FSC
appears to boost Copying and Deshuffling objec-
tives to the extent that their sampling can be nearly
shut-off. Other behaviors emerge, such as the se-
lective copying ability continuing to form once the
model sees sufficient amounts of these samples.

This approach, Birdie, which combines the new
objectives described in Section 3.2 and the bidirec-
tional processing described above in Section 3.1
consistently improves SSM performance on a vari-
ety of downstream tasks, as related in Section 4.

3.4 Gated SSM baseline

We define a generic Gated SSM baseline to verify
that improvements from our training methods are
not due to specifics of the SSM itself. The recur-

9683



rence equations are:

it = σ(Wixt) ∈ RN ,

zt = Wzxt ∈ RN ,

ot = GeLU(Woxt) ∈ RN ,

ft = σ(Wfxt) ∈ RN ,

ht = ft ⊙ ht−1 + it ⊙ zt,

yt = Wout(ot ⊙ ht),

where σ is the logistic sigmoid function, xt is the
normalized input at time t, and yt is the output that
feeds into a residual connection. The operator ⊙
represents element-wise multiplication. We note
that this generic Gated SSM is closely related to
a parallelizable version of an LSTM (Hochreiter
et al., 1997) with the state dependency removed.

In our basic Gated SSM above, we fuse the SSM
and MLP blocks as done in Mamba (Gu and Dao,
2023). However, in later experiments we observed
that using a separate MLP block as well as a short
1D convolution to process the inputs as in prior
work (Poli et al., 2023; Gu and Dao, 2023; De
et al., 2024) improved performance on some re-
trieval tasks when trained with the Birdie proce-
dure. For clarity, we refer to this final model in the
results related in Section 4 below as Gated SSM+4.
We find this simple baseline performs comparably
with state-of-the-art SSMs, such as Hawk.

4 Experiments and Results

Here, we present our experimental setup and main
findings.

4.1 Experimental Setup
We pre-train and instruction-tune a series of 1.4B
parameter SSM and Transformer models to investi-
gate the proposed methods. This size allows us to
achieve non-trivial performance on popular public
benchmarks while making it feasible to ablate a
number of design choices.

Pre-training: We train several 1.4B versions of
the Gated SSM baseline described in Section 3.4.
We include ablations using the standard CLM ob-
jective, UL2, and our novel Birdie training proce-
dure described in Section 3.3, with its bidirectional
prefix processing and dynamic mixture selection.
We also include two variations for the Gated SSM:

4An implementation is available in Appendix E.2 and
https://github.com/samblouir/birdie.

a causal-only model and a non-dynamic, fixed ratio
mixture we refer to as Birdie - Causal and Birdie
- Fixed Ratio respectively. To show our methods
are more broadly applicable to other SSMs, we
also train Hawk, a state-of-the-art SSM, and a mod-
ern Transformer architecture using CLM and the
Birdie training procedure5. Key results and com-
parative analysis of these models are discussed in
Section 4.3. Additional pre-training details can be
found in Appendix A.1.

Instruction Tuning: For all models, we loosely
follow the progressive learning fine-tuning proce-
dure from Orca 2 (Mitra et al., 2023) and inte-
grate common instruction-tuning procedures from
FLAN (Longpre et al., 2023), Zephyr (Tunstall
et al., 2023), and Tulu (Wang et al., 2023). We ex-
tend the sequence length to 4096 and 8192. More
details on fine-tuning can be found in Sections A.2.

Evaluations: First, we evaluate our models
across 21 tasks using the EleutherAI LM Har-
ness (Gao et al., 2023) to test general knowledge
and reasoning abilities and ensure that the Birdie
training procedure maintains performance here. We
describe these tasks further in Appendix A.4. To
stress test in-context retrieval abilities of the mod-
els, we evaluate on the phone-book lookup task,
as well as SQuAD V2 for paragraph Q&A tasks
that challenge SSMs (Jelassi et al., 2024). We also
introduce a new infilling dataset to test the models’
abilities to comprehend the context of a story.

4.2 Comparative Performance and Ablation
Study on Max-likelihood Tasks

We show the detailed performance of base and
instruction-tuned models using the LM Eval har-
ness in the Appendix Table 5. In Table 2 we relate
the average accuracy over all 21 tasks. The re-
sults show that the models trained with the Birdie
procedure perform comparably to models trained
with the standard CLM objective, especially af-
ter instruction-tuning. This shows that the Birdie
training procedure does not harm the general short
context knowledge and reasoning abilities these
benchmarks test.

