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Abstract

LLMs process text as sequences of tokens
that roughly correspond to words, where less
common words are represented by multiple
tokens. However, individual tokens are of-
ten semantically unrelated to the meanings of
the words/concepts they comprise. For exam-
ple, Llama-2-7b’s tokenizer splits the word
“northeastern” into the tokens [_n, ort, he,
astern], none of which correspond to seman-
tically meaningful units like “north” or “east.”
Similarly, the overall meanings of named enti-
ties like “Neil Young” and multi-word expres-
sions like “break a leg” cannot be directly in-
ferred from their constituent tokens. Mecha-
nistically, how do LLMs convert such arbitrary
groups of tokens into useful higher-level rep-
resentations? In this work, we find that last
token representations of named entities and
multi-token words exhibit a pronounced “era-
sure” effect, where information about previous
and current tokens is rapidly forgotten in early
layers. Using this observation, we propose a
method to “read out” the implicit vocabulary
of an autoregressive LLM by examining dif-
ferences in token representations across layers,
and present results of this method for Llama-2-
7b and Llama-3-8b. To our knowledge, this is
the first attempt to probe the implicit vocabu-
lary of an LLM.1

1 Introduction

Despite their widespread use, the specific mech-
anisms by which LLMs are able to “understand”
and generate coherent text are not well understood.
One mystery is the process by which groups of
subword tokens are converted into meaningful rep-
resentations, a process described by Elhage et al.,
2022 and Gurnee et al., 2023 as detokenization.

Current language models process text as a se-
ries of tokens drawn from a set token vocabulary:
One token can correspond to a single word (_fish),

1Code and data available at footprints.baulab.info
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Figure 1: We observe “erasure” of token-level informa-
tion in later layers of LLMs for multi-token words and
entities (top). We hypothesize that this is a result of
a process that converts token embeddings into useful
lexical representations, and introduce a new method for
enumerating these lexical items (bottom).

or to a piece of a larger word (mon in “salmon”).
The vocabulary of tokens available to a model is
typically determined before training with byte-pair
encoding (Sennrich et al., 2016), which is based on
a specific dataset and can lead to unintuitive results.
For example, Llama-2-7b’s (Touvron et al., 2023)
tokenizer breaks the word “northeastern” into the
tokens [_n, ort, he, astern], none of which corre-
spond to semantically meaningful units like “north”
or “east.” Capitalization also creates unexpected
issues: for example, the word “Hawaii” is split into
two tokens if the first letter is capitalized [_Hawai,
i], but four if the first letter is lowercase [_ha, w, ai,
i]. In spite of these challenges, large models are ap-
parently able to “understand” such idiosyncratic to-
kenizations of multi-token words with few observ-
able effects on downstream performance (Gutiérrez
et al., 2023), unless these weaknesses are directly
targeted (Wang et al., 2024; Batsuren et al., 2024).
How is this possible?

We hypothesize that during pretraining, LLMs
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develop an implicit vocabulary that maps from
groups of arbitrary tokens to semantically meaning-
ful units. These lexical units may be multi-token
words (“northeastern”), named entities (“Neil
Young”), or idiomatic multi-word expressions
(“break a leg”) and can be understood as “item[s]
that function as single unit[s] of meaning” in a
model’s vocabulary (Simpson, 2011). Lexical
items are also non-compositional: Just as the mean-
ing of “break a leg” cannot be predicted from the in-
dividual meanings of “break” and “leg,” the mean-
ing of “patrolling” cannot be predicted from its
constituent tokens pat and rolling. This arbi-
trariness necessitates some kind of storage system,
implicit or otherwise (Murphy, 2010).

How exactly do LLMs deal with these cases
mechanistically? In this paper, we begin to answer
this question by investigating token-level informa-
tion stored in LLM representations.

• We find that last token positions of multi-
token words and named entities “erase” token-
level information in early layers for both
Llama-2-7b (Touvron et al., 2023) and Llama-
3-8b (Meta, 2024).

• We develop a heuristic for scoring the “lexical-
ity” of a given sequence of tokens, and use it
to “read out” a list of an LLM’s lexical items
given a large dataset of natural text.

We interpret this erasure effect as a “footprint”
of a mechanism in early layers that orchestrates the
formation of meaningful lexical items.

