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Abstract

Conversational grounding, vital for building ef-
fective dialogue between people and between
people and dialogue systems, involves ensuring
a mutual understanding of shared information.
Despite its importance, there has been limited
research on this aspect of conversation in re-
cent years, especially after the advent of Large
Language Models (LLMs). Previous studies
have highlighted the shortcomings of some
pre-trained language models in conversational
grounding. However, most testing for conver-
sational grounding capabilities involves human
evaluations that are costly and time-consuming.
This has led to a lack of testing across multiple
models of varying sizes, a critical need given
the rapid rate of new model releases. This gap
in research becomes more significant consider-
ing recent advances in language models, which
have led to new emergent capabilities. In this
paper, we evaluate the performance of LLMs
in various aspects of conversational grounding
and analyze why some models perform better
than others. We demonstrate a direct correla-
tion between the size of the pre-training dataset,
size of the model and conversational ground-
ing abilities, suggesting that they have indepen-
dently acquired some pragmatic capabilities
from larger pre-training datasets. Finally, we
propose ways to enhance the capabilities of the
models that lag in our tests.

1 Introduction

The concept of "common ground" in linguistics,
introduced by Clark and Brennan (Clark and Bren-
nan, 1991), refers to the collective body of knowl-
edge and assumptions that conversation partici-
pants build together. This shared understanding
is not solely formed through words; it also incor-
porates other modalities, as highlighted by Nakano
et al. (Nakano et al., 2003), such as gestures, nods,
and eye contact. These non-verbal cues are crucial
in creating and maintaining the common ground

in face-to-face dialogues. Conversational Ground-
ing is this process of building common ground,
and involves continuous negotiation, and resolu-
tion of uncertainty. These uncertainties may be
addressed by providing additional context - for ex-
ample, specifying the object "the small gate next
to the bakery" or through the listener seeking clari-
fication, like asking, "You mean the white gate?".
Since these agreements are not always explicitly ex-
pressed, participants must be adept at recognizing
cues of (mis-)understanding from their interlocu-
tors. Conversational Grounding is complex due
to the dynamic nature of spontaneous dialogues,
which demand more than just grammatical correct-
ness, but also pragmatics - how language is used.

An effective grounding mechanism is vital to
dialogue systems in order to reduce ambiguity both
when the system is the speaker, by adding more
information if it senses confusion from the listener,
and as listener, by asking for clarifications when
necessary. (Benotti and Blackburn, 2021) have
previously shown that state-of-the-art Language
Models pre-trained on large amounts of conversa-
tional data like BlenderBot 1 (Roller et al., 2020)
frequently fall short in ensuring that information
has been adequately grounded. While they identi-
fied these deficiencies, their work didn’t provide a
comprehensive framework for evaluating multiple
different models on their grounding capabilities.
In addition, their findings were based on limited
interactions with smaller models such as Blender-
Bot 1, trained on smaller amount of data compared
to more recent and advanced LLMs like Llama
(Touvron et al., 2023) and GPT4 (OpenAI, 2023).

While Conversational Grounding can be a mul-
timodal phenomenon, in this paper, we start by
evaluating the performance of state-of-the-art Lan-
guage Models on textual inputs, since current dia-
log systems convert speech to text before sending it
as input to Language Models for NLU, NLG, and
in some cases dialog management itself. The out-
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puts are later converted into speech using separate
modules. Because of their growing significance
in the field of dialogue systems, we aim here to
assess and enhance pre-trained LLMs’ capabilities
in the various kinds of conversational grounding.
This will lay the groundwork for more advanced
modular spoken dialog systems with multimodal
input and output in the future.

To this end, we have devised a series of tests
to evaluate LLMs. We evaluate how they handle
grounding both as speaker and listener. When the
models act as a listener, we test if they can ground
information that was repaired or cancelled by the
speaker, and we test if they can ask questions in
case of important uncertainties. When the models
act as speaker, we test if they can recognize and pro-
vide correct information to reduce ambiguity. Our
approach involves analyzing the model perplexity
of two hand-crafted responses for a given context:
one being contextually appropriate and the other
deceptively fitting but contextually incorrect. By
comparing the perplexities of these responses, we
gauge the model’s proficiency in specific ground-
ing scenarios. Our findings indicate a correlation
between model performance, its size in terms of
parameters and the amount of data that it was pre-
trained on. Consequently, we conduct novel tests to
explore the reasons behind the under-performance
of smaller models, focusing specifically on their
embedding vectors. The insights gained from these
investigations are then utilized to explore methods
for enhancing the performance of these smaller
models in conversational grounding tasks.

2 Related Work
In the field of linguistics, (Clark and Brennan,
1991) explored the inherent uncertainty present in
dialogue, which interlocutors negotiate and resolve,
to the extent necessary for that stage of the dialogue.
Clark identified four distinct states of uncertainty:
1) B didn’t notice that A uttered any utterance u.
2) B noticed that A uttered some u. 3) B correctly
heard u. 4) B understood what A meant by u.

The field of conversational systems has seen
various efforts aimed at addressing the challenges
of grounding, particularly in the context of rule-
based modular dialog systems. The pioneering
work originated with (Traum and Allen, 1994),
which introduced the concept of Grounding Acts
(GAs). It serves as a framework for breaking down
the grounding process into its fundamental units.
Within this framework, they define 7 categories

of GAs: Initiate, Continue, Acknowledge, Repair,
Request-Repair, Request-Acknowledge, and Can-
cel. The framework also introduced the concept of
’Grounding Unit’, a group of utterances providing
a piece of information starting with an ’Initiate’
and then adding to the common ground with an
’Acknowledgment’. Other GAs help in negotiat-
ing this information before adding to the common
ground. While this concept offers a solid founda-
tion for understanding and modeling conversational
grounding, its application has been limited in the
context of contemporary LLMs. (Mohapatra et al.,
2024) have recently expanded on the challenges as-
sociated with annotating and modeling grounding
acts within dialogue systems.

Subsequent approaches, such as Centering The-
ory (Grosz et al., 1983) and Domain Reference
theory (Denis, 2010), introduced techniques for
representing and managing grounded information.
Their applicability, however, was largely limited to
closed domains, primarily owing to their reliance
on rule-based approaches.

(Fried et al., 2021) focused on reference-centric
models by leveraging the success of recent artificial
neural networks. However, it was designed for the
specific multimodal reference task in the Onecom-
mon dataset (Udagawa and Aizawa, 2019) using
an end-to-end neural-network based model.

