
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 9820–9836
November 12-16, 2024 ©2024 Association for Computational Linguistics

Extract, Define, Canonicalize: An LLM-based Framework for Knowledge
Graph Construction

Bowen Zhang1 and Harold Soh1,2

1Dept. of Computer Science, National University of Singapore, 2NUS Smart Systems Institute
{bowenzhang, harold}@comp.nus.edu.sg

Abstract
In this work, we are interested in automated
methods for knowledge graph creation (KGC)
from input text. Progress on large language
models (LLMs) has prompted a series of re-
cent works applying them to KGC, e.g., via
zero/few-shot prompting. Despite successes on
small domain-specific datasets, these models
face difficulties scaling up to text common in
many real-world applications. A principal is-
sue is that, in prior methods, the KG schema
has to be included in the LLM prompt to gen-
erate valid triplets; larger and more complex
schemas easily exceed the LLMs’ context win-
dow length. Furthermore, there are scenar-
ios where a fixed pre-defined schema is not
available and we would like the method to con-
struct a high-quality KG with a succinct self-
generated schema. To address these problems,
we propose a three-phase framework named
Extract-Define-Canonicalize (EDC): open in-
formation extraction followed by schema def-
inition and post-hoc canonicalization. EDC
is flexible in that it can be applied to settings
where a pre-defined target schema is available
and when it is not; in the latter case, it con-
structs a schema automatically and applies self-
canonicalization. To further improve perfor-
mance, we introduce a trained component that
retrieves schema elements relevant to the input
text; this improves the LLMs’ extraction per-
formance in a retrieval-augmented generation-
like manner. We demonstrate on three KGC
benchmarks that EDC is able to extract high-
quality triplets without any parameter tuning
and with significantly larger schemas compared
to prior works. Code for EDC is available at
https://github.com/clear-nus/edc.

1 Introduction

Knowledge graphs (KGs) (Ji et al., 2021) are a
structured representation of knowledge that orga-
nizes interconnected information through graph
structures, where entities and relations are rep-
resented as nodes and edges. They are broadly

Extract relational triplets from the text: ‘Alan Shepard 
participated in the Apollo 14 mission’

EDC: Extract-Define-Canonicalize
Phase 1: Open Information Extraction

Phase 2: Schema Definition

Phase 3: Schema Canonicalization

[Alan Shepard, participatedIn, Apollo 14]

Write a definition for the relation ‘participatedIn’ in the 
current context

The subject entity took part in the mission specified 
by the object entity

The most semantically similar relation in the schema 
is ‘mission’

Can the relation ‘participatedIn’ be replaced by 
‘mission’ given the current context?

Yes! The converted relational triplet is 
[Alan Shepard, mission, Apollo 14]

Figure 1: A high-level illustration of Extract-Define-
Canonicalize (EDC) for Knowledge Graph Construc-
tion.

used in a variety of downstream tasks such as
decision-making (Guo et al., 2021; Lan et al.,
2020), question-answering (Huang et al., 2019; Ya-
sunaga et al., 2021), and recommendation (Guo
et al., 2020; Wang et al., 2019). However, knowl-
edge graph construction (KGC) is inherently chal-
lenging: the task requires competence in under-
standing syntax and semantics to generate a con-
sistent, concise, and meaningful knowledge graph.
As such, KGC predominantly relies on intensive
human labor (Ye et al., 2022). KGC is a broad
problem and in this work, we focus on the task
of relational triplet extraction as it is crucial for

9820

mailto:{bowenzhang, harold}@comp.nus.edu.sg
https://github.com/clear-nus/edc


KGC. Following previous works (Ye et al., 2022;
Melnyk et al., 2022; Bi et al., 2024), we still refer
to the task we are addressing as KGC.

Recent attempts to automate KGC (Zhong et al.,
2023; Ye et al., 2022) have employed large lan-
guage models (LLMs) in view of their remark-
able natural language understanding and generation
capabilities. LLM-based KGC methods employ
various innovative prompt-based techniques, such
as multi-turn conversation (Wei et al., 2023) and
code generation (Bi et al., 2024), to generate entity-
relation triplets that represent the knowledge graph.
However, these methods are currently limited to
small and domain-specific scenarios — to ensure
the validity of generated triplets, schema informa-
tion (e.g., possible entity and relation types) has to
be included in the prompt. Complex datasets (e.g.,
Wikipedia) typically require large schemas that
exceed the context window length or can be ig-
nored by the LLMs (Wadhwa et al., 2023). Further-
more, pre-defined schemas are not always avail-
able — the users might not have pre-determined
or fixed intentions about what information is of
interest in advance but still would like to extract
intrinsically high-quality KGs. It is unclear how
existing methods will work in such situations.