2 Background

Previous work has shown that knowledge about a
multi-token entity is often stored in the last token of
that entity. For example, Meng et al. (2022) found
that factual information about a subject like “The
Space Needle” would be concentrated in the repre-
sentation for le. Geva et al. (2023) find evidence
for a subject enrichment stage during factual recall,
where information about an entity is collected at
its last token in early layers, which is also seen in
other work on factual recall using the same dataset
(Katz et al., 2024), and corroborated by research
on athlete → sport lookups (Nanda et al., 2023).
This phenomenon may be due to the autoregressive
nature of decoder transformer models: models can-
not enrich “Space” with information about Seattle
until after “Needle” is seen, as “Space” could refer

to a number of unrelated concepts (“Space Jam,”
“Space Station”).2

Other work in interpretability has also started
to uncover evidence of models encoding lexical
items. Elhage et al. (2022) observe neurons in
early layers that fire on the last tokens of multi-
token words, names of famous people, generic
nouns, compound words, and LaTeX commands.
They also find late-layer neurons that seem to be
relevant to retokenization, i.e., conversion from
internal representations back into tokens. For ex-
ample, a retokenization neuron might fire on _st
and promote rag in order to facilitate the output
of the word “straggler.” Gurnee et al. (2023) also
find examples of polysemantic neurons in Pythia
models (Mallen and Belrose, 2023) that activate for
a number of multi-token constructions like “apple
developer,” “Bloom.ington,” and “research.gate.”

3 Linear Probing of Hidden States

3.1 Method

If last token positions are so important (Section 2),
then what do these representations encode? Per-
haps the last hidden state directly stores informa-
tion about other subject tokens (e.g., _Wars might
contain some encoding for _Star in its hidden
state). To test this hypothesis, we investigate hid-
den states for both Llama-2-7b and Llama-3-8b, as
they have significantly different token vocabulary
sizes |V| (32k and 128k tokens, respectively).

Let d denote the hidden dimension of the model.
We train linear probes p(ℓ)i : Rd → R|V| to take a
hidden state h(ℓ)t ∈ Rd at layer ℓ and token position
t and predict the value of a nearby token t+ i. For
example, a probe trained to predict the previous
token for hidden states at layer 5 would be denoted
by p(5)−1.

We train probes for all layer indexes 0 ≤ ℓ < 32
and offsets i ∈ {−3,−2,−1, 0, 1}. We also train
probes in the same manner on the embedding layer
(ℓ = −1) and on the final outputs of the network
before the language modelling head (ℓ = 32). We
trained probes on a random sample of 428k tokens
from the Pile (Gao et al., 2020) using AdamW for
16 epochs with a batch size of 4 and a learning rate
of 0.1. Hyperparameters were selected based on
validation performance on a separate Pile sample

2This is not a hard-and-fast rule; it depends on entity fre-
quency and context cues. For example, if a model sees _The,
_E, and iff, it may already know that these tokens refer to
“The Eiffel Tower” without needing to see el and Tower.
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the movie Star Wars the movie Star Wars

Figure 2: Top-1 test accuracy on COUNTERFACT subject last tokens versus other tokens in the dataset for probes
trained on Llama-2-7b hidden states (n = 5063). i represents the position being predicted (e.g., i = −1 is previous
token prediction; i = 1 is next-token prediction). We observe an “erasure” effect in last subject tokens that is
not present for other types of tokens: these last subject tokens consistently “forget” about preceding tokens and
themselves. Appendix A shows Llama-3-8b results and in-distribution performance on Pile tokens.

(279k tokens) after a random sweep. Each probe
takes 6-8 hours to train on an RTX-A6000.

3.2 COUNTERFACT Subjects

After training probes in Section 3.1, we test them
on the COUNTERFACT dataset (Meng et al., 2022),
which consists of prompts about subjects that re-
quire factual knowledge to complete correctly (e.g.
“Mount Passel is in Antarctica”). We filter the
dataset to include only prompts that the model an-
swers correctly, yielding 5,063 examples for Llama-
2-7b and 5,495 examples for Llama-3-8b. To aug-
ment this dataset, we also sampled and filtered
down [album/movie/series→ creator] pairs from
Wikidata (Vrandečić and Krötzsch, 2014) and em-
bedded them in prompts in the same manner, yield-
ing a total of 12,135 correctly-answered prompts
for Llama-2-7b and 13,995 for Llama-3-8b.