Recent research on generative agents has high-
lighted the potential of LLMs in interactive settings.
(Park et al., 2023) studied the creation of multiple
agents, each assigned an initial identity. These
agents were equipped with a memory module and
relied on LLMs to assess the significance of vari-
ous memories. The study demonstrated their ability
to plan relevant events and execute them through
human-like interactions. However, it’s important
to note that this research was conducted in a vir-
tual environment with artificial agents, which does
not fully replicate the scenario of human-human
or human-agent spontaneous conversations. While
this work sheds light on the potential capabilities
of LLMs, and is contrary to the results of previous
work like (Benotti and Blackburn, 2021), further
investigation is warranted in assessing their effec-
tiveness in handling various grounding phenomena
in natural conversations.

3 Dataset
Several datasets have been curated to support re-
search on conversational grounding. Talk The Walk
(de Vries et al., 2018) created a virtual 2D grid en-
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vironment, while the HCRC Maptask (Thompson
et al., 1993) had participants discuss directions us-
ing a map that, in fact, differed between the two
participants, forcing them to negotiate what they
were referring to at any given moment. These con-
versations helped in the development of early theo-
ries and models for grounding. After assessing the
existing datasets, we opted to employ the Meetup
dataset (Ilinykh et al., 2019) to generate our test
cases. This choice was made due to the nature
of the task that required participants to negotiate
instances of referring expressions.

The Meetup dataset introduced a scenario
wherein two participants are placed on a 2D grid,
with each vertex representing a room. The objec-
tive is for the two participants to converge in the
same room, despite only being able to see their
own rooms. Navigational actions (east, west, north,
or south) move participants to new rooms, unveil-
ing the image of the newly entered room to them.
Achieving the goal necessitates the articulation of
room descriptions, formulation and communica-
tion of a converging strategy, retention of room
descriptions shared by the counterpart, and mental
modeling of the other participant’s room configura-
tions. Although the dataset is text-based, it serves
as a great resource for exploring and developing
grounding models. Unlike many tasks that attribute
a leading role to one participant, in this task, both
participants can assume initiator or responder roles
interchangeably. These features made the dataset
ideal for our purposes. The GA annotated version
of the meetup dataset provided by (Mohapatra et al.,
2024) was used for creating testing cases for model
evaluation.

4 Models
In order to examine LLMs of varying sizes and
pre-trained on varying amounts of data, we de-
cided to test T5-Large (Raffel et al., 2020), Godel-
Large (Peng et al., 2022), Llama-1(7 & 13 Bil-
lion)(Touvron et al., 2023), GPT 3.5(OpenAI,
2022) and GPT 4 (OpenAI, 2023). T5 is an
encoder-decoder-based transformer model, while
Godel, builds upon T5 with additional fine-tuning
for conversational applications. Both models pos-
sess 770 million parameters and are not trained on a
lot of pre-trained data. Llama and the GPT models,
in contrast, are decoder-based transformer models
trained on vast amount of data. For T5, Godel,
Llama(7B, 13B), access to the models allowed for
additional fine-tuning using Causal Language Mod-

Instructions : Here is a conversation between two par-
ticipants ........ to both participants.
Following is the dialog history along with image de-

scriptions:
<Image A> The image showcases an oven ............. is
located near the table.
[00:00:25] A: I’m in a kitchen
[00:00:43] B: In a dining room with 4 brown toys
[00:00:48] A: let me go north
<Image A> There are 4 chairs and a dining table .............
with a photo hanging on the wall.
[00:00:54] A: I see a dining room, but not your one

Figure 1: Example of input context provided to the mod-
els with the instructions, image descriptions and dialog
history. See appendix for more complete instructions
and image descriptions.
eling(CLM : predicting subsequent tokens based on
prior sequences) on the entire Meetup dataset. This
enabled testing of both the original (vanilla) and
CLM fine-tuned versions of these models. The fine-
tuned models were not exposed to the answers of
the modified dialog test cases beforehand, ensuring
an unbiased evaluation of their performance. See
the appendix for the finetuning training setup. GPT-
3.5 and GPT-4, however, are proprietary models
that require distinct methodologies for evaluation.
In contrast, we utilize the Llama 3.1 (8 Billion)
model to address specific questions raised by our
findings. Collectively, this diverse set of models
allows us to better understand the influence of vari-
ous factors on conversational grounding.

5 Testing
Perplexity Testing : We conduct an assessment of
the model perplexity of candidates for the response
to a given context. Perplexity(PPL) is a measure of
how well a language model predicts a sample. It
quantifies the model’s uncertainty in predicting a
sequence of words as given by the equation -

PPL(W ) = e
− 1

N

∑N

i=1
loge P (wi|w1,...,wi−1) (1)

Here, W represents the sequence of words
w1, . . . , wN , N is the length of the word sequence,
and P (wi|w1, . . . , wi−1) is the probability of each
word. A lower perplexity indicates a higher chance
of the model accurately generating the sequence.

We evaluate the models’ ability to ground the
conversations in two contexts - When they act as
a listener and when as a speaker. To assess the
LLM’s grounding ability as a listener to consider
modifications from the speaker, we test it on situa-
tions containing the GAs - Repair and Cancel. We
also test if it can detect ambiguities in the speaker’s
utterances and respond accordingly. While act-
ing as a speaker, we test them on another type of
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GA - Request Repair, where they have to provide
further relevant information when requested by the
listener, in order to help in grounding. We also look
at Request-Repairs that are of the Yes-No question
type where the models tend to make contextual mis-
takes. Finally, we examined instances of complex
anaphoric references made by the listener while
asking for clarification. These references have to
be disambiguated before responding to the requests
for clarification.

To evaluate each phenomenon, we use the
grounding act annotations of the Meetup Corpus
provided by (Mohapatra et al., 2024). Then we pick
20 instances of each phenomenon and introduce
slight modifications to create test cases. We pick
only 20 instances because some scenarios, such as
cancel, occur only 20 times, and we want equal
numbers of instances for each phenomenon. As
described below, the results nevertheless show a
clear trend in the performance of different mod-
els. After identifying test cases, we create a correct
and incorrect response for the context and analyze
the model perplexity for those examples, as illus-
trated in Figure 2. Ideally, the perplexity of the
correct response should be lower than the incorrect
response.