4.3 Analysis on Phone Number Retrieval
Next, we explore a phone number retrieval task,
previously identified as challenging for SSMs (Je-

5The Transformer-Birdie variant uses unmasked attention
on the prefix, equivalent to the prefix-LM architecture de-
scribed in (Raffel et al., 2020)
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Figure 1: Phone number retrieval task performance, using a 16,384 sequence length. SSMs trained with Birdie
significantly close the gap with Transformers. (A) Comparison between Gated SSM+, Hawk, and Transformer
trained with CLM and Birdie. The Birdie procedure significantly improves SSM performance. (B): Controlled
ablation using various pre-training approaches for Gated SSM. More details are available in Appendix Section D.

Model Training Procedure Accuracy (%)

Instruct Models
Gated SSM+ Birdie 42.0
Hawk Birdie 41.5
Transformer CLM 40.9
Hawk CLM 40.9
Transformer Birdie 40.2
Gated SSM+ CLM 40.0

Base Models
Hawk CLM 40.5
Transformer CLM 40.4
Gated SSM+ CLM 39.5
Transformer Birdie 39.1
Hawk Birdie 38.7
Gated SSM+ Birdie 38.5

Table 2: Average accuracy (%) across 21 EleutherAI
tasks, including ARC, MMLU, and LogiQA. The Birdie
procedure performs comparably to CLM on these tasks.
More ablations are related in detail in Appendix 5.

lassi et al., 2024; De et al., 2024). We introduce
a more complex variant by expanding the phone
book from 200 to approximately 800 entries that
can require retrieving up to 32 numbers simulta-
neously. All models were fine-tuned from their
base configurations for 250 steps, adapting to entry
counts ranging from 8 to 800. This mild fine-tuning
primarily aimed to extend positional encodings and

accommodate the models to new lengths. For addi-
tional details, please refer to Appendix D.

Ablations We evaluate variations of the Birdie
training procedure using the basic Gated SSM
model on the phone book task, related in Figure 1B.
The full Birdie procedure significantly enhances
performance across all tasks. Notably, Birdie-
Causal’s minimal improvement over the CLM base-
line highlights the role of bidirectional process-
ing. However, UL2’s minor performance boost
over CLM suggests that bidirectional processing
alone does not account for the gains. Similarly,
Birdie-Fixed Ratio’s lack of improvement provides
evidence of the importance of Birdie’s dynamic
mixtures. These trends hold across other tasks (see
the infilling task in Appendix C or SQuAD in Fig-
ure 2). We initially observed that Hawk trained
with Birdie outperformed Gated SSM on the phone
book task. This led us to develop and focus on the
Gated-SSM+ for subsequent results.

General Results Figure 1A compares the Trans-
former, Hawk, and Gated SSM+ models, trained us-
ing either Birdie or the CLM objective on the phone
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book task. This task is easy for the Transformers,
which achieve high performance regardless of the
number of phone numbers retrieved. However, we
observe training the Transformer with the Birdie
procedure leads to a slight boost in performance.
We also observe that the Hawk and Gated SSM+
baselines trained with the CLM objective perform
poorly, even when asked to retrieve only a single
phone number. In contrast, we see that both the
Hawk and Gated SSM+ models trained with the
Birdie procedure significantly reduce the perfor-
mance gap with the Transformer baselines. While
the performance of the SSMs degrades as the task
complexity increases (e.g., increasing the number
of phone numbers), the Birdie procedure signifi-
cantly extends the regime in which the SSMs can
perform the retrieval.

4.4 Question-Answering

We evaluate our models on the SQuAD-V2 Q&A
task (Rajpurkar et al., 2018). Using greedy decod-
ing (max 64 tokens) on answerable questions, we
format inputs as "contextquestion" without few-
shot examples. We measure "Answer Contains
Label" and F1 score. Figure 2 shows our results,
and further ablations and details are available in
Appendix Section B. CLM-trained SSMs’ perfor-
mance strongly degrades with increasing context
length, as noted by Jelassi et al. (2024). However,
Birdie-trained SSMs maintain performance compa-
rable to Transformers across all available sequence
lengths.

4.5 Infilling Results

Finally, we introduce a new infilling task to assess
models’ capabilities in copying, retrieval, and con-
text comprehension. Models are presented with a
story containing 3-7 causal entries, one of which is
blank. Models predict the most appropriate option
to fill this blank. As with other tasks, we observe
that the Birdie procedure allows the SSM models to
perform more closely to the Transformer baselines.
Table 3 relates the main results. More results and
details can be found in Appendix C.

