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Abstract

Recently, image-based Large Multimodal Mod-
els (LMMs) have made significant progress in
video question-answering (VideoQA) using a
frame-wise approach by leveraging large-scale
pretraining in a zero-shot manner. Neverthe-
less, these models need to be capable of finding
relevant information, extracting it, and answer-
ing the question simultaneously. Currently, ex-
isting methods perform all of these steps in a
single pass without being able to adapt if insuf-
ficient or incorrect information is collected. To
overcome this, we introduce a modular multi-
LMM agent framework based on several agents
with different roles, instructed by a Planner
agent that updates its instructions using shared
feedback from the other agents. Specifically,
we propose TraveLER, a method that can cre-
ate a plan to “Traverse” through the video, ask
questions about individual frames to “Locate”
and store key information, and then “Evaluate”
if there is enough information to answer the
question. Finally, if there is not enough infor-
mation, our method is able to “Replan” based
on its collected knowledge. Through exten-
sive experiments, we find that the proposed
TraveLER approach improves performance
on several VideoQA benchmarks without the
need to fine-tune on specific datasets. Our
code is available at https://github.com/traveler-
framework/TraveLER.

1 Introduction

Over the last few years, Large Multimodal Models
(LMMs) have demonstrated tremendous progress
in the area of video understanding, particularly
for the video question-answering (VideoQA) do-
main (Fu et al., 2023; Wang et al., 2024). More
recently, LMMs have been able to achieve impres-
sive results through video-based models (Lin et al.,
2023a; Sun et al., 2022; Ye et al., 2023; Li et al.,
2023). However, video models require a high level

*Equal contribution.

of computational complexity to fine-tune, and an-
notations are difficult and expensive to collect. As
a result, many recent approaches (Xue et al., 2023;
Yu et al., 2023; Zhang et al., 2023a) operate on
the frame level, leveraging large-scale image-based
pretrained models in a zero-shot manner.

Moreover, these models may need to do several
tasks simultaneously in a single step. In particular,
they should identify the correct events in videos
by understanding what information is relevant and
ignoring irrelevant information. Next, they would
need to extract specific and question-relevant visual
details and use them to answer the question. As
such, one iteration might not be enough to collect
all the necessary information. For example, many
current approaches use simple captioning, which
is often too general to extract specific details, or
they might miss important events. In these cases,
current approaches cannot revisit the video to find
additional information. Decomposing this process
into different components allows each component
to adapt to newly collected information.

To address this, we introduce a modular multi-
LMM agent framework for VideoQA. A Planner
agent instructs agents in charge of different tasks,
such as navigating through the video, extracting
visual information through a question-answering
process, and reviewing this information to select an
answer. Feedback from the agents is then passed on
to each other and back to the Planner, who uses the
feedback to update its instructions. In this way, we
can revisit the video to narrow our focus or expand
our search to more relevant information and extract
specific details to answer the question.

Consider the example in Figure 1. Suppose we
are asked why the boy turned over in the middle
of the video. In the first iteration, our method uses
temporal cues from the question to skip to the mid-
dle of the video and asks questions to find the rele-
vant frames. In the next iteration, we gather more
information. Asking about what the boy is doing,
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Choices:
(A) train is coming            (B) to sit down
(C) look at something       (D) resting on the yellow object
(E) to get down from slide

Plan: Go to the 
middle of the video 

to find where the boy 
turns over 

Q: Is the boy turned 
on his stomach? 

Plan: View the 
frames immediately 
after to identify any 

actions

Q: Is the boy looking 
at anything specific?

Go 
Here

Q: Do I have 
enough information 

to answer the 
question? A: No

Go 
Here

Q: What is the boy 
doing? 

Q: Do I have 
enough information 

to answer the 
question? A: No

Go 
Here

Q: Is there a train in the 
background?

Q: Is the boy resting? Q: Do I have 
enough information 

to answer the 
question? A: Yes, 
the answer is (E) 

A: Yes, he is

A: Standing up 
at the bottom of 
the slide 

A: No, he is not

A: No, he is 
running in the 
background

A: No, there is 
not

𝑄: Question: 
Why did the boy turn over on his 
stomach in the middle of the video?

Iteration 1

Iteration 2

Iteration 3

A: Yes, the boy is 
on a yellow slide

Q: Is there a yellow 
object? 

Plan: View frames 
closer to the end to 

confirm that the boy is 
not still on the slide

Figure 1: A simplified overview of our TraveLER framework. Our proposed framework aims to answer the
question by collecting relevant information from keyframes through interactive question-asking. To accomplish
this, several agents (in colored boxes) with different roles interact (left-to-right in each row) over several iterations.
TraveLER creates a plan (in blue) to “traverse” (in orange) through the video, asks questions regarding individual
frames (in yellow) to “locate” and store key information and, “evaluates” whether there is sufficient information to
answer the question (in green), and “replans” using past collected knowledge if there is not enough information.
Click on the image to see the video.

we learn that he is “standing up at the bottom of
the slide" and is not looking at anything specific,
which informs us that the boy is no longer “sit-
ting down" (choice B) or “resting on the yellow
object" (choice D). To eliminate these choices, we
must confirm that the boy does not sit back down
again by traveling to a timestamp near the end of
the video. Finally, since we have collected enough
information and followed the plans, we can select
the right choice that the boy turns over to be on his
stomach “to get down from slide” (Choice E).

Our proposed approach – Traverse, Locate,
Evaluate, and Replan (TraveLER), has four main
stages. First, in the Traversal stage, an agent creates
a plan to answer the question. In the Location stage,
an agent uses the plan to decide which timestamp
of the video to select. The corresponding frames
are then sent to another agent, which asks ques-

tions and stores the answers in a memory bank for
future iterations. Finally, in the Evaluation stage,
an agent reviews all collected information and de-
cides whether to answer or create a modified plan
(Replan) to start the next iteration if necessary.

To summarize, our main contributions are: (i)
We introduce TraveLER, a modular multi-LMM
agent framework for video question-answering. (ii)
Our method shows improved performance on multi-
ple difficult video question-answering benchmarks,
such as NExT-QA, EgoSchema, Perception Test,
and STAR. (iii) Our method is easy to employ with
different LLMs and LMMs, highlighting the effec-
tiveness of our modular approach.

2 Related Work

Video Question-Answering. VideoQA involves
answering free-form or multiple-choice questions
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given an input video. Compared to image ques-
tion answering, VideoQA poses unique challenges
because it often requires strong temporal under-
standing and the ability to deal with long input se-
quences. Many recent works have focused on train-
ing end-to-end video-language models (Fu et al.,
2023; Sun et al., 2022; Wang et al., 2024; Ye et al.,
2023; Yu et al., 2022; Li et al., 2023), but doing
so remains challenging due to computational con-
straints and difficulties in architecture scaling. As
a result, many approaches adopt pretrained image
models to the video domain by extracting infor-
mation independently from each frame (Xue et al.,
2023; Yu et al., 2023; Zhang et al., 2023a). Here,
we design a framework that builds an adaptive plan
to find and extract relevant information using a
question-answering approach.
LMMs for Video Understanding. LMMs have
been shown to be extremely useful for VideoQA.
Some methods use supervised or contrastive train-
ing to perform video-LMM pretraining (Zhao et al.,
2023; Yang et al., 2023; Chen et al., 2024), while
others adapt existing LMMs and use instruction tun-
ing to adapt them to the video domain (Zhang et al.,
2023b; Maaz et al., 2024; Lin et al., 2023a). How-
ever, recent improvements in LMM capabilities
have allowed for many strong approaches for few-
shot (Alayrac et al., 2022; Wang et al., 2022) and
zero-shot VideoQA (Yang et al., 2022). In particu-
lar, zero-shot methods, such as LLoVi (Zhang et al.,
2023a), use pre-trained LMMs to generate captions
for each frame in the video. Nevertheless, uni-
formly sampling frames at random may miss impor-
tant visual information and focus on unimportant
frames (Wu et al., 2019; Lei et al., 2021b). Recent
works like SeViLA (Yu et al., 2023) addressed this
problem by performing parameter-efficient finetun-
ing using captions to identify keyframes (Lu et al.,
2022; Buch et al., 2022; Qian et al., 2023), but this
requires fine-tuning on specific datasets. Unlike
these works, which select all keyframes in a single
pass, we introduce a novel iterative and modular
approach instructed by a planner.
LMM-based Agents for Videos. The strong rea-
soning abilities of LLMs (Brown et al., 2020;
Chung et al., 2022) have made them effective in
LLM-based agent approaches for videos, where
an LLM performs much of the reasoning after col-
lecting information from different modules (Chen
et al., 2023; Lin et al., 2023b; Zhang et al., 2024;
Zeng et al., 2023). For example, Socratic Mod-
els (Zeng et al., 2023) proposes a method to reason

about videos based on generated audio transcrip-
tions and CLIP frame similarity scores, while other
works like VideoChatCaptioner (Chen et al., 2023)
proposes a way to caption videos through chat di-
alogues between an LLM and a LMM. Recently,
there have also been works that use program gener-
ation using an LLM to answer questions (Choud-
hury et al., 2023; Min et al., 2024). However, these
works still use a single-pass approach and provide
very general captions. In contrast, our work uses
an iterative question-answering process to extract
specific, relevant information in the frame.