Here we provide a detailed discussion of the test
case creation process for each category -

1. Reference Ambiguity refers to instances
where the referring expression is ambiguous.
We test if the model is able to ask for clarifica-
tions in such cases of uncertainty, as seen in
Figure 2. Examples of remaining categories
can be found in section A.1 of appendix

2. Repair is the correction of previously uttered
material or the addition of omitted material
that will change the listener’s interpretation
of the speaker’s intention. We check if the
model can correctly take the repair from the
speaker into account. The correct response ac-
counts for the repaired information from the
speaker while the wrong response contains
the older information. The model’s ability to
correctly take into account the repaired infor-
mation shows its grounding abilities.

3. Cancellation refers to the speaker retracting
previously grounded information. We check
if the model can make the corrections to the
grounded information. The correct response
has the amended information while the wrong
response doesn’t.

Table 1: Human Evaluation of Perplexity test cases

Options % of times it
was chosen

Correct Option 90.65
Wrong Option 1.55
Both options are valid 6.25
None of the options are valid 1.55

4. Request Repair: We test if the model act-
ing as speaker can use the dialog context to
disambiguate or clarify when the listener re-
quests a repair. The correct response provides
a contextually correct repair, while the wrong
response doesn’t.

5. Request Repair (Yes/No): For cases where
the listener asks for an acknowledgment of
what they have found, yes/no questions are
used. Hence, we check if the model acting
as the speaker can provide the correct repair
instead of a generic yes/no answer.

6. Anaphora : We test if the model can link
the anaphoric reference to the correct referent
when the listener asks for clarifications. The
correct response mentions the correct referent,
unlike the wrong response.

Each input in our evaluation encompassed prior
information, including instructions about the par-
ticipants’ situation, game rules, dialog history, and
descriptions of images that the participants were
viewing during the experiment, as can be seen in
Figure 1. The image descriptions were initially au-
tomatically generated using the Llava model (Liu
et al., 2023) and subsequently refined manually to
ensure the inclusion of all pertinent information.
These image descriptions were then interspersed in
utterances whenever room changes occurred.

We also tested the model proposed by (Roque
and Traum, 2008) by finetuning a T5-based model
to classify the grounding acts. We used the classi-
fied GAs of each utterance to calculate the degree
of grounding(DoG). We later appended the GA and
DoG information into the context and tested the T5
models to check if the traditional approaches could
help the smaller models. We refer to this model as
T5(DoG & GA).

Prompt Testing : Since it was not possible
to calculate perplexity for the GPT3.5 and GPT4
models at the time of the study, we examined
whether these models could select between the two
response options as prompt as an alternative evalua-
tion approach. In order to have a direct comparison
with the smaller models, we also tested Llama-7B,
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Table 2: Ratio of test cases where correct utterance had lower perplexity

Model Repair Cancel Req-Repair(Y/N) Req-Repair Anaphora Ref. Amb.
T5 0.45 0.55 0.65 0.50 0.45 0.35
Godel 0.40 0.65 0.45 0.50 0.35 0.40
T5 - CLM 0.45 0.50 0.40 0.45 0.30 0.45
Godel - CLM 0.35 0.50 0.45 0.45 0.40 0.45
Llama-7B 0.55 0.55 0.55 0.45 0.65 0.75
Llama-7B - CLM 0.50 0.55 0.55 0.45 0.70 0.80
Llama-13B 0.75 0.75 0.70 0.80 0.75 0.80
Llama-13B - CLM 0.65 0.75 0.65 0.70 0.70 0.70
Llama3.1-8B 0.70 0.75 0.70 0.75 0.75 0.75
Llama3.1-8B - CLM 0.70 0.65 0.70 0.65 0.70 0.70
T5(DoG & GA) 0.45 0.50 0.60 0.55 0.45 0.30

Table 3: Mean value of perplexity for correct utterances of each model

Model Repair Cancel Req-Repair(Y/N) Request-Repair Anaphora Ref. Amb.
T5 3.02e+15 3.46e+15 3.30e+15 2.81e+15 8.49e+14 2.00e+10
Godel 4233.29 4221.50 44379.42 44488.40 21724.60 25769.90
T5 - CLM 1.19 1.21 1.19 1.19 2.41 2.04
Godel - CLM 1.06 1.09 1.06 1.07 1.55 1.24
Llama-7B 7.12 7.10 7.75 8.00 6.93 7.70
Llama-7B - CLM 2.91 2.91 2.89 2.92 4.72 4.63
Llama-13B 14.04 24.3 22.18 19.94 8.03 15.19
Llama-13B - CLM 20.42 21.24 38.84 31.76 11.43 34.02
Llama3.1-8B 542.63 91.04 146.91 149.42 51.22 84.88
Llama3.1-8B - CLM 32.22 11.21 7.44 10.70 7.31 13.01
T5(DoG & GA) 2.06e+14 4.72e+15 3.56e+14 4.2e+14 5.06e+13 1.8e+11

<Initial instructions + Image description>
[00:00:43] B: I am now in a dining room
[00:00:49] A: I see a library
[00:00:52] A: I’ll move
[00:00:58] B: ok. Me too
[00:01:09] B: with silver latch to it
[correct] A: sorry what has a silver latch?
[wrong] A: Yes I am searching for the latch

Figure 2: Example of test case for Reference Ambiguity

Llama-13B and Llama 3.1-8B using prompts. We
do not test smaller Godel and T5 models as they
would need further instruction tuning to answer
questions correctly using just the prompts.

To evaluate the accuracy of our test cases, a
human evaluation was also conducted via Ama-
zon Mechanical Turk. 20% of our test cases were
randomly selected and workers were asked to se-
lect the best option from the correct and wrong
responses. They could alternatively say that both
options were valid or neither of them were valid.
Table 1 shows that humans preferred the correct
response in more than 90% of the cases. Given
that each test case was independently assessed by
five different individuals, their almost unanimous
approval affirms the validity of the test cases.