5 Conclusion

In this work, we investigated the significant impact
of the training procedure on the downstream capa-
bilities of State Space Models (SSMs). While prior
research highlighted major weaknesses of SSMs
on in-context retrieval tasks, we demonstrated that

Model Training Procedure Accuracy

Instruct Models
Gated SSM+ Birdie 42.5%
Transformer Birdie 42.0%
Transformer CLM 42.0%
Hawk Birdie 40.4%
Hawk CLM 34.0%
Gated SSM+ CLM 32.8%

Base Models
Transformer CLM 40.4%
Hawk Birdie 39.7%
Transformer Birdie 39.7%
Gated SSM+ Birdie 36.6%
Hawk CLM 29.6%
Gated SSM+ CLM 29.5%

Table 3: Average accuracy on the new infilling dataset,
where models complete story segments. Birdie-trained
SSMs surpass CLM-trained SSMs. For data samples
and more, please see Appendix section C.

refining the training process can enhance their per-
formance in these areas. Specifically, we proposed
a novel combination of bidirectional processing of
the prefix with mixtures of specialized pre-training
objectives designed to improve infilling, copying,
and handling of long-range dependencies. Ad-
ditionally, we introduced an RL-based dynamic
sampling procedure that adaptively selects opti-
mal objective mixtures throughout training. As a
result, the Birdie training procedure strongly im-
proves a model’s ability to tackle retrieval-heavy
tasks where previous SSM methods have struggled.
This finding suggests that, despite the simplicity of
the popular CLM objective, this objective may not
align optimally with the inductive biases inherent
in SSM architectures.

Our work posits that SSMs can achieve enhanced
performance through careful selection and design
of training objectives, offering a novel pathway
for improvement beyond architectural modifica-
tions. By showcasing substantial performance
gains achievable through this approach, we advo-
cate for a broader reconsideration of how SSMs
are developed and optimized. The introduction
of Birdie exemplifies the benefits this methodol-
ogy can bring, pointing toward new directions for
future research. We hope that our findings will in-
spire further exploration of pre-training objectives
as a critical factor in advancing SSMs and their
application to complex NLP challenges.

6 Limitations

Our experiments were limited by an academic bud-
get. While the 1.4B models we trained and studied
are large enough to provide stronger confidence
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Figure 2: SQuAD-V2 results with instruction-tuned models. Training with the Birdie procedure strongly improves
SSM performance, compared to CLM. Further ablations and details are available in Appendix Section B.

compared to studies that can only analyze models
with less than 1B parameters, there is a lingering
question of how results scale with larger models
and more data.

It is hard to beat the simplicity of the CLM ob-
jective. The training setup required for the mixture
of objectives approach requires more care to imple-
ment correctly.

The availability of long context evaluations of
LLMs is challenging. It is often difficult to find
tasks that separate out the use of parametric knowl-
edge from true in-context reasoning abilities (Hsieh
et al., 2024). This can be particularly true in tasks
using realistic data, since the knowledge required to
solve the task may have been present in the training
data. It is possible our long paragraph question-
answering and infilling tasks slighly suffer from
this issue. On the other hand, synthetic tasks, such
as the phone book retrieval task, can make it easier
to ensure the task requires true in-context reason-
ing, albeit it is easy to question the usefulness and
applicability of such synthetic tasks. Continued
innovation in long context evaluations is crucial to
stronger long context abilities in language models
(agnostic of architecture).

In our experiments we observe that the perfor-

mance of SSMs on retrieval tasks still starts to
degrade more quickly than the Transformer base-
lines. We do not claim to have completely solved
the retrieval problem, and there may well be other
weaknesses of SSMs that are not captured in the
tasks considered in our work.
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A Appendix

A.1 Pretraining

We train all models on the same data pipeline using
The Pile.(Gao et al., 2020)6. The Pile is a collection
of several datasets, and includes books, code, web
scrapes, emails, and question-answer instruction
formatted examples.

During all training and fine-tuning, we always
use sequence packing and proper masking for all
models, preventing samples from interfering with
each other. For Hawk and Gated SSM+, we add
spacing between samples to prevent the Conv1D
layer from leaking out information. All models
use this spacing to normalize the samples seen dur-
ing evaluation periods and, therefore, reduce ex-
ternal noise when comparing models trained using
Birdie’s reinforcement learning setup.

Models trained for 32,000 steps, with a batch
size of 520. We train all models on The Pile (Gao
et al., 2020) dataset for 32B tokens using sequence
packing and proper masking to prevent sample in-
terference. All models were pre-trained with a
sequence length of 2048. Following recommen-
dations by Chowdhery et al. (2022), we pre-train
slightly over Chinchilla optimal scaling laws (Hoff-
mann et al., 2022) – 20-25x tokens per parame-
ter. We provide a comparison of compute costs
and resources in Table 4. We count both context
and target tokens as tokens "seen" by the model.
This provides a fair comparison among different
pre-training objectives. This diverges from other
approaches, which do not always consider context
tokens in their total count of tokens on which the
model was trained (Tay et al., 2023). This means
that the Copying task, for example, results in an
actual reduction in the total count of unique train-
ing tokens seen by the model. This is because the
training budget is for a number of tokens. With
copying, the same tokens appear twice: once as an
input, and once as a label.