3 TraveLER Framework

We begin by describing some background on the
LLM and LMM architectures (Section 3.1), then
introduce each component of our framework (Sec-
tion 3.2) and implementation details (Section 3.3).
Our method is shown in Figure 2.

3.1 Preliminaries

Large language and multimodal models. LLMs
are text-conditioned generative models. Given a
prompt P , they encode it into a fixed language
embedding l in an embedding space f(·) and use
this to produce text response R: R = f(l(P )).
Similarly, Large Multimodal Models (LMMs) are
adapted to jointly reason over vision and language.
To map different modalities into the shared embed-
ding space f(·), an image I is encoded using an
encoder v, and the prompt P is encoded using a
fixed language embedding l. The LMM outputs a
textual response R: R = f(v(I), l(P )).
Video question-answering. VideoQA involves
viewing a video and answering questions. The
model is usually evaluated through top-1 accuracy,
which chooses the best answer out of a set of possi-
ble choices. Specifically, given a question Q, video
input V consisting of a set of frames {I1, · · · , In},
and a set of choices C = {c1, · · · , cn}, the model
is asked to choose the best ci to answer Q. Next,
we introduce each component of our method.

3.2 TraveLER Components

Traversal. In the Traversal stage, we create a plan
for how to traverse through the video, which is a list
of textual instructions that guide our approach to
answering the question. To achieve this, we use the
task prompt PT , which is an instruction to create a
plan for answering the question. We combine PT

with the question Q, and memory bank M , which
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𝑉: Video

𝑄: Question
Why did the boy turn 

over to be on his 
stomach in the 

middle of the video?

Memory 
Update

{0:00 -
[Q: …, A: …],
0:20 -
[Q: …, A: …],
0:32 -
Q: …, A: …]}

Output:
(A) train is coming
(B) to sit down 
(C) look at 
something
(D)  resting on the 
yellow object
(E) to get down on 
slide

𝑅𝑇: Plan
Step 1. Go to the middle of 
the video to find the frame 
where the boy is on his 
stomach.
Step 2. View the frames 
before the identified frame
…

Q&A Pairs
{𝒒𝟏: Is the boy looking 
at anything of interest? 
𝒂𝟏: The boy is face 
down on the slide with 
his feet on the ground, 
…}

𝐼𝑡

𝑡: 0: 20 

Extractor

What questions should 
I ask about this frame?

Retriever

𝑃𝑅: Which frames 
should I view next?

𝑀: Memory

𝑅𝑇: Plan

𝑄: Question

𝑀: Memory

𝑅𝑇: Plan

Evaluator

1. Is the plan completed?
2. Is there enough 

information to answer 
the question?

𝑄: Question

𝑀: Memory

𝑅𝑇: Plan

𝐶: Choices

No

Yes

𝑳𝑳𝑴𝒑𝒍𝒂𝒏𝒏𝒆𝒓 

𝑳𝑳𝑴𝒓𝒆𝒕𝒓𝒊𝒆𝒗𝒆𝒓 

𝑳𝑴𝑴𝒆𝒙𝒕𝒓𝒂𝒄𝒕𝒐𝒓

𝑐𝑖: caption

𝑳𝑴𝑴𝒆𝒙𝒕𝒓𝒂𝒄𝒕𝒐𝒓

{𝑞𝑖 , … , 𝑞𝑛}: questions

Planner

𝑃𝑇: What’s my plan to 
answer the question?

𝑀: Memory
{0:00 - [Caption, 
Q: …, A: …], 
0:32 - [Caption, 
Q: …, A: …]}

𝑳𝑳𝑴𝒆𝒙𝒕𝒓𝒂𝒄𝒕𝒐𝒓
𝑳𝑳𝑴𝒆𝒗𝒂𝒍𝒖𝒂𝒕𝒐𝒓

Response

𝑉: Video

𝐼𝑡: 𝐸: Explanation

Locator

𝑃𝐸: 

𝑃𝑉: 

𝑄: Question

Figure 2: TraveLER framework. Our framework consists of four different modules, the Planner, Retriever,
Extractor, and Evaluator. The Planner creates a plan and sends it to the Retriever. The Retriever uses the plan to
select the next timestamp and sends this to the Extractor. The Extractor captions and generates questions about the
timestamp, answers the questions, and saves the output in the memory bank. Finally, the Evaluator determines if
there is enough information and if the plan has been followed. If yes, the Evaluator returns the answer, else the
existing information is sent back to the Planner to begin a new iteration.

is a dictionary of collected information keyed by
timestamps and containing information from the
corresponding frame, to receive the final prompt
P

(1)
T : P (1)

T = “[Q][M ][PT ]”.
Our method uses a memory bank M to store

collected information, which allows information to
persist and to be updated as we proceed through
different iterations. We initialize M with captions
of 5 evenly sampled frames throughout the video.
We find that this memory initialization gives the
model good context for the general idea of the
video, and performs better than starting with an
empty memory M . After the first iteration, we add
information iteratively using the Extractor module,
which we discuss later in this section.

Next, we input the prompt P (1)
T into LLMplanner,

which returns response RT , a step-by-step plan on
how to traverse through the video and what infor-
mation should be collected. This plan is revised in
future iterations using collected information.

RT = LLMplanner(l(P
(1)
T ))

Our next step is to use the plan RT in the Loca-
tor stage to locate relevant events and extract the
information that we will use to answer the question.

Locator. The Locator is a component that con-
sists of two submodules, the Retriever and the Ex-
tractor. The Retriever selects the timestamps of
the next frames to view, while the Extractor ex-
tracts relevant information from these frames using
a question-answering process. Next, we discuss
each component in more detail.

(i) Retriever: The Retriever carries out the given
plan RT by selecting which frames to view next.
The Retriever is an LLM-based submodule that
finds the next timestamp t to view, given the plan
RT , collected information M , and video meta-
data (frame rate, length). The task prompt PR

is an instruction that contains information about
the video length and asks which timestamp to
view next. Thus, we insert the question Q, the
plan RT , and the collected information M into the
task prompt PR to create the new prompt P (1)

R :
P

(1)
R = “[PR][Q][RT ][M ]”.
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Given prompt P (1)
R , the LLM in the Retriever,

LLMretriever, returns t, the next set of timestamps.
Then, it retrieves frames It at timestamp t.

(ii) Extractor: The Extractor is important be-
cause it allows us to capture more relevant and
question-specific details from the visual input, un-
like using only captions. We pass the frames
selected by the retriever It into the Extractor
submodule, which consists of two large models:
LLMextractor, to generate context-dependent ques-
tions about the frames It, and a different vision-
language model LMMextractor, which extracts the
desired information from the same frames. We
note that we use both an LLM and LMM since the
LLM is better at reasoning about the plan and the
collected information, while the LMM is able to
collect visual information requested by the LLM.

We first generate a general caption ct for frame It
using the LMMextractor. Then, we concatenate the
caption ct, plan RT , and memory M , and the Ex-
tractor task prompt PE , which is an instruction that
asks to use available information to create 3 ques-
tions to ask about the current frame. This results in
the new prompt P (1)

E : P (1)
E = “[PE ][ct][RT ][M ]”.

Next, we input this new prompt P (1)
E into the

LLM to get a set of questions {q1, q2, · · · , qn}
about each frame, where n is a parameter for how
many questions to ask about each frame.