Why Perplexity?: Evaluating conversational
grounding has traditionally relied on human assess-
ments, which are both costly and time-consuming.
This reliance limits the scalability of evaluating
multiple models, a significant drawback given the

rapid development and release of new language
models. One alternative is to reframe the prob-
lem as a classification task by categorizing the
model’s responses and checking if they match the
grounding acts of ideal responses, such as repair
or request for repair. However, matching ground-
ing acts does not guarantee semantic similarity be-
tween responses; for example, a question classified
as a request for repair might differ substantially
in meaning from the ideal question. Furthermore,
since LLMs are generative models, their capabil-
ities are better assessed through the diversity and
contextual appropriateness of the responses they
produce. In the realm of conversational ground-
ing, there is no single correct response to a given
context, rendering standardized evaluation meth-
ods that assume a singular ground truth—such as
BLEU or ROUGE—ineffective. These metrics are
designed for tasks with fixed target responses, but
in conversational settings, valid responses can vary
widely. Therefore, a more effective approach is to
evaluate whether the model consistently generates
contextually appropriate responses over inappro-
priate or less preferred ones. This method offers
deeper insights into the inherent capabilities and
language understanding of the model. By creating
test cases using the methods mentioned above and
validating them using human evaluation, we pro-
vide a method to rapidly evaluate multiple models
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Table 4: Ratio of test cases where correct utterance was chosen from prompt

Model Repair Cancel Req-Repair(Yes/No) Req-Repair Anaphora Reference Ambiguity
Llama-7B 0.50 0.55 0.55 0.55 0.75 0.80
Llama-13B 0.75 0.75 0.75 0.85 0.80 0.80
GPT 3.5 0.80 0.55 0.55 0.85 0.80 0.70
GPT 4 0.85 0.95 1.00 0.95 0.95 0.85

Figure 3: Pictorial representation of ideal scenario
where D1 should be similar in distance to D2 as D3
and D4 should be far away

on their grounding capabilities.

6 Results
Table 2 shows that smaller models like T5, Godel,
and Llama-7B struggled to achieve lower perplex-
ity for correct utterances compared to incorrect
ones, indicating their limited proficiency in con-
versational grounding. However, Llama-13B per-
formed significantly better across all the categories.
Llama-7B performed on par with Llama-13B in
anaphoric reference and reference ambiguities sug-
gesting that smaller models trained on relatively
smaller data can detect the presence of ambiguities
and also link the references to their referents. How-
ever, concepts like repair, cancel and request-repair
are only understood by slightly larger models like
Llama-13B showing that the ability to modify the
grounded information is an emerging property of
larger models trained on more data.

We also examine the mean perplexity of the cor-
rect responses for each model in Table 3 as lower
mean perplexity shows that the model not only pri-
oritizes the correct response but also has a higher
probability of generating it as a response to the con-
text. The perplexity values for plain T5 reached as
high as 10^15 showing their inability to generate
the correct utterances. In contrast, CLM finetuned
models demonstrated significantly improved per-
plexity, close to 1, suggesting that finetuning aids
in recognising the pattern within dialogues in the
dataset. However, across all the categories, the
smaller CLM finetuned T5 and Godel models were
equally likely to generate the correct and wrong
utterances as the ratio hovered around 0.5 in Ta-
ble 2. Optimal model performance would have a
ratio close to 1(generates correct over wrong) and
a lower mean perplexity for correct response indi-
cating that the model will actually respond with
correct utterances, but none of the smaller models

achieved this. Thus, while CLM finetuning smaller
and medium-sized models increased the likelihood
of generating utterances similar to those in the
dataset(like the correct and wrong responses), it did
not necessarily improve the model’s understanding
of dialog pragmatics leading to a lack of prefer-
ence for correct responses. We also see a slight dip
in the performance of the CLM fine-tuned Llama-
13B model further showing that Causal Language
Modeling over datasets does not help distinguish
between correct and wrong responses. We also see
no improvement in the performance of T5 with the
additional information of GAs and DoGs providing
stronger evidence that such pragmatic behaviors
emerge from models trained on a larger quantity
of data as compared to building better structures
on top of smaller models. We keep further detailed
investigation of building such structures on top of
LLMs for the future.

However, based on the performance of the mod-
els, there was a question that was not yet answered
- Is the performance increase solely because of the
increasing parameters or does the amount of pre-
training data also play a role in their performance?
To address this, we tested Llama 3.1-8B model
which is similar in size to llama-7B but pre-trained
on much more data. As Tables 2 and 3 show, Llama
3.1-8B outperforms Llama-7B in almost all the cat-
egories while competing with Llama-13B which
has significantly higher parameters. This is in line
with the latest findings (Gunasekar et al., 2023).
However, it does not surpass Llama-13B despite
being trained on a much larger amount of data,
highlighting the importance of both the pre-training
data volume and the number of parameters in en-
hancing the model’s understanding of pragmatics.

Table 4 shows the performance of models when
provided the options to choose between the correct
and incorrect response. Llama-7B shows weak per-
formance on all categories while GPT 4 performs
the best across all the categories sometimes even
getting all the responses correct. Also, while com-
paring Tables 4 and 2, Llama 7B 13B perform
slightly better when the correct and wrong options
are provided through prompt and they are asked to
chose as compared to their ability to produce such
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D1 with repair
User A: It is overlooking the garden, with yellow seat
User B: yellow seat?
User A: sorry yellow table
User A: Do you want me to find you or you to find me?
User B: I’ll look for you

D2 (paraphrased from D1 without Repair)
User A: It is overlooking the garden, with yellow table
User A: Do you want me to find you or you to find me?
User B: I’ll look for you

D3 (paraphrased from D2)
User A: With a garden view, there is a yellow table
User A: Do you want me to search for you or for you
to search for me?
User B: I will search for you.

D4 (with wrong information)
User A: It is overlooking the garden, with yellow seat
User A: Do you want me to search for you or for you
to search for me?
User B: I will search for you.

Figure 4: Example of test case for a repair instance for
embedding study. The appendix contains examples of
other categories.

responses indicated by the perplexity. However,
the models show similar trends on both the per-
plexity and prompt testing i.e. the smaller models
perform better on categories like Anaphoric Ref-
erences and Reference Ambiguities as compared
to Repair, Request-Repair and Cancel. Similarly,
Larger models tend to outperform smaller models
with Llama-13B being an exception over GPT 3.5
due to the amount of pre-training data used to train
LLama models over an older GPT 3.5.

While the result suggests that bigger models
trained on larger pre-training data outperform other
models, the utilization of these large models may
not be optimal for every dialogue system, given
their increased latency, higher memory constraints
and higher cost per inference. Consequently, this
prompted an investigation into the reasons be-
hind the less effective performance of smaller and
medium-sized models.

7 Embedding Study
To gain deeper insights, we developed a novel
method to analyze how these models process utter-
ances at the embedding level. For this purpose, four
instances of the same dialogue were generated.

1. The First instance (D1) is the original instance
of a group of utterances containing the correct
response of the PPL test cases of the specific
phenomenon.

2. Second instance (D2) is a paraphrase of D1
without the particular phenomenon that we

are testing. This is manually created keeping
in mind that the overall meaning of the dialog
doesn’t change. A human evaluation shows
that humans didn’t find any difference in the
meaning of the D1 and D2 as seen in Table
9 in the appendix. The evaluation was done
similar to our previous evaluation in amazon
mechanical turk where we asked them to rank
the similarity between D1 and D2 on the likert
scale of 1-5.