We use the same hyperparameters for all models,
using the same settings, such as learning rates and
batch sizes, as models found in Mamba (Gu and
Dao, 2023). We use the official settings for Hawk -
gradient clipping on Beta and no weight decay on
RG-LRU layers. Our Transformer baselines use
Llama 2 Long’s positional encodings.

6We use the full version of The Pile, last available mid-
2023

A.2 Instruction Tuning
For 1.4B parameter models, we largely follow the
progressive learning fine-tuning procedure from
Orca 2 (Mitra et al., 2023), as immediately jump-
ing into relatively difficult, small datasets, such
as SlimOrca-Dedup (Lian et al., 2023) ended
up hurting performance. We follow common
instruction-tuning procedures from FLAN (Long-
pre et al., 2023), Zephyr (Tunstall et al., 2023), and
Tulu (Wang et al., 2023) with dropout, cosine de-
cay learning rate, and no weight decay. We use all
training, validation, and test sets as provided by the
original authors.

We change hyperparameters from FLAN’s paper
since we use AdamW and not AdaFactor. We need
a different learning rate to compensate for the lack
of AdaFactor’s parameter-scaled updates. We use a
gentle 3e-4 peak cosine LR as in Zephyr (Tunstall
et al., 2023) over 4 epochs. For FLAN, we extend
the sequence length to 4096 (from 2048 during pre-
training) and use a batch size of 20. This keeps the
number of tokens per batch equal with the original
publication.
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A.3 Hardware and Experimental Setup
We fully-train 11 models, each containing 1.4
billion parameters. The primary training is con-
ducted on 5 machines, each equipped with 4 Nvidia
A100 GPUs (80GB). Additionally, fine-tuning
and evaluation was split among Google TPUv3-8
and TPUv4-32 units, generously provided through
Google’s TPU Research Cloud, for which we are
sincerely grateful. The fixed ratios of BFR was
found by training small 110M Gated SSM and
Transformers models with random mixtures and
hand-tuning sampling rates. This took over 50 it-
erations of training the 110M model, which took
roughly 5 hours each.

Table 4 relates compute cost between models for
the hardware we used for pre-training.

Backend Model GPU
Hrs
(A100)

Sec /
Step

Seq
Length

Tokens
/ sec /
A100

Torch Birdie 3,200 2.0 N/A 26,148
Torch Flash Attn. 2 7,011 4.4 2048 12,152

JAX Gated-SSM 5,600 3.5 N/A 15,214
JAX Gated-SSM+ 6,480 4.05 N/A 13,148
JAX Hawk 7,680 4.8 N/A 11,093
JAX Transformer 10,016 6.3 2048 8,506

Table 4: Comparison of observed model training speeds
on our multi-node A100 setup.
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A.4 The EleutherAI LM Harness Tasks
Task Description
arc_easy The ’Easy’ portion of a multiple-choice question-answering dataset, containing questions from

science exams from grade 3 to 9 (Clark et al., 2018).
arc_challenge The Challenge portion of the dataset, containing the more difficult questions that require

reasoning (Clark et al., 2018).
boolq A question answering dataset for Yes/No questions containing 15942 examples; each example

is a triplet of (question, passage, answer), with the title of the page (from google search engine
where questions are collected) as optional additional context (Clark et al., 2019).

copa The Choice Of Plausible Alternatives (COPA) dataset consists of 1000 questions composed of
a premise and two alternatives, with the task being to select the alternative that more plausibly
has a causal relation with the premise (Gordon et al., 2012).

HellaSwag A dataset designed to test common sense reasoning and grounded situations, presenting
contexts from video and text with multiple-choice endings where a model must predict the
most likely continuation (Zellers et al., 2019).

logiQA A question answering dataset derived from logical reasoning examination questions, aimed at
evaluating the deep logical reasoning capability of models (Liu et al., 2020).

mathqa A large-scale dataset of math word problems (Amini et al., 2019).
mc_taco 13K question-answer pairs that require temporal commonsense comprehension on (1) duration

of an event, (2) order of events, (3) time when event occurs, (4) event frequency, and (5)
stationarity (whether a state is maintained for a very long time or indefinitely). (Zhou et al.,
2019)

medmcqa A large-scale, Multiple-Choice Question Answering (MCQA) dataset designed to address
real-world medical entrance exam questions (Pal et al., 2022).