{q1, q2, · · · , qn} = LLMextractor(l(P
(1)
E ))

where l is the fixed language embedding.
In this way, the generated questions take into

account both the plan RT and information from
past and future frames of the video M . We then
use the frame It, and the corresponding ques-
tions {q1, q2, · · · , qn} as input into LMMextractor.
The LMMextractor then outputs a set of answers
{a1, a2, · · · , a3}, where each answer ai corre-
sponds to the question qi.

{a1, · · · , an} = LMMextractor(v(It), l({q1, · · · , qn}))

where v is the visual encoder.
Finally, to use this collected information in fu-

ture iterations, we update our memory bank M . To
do this, we use the timestamp t of It as our key
and the question-answer pair list as the value, and
append this to our memory M . If the memory bank
dictionary M is too long, we summarize it by using
the memory bank as an input to another LLM and
instruct it to make the memory bank entries more

concise, while retaining the same keys and format.
This output becomes our new memory bank.
Evaluator. The Evaluator decides if there is
enough information and determines if the plan
has been followed. We concatenate the mem-
ory information M , the plan RT , the question
Q, and the choices C with the task prompt PV ,
The task prompt PV is an instruction to evalu-
ate if there is enough information to answer the
question and if the given plan RT has been ful-
filled. Thus, we get the new prompt P (1)

V : P (1)
V =

“[PV][Q][C][RT ][M ]”.

We use this prompt P (1)
V as input into the LLM

in the Evaluator, LLMevaluator, which evaluates if
there is enough information to answer the question
and if the plan has been completely followed. If
both are true, LLMevaluator outputs the best choice
c∗ to answer the question Q. Otherwise, it provides
an explanation E on why there is insufficient infor-
mation and gives this explanation to the Planner to
start a new iteration of the process.
Re-planning. After each iteration, if the evaluator
decides that there is not enough information to
answer the question Q or if the plan P has not
been completed, the existing memory M will be
provided to the Planner in the next iteration, in
addition to an explanation E for why an answer
was not chosen. The Planner then outputs a new
plan, restarting the process. We also set a limit
on the number of iterations a question can take to
prevent infinite loops. After reaching this limit, we
force the Evaluator to choose the best choice.
Summarizer. The Summarizer is an optional mod-
ule used for some datasets to summarize the in-
formation. It is given the question Q, choices C,
memory bank M , and task prompt PS , which is an
instruction to summarize the information in each
timestamp of the memory bank M . The outputted
summary is then used to replace the original mem-
ory bank M . This process helps reduce the amount
of information passed to the LLM in future steps,
which may struggle with very long inputs.

3.3 Implementation Details

Here, we discuss how we implement various com-
ponents of our framework. More implementation
details, such as prompts and dataset-specific details
are in the Supplementary in Section B.
Memory bank. We represent past collected infor-
mation as a Python dictionary, with the timestamp
of different frames as keys and a list of extracted

9744



Table 1: Results on Datasets. We show zero-shot results on different datasets. For fair comparisons, we gray out
methods with fine-tuned components in their model.

(a) NExT-QA

Model Cau. Tem. Des. Avg.

SeViLA 61.3 61.5 75.6 63.6
MC-ViT-L - - - 65.0

InternVideo 43.4 48.0 65.1 49.1
ViperGPT - - - 60.0
ProViQ - - - 63.8
LLoVi 69.5 61.0 75.6 67.7
TraveLER 70.0 60.5 78.2 68.2 (+0.5)

(b) EgoSchema (Full)

Model Acc.

mPLUG-Owl 31.1
InternVideo 32.1
LongViViT 33.3
Vamos 48.3
LLoVi 50.3
TraveLER 53.3 (+3.0)

(c) STAR

Model Avg.

SeViLA 44.6

Flamingo-9B 41.8
InternVideo 41.6
BLIP-2voting 40.3
BLIP-2concat 42.2
TraveLER 44.9 (+2.7)

(d) Perception Test

Model Acc.

SeViLA 46.2
MC-ViT-B 47.0
MC-ViT-L 48.1

Flamingo-3B 43.6
LongViViT 45.7
TraveLER 50.2 (+4.5)

information from the frame as the values. This
extracted information consists of a brief caption
of the frame and a list of question-answer pairs.
To prevent the memory bank from becoming too
large, we also implement a summarizer module
that instructs an LLM to summarize the memory
bank and return a more concise version in the same
dictionary format as before.
Agent model selection. Our modular approach
has the benefit of allowing us to easily swap in
different LLMs and LMMs (see Section 4.4). For
our main experiments, we use LLaVA-1.6 (Liu
et al., 2023) for LMMextractor and GPT-3.5/GPT-4
(OpenAI et al., 2023) for LLMplanner, LLMretriever,
LLMextractor, and LLMevaluator.
Multi-frame selection. We also allow the Re-
triever to select multiple frames instead of one.
This helps to capture better events that happen
quickly or require more context to recognize. For
example, if we want to find the action of "a woman
clapping her hands", a single frame selection may
cause us to incorrectly assume the woman is not
clapping if we view the frame where their hands are
apart. We do this by creating an optional parameter
called window size. The window size refers to the
number of frames the Retriever extracts each time.
When the window size is non-zero, the Retriever
still specifies a single timestamp to go to, but when
retrieving the frame at that timestamp, we also take
the number of frames specified by the window size
before and after the selected frame.

4 Evaluation

We evaluated our TraveLER framework on several
benchmarks described in Section 4.1, and com-
pared it to multiple baselines in Section 4.2. The
results and ablations are in Section 4.3 and Sec-

tion 4.4. Additional results and ablations are in the
Supplementary in Section A.

4.1 Datasets

We use the following datasets: (1) NExT-QA (Xiao
et al., 2021) is a dataset that tests causal action rea-
soning and temporal understanding. Following the
trend of works before us, we evaluate our method
on the 5,000 questions in the NExT-QA validation
set. (2) EgoSchema (Mangalam et al., 2023) is a
challenging dataset that tests long-form video un-
derstanding. Viewers need to view 100 seconds
of the video on average to answer the question
correctly. (3) STAR (Wu et al., 2021) tests reason-
ing in real-world video situations. (4) Perception
Test (Patraucean et al., 2023) is a challenging
dataset that focuses on skills such as memory, ab-
straction, physics, and semantics and is intended to
be approached in a few-shot or zero-shot manner.

4.2 Baselines

In our experiments, we compare our method to re-
cent state-of-the-art zero-shot (ZS) methods, such
as LLoVi (Zhang et al., 2023a), ProViQ (Choud-
hury et al., 2023), and other methods that are not
necessarily ZS, such as SeViLA (Yu et al., 2023),
and MC-ViT (Balazevic et al., 2024). We note
that SeViLA uses fine-tuned components on QV-
Highlights (Lei et al., 2021a), while MC-ViT is fine-
tuned on NExT-QA for Perception Test. Additional
baselines are in Supplementary in Section A.2.

4.3 Results

Our results are shown in Table 1. We use GPT-
4 for NExT-QA to ensure a fair comparison with
LLoVi, which is the current state-of-the-art that
uses GPT-4 to uniformly caption frames across the
entire video. Interestingly, our method outperforms
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LLoVi despite viewing 50% fewer frames on av-
erage. Second, we also outperform SeViLA by
+4.6%, although SeViLA uses a keyframe selector
that is fine-tuned on a video moment retrieval and
grounding task while our method is fully ZS.

For EgoSchema, we use GPT-4 with a re-
trained version of LaViLa that excludes overlap-
ping Ego4D and EgoSchema videos to prevent
data leakage. We show strong performance on
long-form videos, where we outperform LLoVi by
+3.0%, while viewing 95% fewer clips on average.

We use GPT-3.5 for Perception Test and STAR
because it is cheaper than GPT-4, but results are
likely to be improved even further with GPT-4.
Nevertheless, we achieve higher accuracy than
LongViViT on Perception Test by +4.5% and MC-
ViT by +2.1%, although it was fine-tuned on NExT-
QA. We surpass both the best zero-shot approach
by +2.7% and the best fine-tuned result by +0.3%.