3. Third instance (D3) is a paraphrased instance
of D2 where we paraphrase it utterance by
utterance using GPT 4(since we are not testing
GPT 4 in this test).

4. Fourth instance (D4) contains incorrect infor-
mation taken from the wrong response of the
PPL test cases and added to D2.

Figure 4 illustrates a test case encompassing D1,
D2, D3, and D4. Owing to the inherent charac-
teristics of Reference Uncertainty, they were not
examined at the embedding level in the current in-
vestigation. For more information on how D2 test
cases were created from D1 for each phenomenon,
please look at the Appendix.

The study focused on the spatial distance be-
tween the embeddings of different instances of the
dialogues. Ideally, the first three dialogues (D1,
D2, D3) would have close proximity in the embed-
ding space, while D4 should be distinctly separated.
This was assessed by analyzing the distances be-
tween the hidden representations of the final en-
coding layer of each model for each instance. Es-
sentially, this evaluated whether the dialogue D1
containing the grounding phenomenon, bore more
similarity to D3 or D4, in terms of their respective
distances from D2. If the model exhibits capabili-
ties of understanding these grounding phenomena,
the distance between D1 and D2 should be akin to
that between D2 and D3; otherwise, if it considers
it to be not similar to D2 and D3 then it would more
closely resemble the distance between D2 and D4
i.e. it will treat it more like a random dialog as
depicted by Figure 3.

We calculate a score V of the embeddings based
on the formula in equation 2. Here, v1,v2,v3 and v4
are the mean final layer embeddings of D1,D2,D3
and D4. The score calculates the distance (dist)
between v1,v2 and compares it with the distance
of v3,v2 and v4,v2. If D1 is considered closer to
D3 then the dist(v1, v2) should be similar to the
dist(v3,v2) and much smaller than the dist(v4, v2)
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Table 5: Score V on the embedding test for each model

Model Repair Cancel Req-Repair(Yes/No) Req-Repair Anaphora
T5 0.58 0.06 1.43 0.44 1.64
Godel 0.23 0.52 0.98 0.22 0.90
T5 - CLM 0.91 0.43 0.87 0.15 0.76
Godel - CLM 0.45 1.33 1.22 0.97 1.12
Llama-7B 0.86 0.89 0.92 0.75 7.45
Llama-7B CLM 0.92 0.63 1.23 1.33 8.66
Llama-13B 3.17 1.05 4.32 1.97 13.33
Llama-13B CLM 5.33 1.31 5.52 2.77 10.26
Llama3.1-8B 9.69 6.29 18.36 1.19 13.65
Llama3.1-8B CLM 10.92 8.19 17.11 3.31 15.35

Table 6: Ratio of correct response having lower perplexity after positive and negative reward training

Model Repair Cancel Req-Repair(Yes/No) Req-Repair Anaphora Reference Ambiguity
T5 0.50 0.15 0.65 0.35 0.40 0.65
Godel 0.45 0.15 0.60 0.50 0.40 0.75
T5 - CLM 0.60 0.35 0.75 0.45 0.50 0.75
Godel - CLM 0.50 0.25 0.65 0.45 0.45 0.80
Llama-7B 0.70 0.70 0.60 0.80 0.70 0.85
Llama-7B CLM 0.75 0.75 0.65 0.80 0.75 0.95
Llama-13B 0.85 0.75 0.75 0.85 0.80 0.85
Llama-13B CLM 0.80 0.75 0.70 0.85 0.85 0.90
Llama3.1-8B 0.75 0.75 0.70 0.85 0.85 0.80
Llama3.1-8B CLM 0.80 0.75 0.75 0.85 0.80 0.90

leading to a larger score. Otherwise, if the D1 is
considered more like D4 then the numerator will
be smaller and the denominator will be larger lead-
ing to a smaller score. Ideally, we would like our
models to provide higher scores for each category.

V (v1, v2, v3, v4) =
|dist(v2, v1)− dist(v2, v4)|
|dist(v2, v1)− dist(v2, v3)| (2)

8 Embedding Study Findings
The data presented in Table 5 highlight the fail-
ure of the models(especially T5 and Godel) at the
encoder level to differentiate between utterances
containing grounding phenomena and utterances
containing deceptively wrong information by hav-
ing a score less than 1. These distinctions, or lack
thereof, in the embedding space lead to generation
errors, as previously observed in our experiments.
The findings from this study highlight four key
insights: 1) The model performance in differen-
tiating between D1, D2, D3 and D4 was directly
proportional to the size of the models and their
pre-training data. 2) The smaller models’ tendency
to not equate the original dialog (D1) to the para-
phrased dialogs lacking the grounding phenomenon
(D2 and D3), particularly for phenomena such as
Repair, Request-Repair, and Cancel indicates their
shortcomings in appropriately modifying informa-
tion that has been corrected or canceled. In other
words, these models lack an ability to distinguish
between the information presented across var-
ious temporal contexts. 3) The tendency of the

models to confuse D2 with D4 due to word simi-
larity in majority of context, indicates a reliance
on lexical content over pragmatic understand-
ing. 4) The consistent superior performance of the
CLM fine-tuned Llama model over its original ver-
sion, suggests the potential benefits of finetuning
methods for enhanced performance.

9 Positive and Negative Reward Training
Based on the embedding testing analysis, we real-
ized that the models need to be able to distinguish
at the embedding level between dialogs that sound
the same but mean very different. Hence, we de-
cided to create additional cases for each categories
and finetune the models using Positive and Neg-
ative Reward Training (Sutton and Barto, 2018).
As seen in Equation 3, this approach involved re-
warding the model for correctly identifying suitable
responses i.e. reduce the loss of correct response
(Loss_Correct), while penalizing it for selecting in-
correct utterances in the same context i.e. increase
the loss of the wrong response (Loss_Wrong). Both
the correct and wrong Losses are obtained using
cross-entropy loss with the entire context as input
and the correct and wrong responses as outputs.
Here W1 and W2 are hyper-parameters empirically
set as W1=4 and W2=0.5.
Loss = W1 ∗ Loss_Correct−W2 ∗ Loss_Wrong (3)