Figure 2 shows probe test results on COUNTER-
FACT last subject tokens (right) versus every other
type of token in the dataset (left). We see a striking
“erasure” effect for last tokens of COUNTERFACT

subjects, where these hidden states consistently
“forget about” preceding and current tokens. Sub-
ject tokens that are not in the last position (e.g.,
_Star) do not exhibit this pattern (Appendix A,
Figure 13). This striking drop in token accuracy
is reminiscent of the subject enrichment stage de-
scribed by Geva et al. (2023), suggesting that the
tokens _Star and _Wars may be overwritten in the
process of representing the concept of Star Wars.

We also observe the same phenomenon when
testing on named entities identified by spaCy in
Wikipedia articles (Appendix A, Figure 12), sug-

gesting that this effect is not an artifact of the short
templates found in the COUNTERFACT dataset. It
also does not seem to be a result of any imbalances
in probe training data (Appendix B).

3.3 Multi-Token Words

Intuitively, the process of converting a multi-token
sequence like [_n, ort, he, astern] into a mean-
ingful representation of the word “northeastern”
resembles the process of converting [_E, iff, el,
Tower] into “Eiffel Tower.” We hypothesize that
models treat multi-token words in the same way
that they treat multi-token entities, and test our
probes from Section 3.1 on multi-token words. Af-
ter sampling 500 articles (∼256k tokens) from the
20220301.en split of the Wikipedia dump (Foun-
dation, 2022), we split by white-space to naively
identify word boundaries. As predicted, we see
the same “erasing” pattern for multi-token words
that we do for multi-token entities (Figure 3). This
suggests that they may be processed in a similar
manner in early layers. Appendix A shows similar
results for Llama-3-8b.

4 Building a Vocabulary

After examination of probe behavior for multi-
token words and entities, we hypothesize that this
“erasure” effect is a result of the implicit formation
of lexical representations in early layers. To char-
acterize this phenomenon, we propose an erasure
score ψ to identify token sequences that follow the
pattern observed in Section 3. We then introduce
an approach to “reading out” a list of implicit vo-
cabulary entries for a given model using this score.
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the inter.mitt.ent the inter.mitt.ent

Figure 3: Top-1 test accuracy of probes on last tokens of Wikipedia multi-token words for Llama-2-7b (n = 80606).
Accuracy on all other tokens shown on the left. We see an erasing effect for multi-token words, similar to the effect
seen for COUNTERFACT subjects in Figure 2.

4.1 An Erasure Score
Given some arbitrary sequence of tokens from in-
dices p through q, we want to design an erasure
score that captures intuitions from Section 3. This
score should be higher for sequences exhibiting
token erasure (which we hypothesize to be lexical
items like [_Cal, g, ary]), and lower for other types
of token sequences (e.g., [_go _to, _Cal, g]). We
design a metric ψp,q that uses probe outputs from
Section 3 to look for erasure effects betwen layer 1
and layer L.3

Concretely, Equation 1 defines the score ψp,q for
a sequence sp,q of length n = q − p+ 1 as:

1

1 + 2n

(
δ(q, 0) +

q∑

t=p

−1∑

i=−2

1within(t, i) · δ(t, i)
)

(1)
where δ(t, i) denotes the change in probability of
the predicted token t + i from layer 1 to layer L,
based on probes p(ℓ)i from Section 3.1. We take the
softmax of the probe outputs to obtain the probabil-
ity of a specific token t+ i in Equation 2.

δ(t, i) = P
p
(1)
i

(t+ i|h(1)t )−P
p
(L)
i

(t+ i|h(L)t ) (2)

Finally, if t + i lies outside the boundaries of s,
we want the score to decrease. If it is within the
boundaries of s, we want a large drop between
layers δ(t, i) to increase the value of ψp,q.

1within(t, i) =

{
−1 if t+ i < p

1 else
(3)

In summary, for every token position p ≤ t ≤ q
and prediction offset i ∈ {−2,−1}, we measure

3For both Llama-2-7b and Llama-3-8b we set L = 9.

the drop in the predicted probability of the correct
token t+ i between layer 1 and layer L. The more
that the probability of the correct answer decreases
in early layers, the higher we score that sequence.
However, if this “forgetting” occurs for tokens out-
side of the boundaries of s, we subtract that value
from the overall score, effectively penalizing the se-
quence. This intuition comes from close inspection
of probe behavior—for example, Figure 13 shows
that there is no “forgetting” effect for i = −1 when
probing the first token of COUNTERFACT subjects.
With this approach, we can also account for cases
where s is a subsequence of a larger lexical item:
if the token g shows a forgetting effect for _Cal in
[_Cal, g, ary], then the sequence [g, ary] would
be penalized. Finally, δ(q, 0) additionally rewards
sequences in which the last token “forgets itself,”
as seen in Figures 2 and 3. We then normalize by
the total number of δ values considered, in order to
account for differing sequence lengths.