Finally, please refer to Section A for more exper-
imental and ablation results, and Section D for addi-
tional visualizations. For example, in Figure 8, we
see that question-answering is able to extract more
relevant details in comparison to simple captioning.
This may explain why our method significantly out-
performs the descriptive split of NExT-QA. In Fig-
ure 7, we see our method is able to reason about
vague references and correctly identify relevant
objects through question-answering.

4.4 Agent Ablations
We perform ablations using 1000 randomly se-
lected questions from the NExT-QA training set
(see Table 2). Unless specified, we use GPT-
3.5/LLaVA-1.6 as the LLM/LMM for all agents.
Ablating the Planner. The Planner module out-
puts a plan, a list of instructions that guides the
behavior of all other modules. We test the impact
of removing it from our framework and find that
it is worse. We hypothesize this is because the
Planner provides many temporal cues that guide
the Retriever module’s search, such as “go to the
middle of the video”, and without these cues, the
Retriever is not as good at selecting the next times-
tamp. Moreover, the Planner also helps the Evalua-
tor better decide when to stop since in our iterative
approach, the Evaluator uses the plan to determine
when to stop. We also try removing re-planning
by only running the Planner once in the beginning
and keeping this plan fixed throughout. We find
that this also reduces performance, showing the
importance of adjusting plans to new information.

Table 2: Ablations on the agents in our framework.

Agent Ablation Avg. (%)

——– Baseline 60.4

Planner Removal 58.1
Fixed Plan 58.1

Retriever Removal 56.9
Extractor Caption Only 58.2
Evaluator No Iteration 56.8
Summarizer Removal 57.2

Ablating the Retriever. The Retriever module
determines the next timestamps to view, which
helps focus our information collection. We ablate
it by uniformly sampling frames from the video at
2-second intervals, similar to other methods like
LLoVi, which performs worse. We believe this is
because the Retriever allows us to capture frames
that might have otherwise been skipped through
uniform sampling and selects fewer unimportant
frames that might mislead the model.
Ablating the Extractor. Question asking is impor-
tant as it allows us to capture more fine-grained and
question-relevant information compared to simple
caption generation, which produces a generic de-
scription. Thus, we ablate the Extractor by only
allowing the LMM to caption frames. We find that
this decreases performance by -2.2%, suggesting
that the ability to ask specific questions about a
frame is important. We notice many generated cap-
tions capture the main idea of visual information
in the frame, but are lacking in fine-grained details.
Ablating the Evaluator. The Evaluator reflects
on the collected information and decides if there
is enough information to answer the question. To
examine the impact of this reflection process, we
make the Evaluator answer on the first iteration,
finding it results in a -3.6% performance decrease.
Ablating the Summarizer. When collecting large
amounts of information from videos, we use a Sum-
marizer to condense the information, since long
inputs can be challenging for LLMs. This has also
been observed in recent work (Zhang et al., 2023a).
To understand the impact of the Summarizer, we
remove it. The results indicate that removing it
degrades performance by -3.2%, demonstrating the
advantage of more concise information.

4.5 Additional Experiments

Substituting different LLMs/LMMs. To see how
the choice of the LLM and LMM affects our frame-
work’s performance, we swap different LLMs and
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Table 3: Ablation Results. We perform ablations on 1000 randomly selected questions from the NExT-QA training
set. We report (a), (b) replacing different LLMs and LMMs, (c) selecting different numbers of frames to view in
the Retriever, and (d) changing the number of questions asked in the Extractor. We use GPT-3.5/LLaVA-1.6 as the
LLM/LMM, 5 frames for the Retriever, and 3 questions for the Extractor, unless otherwise specified.

(a) Replacing Diff. LLMs

LLM LMM Accuracy

GPT-3.5

LLaVA-1.6

60.4
Llama 3 63.9
GPT-4 65.8
GPT-4o 68.0

(b) Replacing Diff. LMMs

LLM LMM Accuracy

GPT-4 GPT-4V 64.7

GPT-3.5
BLIP-2 52.7
GPT-4V 59.5

LLaVA-1.6 60.4

(c) # of Frames

# Frames Accuracy

1 59.0
3 57.9
5 60.4
7 59.0

(d) # of Questions

# Questions Accuracy

0 58.1
1 58.4
3 60.4
5 59.6

LMMs into our framework (see Table 3a and Ta-
ble 3b). We first try different LLMs while fixing
the LMM to be LLaVA-1.6. While GPT-4 per-
forms better than GPT-3.5 by a significant margin
of +5.4%, open-source model Llama 3 is very close
(-1.9%), while incurring no additional cost. We
also evaluate the newly released GPT-4o, which
outperforms GPT-4 by +2.2% while being 61%
cheaper, showing that our method can leverage bet-
ter future models. Second, we use different LMMs
while fixing the LLM to be GPT-3.5. We find that
LLaVA-1.6 does best, GPT-4V is slightly worse
(-0.9%), and BLIP-2 is significantly worse (-7.7%).
Finally, we run an experiment using GPT-4V as
both the LLM and LMM, and find that this does
worse than GPT-4 and LLaVA-1.6 by -1.1%.

GPT-4V Baseline. To get a baseline using GPT-4V,
we use a method similar to LLoVi using a subset
of 500 examples. We use GPT-4V to caption the
video uniformly, then ask it to answer the question
given the choices, which results in a performance
change of -2.0%. We note our motivation is to
refrain from captioning every single frame, instead
finding frames that help us answer the question.

Retriever window size. We experiment with differ-
ent window sizes in Table 3c which is the number
of frames the Retriever extracts centered around
the selected frame. This allows us to capture better
actions that occur quickly or require more context
to understand. We find that choosing 5 frames
yields the best results and a +1.4% increase when
compared to selecting a single frame, but viewing
more than 5 decreases performance. This suggests
retrieving multiple frames can help the model bet-
ter capture relevant information, but retrieving too
many frames can lead to too much information.

Memory Intialization. In order for the Planner to
create effective plans, it is beneficial to initialize
the memory bank properly. Memory initialization

Figure 3: Comparison of different Memory Initial-
ization (1, 3, 5 frames). 5 frames is optimal.

allows the Planner to have a high-level overview
of the video, and create a corresponding plan on
how to traverse the video given the initial frames.
We perform three different initializations with 1,
3, 5, 7, and 9 frames and display our results in
Figure 3. We observe that initializing the memory
bank with 5 frames uniformly sampled from the
video (0, 0.25, 0.5, 0.75, 1 for beginning, quarter,
middle, three-quarter, end) yields the best result.
In contrast, we notice a decrease in accuracy of
-2.9% when using 9 frames, -3.1% when using 7
frames, -0.6% when initializing with 3 frames (0,
0.5, 1 for beginning, middle, end), and -2.5% when
initializing with 1 frame (0.5 for middle).
Robustness to choosing incorrect frames. To see
if our approach can recover from viewing incorrect
frames, we choose random frames for the first 3
iterations (out of 5 total iterations) before using the
Retriever. This leads to an accuracy drop of only
2.8%, showing our method is capable of recovering
from viewing incorrect frames.
The number of questions. Question answering
allows us to extract more specific details from our
visual inputs. However, we noticed that too many
questions can yield irrelevant questions and false
positives. As such, we experiment with modifying
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Table 4: Comparison of TraveLER with other few-shot and zero-shot keyframe localization methods. For fair
comparisons, we gray out methods with fine-tuned components in their model. The best scores are in bold.