mmlu The Massive Multitask Language Understanding (MMLU) dataset, consisting of questions
spanning multiple subjects and domains, designed to test models on a broad range of knowledge
and reasoning skills (Hendrycks et al., 2021).

mnli Often also referred to as multi-nl, this Multi-Genre Natural Language Inference (MultiNLI)
corpus is a dataset to test sentence understanding; it offers data from ten distinct genres of
written and spoken English–enabling evaluation on nearly the full complexity of the language
and on cross-genre domain adaptation. (Williams et al., 2018)

OpenBookQA A dataset that consists of 5,957 multiple-choice questions that necessitate the use of both
reasoning and additional broad common sense or scientific knowledge not contained in the
question itself (Mihaylov et al., 2018).

piqa The Physical Interaction Question Answering dataset, focusing on reasoning about physical
properties of objects and the actions taken upon them (Bisk et al., 2020).

pubmedqa A Yes/No biomedical question answering dataset collected from PubMed abstracts (Jin et al.,
2019).

qa4mre The Question Answering for Machine Reading Evaluation dataset is designed for the annual
competition, consisting of a series of questions based on a single document with multiple-
choice answers (Peñas et al., 2013).

qnli The Question-answering Natural Language Inference dataset is automatically derived from
the Stanford Question Answering Dataset v1.1 (SQuAD) of question-paragraph pairs, where
one of the sentences in the paragraph (drawn from Wikipedia) contains the answer to the
corresponding question (written by an annotator). (Wang et al., 2018).

race A large-scale reading comprehension dataset collected from English exams, featuring questions
with multiple-choice answers that demand high-level reasoning abilities (Lei et al., 2018).

sciq Crowd-sourced science exam questions about Physics, Chemistry, Biology, etc, in multiple-
choice format with 4 answer options and an evidence-supporting paragraph for the correct
answer for most questions (Welbl et al., 2017).

sst2 The Stanford Sentiment Treebank, a corpus with fully labeled parse trees for a complete
analysis of the compositional effects of sentiment in language (Socher et al., 2013).

wic A large-scale Word in Context dataset based on annotations curated by experts for generic
evaluation of context-sensitive representations (Pilehvar and Camacho-Collados, 2018).

winogrande A large-scale dataset of 44k problems, inspired by the original Winograd Schema Challenge
(WSC) design (Levesque et al., 2012), but adjusted to improve both the scale and the hardness
of the dataset (Sakaguchi et al., 2019).
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A.5 Birdie Pretraining Metrics

Figure 3: These plots show how Birdie’s RL adjusts the pre-training objective mixtures in
Gated SSM, building up to Gated SSM+ by adding an MLP, as well as a 1D Convolution
layer. Objectives are arbitrarily grouped and averaged together.
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B SQuAD V2

Task Description and Setup We evaluate our
instruction-tuned models on SQuAD V2, a
question-answering dataset. In SQuAD V2, mod-
els are given a Wikipedia excerpt and asked a ques-
tion. Some questions have several acceptable la-
bels, while others are purposefully unanswerable.
Following prior work (Jelassi et al., 2024), we fo-
cus only on answerable questions. We do not fine-
tune our models on this task.

While the standard SQuAD V2 metric (F1) pe-
nalizes models for generating additional words, our
models are not trained for brevity. Since SQuAD
predates modern conversational language models,
we prioritize the "Answer Contains Label" metric.
This metric awards full credit if any acceptable an-
swer is present in the generated response, while the
F1 score awards partial credit for word matches but
penalizes verbosity.

Model Tag Training Procedure F1 (%) Answer Contains Label (%)

Gated SSM Birdie 17.0 31.3
Gated SSM UL2 12.8 18.6
Gated SSM Birdie - Fixed Ratio 11.3 18.5
Gated SSM Birdie - Causal 11.3 15.0
Gated SSM CLM 10.3 14.7

Table 6: Averaged SQuAD V2 results with instruction-
tuned Gated SSM models. Training with the Birdie
procedure strongly improves SSM performance com-
pared to other training procedures. The best performing
model and metrics are shown in bold.