4.2 Segmenting Documents

We develop an algorithm built around our erasure
score ψ that breaks any given document d ∈ D into
high-scoring, non-overlapping segments covering
all of d (Algorithm 1). Figure 1 shows the top-
scoring sequences sp,q calculated in this manner
from a Wikipedia excerpt about Thelonious Monk,
where unigram scores are excluded for clarity. Not
all multi-token words are scored highly via our
approach, but the highest-scoring sequences are
plausible lexical items that are non-compositional
in nature (“dram.atic”, “sil.ences”, “tw.ists”). We
share examples of more documents with complete
segmentations in Appendix D.
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Algorithm 1 Document Segmentation

Require: document d ∈ D of length l
1: for n = 1 to l do ▷ all ngram lengths
2: for p = 0 to l − n do
3: for q = p+ n− 1 to l − 1 do
4: assign score ψp,q to sequence sp,q
5: end for
6: end for
7: end for
8: sort s in descending order of ψ
9: segms← ∅

10: for sp,q in sorted s do
11: if ∀sx,y ∈ segms, (x > q ∨ y < p) then
12: segms← segms ∪ {sp,q}
13: end if
14: end for
15: return segms ▷ non-overlapping segments

Token Sequence n ct ψ

lower case 3 2 0.736012
storm 2 4 0.716379
excursion 4 2 0.713134
====... (72 ‘equals’ signs) 8 2 0.712982
Mom 3 2 0.706778
acre 3 2 0.629213
Subject 3 2 0.607172
ninth 3 2 0.606669
processing elements 3 2 0.599549
CVC 3 2 0.596735

Table 1: Top ten highest-scoring sequences for Llama-
2-7b using a Pile subsample (1658 sequences recovered
total). n is the number of tokens in the sequence, and ‘ct’
represents occurrences of this segment. ψ is averaged
over all occurrences.

4.3 Model Vocabularies

Finally, we propose a method to “read out” the
implicit vocabulary of a modelM given a dataset
D. For each document d ∈ D, we segment d using
Algorithm 1. We then average scores ψ for every
multi-token sequence that appears more than once
in D. As this process is very data-dependent, we
show results for both Pile and Wikipedia text. The
top 50 sequences for each dataset and model are
provided in Appendix E.

With this approach, we are able to recover
∼1800 sequences for Llama-2-7b and ∼900 for
Llama-3-8b using the same five hundred Wikipedia
articles. Although recall is quite low (Table 2),

MTW MTE

llama data prec. recall prec. recall

2-7b
wiki 0.306 0.016 0.143 0.016
pile 0.296 0.017 0.080 0.018

3-8b
wiki 0.044 0.001 0.010 0.000
pile 0.023 0.001 0.012 0.001

Table 2: Precision and recall for aggregated results of
Algorithm 1 run on Llama-2-7b and Llama-3-8b, using
either Wikipedia or Pile documents (|D| = 500). MTW
refers to all multi-token words in the dataset when split
by whitespace; MTE refers to all spaCy named entities.

we find that 44.9% of sequences recovered for
Llama-2-7b on Wikipedia text are either multi-
token words or multi-token entities (29.68% for
Pile text). For Llama-3-8b, only 5% and 3% of
retrieved sequences are multi-token words or enti-
ties. However, looking at examples of Llama-3-8b
sequences in Appendix E, we can observe other in-
teresting cases, like multi-token expressions (“gold
medalists,” “by per capita income,” “thank you
for your understanding”) and LaTeX commands (as
similarly observed by Elhage et al. (2022)). Be-
cause Llama-3-8b’s token vocabulary is four times
larger than Llama-2-7b’s, its implicit vocabulary
also seems to consist of larger multi-word expres-
sions and chunks of code rather than multi-token
words (Appendix E, Table 7).