Recognizing GPT 4’s superior performance in
our evaluations, and the need for more diverse cat-
egory instances in our dataset, we utilized GPT 4
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Table 7: Perplexity of correct utterances for models trained with positive and negative reward
Model Repair Cancel Req-Repair(Yes/No) Req-Repair Anaphora Reference Ambiguity
T5 2.56e+05 6.18 20 37 4.76 1.45e+04
Godel 28.90 5.21 13.55 16.82 4.92 38.90
T5 - CLM 932.49 847.43 7.74e+04 1.60e+06 7617.88 5.72e+03
Godel - CLM 856 8.70 21.94 22.19 7.82 46.20
Llama-7B 11.88 14.63 14.32 16.51 16.26 22.31
Llama-7B CLM 8.95 12.93 9.07 10.67 10.43 19.90
Llama-13B 13.28 11.43 8.25 13.15 12.44 16.11
Llama-13B CLM 9.73 14.51 14.85 15.76 12.23 11.20
Llama3.1-8B 148.49 77.81 90.73 98.54 27.82 59.45
Llama3.1-8B CLM 12.11 19.32 17.68 10.81 16.38 10.09

to generate 100 additional training data by feed-
ing it examples from every category. However,
it was noted that GPT 4 had limitations in creat-
ing complex cases, necessitating manual modifica-
tions to improve their quality. Tables 6 and 7 show
the improvement in the performance of Llama-7B,
Llama-13B and their CLM fine-tuned version af-
ter the positive-Negative reward training over their
previous performance in Tables 2 and 3. Llama
3.1-8B also showed a slight improvement in perfor-
mance. However, the smaller models T5 and Godel
were not able to improve their performance indicat-
ing a role of model size and pre-training on exten-
sive data that leads to their ability to learn newer
concepts. This indicates that a complex concept
like grounding is difficult to achieve with models
like T5-Large even after fine-tuning. Conversely, a
model akin to Llama’s size pre-trained on large data
can be trained for better grounding performance,
though it may not match the proficiency of a larger
model like GPT-4 leading to a trade-off between
performance and computations performed.

10 Conclusion and Future Work
In this study, we developed a benchmark aimed at
assessing the effectiveness of LLMs in natural con-
versations, with a focus on conversational ground-
ing. Our observations revealed a direct correlation
between model size, the size of their pre-training
data and performance, highlighting the possibility
of emergent properties in LLMs leading to the ad-
dressing of conversational grounding in dialogs,
unlike the previous findings of (Benotti and Black-
burn, 2021). Additionally, we introduced a method
to investigate the limited performance of smaller
models by examining the embeddings from four
altered versions of the same dialogue indicating
the emphasis on lexical content by smaller mod-
els over pragmatics. Building on these insights,
we generated new training data to employ positive-
negative reward techniques resulting in improved
performance of medium-sized models. While they

still do not match the performance of larger mod-
els, the findings indicate that, with specific train-
ing, medium-sized models could potentially re-
place larger models in real-time systems where
there is a need to balance performance and compu-
tation(causing latency). Our observations indicated
that, while, fine-tuning with Causal Language Mod-
eling over the meetup dataset did not improve the
performance, using positive-negative rewards sig-
nificantly enhanced the pragmatic capabilities of
the model. Future work will further investigate
techniques like DPO (Rafailov et al., 2023) and
RLHF (Ouyang et al., 2022) for this purpose. It
will also focus on integrating multimodal inputs
and outputs in language models, recognizing their
vital role in grounding.

11 Limitations
Our tests were derived from real-time conversa-
tional data, which is essential for collecting con-
versational grounding instances. However, some
categories, such as "Cancel" appear less frequently,
resulting in a smaller number of test cases. Hence,
we chose 20 test data points as that was the max-
imum number of occurrences of "Cancel" in the
dataset. We also did not want to have different
numbers of instances for different categories as it
would have led to more difficulty in measuring the
performance of models across various categories.
However, we conducted the same experiment on
some additional test data for Anaphora and found
similar trends to our previous experiments. The
results of these additional test cases can be found
in the appendix in section A.6.
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Request Repair(Yes/No) Perplexity Test-
case Example

<Initial instructions>
<Image A> The picture depicts a calm patio
with an ocean view, featuring two chairs fac-
ing the water and having pink walls. One
chair is on the left and the other is positioned
in the center. There is a cup on the table
between them, adding warmth. A wooden
railing surrounds the space for safety. Every-
thing evokes a feeling of peace and relaxation,
making it a perfect spot to spend time outside.
[00:00:57] A: I’ve found one. Let me know
when you do.
[00:01:04] B: I am on a balcony facing an
ocean
[00:01:14] A: This was thin wood railing.
Two wooden folding chairs?
[00:01:19] A: You can see windows off to the
left.
[00:01:26] B: yes, coffee mug on the floor?
[00:01:35] A: Yes. I think we’re both in the
same bedroom with a barbie theme.
[00:01:42] B: Is it the one with yellow walls?
[correct] A: No it has pink walls
[wrong] A: yes it has yellow walls

Figure 5: Example of test case for a Request-
Repair(Yes/No) instance for testing the perplexity

Takuma Udagawa and Akiko Aizawa. 2019. A natural
language corpus of common grounding under contin-
uous and partially-observable context. Proceedings
of the AAAI Conference on Artificial Intelligence,
33(01):7120–7127.

A Appendix

A.1 Perplexity test examples
Here we provide the remaining examples of the
perplexity test. Figure 5 provides an example of the
Request-Repair(Yes/No). As seen in the example,
we check if the model provides a generic yes as an
answer or does it check the image and figure out
that it has a pink wall. We specifically check for
yes/no type request repairs because the models tend
to do a lot of mistakes in such cases. It is worth
noting that in our test cases, the correct answer
could contain a yes as well. Figure 9 shows a test
case for Request-Repair where the requests are not
of the yes/no type.

Anaphora Perplexity Testcase Example

<Initial instructions + Image descriptions>
[00:00:18] A: I am in the attick
[00:00:20] A: it is west
[00:00:42] B: I’m in the bedroom
[00:01:22] B: I see a couch here
[00:01:15] A: Sorry where do you see the
couch?
[correct] B: in the bedroom
[wrong] B: in the attick

Figure 6: Example of test case for an Anaphora instance
for testing the perplexity

Repair Perplexity Testcase Example

<Initial instructions + image descriptions of
rooms being visited + previous utterances spo-
ken>
User A: go north
User B: You want me to go north?
User A: sorry. I meant to go south to come
inside
[correct] User B: Okay, going to the south
[wrong] User B: Okay, going to the north

Figure 7: Example of test case for a repair instance for
testing the perplexity

Figure 6 provides an example of a test case for
Anaphora testing. Here we check if the model B
where asked to clarify for the word ’here’ is able to
provide the correct referent. In some of the other
test cases for anaphora, the model has to act as
the listener and use the reference correctly in it’s
response.