Method NExT-QA (Random Subset)

Temporal Causal Descriptive Average

SeViLA - Localizer (Yu et al., 2023) 48.8 61.2 68.3 58.2
Moment-DETR (Lei et al., 2021a) 45.3 55.8 70.8 54.6

SigLIP (Zhai et al., 2023) 48.4 61.5 73.8 59.1
TraveLER - Planner & Retriever (ours) 50.9 62.7 72.4 60.3

the number of questions asked for each frame by
our extractor (see Table 3d). We record results for
a 5-question, 3-question, and 1-question maximum.
Note that 0-questions asked is equivalent to only al-
lowing captions, which is discussed in the Extractor
ablation. From our results, we find that a 3-question
limit yields the best results compared to asking 1
or 5 questions (+2.0/+0.8%). This suggests that
asking questions helps in extracting relevant infor-
mation, but too many questions can lead to false
positives or too much irrelevant information.
Memory bank initialization and formatting. Our
memory bank M stores information that all mod-
ules rely on to make decisions. First, we experi-
ment with different initializations as M must be
initialized in the first iteration. We experiment with
initialization of 1, 3, and 5 uniformly sampled cap-
tions. We find using 5 evenly spaced frames yields
the best results, possibly because it starts the model
with a general overview of the video before it starts
to collect more relevant information. We also ex-
periment with changing the format of the memory
bank from JSON to markdown tables. We find this
does worse by -2.9%, possibly because LLMs are
better able to understand JSON formats.
Comparison with other keyframe selection
methods. In Table 4, we compare our Planner and
Retriever with other keyframe localization methods
by replacing our Planner and Retriever with each
of the other methods, and use our Extractor and
Evaluator to perform the question answering. For
all these methods, we use GPT-3.5 and LLaVA-1.6,
and we evaluate these methods on a random subset
of 1000 examples from the training set of NExT-
QA. Note that other methods find keyframes in
one inference iteration, whereas our inference oc-
curs over multiple iterations. Therefore, to ensure
fair comparisons, we uniformly sample 32 frames
and extract out 4 keyframes in the other methods,

and we run 4 iterations of TraveLER using the Re-
triever with a window size of 2 to similarly find 4
keyframes among fewer than 32 viewed frames.

We find that our Planner and Retriever surpasses
other keyframe localization methods, despite con-
sidering fewer total frames (∼ 25 total frames; we
have 5 for memory initialization, and up to 5 frames
each iteration). We would like to highlight that
while our method is effective at finding keyframes,
we do not need to find all keyframes to answer a
question. Instead, we are often able to choose the
correct answer with only a subset of the keyframes.
Cost of inference. We test costs for GPT-3.5 and
GPT-4, which have costs per inference of $0.03 and
$0.67, respectively. We also test the open-source
model Llama 3, which is free to run with only a
minor performance decrease (-1.9%). Finally, we
also try the new GPT-4o model, which is both bet-
ter (+2.2%) and cheaper (61%) than GPT-4. We
believe this trend will only continue as models be-
come better and cheaper in the future.

5 Conclusion

We design a modular, multi-LMM agent frame-
work for video-question answering based on sev-
eral agents with different roles, instructed by a Plan-
ner agent that updates its instructions using shared
feedback between the other agents. Our method
creates a plan to “traverse” through the video, ask-
ing questions about individual frames to “locate”
and store key information, and then “evaluate” if
there is enough information to answer the ques-
tion, “replanning” using new feedback if necessary.
Through extensive experiments and ablations, we
find that the proposed TraveLER approach is not
only easy to employ with different models but also
improves performance on several video question-
answering benchmarks without the need to fine-
tune on specific datasets.
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6 Limitations

In this work, we present a modular, zero-shot frame-
work for video question answering (VideoQA) and
demonstrate its effectiveness by improving on mul-
tiple state-of-the-art benchmarks. While TraveLER
offers substantial benefits for VideoQA, it is im-
portant to recognize certain limitations that accom-
pany our approach. Firstly, the effectiveness of our
model relies heavily on the strength of the LLM
and LMM. We notice that false-positives and in-
correct statements from the LMM heavily impact
performance. Our method’s runtime also depends
on the runtime of current existing methods, and
with the modularity of our method we expect this
to improve with faster and better models in the fu-
ture. Finally, we do not anticipate negative impacts
of this work, but, as with any Machine Learning
method, we recommend exercising caution.
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Supplementary Material for “TraveLER”

Here we provide additional information about our
experimental results, qualitative examples, imple-
mentation details, and datasets. Specifically, Sec-
tion A provides more experiment results, Section B
provides additional implementation details, Sec-
tion C provides additional related work, and Sec-
tion D provides qualitative visualizations to illus-
trate our approach.

A Additional Experiment Results

We begin by presenting several additional ablations
in Section A.1 that further demonstrate the bene-
fits of our TraveLER approach. We also present
additional results in Section A.2.

A.1 Additional Ablations
In what follows, we provide additional ablations
that further illustrate the benefits of TraveLER. For
all ablations, we compare the ablated experiment
with the corresponding best-performing TraveLER
results on a random sample of 1000 examples from
the training set of the NExT-QA dataset. We use
GPT-3.5 as the LLM and LLaVA-1.6 as the LMM.
LMM response length. The LMM in our frame-
work is crucial because it allows us to capture
more relevant and question-specific details from
visual input. However, if the LMM’s responses are
too long, the memory bank will become too large,
whereas if the LMM’s responses are too short, in-
sufficient information will be captured. Thus, we
conduct an experiment to determine the optimal
LMM response length, and display our results in
Fig 4. We find that limiting the LMM response to
150 tokens yields the most optimal performance,
while accuracy decreases by -2.2% and -1.7% if
the response is limited to 75 tokens and 300 tokens
respectively. This supports the fact that there is a
tradeoff between not collecting enough information
for short response lengths and collecting too much
information as the LMM response size increases.
Prompt analysis. In each module of our frame-
work, we use a task prompt to provide instruc-
tions to our agents (LLMs or LMMs). The con-
struction of these prompts plays a large role in
how instructions are executed. Currently, we
use the question Q as input into all prompts
(P

(1)
T ), (P

(1)
R ), (P

(1)
E ), (P

(1)
V ). However, we use

the choices C as input only for the Planner and
Evaluator prompts since the Planner needs the
choices to tailor its plan, and the Evaluator needs

Figure 4: Comparison of different LMM Response
Length (75, 150, 300 max tokens). 150 is optimal.

the choices to answer the question. We experi-
ment with adding the choices C to the Retriever
and Extractor prompts, and find that this degrades
performance by -1.6%. This may be because the
incorrect choices mislead the Retriever into search-
ing for non-existent events or the Extractor into
asking irrelevant questions.

A.2 Additional Results

Results on Causal-VidQA. We also report zero-
shot results on Causal-VidQA (Li et al., 2022), a
dataset designed to focus on causal related ques-
tions to facilitate deeper video understanding to-
wards video reasoning. We see that our method
outperforms the best zero-shot method by 16.9%.
Additional Baselines. We also compare our ap-
proach with the concurrent work MoReVQA (Min
et al., 2024). It can be seen that MoReVQA
performs better on NExT-QA by 1%, while our
method performs better on the more difficult long-
form video understanding EgoSchema benchmark
by 1.6%. We also note some key differences.
Firstly, our method is able to re-plan based on feed-
back from previous iterations while MoReVQA
uses a single forward pass through the stages
and cannot modify its approach during the pro-
cess. Secondly, we use an iterative approach while
MoReVQA does not, which allows our method to
adjust and improve using feedback from previous
iterations.

B Additional Implementation Details

To run our models on larger benchmarks, we use
8 NVIDIA RTX 6000 GPUs and split the dataset
across multiple processes. In addition, we use the
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Table 5: Zero-shot (ZS) results on Causal-VidQA.

Model Acc. (%)

Just-Ask (Yang et al., 2021) 27.1
CaKE + CoMem (Su et al., 2023) 30.0
CaKE + HGA (Su et al., 2023) 30.6
TraveLER (ours) 47.5 (+16.9)

SGLang (Zheng et al., 2023) package, which pro-
vides a variety of performance optimizations for
our LMMs and enables us to perform batched infer-
ence for models that do not natively support doing
so. We serve our LMM on a single GPU and im-
plement a queue that is shared across all runs. This
allows individual runs to asynchronously call the
LMM using an API request instead of creating a
new instance of the LMM for each run. Typically,
we have 4-5 processes sharing the same LMM.

Next, we use all default parameters. For our
LMMs, we experiment with modifying the maxi-
mum output token length as an ablation, but use
all default parameters otherwise. For the Llama 3
ablation in 3a, we serve Llama 3 70B on 4 NVIDIA
A100s using vLLM (Kwon et al., 2023). We report
results from a single run for all experiments.

B.1 Prompts
Our prompts are shown in Table 6, Table 7, Table 8,
and 9. The black text is the base prompt template,
and we replace the blue text with the corresponding
information from the relevant video. The generated
outputs are in the orange text.