5 Conclusion

In this work, we present preliminary evidence for
the existence of an implicit vocabulary that allows
models to convert from byte-pair encoded tokens
to useful lexical items. We posit that the “erasure”
effect we observe for Llama-2-7b and Llama-3-
8b is a result of model processes that deal with
multi-token expressions, and use this insight to pro-
pose a new method for “reading out” an LLM’s
implicit vocabulary. This is a first step towards
understanding the formation of lexical representa-
tions in LLMs, and may serve as a useful tool for
elucidation of words that a given model “knows.”

Limitations

Evaluation of implicit vocabulary-building meth-
ods (Section 4) is challenging due to the lack of
a known ground-truth. Our approach is motivated
by the desire to understand the inner workings of
the model being studied, but we have no authorita-
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tive reference that distinguishes between situations
where a given sequence gets a high ψ value because
it is truly treated as a lexical unit by the model, or
where it may be due to an error in our methodol-
ogy. To quantify our results, we have compared
the extracted vocbulary to sequences that we as-
sume to be likely lexical items: multi-token words
and spaCy named entities. However, this likely
does not cover all cases for which “token grouping”
occurs in LLMs.

Another limitation of this work is that we have
restricted our analysis to known entities. There is
also the question of what happens for intermediate
cases such as plausible-sounding fictional towns or
names of people who are not famous. If ψ corre-
lates with sequence presence in training data, these
results could be useful for understanding how fa-
miliar an LLM is with a given word or entity.

Finally, our measurements have been run only on
the Llama family of models and do not yet extend
to non-Llama models of comparable size, or Llama
models of larger sizes.

Ethics Statement

In this work, we restrict our analysis to English
words, due to our biases as native speakers of En-
glish. We hope that this work can also provide valu-
able insights for other languages, especially low-
resource languages, where understanding “what
words an LLM knows” may be especially useful.
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A Additional Probing Results

A.1 Llama-3-8b Results

COUNTERFACT Accuracy We share results
analogous to Figure 2 for Llama-3-8b, which shows
a similar “erasure” pattern (Figure 9). Probes are
tested only on prompts that Llama-3-8b answers
correctly.

Multi-Token Word Accuracy Figure 10 shows
results for Llama-3-8b probes tested on the last to-
ken positions of multi-token words from Wikipedia
(where “words” are determined by whitespace sep-
aration).

Multi-Token Entity Accuracy Figure 11 shows
results for probes tested on the last token posi-
tions of multi-token entities identified by spaCy,
using the same dataset that we do for multi-
token words. We use spaCy’s named entity recog-
nition pipeline to identify named entities. Be-
cause digits 0-9 are added to Llama-2-7b’s vo-
cabulary, we filter out all classes relating to num-
bers (PERCENT, DATE, CARDINAL, TIME, ORDINAL,
MONEY, QUANTITY), with the thought that these se-
quences may be treated differently at the detok-
enization stage.

A.2 Llama-2-7b Results

Multi-Token Entity Accuracy Figure 12 shows
results for Llama-2-7b probes tested on multi-token
entities from Wikipedia, using the same dataset
from Section 3.3 and also filtering out number-
based entity classes as in Section A.1.

Pile Accuracy While Figure 2 shows test accu-
racy of linear probes on model hidden states, Fig-
ure 4 shows in-distribution test accuracy on Pile
tokens. We can observe a smoother trajectory of
gradual “forgetting” of previous and current token-
level information throughout layers.

Comparison of Token Positions Figure 13
shows the breakdown of probe performance on dif-
ferent types of subject tokens: first subject tokens,
middle subject tokens, and last subject tokens. We
see that the observed drop in previous and current
token representation observed in last subject tokens
still exists, but is not as drastic for first and middle
subject tokens.

Comparison of Subject Lengths We also show
previous token representation broken down by

Figure 4: Overall test accuracy on unseen Pile tokens
(n = 273k) for probes trained on Llama-2-7b hidden
states. Next token prediction becomes more accurate
throughout model layers as current and previous token
accuracy decreases.

COUNTERFACT subject length for last token repre-
sentations in Figure 14. Unigram subjects represent
previous token information at a rate even higher
than non-subject tokens. For bigrams and trigrams,
we see a pattern similar to Figure 2.