Figure 7 shows an example of the repair test
cases where we check the ability of the model to
modify the information and ground them. Figure 8
shows an example of the cancel test case where the
model has to deal with cases where the information
provided by the interlocutor was canceled.

A.2 Encoding Test Cases

We created the D2 test cases from D1 for each
phenomenon in the following way -

1. Repair: Here, we took the original dialog D1
containing the Repair and replaced the origi-
nal information with the repaired information.
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Cancel Perplexity Testcase Example

<Initial instructions+image descriptions>
[00:00:38] A: I’m in one with diamond
shelves in center
[00:00:41] A: lots of bottles
[00:00:44] A: wood racks
[00:00:54] B: I’m currently in a room with a
pool table
[00:01:08] A: yellow light on ceiling
[00:01:27] B: I’m in a room with lots of bot-
tles
[00:01:45] A: Ohh, it’s not yellow
[correct] B: then what is the color of those
ceilings?
[wrong] B: aah okay looking for yellow bot-
tles then

Figure 8: Example of test case for a cancel instance for
testing the perplexity

Figure 4 provides an example where we re-
place the initial utterance containing ’yellow
seat’ with ’yellow table’ directly. As a result,
the information present in D1 and D2 remains
the same while D4 contains ’yellow seat’.

2. Cancel: We remove the information that was
canceled in the first place thus having the same
meaning as D1.

3. Request-Repair: We remove the clarification
asked by the listener and add the correct PPL
response as repair directly in the speaker’s
utterance thus keeping the overall informa-
tion intact. We do the same for Request-
Repair(Yes/No).

4. Anaphora: D2 is the dialog with the correct
response in PPL testcase where the reference
is correctly replaced with the object being
referred while D4 has the wrong response.
While D1 contains the original reference.

Here we look at the examples of the remaining
categories for the encoder testing. Figure 10 shows
an example of Cancel where A says something but
then cancels it. D2 in this case doesn’t contain
any information about going north. Hence, we
want to check if the model is able to consider both
information same or not.

Figure 11 is the same example as Figure 9 where
the correct response becomes part of D2 while
wrong response becomes part of D4.

Request Repair Perplexity Testcase Exam-
ple

<Initial instructions>
Below is the dialog history:
<Image B> The image is of a cluttered, tiny
bedroom with two single beds pushed to-
gether, one covered in a checkered blanket.
A matte black chair occupies the center and
a laptop rests on one bed, a cellphone and a
cup. There is a brown table containing books
on top of it. The untidy room needs cleaning.
[00:00:42] B: im in the bedroom
[00:00:52] A: okay describe it and I’ll find
you
[00:01:07] B: two single beds. One covered
with blanket.
[00:01:31] A: wooden walls?
[00:01:33] B: nope. There is a table contain-
ing books.
[00:01:40] A: what is the color?
[correct] B: It is brown in color.
[wrong] B: it is matte black in color.

Figure 9: Example of test case for a Request Repair
instance for testing the perplexity

Cancel Encoding Testcase Example

D1 with cancel
[00:00:30] B: Okay, I got a bedroom almost
all the way north
[00:00:31] A: one in a wooden cabin room,
small bed
[00:00:36] B: Alright, I’ll come find you
[00:00:41] A: I’m north
[00:00:53] A: no forget about it.

D2
[00:00:30] B: Okay, I got a bedroom almost
all the way north
[00:00:31] A: one in a wooden cabin room,
small bed
[00:00:36] B: Alright, I’ll come find you

Figure 10: Example of test case for a Cancel instance
for understanding the hidden representations for each
model
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Table 8: Result of perplexity test on additional 15
anaphora test cases.

Model Anaphora
T5 0.46
Godel 0.40
T5 - Finetuned 0.33
Godel - Finetuned 0.40
Llama-7B 0.46
Llama-7B Finetuned 0.53
Llama-13B 0.73
Llama-13B Finetuned 0.60

Table 9: Human Evaluation of D1 - D2 similarity

Likert Scale % of times it
was chosen

5 (Means the same) 78.25
4 (Meaning is slightly different) 17.25
3 (Meaning is significantly different) 4.50
2 (Mean slightly opposite to each other) 0.00
1 (Mean completely opposite) 0.00

A.3 Training Setup

We used a single A100 gpu to train the models.
LoRA with a rank of 8 and alpha value of 16 was
used for the finetuning. Deepspeed zero optimizer
was used for better memory management. All the
models were trained with 3 epochs. We used the
AdamW optimizer with a learning rate of 2e-5 and
a cosine learning rate scheduler. The weight decay
of the models was set at 0.01 and a batch size of 4
was used. The initial finetuning was done with a 80-
20 ratio of train and validation test while the entire
artificial test set generated for positive-negative
reward training was used for the training purpose.

A.4 Complete example of instructions

Figure 12 provides the complete instruction that
was provided to the models. It also shows the ex-
ample of an image description that was obtained
from the Llava model and later modified manually.

A.5 Comparing Responses

Figures 13, 14, 15 show the response generation
by the models when they are not provided with
any options. As can be seen, GPT 4 responses are
able to detect ambiguities and provide responses
accordingly while a Llama 7B model does not ask
for clarifications or provide the accurate responses.
As seen in Figure 15, Llama 7B suddenly changes
the topic to Barbie dolls and accessories. However,
GPT 4 responses are a bit longer than what a spo-
ken utterance should be ideally. But, it has been
observed in our internal testings that with slight
fine-tuning, the models can reduce down the length

Request Repair Encoding Testcase Exam-
ple

D1 with Request Repair
[00:00:42] B: im in the dining room
[00:00:52] A: okay describe it and I’ll find
you
[00:01:07] B: table with 6 chairs
[00:01:31] A: wooden walls?
[00:01:33] B: support bars on the right
[00:01:40] A: what is the color of the table?
[00:01:46] B: It is brown in color.

D2
[00:00:42] B: im in the dining room
[00:00:52] A: okay describe it and I’ll find
you
[00:01:07] B: brown table with 6 chairs
[00:01:31] A: wooden walls?
[00:01:33] B: support bars on the right

D3
[00:00:42] B: im in the dining room
[00:00:52] A: okay describe it and I’ll find
you
[00:01:07] B: matte black table with 6 chairs
[00:01:31] A: wooden walls?
[00:01:33] B: support bars on the right

Figure 11: Example of test case for a Request Repair
instance for understanding the hidden representations
for each model

of their utterances significantly.