Model Tag Training Procedure F1 (%) Answer Contains Label (%)

Transformer Birdie 21.4 73.7
Transformer CLM 21.0 60.9
Gated SSM+ Birdie 23.2 54.4
Hawk Birdie 20.9 52.6
Hawk CLM 10.1 16.1
Gated SSM+ CLM 9.1 15.7

Table 7: Averaged SQuAD V2 results with instruction-
tuned models. Training with the Birdie procedure
strongly improves SSM performance, compared to
CLM. The best performing models and metrics are
shown in bold. These results are plotted by sequence
length in Figure 2

.
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C Story Infilling Task

Task Description We generate thousands of sto-
ries with blank sections using Mistral v0.1 Instruct
(7B) with an unusually high temperature of 10.0
and use a minp of 0.10 to keep text coherent. At
the same time, we have the model generate four
potential choices to fill in that story, with one of
them being the intended best choice. Generally,
the choices to fill in the stories are plausible. The
model tends to generate at least one adversarial
option that is very close to being the best answer,
but is also not the best choice.

We filter questions using a Jaccard similarity of
0.85, so when at least two stories share at least
15% of their words, only one is kept and the rest
are removed. Finally, we present each story and
its choices to four language models, and ask if
the intended label is truly the best choice. We
remove questions that do not receive a majority
vote from four language models. Specifically, these
are the instruct versions of Mistral Nemo 2407
(12B), Gemma-2 (9B), Llama 3.1 (8B), and Mistral
v0.3 (7B).

Model Training Procedure Accuracy

Instruct Models
Gated SSM Birdie 36.8%
Gated SSM Birdie - Fixed Ratio (BFR) 36.2%
Gated SSM UL2 34.7%
Gated SSM Birdie - Causal 33.9%
Gated SSM CLM 32.2%

Base Models
Gated SSM Birdie 36.8%
Gated SSM Birdie - Causal 34.7%
Gated SSM UL2 31.7%
Gated SSM Birdie - Fixed Ratio (BFR) 29.6%
Gated SSM CLM 27.5%

Table 8: Average accuracy over our new infilling dataset.
Models fill in a missing part of a story by selecting the
best possible option. Losses are normalized by target
token length.
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Dataset Example Below, we provide an example
of a shorter entry and a longer entry from our new
infilling dataset.

Short Entry:

Consider the following sequence of events , then select a choice that best fills
in the missing entry:

1. A stranger hands a letter to Ellie on a rainy afternoon.
2. (blank)
3. As she gets closer to the island , the edges of the map feel warm.

Choices:
(A) The letter contains information about a secret meeting happening at the end
of the week.

(B) She ignores the letter and throws it away.
(C) Ellie finds a hidden treasure map in the envelope.
(D) The letter leads her to an uncharted island.

Which choice best fills in the missing entry?

Label:

(D) The letter leads her to an uncharted island.

Figure 4: A short example from our new infilling task.
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Long Entry:

Consider the following sequence of events , then select a choice that
best fills in the missing entry:

1. A young woman named Mia had a passion for baking. She enjoyed trying
out new recipes and experimenting with different flavors. One day , as she was

perusing through a cookbook , she came across a recipe for a unique chocolate
cake that sounded both delicious and challenging to make. Determined to create
this masterpiece , Mia gathered all the necessary ingredients and began the
process.

2. (blank)
3. She added more flour to thicken the mixture and waited patiently for

the result. When she took a small spoonful of the new mixture , it had finally
reached a consistency that resembled cake batter. Relieved , Mia continued with
her baking process , pouring the mixture into a round pan and placing it in the
oven.

4. The aroma of freshly baked chocolate cake filled Mia 's home as she
waited for the timer to go off. When the cake was finished , she carefully
removed it from the pan and placed it on a cooling rack. Once it had cooled
down enough to eat , Mia took a bite and smiled with satisfaction. Her
experimentation had paid off; she had created a delectable chocolate cake that
tasted as good as it smelled.

5. Proud of her achievement , Mia shared the cake with her family. They
all raved about how moist and flavorful the cake was , with no one guessing the
troubles she had gone through to perfect the recipe. From that day on, this new
chocolate cake recipe became a staple in Mia 's kitchen , something that both

delighted her family and showcased her unwavering determination to succeed in
all things baking.

Choices:
(A) The chocolate cake mixture seemed too watery , so Mia added an

additional ingredient.
(B) Mia decided that she did not need to adjust the recipe and

proceeded with it as written.
(C) Mia gave up on her goal of creating the perfect chocolate cake.
(D) Mia added more flour to thicken the mixture.

Which choice best fills in the missing entry?

Label:

(A) The chocolate cake mixture seemed too watery , so Mia added an
additional ingredient.