B Accounting for Possible Training
Imbalance

One explanation for the observed drop in accuracy
for COUNTERFACT entities across layers is that our
probes have simply not been exposed to as many
entity tokens during training. We do not believe
this is the case for Llama-2-7b for two reasons:
(1) If this effect was due to probes being less sen-
sitive to tokens found in multi-token entities, we
would also see a significant drop for first and mid-
dle tokens, which does not occur (Figure 13). (2)
We measure the frequency of all test n-grams in
the original Pile data used to train our probes, and
find that both subject and non-subject n-grams are
found in the probe training dataset at similar rates,
with the median number of occurrences in the test
set for both types of sequences being zero. After
removing the few non-subject sequences that do
appear often in the probe training set, we still see
the same “erasure” effect.

C Choice of L

We choose L = 9 based on probe behavior for
Llama-2-7b and Llama-3-8b, particularly in Fig-
ures 2 and 3. Table 3 shows an additional ablation
experiment for L ∈ {5, 9, 13, 17, 21}.
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MTW MTE

L prec. recall prec. recall

5 0.307 0.002 0.143 0.002
9 0.306 0.016 0.143 0.016
13 0.328 0.003 0.169 0.003
17 0.330 0.003 0.180 0.003
21 0.319 0.003 0.172 0.003

Table 3: Precision and recall for different values of L
for Algorithm 1 applied to Llama-2-7b on Wikipedia
text. Recall seems to be best for L = 9, with precision
improving by a few points in mid-late layers.

Figure 5: Full segmentation of a document from
Wikipedia via Algorithm 1 on Llama-2-7b. Borders
indicate segmentation, with bolded letters indicating
multi-token segments. Darker blue cells have higher
scores, yellow cells have negative scores. The highest-
scoring sequence in this document is “Australian Insti-
tute” (ψ = 0.579).

D Document Segmentation

We provide full document segmentations using Al-
gorithm 1 for a short excerpt from a Wikipedia
article in Figures 5 and 6. Figures 7 and 8 show
segmentations for a Pile document.

E Model Vocabularies

Tables 4 through 7 show the top 50 highest-scoring
multi-token sequences for Llama-2-7b and Llama-
3-8b across either five hundred Wikipedia articles
or five hundred Pile samples. Entries were filtered
to show only sequences that appear more than once.

Figure 6: Full segmentation of a document from
Wikipedia via Algorithm 1 on Llama-3-8b. Borders
indicate segmentation, with bolded letters indicating
multi-token segments. Darker blue cells have higher
scores, yellow cells have negative scores. The highest-
scoring sequence in this document is “. After the Games
she commented "” (ψ = 0.443).

Figure 7: Full segmentation of a document from the
Pile via Algorithm 1 on Llama-2-7b. Borders indicate
segmentation, with bolded letters indicating multi-token
segments. Darker blue cells have higher scores, yel-
low cells have negative scores. The highest-scoring
sequence in this document is “submodel” (ψ = 0.559).

Figure 8: Full segmentation of a document from the
Pile via Algorithm 1 on Llama-3-8b. Borders indicate
segmentation, with bolded letters indicating multi-token
segments. Darker blue cells have higher scores, yel-
low cells have negative scores. The highest-scoring
sequence in this document is “re really brave:” (ψ =
0.634).
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the movie Star Wars the movie Star Wars

Figure 9: Test accuracy on COUNTERFACT subject last tokens versus other tokens in the dataset for probes trained
on Llama-3-8b (n = 5495). i represents the position being predicted (e.g., i = −1 is previous token prediction;
i = 1 is next-token prediction). We observe an “erasure” effect similar to Figure 2.

the inter.mitt.ent the inter.mitt.ent

Figure 10: Test accuracy of probes on last tokens of Wikipedia multi-token words for probes trained on Llama-3-8b
(n = 91935; right). Test accuracy on all other tokens shown on the left. Similarly to Figure 2, we see an erasing
effect that is not present for other types of tokens.

by Bar.ack Ob.ama by Bar.ack Ob.ama

Figure 11: Test accuracy of probes on last tokens of Wikipedia multi-token entities for probes trained on Llama-3-
8b (n = 36723; right). Test accuracy on all other tokens shown on the left. Entities are identified via spaCy named
entity recognition, excluding entity types that include digits.
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by Bar.ack Ob.ama by Bar.ack Ob.ama

Figure 12: Test accuracy of probes on last tokens of Wikipedia multi-token entities for Llama-2-7b (n = 36723;
right). Test accuracy on all other tokens shown on the left. Entities are identified via spaCy named entity recognition,
excluding entity types that include digits.