A.6 Additional test with Anaphora
Table 8 shows the result of perplexity test on addi-
tional test cases for anaphora. As can be seen, the
results satisfy our previous findings. This further
strengthens our findings and it’s general implica-
tions.

A.7 Human Evaluation
Table 9 shows the human evaluation for the sim-
ilarity between D1 and D2. As can be seen, ma-
jority of the evaluators considered both to mean
the same while only 4.5% considered them to be
significantly different. None of them considered
them to be opposite of each other.
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Instructions : Here is a conversation between
two Participants A and B who are in a vir-
tual space that has lots of different rooms that
are depicted with images. Each room has a
type (such as kitchen, bathroom, bedroom,
etc.). The participants are initially located
in different rooms. The goal of the game is
for the two participants to locate themselves
in the same room. In order to achieve this
goal, the participants communicate with one
another by text and describe the room they
find themselves in. On the basis of those de-
scriptions, they move to different rooms and
describe their new room to the other partic-
ipant. The game ends when the two partici-
pants find themselves in the same room. We
translated the images that the participants saw
into text. That description of the room is pro-
vided below as soon as a participant enters a
given room. The current room description of
User A starts with a token <Image A> and the
current room description of User B starts with
a token <Image B>. Every utterance from A
or B is preceded with a timestamp closed un-
der brackets. Some text is provided by GM,
a non-participant in the game who provides
essential information regarding the game to
both participants.
Following is the dialog history along with

image descriptions :
<Image A> The image showcases a large,
modern kitchen with dark wood cabinets and
sleek black countertops. The kitchen is well-
equipped with a stove top oven positioned
under a ventilation fan, a microwave situated
above the oven, and a refrigerator placed on
the right side of the room. There are several
items placed on the countertops, including
a bowl, a few apples, and an orange. The
kitchen also features a dining table with chairs
placed around it. A potted plant adds a touch
of greenery to the room, located near the din-
ing table.
[00:00:19] B: i am currently outside
.........

Figure 12: Example of complete input context provided
to the models including the instructions, image descrip-
tions, and some dialog history

Response Generation for Reference Ambi-
guity

Instructions : ..... <Initial Instructions>.......
You are participant A who can see the

following image -
<Image A> The image showcases a large,
modern dinning room with dark wood
cabinets and sleek black countertops. The
room contains a white dining table with black
chairs placed around it. A potted plant adds a
touch of greenery to the room, located near
the dining table. The walls are pink and there
are 2 windows with white curtains on them.
Here is the dialog history -
[00:43] B: I am now in a dining room with 4
brown toys
[00:49] A: I see a dining room, but definitely
not in one
[00:52] A: I’ll move
[01:03] B: well 6 toys sorry
[01:58] A: Im moving to find you
[02:03] B: ok. me too
[03:01] B: with a silver latch to it
Please provide the next utterance keeping in
mind that it’s a spoken conversation. Make
sure to ask for clarifications in case there is
any ambiguity and also provide additional
information in case there was a clarification
question from user B -

GPT Response :
A: Just to clarify, when you mention ’a silver
bottom’, are you referring to something
specific in the dining room, like the table or
another piece of furniture? On my side, I’m
in a dining room with dark wood cabinets
and sleek black countertops. There’s a white
dining table with black chairs, and the walls
are pink. Does any of this sound like your
room?

Llama 7B Response :
A: I’m now in a room with light brown
wooden flooring and large glass doors leading
to a balcony. There’s a couch and a coffee
table with magazines scattered around it.

Figure 13: Example of response generation by GPT 4
and Llama 7B when not provided with next response
options for reference ambiguity.
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Response Generation for Request Re-
pair(Yes/No)

Instructions : ..... <Initial Instructions>.......
You are participant A who can see the follow-

ing image - <Image A> The picture depicts
a calm patio with an ocean view, featuring
two chairs facing the water and having pink
walls. One chair is on the left and the other
is positioned in the center. There is a cup on
the table between them, adding warmth. A
wooden railing surrounds the space for safety.
Every thing evokes a feeling of peace and re-
laxation, making it a perfect spot to spend
time outside.
Here is the dialog history -
[00:57] A: I’ve found one. Let me know
when you do.
[01:04] B: I am on a balcony facing an ocean
[01:14] A: This was thin wood railing. Two
wooden folding chairs?
[01:19] A: You can see windows off to the
left.
[01:26] B: yes, coffee mug on the floor?
[01:35] A: Yes. I think we’re both in the
same bedroom with a barbie theme.
[01:42] B: Is it the one with yellow walls?

Please provide the next utterance keeping in
mind that it’s a spoken conversation. Make
sure to ask for clarifications in case there is
any ambiguity and also provide additional in-
formation in case there is a clarification ques-
tion from user B -
[01: 50] A :

GPT Response :
A: No, the walls are not yellow; they are pink.
And it’s not a bedroom; it’s more like a patio
or balcony space.

Llama 7B Response :
Yes, it is the bedroom with yellow walls.
The chairs have pink cushions on them, and
there’s a pink quilt on the bed. Is there any
distinctive decoration or color scheme you
can identify in your room to help confirm it’s
the same one?

Figure 14: Example of response generation by GPT 4
and Llama 7B when not provided with next response
options for Request-Repair(Yes/No).

Response Generation for Repairs

Instructions : ..... <Initial Instructions>.......
You are participant B who can see the follow-

ing image - <Image B> The image showcases
a parking area with three parked cars next to
a building. The building is red in colour and
has a glass door at it’s entrance. There is a
green car on the left, a blue sedan in the mid-
dle and a pink car on the right. There is an
empty parking slot between the blue and the
pink cars.
Here is the dialog history -
[00:21] B: It seems like I am in a parking lot.
[00:27] A: What do you see?
[00:32] B: Umm three cars parked next to the
building. One green car, one blue and a pink.
[00:36] A: Okay. Go north
[00:40] B: You want me to go north?
[00:45] A: Sorry, I meant go south to come
inside.

Please provide the next utterance keeping in
mind that it’s a spoken conversation. Make
sure to ask for clarifications in case there is
any ambiguity and also provide additional in-
formation in case there is a clarification ques-
tion from user A.
[01: 50] B :

GPT Response :
B: Alright, heading south to come inside.
Just to clarify, what room are you in right
now?

Llama 7B Response :
I see. There are many directions I can go
from this parking lot based on what I see here.
I’ll let you know if there’s anything new to
describe. That’s great! Are there any Barbie
dolls or accessories around?

Figure 15: Example of response generation by GPT 4
and Llama 7B when not provided with next response
options for Repairs.
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