B.2 NExT-QA
Dataset. NExT-QA is a challenging dataset that
tests causal action reasoning and temporal under-
standing. It contains 5,440 videos with an average
length of 44s. Compared to earlier VideoQA bench-
marks (Papalampidi et al., 2024; Xue et al., 2017;
Zeng et al., 2017; Zhu et al., 2017), NExT-QA re-
quires going beyond simple recognition of objects
and actions to answer the questions correctly. Each
question requires selecting the best option out of
5 choices, often with very similar degrees of plau-
sibility. Additionally, each question is categorized
into either a Temporal, Causal, or Descriptive type.
Temporal questions often ask what happens dur-
ing, before, or after an event or action, while causal
questions require advanced reasoning and inference
about why an event or action occurs. Following the
trend of works before us, we evaluate our method

on the 5,000 questions in the NExT-QA validation
set, which consist of 500 different videos. This
dataset is in English.
Inference Details. For NExT-QA, we use LLaVA-
1.6 (Vicuna 13B) as the LMM and GPT-4 (gpt-4-
1106-preview) as the LLM. We used the longer,
comprehensive prompts, with no answer choices
included in the Extractor prompt. We also initialize
the memory bank with 5 frames, and use the multi-
frame Retriever with 5 frames.

B.3 Perception Test

Dataset. In comparison with earlier VideoQA
datasets (Maharaj et al., 2017; Zhu et al., 2017;
Zeng et al., 2017) that focus on computational tasks
such as classification, detection, or tracking, Per-
ception Test is a dataset that focuses on skills such
as memory, abstraction, physics, and semantics.
Moreover, it is designed to test the transfer capa-
bilities of different models and intended to be ap-
proached in a few-shot or zero-shot manner. The
dataset consists of 11.6k real-world videos with an
average length of 23 seconds, and 38K multiple
choice QA questions. This dataset is in English.
Inference Details. For Perception Test, we use
LLaVA-1.6 (Vicuna 13B) as the LMM and GPT-
3.5 (gpt-3.5-turbo-0125) as the LLM. We used
shorter, simplified prompts, with no answer choices
included in the Extractor prompt. We also initial-
ize the memory bank with 5 frames, and use the
multi-frame Retriever with 5 frames.

B.4 EgoSchema

Dataset. EgoSchema is a dataset that tests long-
form video reasoning and is intended to be an-
swered in a few-shot or zero-shot manner. It in-
troduces the idea of certificate lengths, which are
the minimum number of seconds it takes to be able
to answer the question correctly. It has 5k ques-
tions in the full set, and a 500 question subset is
used as the validation set. We use the full test set
for evaluation. This dataset is in English.
Inference Details. For EgoSchema, we use GPT-
4 (gpt-4-1106-preview) as the LLM and LaViLa
as the LMM. To prevent data leakage, we use a
retrained version of LaViLa that does not use over-
lapping videos between Ego4D and EgoSchema.
For window size in the Retriever, we take the se-
lected frame, along with the frame 1 second before
and 1-2 seconds after the selected frame.
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User:
Create the best plan to gather information to answer the question.
QUESTION: QUESTION CHOICES: CHOICES
You are provided information collected from individual frames of the video and is
represented as a dictionary keyed by the timestamps of the frames.
INFORMATION: INFO
You are also given an explanation for why you aren’t able to definitively answer the
question with the current information.
EXPLANATION: EXPLANATION
Follow these rules:
1. You only have access to individual frames of the video, with no audio. You can go
to a certain timestamp, search for actions or settings, and describe or ask questions
about individual frames.
2. Make sure that you have viewed the relevant frames.
Make your plan as simple and straightforward as possible, and no longer than 5
steps long. Return your plan as a numbered list, after PLAN. Do not include any
other response or explanation. Let’s think step-by-step.

Assistant: Output: PLAN

Table 6: Planner prompt PT :

User:
You are given the following information about a LENGTH second video, with information
from individual frames at different timestamps.
INFORMATION: INFO
PLAN: PLAN
Currently, you are viewing second CURR. Choose the timestamp, in seconds, of the next
frame to view. When choosing the next frame to view, remember that you are trying to collect
information to answer this multiple choice question: QUESTION
Think of what information you need, and consider what information you already have. Use
the temporal nature of the video and your past information to choose the next frame. Do not
choose a frame you already have information about, and make sure that the frame you choose
is at least WINDOW SIZE seconds apart from the second you are currently viewing.
Return your answer as a single Python float representing the second you want to view. Don’t
provide any other response or explanation.

Assistant: Output: TIMESTAMP

Table 7: Retriever prompt PR:
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User:
You are given the following information about a LENGTH second video, with information
from individual frames at different timestamps.
INFORMATION: INFO
Currently, you are viewing second CURRENT TIMESTAMP, which has the caption: FRAME
CAPTION
Form up to 3 questions about this frame to best help answer the multiple-choice question:
QUESTION.
Follow these rules:
1. Use the given information to decide what further visual information you need to answer the
question.
2. Since you are asking questions about a single frame, you cannot ask about other frames,
reference past or future events, or ask about specific timestamps.
Return your questions as a Python list of strings (in double quotes) and don’t in-
clude any numbered lists, backticks, or language hints. Follow Python syntax. Make
sure you have followed the steps. Don’t provide any other response or explanation.

Assistant: Output: QUESTIONS

Table 8: Extractor prompt PE :

User:
Evaluate if there is enough information to answer a multiple-choice question about a video
and if the plan has been completed.
If there is enough information to choose the correct answer with complete certainty and the
plan has been followed, return the index of the choice after a brief explanation. Otherwise,
return None after a brief explanation of why you can’t narrow down to a single answer choice.
Be strict and don’t guess.
INFORMATION: INFO
PLAN: PLAN
QUESTION: QUESTION
CHOICES: CHOICES
Give a brief explanation. Then, include your final answer after the words "Final Answer:" in
your response at the end. Do not include anything other than the answer as an integer or None
after "Final Answer:".
Let’s think step by step.

Assistant: Output: ANSWER

Table 9: Evaluator prompt PV :
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B.5 STAR
Dataset. STAR is a dataset that tests reasoning
in real-world video situations. It consists of 22K
video clips, with 60K situated reasoning questions,
with 4 possible choices each. Questions are broadly
divided into 4 main categories: interaction, se-
quence, prediction, and feasibility. This dataset
is in English.
Inference Details. For STAR, we use LLaVA-1.6
(Vicuna 13B) as the LMM and GPT-3.5 (gpt-3.5-
turbo-0125) as the LLM. We used shorter, simpli-
fied prompts, with no answer choices included in
the Extractor prompt. We also initialize the mem-
ory bank with 5 frames, and use the multi-frame Re-
triever with 3 frames, since the videos are shorter.

C Additional Related Work

Modular Vision Frameworks. There has been a
long history of work (Andreas et al., 2016; Herzig
et al., 2018; Krishna et al., 2018; Baradel et al.,
2018; Battaglia et al., 2018; Herzig et al., 2020,
2022, 2019, 2023; Bar et al., 2021; Avraham et al.,
2022; Jerbi et al., 2020; Herzig et al., 2024; Mitra
et al., 2024) that attempts to combine deep neural
networks with modularity. Recently, works like
VisProg (Gupta and Kembhavi, 2023), CodeVQA
(Subramanian et al., 2023), RVP (Ge et al., 2023),
and ViperGPT (Surís et al., 2023) have leveraged
the improved coding capabilities of LMMs to gener-
ate code to compose different submodules together
to answer visual questions. In addition, ProViQ
(Choudhury et al., 2023) extends ViperGPT’s work
in the video domain by adding more modules for
VideoQA. Similarly, we leverage the strong power
of LMMs in a modular approach. However, while
these approaches have shown promising results,
they are limited to single-shot planning when gen-
erating code, resulting in a fixed plan that cannot
adapt. In contrast to these works, our approach has
the advantage of being able to iteratively replan
based on new information collected.

D Qualitative Visualizations

We present further qualitative success and fail-
ure cases of our TraveLER framework. For each
dataset, we display qualitative visualizations for
2 successes and 2 failure cases. For the success
cases, we show expanded visualizations in Figures
Table 5, Table 6, Table 7, and abridged versions
in 8 that demonstrate the benefits of our question-
answering approach compared to regular caption-

ing. For failures, we also present abridged versions
for each dataset in Figures Table 9, 10, and 11. Fi-
nally, we present some additional success and fail-
ure cases in 12. For the visualizations, we display
3 iterations of the question answering process with
2 Extractor QA pairs each, compressing the out-
put text by displaying the most important parts for
brevity. For the abridged versions, we display the
video on top, and the traversal order using the num-
bered orange circles. In the row beneath, we dis-
play the frames in the order they are selected, and
display corresponding Extractor question-answer
output in yellow and captions in gray.