_E
)

iff el

Figure 13: Breakdown for Section 3 probes tested on COUNTERFACT first subject tokens, middle subject tokens,
and last subject tokens. We observe an “erasing” effect only for last subject tokens. Because BOS tokens are
recoverable by i = −1 probes at high rates, and since 55% of prompts tested on had subjects at the beginning, we
filter examples for which BOS tokens are labels from the leftmost plot.

Figure 14: Probe test results for COUNTERFACT subject last tokens broken down for unigrams, bigrams, and
trigrams. Unigram subjects store previous token information at rates near 100%, even excluding BOS tokens.
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Token Sequence n ct ψ

Gottsche 3 2 0.685220
berth 3 2 0.680793
carries 3 2 0.647844
Eurocop 3 2 0.644104
franchises 3 2 0.642707
0 Women 3 2 0.639162
rape 3 2 0.632567
Rebell 3 3 0.614295
intermittently 4 2 0.613479
enn State 4 3 0.607535
North Dakota 4 10 0.600616
Sride 3 2 0.600013
fiction 2 2 0.599339
Sox 3 3 0.599043
Bazz 3 2 0.598242
erect 3 2 0.597915
borough 3 3 0.596054
encompasses 5 2 0.592084
northernmost 3 2 0.591607
Madras 3 2 0.590394
hull 3 2 0.586968
iron 2 2 0.586959
Galaxy 3 2 0.585879
began operations 3 2 0.584680
Redding 3 2 0.584244
gloss 3 2 0.576740
cello 3 2 0.573732
Gators 3 5 0.573675
senator 3 2 0.572947
restructuring 4 2 0.570552
supervised 3 3 0.570421
Mediterranean 4 2 0.567790
Madera 3 2 0.567563
sequel 3 2 0.563626
scarp 3 3 0.561548
Sout 3 2 0.560640
South Division 3 2 0.558720
rectangular 3 2 0.557339
Danny 3 2 0.556836
Examiner 4 2 0.555797
Kuwait 4 4 0.554636
Bogue 3 6 0.552219
Lancaster 3 3 0.552166
Leuven 4 3 0.548806
the Park 3 2 0.548687
first Baron 3 2 0.547447
fights 3 2 0.547171
Carpio 3 2 0.547116
Czech Republic 3 2 0.546651
Survive 4 2 0.546255

Table 4: Llama-2-7b Wikipedia results (1808 sequences
total). n is the number of tokens in the sequence, and ‘ct’
represents occurrences of this segment. ψ is averaged
over all occurrences.

Token Sequence n ct ψ

1992 births 7 2 0.573
19th-century 7 3 0.569
dehydrogen 5 2 0.553
Swahili 4 4 0.539052
Chuck Liddell 6 2 0.537169
its population was 5 5 0.534977
by per capita income 6 3 0.518991
are brownish 4 2 0.515703
ate women’s football 7 4 0.509384
Almeida 4 5 0.507277
of New South Wales 5 3 0.503120
2015 deaths 8 2 0.503074
Pittsburgh 3 3 0.503070
21st-century 7 4 0.499362
(NSW 4 9 0.497107
age of the United
Kingdom 6 3 0.487303
Presidential 3 2 0.485317
Landmark 3 2 0.484965
Alistair 4 2 0.484930
Tauri 3 8 0.482449
2 km 4 2 0.479984
20th-century 7 3 0.475703
East Bay 3 2 0.475156
game goes in extra
time, if the scored 10 2 0.472323
São Paulo 3 2 0.470874
Atlantic City 3 2 0.470726
Chaluk 3 2 0.467165
Frank Lloyd 3 2 0.462585
may refer to: 6 4 0.462234
gold medalists 4 2 0.458494
, 2nd Baron 6 2 0.456996
people) 4 4 0.454926
series aired 4 2 0.453057
Srib 3 2 0.451708
with blackish 4 2 0.450033
World Cup players 4 2 0.448979
main role 3 2 0.448569
Bos 4 2 0.448425
Asenath 4 2 0.448259
Royal Navy 3 3 0.445617
2. Bundesliga players 7 2 0.445210
External links 3 69 0.444921
an unincorpor 6 2 0.443527
Gast 2 4 0.437695
Pfor 3 2 0.432194
Elisio de Med 5 2 0.431518
" (2007) "Jad 12 2 0.429412
Elkh 3 2 0.428984
Früh 3 2 0.427781
order of the NK 5 2 0.424037