Figure 5: A long example from our new infilling task.
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D Phone Number Task

Hyperparameters Models are fine-tuned for 250
steps using a learning rate of 5e-5, no weight decay,
and a batch size of 32 for 250 steps. We find a
batch size of 64 and just 100 steps brings similar
results, but the Gated SSM had difficulty with this.
Training samples range from 8 to 800 entries and
from 1-32 phone numbers to retrieve. Ideally, this
allows for our models to handle any phone book
example given in this range. We use sequence pack-
ing to concatenate shorter training examples out to
16384 tokens. Sequences are packed. Evaluations
are done using a sequence length of 16384. Since
names vary in length, our implementations tries to
get close to 800 total entries.
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Inputs:

What are the phone numbers for Keven Meador , Stacey Krohn , Aubrey Wrenn , Eva
Jurkovic , Gloria Job , Lamont Wilson , Emerald Hyman , Ali Hunsberger , Karsyn
Jankowski , Alec Vinyard , Cole Pattison , Noe Pacheco , Trent Adamo , Greggory
Chudnovsky , Yandel Funderburk , Scot Mitterer , Matthew Zeigler , Delvin Lerdal ,
Ellen Hickerson , Violet Lightbody , Ashlynn Buckingham , Pranav Blaisdell ,
Sheridan Lorentz , Levar Sharpe , Ramiro Vanlandingham , Yahir Leavitt , Cassius
Mcguigan , Lillie Jetmore , Beatriz Jobe , Jamison Arruda , John Lovett , and Wade
Anger? Find them in the phonebook below.

Phonebook:
Leonardo Rampone: 669 -174 -4914
Porter Wendell: 243 -610 -6940
Nicolle Journell: 612 -425 -4786
Tremayne Wcislo: 811 -843 -0927
[[~12 pages worth of phone entries go here]]
Elbert Foglesong: 345 -541 -6086
Matthew Zeigler: 417 -648 -0710
Patricia Queener: 174 -489 -9656
Kathryn Enrile: 472 -553 -8622

What are the phone numbers for Keven Meador , Stacey Krohn , Aubrey Wrenn , Eva
Jurkovic , Gloria Job , Lamont Wilson , Emerald Hyman , Ali Hunsberger , Karsyn
Jankowski , Alec Vinyard , Cole Pattison , Noe Pacheco , Trent Adamo , Greggory
Chudnovsky , Yandel Funderburk , Scot Mitterer , Matthew Zeigler , Delvin Lerdal ,
Ellen Hickerson , Violet Lightbody , Ashlynn Buckingham , Pranav Blaisdell ,
Sheridan Lorentz , Levar Sharpe , Ramiro Vanlandingham , Yahir Leavitt , Cassius
Mcguigan , Lillie Jetmore , Beatriz Jobe , Jamison Arruda , John Lovett , and Wade
Anger? Find them in the phonebook above.

Labels:

337 -743 -1822 , 487 -090 -9300 , 261 -549 -5474 , 239 -751 -7415 , 899 -328 -4576 , 500 -199 -0084 ,
744 -974 -9713 , 617 -979 -7448 , 132 -114 -9918 , 807 -843 -6708 , 200 -177 -4367 ,

800 -256 -6603 , 276 -090 -4864 , 174 -449 -8065 , 107 -912 -1144 , 367 -994 -8279 ,
417 -648 -0710 , 130 -012 -0838 , 668 -436 -3798 , 951 -625 -4252 , 734 -538 -6288 ,
952 -422 -8127 , 209 -140 -8566 , 252 -088 -9435 , 956 -578 -5675 , 355 -111 -4554 ,
779 -940 -5640 , 235 -150 -3054 , 312 -638 -2822 , 400 -177 -6943 , 896 -686 -1785 ,
330 -123 -2864

Figure 6: An abbreviated example of a 32 phone number retrieval sample with a 16,384 token length.
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E Code

E.1 Bidirectional Example

This code is available on the Github page. URL:
https://github.com/samblouir/birdie.

Prefix -LM example:

This enables bidirectionality on the inputs/
context , and enforces causality on the
labels.

Assuming sequence packing , it is compute -
matched with a causal scan operation.

(i.e.: reverse_Lambda_elements = np.where(
reset_mask == 2, 0.0,
reverse_Lambda_elements))

Example:

Original inputs: [4, 5, 6]

Original labels: [7, 8, 9]

# The inputs.
# 1 acts as the "begin generating" token.
Processed inputs: [4, 5, 6, 1, 7, 8]

# The labels.
Processed labels: [-, -, -, 7, 8, 9]

# Marks which tokens to use for the loss
Processed loss_mask: [0, 0, 0, 1, 1, 1]

# Locations with "2" mark where
# to block state information flow
# from the right/reverse -direction
Processed reset_mask: [0, 0, 0, 2, 2, 2]