To address these problems, we propose Ex-
tract-Define-Canonicalize (EDC), a structured
approach for KGC: the key idea is to decompose
KGC into three primary phases corresponding to
three subtasks (Fig. 1):

1. Open Information Extraction: extract a list
of entity-relation triplets from the input text
freely.

2. Schema Definition: generate a definition for
each component of the schema, e.g. entity
type and relation type, induced by triplets ob-
tained in the extraction phase.

3. Schema Canonicalization: use the schema
definitions to standardize the triplets such
that semantically-equivalent entities/relations
types have the same noun/relation phrase.

Each phase exploits the strengths of LLMs:
the Extract subtask leverages recent findings that
LLMs are effective open information extractors (Li
et al., 2023; Han et al., 2023) — they can extract
semantically correct and meaningful triplets. How-
ever, the resulting triplets typically contain redun-
dant and ambiguous information, e.g., multiple

semantically equivalent relation phrases such as
‘profession’, ‘job’, and ‘occupation’ (Kamp et al.,
2023; Putri et al., 2019; Vashishth et al., 2018).

Phases 2 and 3 (Define and Canonicalize) stan-
dardize the triplets to make them useful for down-
stream tasks. We designed EDC to be flexible: it
can either discover triplets consistent with a pre-
existing schema of potentially large size (Target
Alignment) or self-generate a schema (Self Canon-
icalization). To achieve this, we use LLMs to de-
fine the schema components by exploiting their
explanation generation capabilities — LLMs can
justify their extractions via explanations that are
agreeable to human experts (Li et al., 2023). The
definitions are used to find the closest entity/rela-
tion type candidates (via a vector similarity search)
that the LLM can then reference to canonicalize
a component. In the case there is no equivalent
counterpart in the existing schema, we can choose
to add it to enrich the schema.

To further improve performance, the three steps
above can be followed by an additional Refine-
ment phase: we repeat EDC but provide the pre-
viously extracted triplets and a relevant part of the
schema in the prompt during the initial extraction.
We propose a trained Schema Retriever that re-
trieves schema components relevant to the input
text, akin to retrieval-augmented generation (Lewis
et al., 2020), which we find improves the generated
triplets.

Experiments on three KGC datasets in both Tar-
get Alignment and Self Canonicalization settings
show that EDC is able to extract higher-quality
KGs compared to state-of-the-art methods through
both automatic and manual evaluation. Further-
more, the use of the Schema Retriever is shown
to significantly and consistently improve EDC’s
performance.

In summary, the paper makes the following con-
tributions:

• EDC, a flexible and performant LLM-based
framework for knowledge graph construc-
tion that is able to extract high-quality KGs
with schema of large size or without any pre-
defined schema.

• Schema Retriever, a trained model to extract
schema components relevant to input text in
the same vein as information retrieval.

• Empirical evidence that demonstrate the effec-
tiveness of EDC and the Schema Retriever.

9821



2 Background

In this section, we provide relevant background on
knowledge graph construction (KGC), open infor-
mation extraction (OIE), and canonicalization.

Knowledge Graph Construction. Tradi-
tional methods typically addressed KGC using
“pipelines”, comprising subtasks like entity
discovery (Žukov-Gregorič et al., 2018; Martins
et al., 2019), entity typing (Choi et al., 2018; Onoe
and Durrett, 2020), and relation classification
(Zeng et al., 2014, 2015). Thanks to advances
in pre-trained generative language models (e.g.,
T5 (Raffel et al., 2020) and BERT(Lewis et al.,
2019)), more recent works instead frame KGC
as a sequence-to-sequence problem and generate
relational triplets in an end-to-end manner by
fine-tuning these moderately-sized language
models (Ye et al., 2022). The success of large
language models (LLMs) has pushed this paradigm
further: current methods directly prompt the
LLMs to generate triplets in a zero/few-shot
manner. For example, ChatIE (Wei et al., 2023)
extracts triplets by framing the task as a multi-turn
question-answering problem and CodeKGC (Bi
et al., 2024) approaches the task as a code
generation problem. As previously mentioned,
these models face difficulties scaling up to general
text common in many real-world applications as
the KG schema has to be included in the LLM
prompt. Our EDC framework circumvents this
problem by using post-hoc canonicalization (and
without requiring fine-tuning of the base LLMs).