Table 5: Llama-3-8b Wikipedia results (892 sequences
total). n is the number of tokens in the sequence, and ‘ct’
represents occurrences of this segment. ψ is averaged
over all occurrences.
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Token Sequence n ct ψ

lower case 3 2 0.736012
storm 2 4 0.716379
excursion 4 2 0.713134
====... (72 ‘equals’ signs) 8 2 0.712982
Mom 3 2 0.706778
acre 3 2 0.629213
Subject 3 2 0.607172
ninth 3 2 0.606669
processing elements 3 2 0.599549
CVC 3 2 0.596735
VPN 3 3 0.596052
Regul 3 2 0.591968
bore 2 2 0.590212
$\dot{G 5 2 0.589714
Rates 3 2 0.589637
INSURANCE 5 2 0.584323
Commercial 4 2 0.581543
Barney 3 3 0.574872
PTA 3 2 0.571932
penetrated 4 2 0.570164
MG 3 2 0.569830
Leigh 3 2 0.567894
jail 3 3 0.567225
TNS 3 2 0.567003
peptides 4 2 0.565775
John Arena 3 2 0.565648
Disease 4 2 0.564662
welfare 4 4 0.564364
wild type 3 2 0.560699
uws 3 3 0.557799
ongrel 4 3 0.554208
liquid cry 3 3 0.553408
princess 3 2 0.551672
Denmark 3 2 0.548702
birthday 3 2 0.548504
atedmes 4 2 0.548171
"ENOENT 5 2 0.547169
third-party 4 2 0.546949
aliens 3 2 0.546507
Durban 3 4 0.545848
Bouncy 4 3 0.545826
CHO 3 2 0.542762
unjust 3 2 0.538813
these motivational 4 3 0.537485
DLS 3 4 0.535933
\n& 3 2 0.534510
uneven 3 2 0.533137
watt 3 2 0.532243
’She 3 2 0.531300
HP 3 3 0.529555

Table 6: Llama-2-7b Pile results (1658 sequences total).
n is the number of tokens in the sequence, and ‘ct’
represents occurrences of this segment. ψ is averaged
over all occurrences.

Token Sequence n ct ψ

</td>\n<td> 9 2 0.627583
{d}x 5 3 0.599395
*\n 4 3 0.587016
_{n=1}{̂\in 7 4 0.585434
</td>\n<td 8 2 0.573310
-2-2007-061 12 3 0.551581
reticulum 4 3 0.549337
INSURANCE 5 2 0.548263
32;\n internal static 8 2 0.547893
;\n internal static 6 9 0.540374
: At 4 2 0.538609
(2,9,’ 6 4 0.537495
Respondent 4 2 0.534509
\t\t}\n\n\t 7 3 0.530669
(3,0,’ 6 4 0.529493
_{n-1}\ar 7 2 0.527303
thank you for
your understanding 6 2 0.513979
hydroxyl 4 2 0.510059
>\n*/\private $ 9 2 0.510054
in mukaan 5 2 0.506333
{w}{̂B}_{ 6 2 0.505970
/2\Z 5 2 0.501998
’); \nINSERT INTO 6 10 0.501055
7-f131 7 2 0.496881
0, 1L> 8 2 0.495809
/0 S 5 2 0.492042
5 Audi 4 2 0.491043
all that apply 4 3 0.490469
": true,\n 6 2 0.486807
4,\n 5 2 0.485315
to as DSP 5 2 0.484967
**B**]{}\ 6 2 0.483484
;\ninternal 5 3 0.479777
100% used 6 2 0.475673
", "x": 5 3 0.474701
2.7 4 2 0.473720
</td>\n 6 2 0.473578
" code=" 4 4 0.473514
e2d-d 6 2 0.473418
is under conversion 4 5 0.473355
{ int|sys 5 3 0.471213
();\n}\n\nprivate
boolean isAny 12 2 0.470941
(2,8,’ 6 4 0.470214
trachea 4 2 0.469154
use in an automobile 6 2 0.467788
at org.apache.c 7 5 0.467637
world around us 4 2 0.464469
2\left(1+x 8 2 0.463555
or Commodore 5 3 0.463106
11-117 7 2 0.459824

Table 7: Llama-3-8b Pile results (819 sequences total).
n is the number of tokens in the sequence, and ‘ct’
represents occurrences of this segment. ψ is averaged
over all occurrences.
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