E Licenses and Privacy

The license, PII, and consent details of each dataset
are in the respective papers. In addition, we wish to
emphasize that the datasets we use do not contain
any harmful or offensive content, as many other
papers in the field also use them. Thus, we do not
anticipate a specific negative impact, but, as with
any Machine Learning method, we recommend to
exercise caution.
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NeXT-QASuccesses

Q: Why is there a ladder in the middle of the land?
A: (A) for child to play in (B) supervising boy (C) tree trimming (D) cross over fence (E) to play

Planner

Plan: Identify the ladder in 
the video Go Here

Retriever Extractor

Q: Can you describe the ladder?Q: Describe this frame

A: Person is getting 
down from a ladder

A: The ladder is double 
sided in an open field

Q: Do I have enough 
information to answer 

the question? A: No

Evaluator

Planner

Plan: View frames before 
and after to narrow down 

choices Go Here

Retriever Extractor

Q: Is there anything next to the 
ladder?Q: Is there a ladder here?

A: Yes, there is A: There is a wooden post

Q: Do I have enough 
information to answer 

the question? A: No

Evaluator

Planner

Plan: Investigate the 
wooden post Stay 

Here

Retriever Extractor

Q: Does the ladder cross the 
fence?

Q: What is the wooden post 
a part of?

A: The post is 
connected to a fence

A: Yes, it does

Q: Do I have enough 
information to answer 
the question? A: Yes, 

the answer is (D)

Evaluator

Current Frame

Current Frame

Current Frame

Question and Choices

Iteration 3

Iteration 2

Iteration 1

Figure 5: NeXT-QA Success Predictions. We can see that our framework can adapt to new information collected
in past iterations. For example, in Iteration 3, our Planner module is able to use information about the wooden post
from a previous iteration and ask further questions to identify the correct answer.
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STARSuccesses

Q: What happened before the person took the blanket?
A: (A) Opened the box. (B) Opened the door. (C) Ate the sandwich. (D) Threw the towel.

Question and Choices

Planner

Plan: Find the frame 
where the person is 

taking a blanket Go Here

Retriever Extractor

A: A sandwich

Q: Do I have enough 
information to 

answer the 
question? A: No

Evaluator

Q: What is the person eating? 

A: No, he is eating

Q: Is the person taking a blanket?

Planner

Plan: Find the frame 
where the person is 

taking a blanket Go Here

Retriever Extractor

A: No, he is not

Q: Do I have enough 
information to 

answer the 
question? A: No

Evaluator

Q: Is the person still eating? 

A: Yes, he is

Q: Is the person taking a blanket?

Planner

Plan: Confirm that the 
item the person takes is a 

blanket Go Here

Retriever Extractor

A: No, he is not

Q: Do I have enough 
information to 

answer the 
question? A: No

Evaluator

Q: Is the person doing 
anything else? 

A: Yes, he has a blanket 
over his shoulder

Q: Does the person have a blanket?

Planner

Go Here

Retriever Extractor Evaluator

Q: What is the person eating?

A: He is eating food 

Q: What is the person doing?Plan: Go back to before the 
person picks up the 

blanket to identify their 
actions

A: He is eating a 
sandwich

Q: Do I have enough 
information to answer 
the question? A: Yes, 

the answer is (C)

Iteration 1

Iteration 2

Iteration 3

Iteration 4 Current Frame

Current Frame

Current Frame

Current Frame

Figure 6: STAR Success Predictions. Here, we can see that our method does not require viewing frames sequentially.
For example, we view the beginning of the video in Iteration 1, the middle of the video in Iterations 2 and 3, and
return to the beginning in Iteration 4. Moreover, our method can collect information and double-check ambiguous
information across different timestamps. For example, in Iteration 2, we are told the man is taking a blanket, and
then we can view a different frame to confirm that he is indeed holding a towel in Iteration 3.
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Perception TestSuccesses

Q: What stops the motion of the object placed on the slanted plane after being released by the person the first time? 
A: (A) I don't know. (B) The person or collision with another object. (C) High friction with the surface.

Question and Choices

Planner

Plan: Identify the object 
and the slanted plane Go Here

Retriever Extractor

Q: Is there a slanted plane

A: No, there is not

Q: Do I have enough 
information to 

answer the 
question? A: No

Evaluator

Planner

Plan: Identify the object 
and the slanted plane Go Here

Retriever Extractor

Q: Is there a slanted plane?

Evaluator

A: Yes, a notebook is 
slanted on the table

Q: Is an object on the slanted plane?

A: A notebook is being 
held and is slanted

Q: Is an object on the slanted plane?

A: A person is rolling a 
marble down the slope

Q: Do I have enough 
information to answer 
the question? A: No

Planner

Plan: Identify the object 
and the slanted plane Go Here

Retriever Extractor

Q: Is the marble stopped?

Evaluator

A: Yes, it is stopped 
at the bottom

Q: Is there an object stopping it?

A: Yes, a pink object is 
blocking the marble

Q: Do I have enough 
information to answer 
the question? A: Yes, 
the answer is (B)

Current Frame

Current Frame

Current Frame

Iteration 1

Iteration 2

Iteration 3

Figure 7: Perception Test Success Predictions. We display some success cases for the challenging Perception Test
dataset. Here, our method is able to infer which objects the question refers to through our question-asking approach,
even though the question does not explicitly describe them.
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Q: Is the paper lined or plain? 
A: (A) lined (B) I don't know (C) plain
1 2 3 4

TraveLER Output (Ours)
Q: Is there 

paper visible?

A: Yes, a person 
is writing on it

A: There is no 
paper

Q: Is the paper 
lined or plain?

Q: Is there 
paper visible?

A: Yes, a person 
is holding a page

Q: Is the paper 
lined or plain?

A: It is plain

Caption Comparison (Others)
C: Person seated with paper 

and a blue pen
C: Person writing with toys in 

the background
C: Person flips the paper, 
showing what they wrote

C: Person shows the paper 
with “MOON” written

Question and Choices
Perception Test

Successes NeXT-QA

Q: Is there a 
lady cycling?

A: No A: Yes, there is

Q: Is there a 
lady cycling?

A: Dark 
Blue

A: Are there 
any other 
cyclists?

A: No

C: A man is holding a keyboard 
instrument in a desert

C: A man holds a keyboard and 
a woman is on a bike

C: A man holds a keyboard
and a woman is on a bike

C: Two men are in a desert, 
possibly dancing together

TraveLER Output (Ours) 

Caption Comparison (Others)

Question and Choices

Q: What 
color is her 
shirt?

1 2 3 4

Q: What is the color of the shirt of the lady cycling?
A: (A) black (B) light blue (C) white and red (D) blue (E) purple

Q: What object did the person throw before they took the book? 
A: (A) the towel (B) the laptop (C) the bag (D) the blanket

Q: Does the 
person have 

a book?

A: No

Q: Does the 
person have a 

book

A: Yes, they are

Q: What is the 
person holding?

A: A bag

Caption Comparison (Others)
C: Person in red cap is seated at 

a round table
C: Person is reading a book at a 

table
C: Person is putting on a jacket 

in a living room
C: Person is preparing for a 

magic trick with plastic cups 

Question and Choices
STAR

1

A: Yes

2

Q: Is the person 
throwing 

something?

34

TraveLER Output (Ours)

Q: What object did the person throw before they took the book? 
A: (A) the towel (B) the laptop (C) the bag (D) the blanket 

1 2 3 4

1 2 3 4

1 2 3 4

Figure 8: Comparison with Captioning Approaches. For each example, we display the videos on top, and the
traversal order using the numbered orange circles. In the rows beneath, we display the frames in the order they are
selected, and display corresponding Extractor question-answer output in yellow and captions in gray. We display
compressed versions of GPT-4V-generated captions for a visual comparison. By asking specific questions, we can
extract more detailed and relevant information than a general description.
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NeXT-QAFailures

Q: How is the atmosphere of this group discussion?
A: (A) happy (B) serious (C) sad (D) angry (E) shocking

Q: What are the 
person’s emotions?

A: They are 
focused

Q: Is anyone 
smiling or 
laughing?