# Marks the bidirectional tokens
# (aka encoder area) for Attention.
Processed attn_mask: [1, 1, 1, 0, 0, 0]

Here is a transposed view of the processed
data:

idx , input , label , loss_m , attn_m , reset_mask

0, 4, 0, 0, 1, 0,

1, 5, 0, 0, 1, 0,

2, 6, 0, 0, 1, 0,

3, 1, 7, 1, 0, 2,

4, 7, 8, 1, 0, 2,

Equivalent abbreviated SSM code:

split_location = (state_size // 2)

Lambda_elements_forward = Lambda_elements
[..., :split_location]

Lambda_elements_reverse = Lambda_elements
[..., split_location :]

Bu_elements_forward = Bu_elements [..., :
split_location]

Bu_elements_reverse = Bu_elements [...,
split_location :]

h_t_fwd = scan(Lambda_elements_forward ,
Bu_elements_forward)

h_t_rev = scan(Lambda_elements_reverse ,
Bu_elements_reverse , reverse=True)

# Concatenate on the last axis
h_t = concatenate(xs_fwd , xs_rev)
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E.2 Gated SSM Implementation

import jax
import jax.numpy as jnp
from jax.nn import sigmoid , gelu
import flax.linen as nn
from flax.linen import Module , Dense

class GatedLinearRNN(nn.Module):
state_size: int
hidden_size: int

def setup(self):
self.W_f = Dense(self.state_size)
self.W_z_gate = Dense(self.state_size)
self.W_z = Dense(self.state_size)
self.W_out_gate = Dense(self.state_size)
self.W_out = Dense(self.hidden -size)
self.Conv1D = Conv(features=state_size ,

kernel_size =4)

def __call__(self , x_t):
out_gate = gelu(self.W_out_gate(x_t))

x_t = self.Conv1D(x_t)
f_t = sigmoid(self.W_f(x_t))
z_t = self.W_z(x_t) * sigmoid(self.

W_z_gate(x_t))

h_t = ParallelScan(f_t , z_t)
y_t = self.W_out(out_gate * h_t)
return y_t
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E.3 Hawk Implementation

import jax
import jax.numpy as jnp
from jax.nn import sigmoid , softplus
from jax import custom_vjp
import flax.linen as nn
from flax.linen import Module , Dense

""" Hawk is untrainable without aggressive
gradient clipping (standard gradient
norm clipping is insufficient).

This custom backwards pass implementation is
directly from RG-LRU code in the
RecurrentGemma codebase. """

@custom_vjp
def sqrt_bound_derivative(x, max_gradient):

""" Computes a square root with a
gradient clipped at 'max_gradient '.
"""

return jnp.sqrt(x)

def stable_sqrt_fwd(x, max_gradient):
return jnp.sqrt(x), (x, max_gradient)

def stable_sqrt_bwd(res , g):
x, max_gradient = res
x_clipped = jnp.maximum(x, 1 / (4 *

max_gradient **2))
return (g / (2 * jnp.sqrt(x_clipped)),)

sqrt_bound_derivative.defvjp(stable_sqrt_fwd ,
stable_sqrt_bwd)

%%%%%%

class HawkLayer(nn.Module):
""" Hawk Layer: This layer uses a Conv1D

followed by an RG-LRU layer.

Attributes:
forget_base: Base forgetting factor.
alpha_log_scale: "C" in the RG-LRU

equation. Scaling factor for the
alpha parameter.

max_gradient: Maximum gradient for (
NaN) gradient clipping in sqrt
operation.

"""
forget_base: float
alpha_log_scale: float
state_size: int
d_model: int
max_gradient: float = 1000.0

def setup(self):
self.W_a = Dense(self.state_size)
self.W_x = Dense(self.state_size)
self.W_input = Dense(self.state_size ,

use_bias=False)
self.W_output = Dense(self.d_model ,

use_bias=False)
self.W_gate = Dense(self.state_size ,

use_bias=False)
self.Conv1D = Conv(features=

state_size , kernel_size =4)

def __call__(self , x_t):
sidegate = gelu(self.W_gate(x_t))
x_t = self.Conv1D(x_t)

r_t = sigmoid(self.W_a(x_t))
softplus_forget_base = softplus(self.

forget_base)

% Calculate a_t in log space for
stability

a_t = jnp.exp(self.alpha_log_scale *
softplus_forget_base * r_t)

log_a = -8.0 * gate_a * jax.nn.
softplus(a_param)

a = jnp.exp(log_a)

a_squared = jnp.exp(2 * log_a)
beta = sqrt_bound_derivative (1 -

a_squared , self.max_gradient)
i_t = (beta * sigmoid(self.W_x(x_t))

* x_t)

h_t = ParallelScan(a_t , i_t)
y_t = self.W_output(sidegate * h_t)
return y_t
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