A: Yes, the two 
women are smiling

Q: Is the 
person angry 
or shouting?

A: No

Q: Are they 
surprised 
or shocked?

A: No

TraveLER Output (Ours)

Question and Choices

C: A person looking towards 
something off-camera

C: Two people smiling and engaged 
in conversation

C: A person looking 
towards something off-

camera

C: People gathered in a 
cozy living room

Caption Comparison (Others)

Example 1

Example 2

A: Four

C: A child holds a drum set and 
looks forward

C: A child is focused, while 
another person plays the drums 

in the foreground

C: A woman appears to be 
instructing the people 

playing the drums

C: A child is playing a drum 
with concentration, with 

another person behind them 

TraveLER Output (Ours)

Caption Comparison (Others)

Question  and Choices
Q: How many drums in total are there for the people to play? 
A: (A) four (B) two (C) six (D) three (E) eleven

Q: How many 
drums are there?

A: Four

Q: How many 
drums are there?

A: None

Q: How 
many drums 
are there?

A: Three

Q: How many 
drums are there?

1 2 3 4

1 2 3 4

Example 1

1 2 3 4

1 2 3 4

Figure 9: NeXT-QA Failure Predictions. Here, we display some failure cases for NeXT-QA. Like before, we
display the video on top, and the traversal order using the numbered orange circles. In the row beneath, we display
the frames in the order they are selected, and display corresponding Extractor question-answer output in yellow
and captions in gray. We can see that conflicting information or false positives can mislead our approach. We also
observe that counting can be a challenge for certain LMMs, but this can be mitigated in the future by swapping in
stronger LMMs.
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STARFailures

Q: What did the person do with the book?
A: (A) Took. (B) Opened. (C) Threw. (D) Put down.

Q: What is the 
person doing?

A: They are 
standing with 

a book

Q: What is the 
person doing?

A: They are 
reading a book

Q: Is the 
person still 
reading?

A: No, they are 
standing

Q: Does the 
person put 
down or throw 
the book?

A: No

TraveLER Output (Ours)

Answer

C: A person sitting upright with 
a book or tablet in hand

C: A person sitting in a living 
room reading a book

C: A person standing up in a 
living room

C: A person sitting in a living 
room reading a book

Caption Comparison (Others)

Example 1

Example 2

Q: Is the person 
holding a 
broom?

A: Yes A: Yes

Q: Is the person 
interacting with 
a window?

Q: Are they 
opening or 
closing the 
window
A: Opening

C: Person standing near 
washing machine with object in 

hand

C: Person moving towards the 
right, reaching upwards

C: A person mid gesture, next 
to washing machines

C: A person near a wall and 
washing machines

TraveLER Output (Ours)

Caption Comparison (Others)

Answer
Q: What did the person do to the window after holding the broom? 
A: (A) Closed. (B) Opened. (C) Washed. (D) Lied on.

STAR
Q: Are they 
opening or 
closing the 
window
A: Opening

1 2 3 4

1 32 4

1 2 3 4

1 2 3 4

Figure 10: STAR Failure Cases. Here, we display some failure cases for the STAR dataset, using the same abridged
representation described previously. We see that a limitation of a framewise approach is that it may be difficult to
capture very temporal actions. For example, in Example 1, it is difficult to understand if the woman is opening or
closing the window.

9764



Perception TestFailures

Example 1

Q: Is there a 
hidden object 
visible?

A: No
A: There are 3 
mugs visible A: No

C: A hand is positioned above 
three red mugs on a table

C: A hand touches one of the 
mugs, about to move it

C:  A hand holds a spoon above 
a cup

C: A hand is hovering 
around the rightmost mug

TraveLER Output (Ours)

Caption Comparison (Others)

Question and Choices
Q: The person uses multiple similar objects to play an occlusion game. Where is the hidden object at the end of 
the game from the person's point of view?
A: (A) Under the third object from the left. (B) Under the second object from the left. (C) Under the first object 
from the left.

Q: What objects 
are visible?

Q: Is there 
anything hidden 
by the mugs?

A: No

Q: Is there a 
hidden object 
visible?

1

234

Example 2

Q: What is 
the person 
attempting?

A: Placing a bottle A: No

C: A finger points at a small red 
bottle on a tiled floor

C: A finger is pushing the 
bottle, causing it to tip

C:  A bottle is falling, it is 
upside down

C: A jar and a fallen bottle 
are on a red tile floor

TraveLER Output (Ours)

Caption Comparison (Others)

Question and Choices
Q: Can the person close the door during the last attempt?
A: (A) No, the person cannot close the door. (B) Yes, the person can close the door. (C) The person didn’t 
attempt to close the door in this video.

Q: Is the person 
closing the door?

A: No

4321

Q: Is the person 
closing the door?

A: No

Q: Is the 
person closing 
the door?

Example 1

2 3 4

1 2 3 4

Figure 11: Perception Test Failure Cases. We display some qualitative visualizations for Perception Test failure
cases using the abridged representation discussed previously. We see that for some cases where objects of interest
are occluded or not in the frame, our method might have difficulties extracting useful information.
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NExT-QA

Q: Why can't the box be closed at the end? 
A: (A) The person put one or more objects that are too large to fit in the box, even if placed by themselves. (B) 
Each of the objects would fit in the box individually, but the person put too many objects. (C) The lid does not 
match the box.

Q: The person interacts with a lighting device among other objects. Is the lighting device on at any point?
A: (A) I don't know (B) yes (C) no

Q: Why are the men wearing hats?
A: (A) Sunny (B) Fashion (C) Costume of play (D) Uniform costume (E) Road repairing

Q: What does the lady do after taking the microphone from the man in red cape at the start?
A: (A) put 2 fingers up (B) talk to the audience (C) turn behind her (D) eat (E) put hands together

Successes

A: It is sunny
A: They are 

walking

Q: What is the 
weather like?

Q: Are there 
shadows that show 
sunny weather?

Q: Why can’t the 
box be closed?

A: It is not 
clear

Q: What is 
in the box?
A: A small 
bottle and 
container

A: Yes, it is 
overflowing

Q: Are the 
objects smaller 
than the box? 

A: Yes, they 
are

Q: Are there too 
many objects?

Perception Test

A: No, the man 
has it

Q: Does the lady 
have the mic?

Q: Does the lady 
have the mic?

A: Yes

Q: What is the 
lady doing?
A: She is 
holding it

A: She is 
high-fiving

Q: What is 
she doing?

A: Yes, a lamp

Q: Is there a 
lighting device?

A: No, it 
is off

Q: Is the 
lamp on?

A: No, it 
is off

Q: Is the 
lamp on?

A: No, it is 
off

Q: Is the 
lamp on?

Q: Are the men 
wearing uniforms?

A: No, they wear 
outdoor gear

Q: What are the 
men doing?

NExT-QA

C: A person is reaching out 
towards an electronic device 
with wires and routers.

C: A person is standing next 
to a shelf with household 
items.

C: An individual is standing 
by a shelf with electronic 
devices and a router.

C: A person is standing next 
to a shelf with household 
items.

Perception Test

C: A karaoke night with participants 
on stage, one draped in a Swiss flag.

C: An eclectic performance at a 
colorful music event.

C: Band performing on stage 
with vocalist as other 
members look on.

C: A high-spirited karaoke 
night where a performer gets 
a high-five on stage.

C: A group of hikers with 
backpacks outdoors

C: A person standing behind a 
table, presenting a shoebox with 
a GoPro logo on it.

C: A person is unpacking items 
on a table. There are objects 
like a plant vase and boxes

C: A person organizes items on a 
table with objects like a box with 
a yellow lid, and a potted plant.

C: A person appears to be sorting 
through items on a table, with a 
stack of boxes and containers

A: Yes, there are

C: A group of hikers, with one 
person resting an arm on another

C: Friends hiking together, 
with one’s arm on another

C: A group of hikers, walking 
together along a road

Failures

Perception Test

Figure 12: An additional visualization of predictions. We show more qualitative visualizations of our method
on NExT-QA and Perception Test using our abridged representation, with successes on top and failures on the
bottom. We compare our generated question-answer pairs for each frame (in yellow) with captions (labeled C in
gray) generated from the same frame. We see that our method is able to extract more fine-grained and relevant
information compared to simple captioning.
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