Open Information Extraction and Canonical-
ization. Standard (closed) information extraction
requires the output triplets to follow a pre-defined
schema, e.g. a list of relation or entity types to
be extracted from. In contrast, open information
extraction (OIE) does not have such a requirement.
OIE has a long history and we refer readers who
want comprehensive coverage to the excellent sur-
veys (Liu et al., 2022; Zhou et al., 2022; Kamp
et al., 2023). Recent studies have found LLMs
to exhibit excellent performance on OIE tasks (Li
et al., 2023). However, the relational triplets ex-
tracted from OIE systems are not canonicalized;
multiple semantically equivalent relations can co-
exist without being unified to a canonical form,
causing redundancy and ambiguity in the induced
open knowledge graph. An extra canonicalization
step is required to standardize the triplets to make

the KGs useful for downstream applications.
Canonicalization methods differ depending on

whether a target schema is available. In case a
target schema is present, the task is sometimes re-
ferred to as “alignment” (Putri et al., 2019). For
example, Putri et al. (2019) uses WordNet (Miller,
1995) as side information to obtain definitions for
the OIE-extracted relation phrases and a Siamese
network to compare an OIE relation definition and
a pre-defined relation in the target schema. In case
no target schema is available, state-of-the-art meth-
ods are commonly based on clustering (Vashishth
et al., 2018; Dash et al., 2020). CESI (Vashishth
et al., 2018) creates embeddings for the OIE rela-
tions using side information from external sources
like PPDB (Ganitkevitch et al., 2013) and WordNet.
However, clustering-based methods are prone to
over-generalization (Kamp et al., 2023; Putri et al.,
2019), e.g., CESI may put “is brother of”, “is son
of”, “is main villain of”, and “was professor of”
into the same relation cluster.

Compared to the existing canonicalization meth-
ods, EDC is more general; it works whether a
target schema is provided or not. Instead of using
static external sources like WordNet, EDC utilizes
contextual and semantically-rich side information
generated by LLMs. Furthermore, by allowing
the LLMs to verify if a transformation can be per-
formed (instead of solely relying on the embedding
similarity), EDC alleviates the over-generalization
issue faced by previous methods.

3 Method: EDC for KGC

This section outlines our primary contribution: an
approach to constructing knowledge graphs that
leverages LLMs in a structured manner. We first
detail the EDC framework followed by a descrip-
tion of refinement (EDC+R). Given input text, our
goal is to extract relational triplets in a canonical
form such that the resulting KGs will have minimal
ambiguity and redundancy. When there is a pre-
defined target schema, all generated triplets should
conform to it. In the scenario where there is not
one, the system should dynamically create one and
canonicalize the triplets with respect to it.

3.1 EDC: Extract-Define-Canonicalize

At a high level, EDC decomposes KGC into three
connected subtasks. To ground our discussion, we
will use a specific input text example: “Alan Shep-
ard was born on Nov 18, 1923 and selected by

9822



NASA in 1959. He was a member of the Apollo 14
crew” and walk through each of the phases:

Phase 1: Open Information Extraction: we first
leverage Large Language Models (LLMs) for open
information extraction. Through few-shot prompt-
ing, LLMs identify and extract relational triplets
([Subject, Relation, Object]) from input texts, inde-
pendent of any specific schema. Using our example
above, the prompt is:

OIE Prompt

Given a piece of text, extract relational triplets in
the form of [Subject, Relation, Object] from it.
Here are some examples:
Example 1:
Text: The 17068.8 millimeter long ALCO RS-3
has a diesel-electric transmission.
Triplets: [[‘ALCO RS-3’, ‘powerType’, ‘Diesel-
electric transmission’], [‘ALCO RS-3’, ‘length’,
‘17068.8 (millimetres)’]] ...
Now please extract triplets from the following
text: Alan Shepard was born on Nov 18, 1923
and selected by NASA in 1959. He was a mem-
ber of the Apollo 14 crew.

The resultant triplets (in this case, [‘Alan Shep-
ard’, ‘bornOn’, ‘Nov 18, 1923’], [‘Alan Shep-
ard’, ‘participatedIn’, ‘Apollo 14’]) form an open
KG, which is forwarded to subsequent phases.

Phase 2: Schema Definition: Next, we prompt
the LLMs to provide a natural language definition
for each component of the schema induced by the
open KG:

Schema Definition Prompt

Given a piece of text and a list of relational triplets
extracted from it, write a definition for each rela-
tion present.
Example 1:
Text: The 17068.8 millimeter long ALCO RS-3
has a diesel-electric transmission.
Triplets: [[‘ALCO RS-3’, ‘powerType’, ‘Diesel-
electric transmission’], [‘ALCO RS-3’, ‘length’,
‘17068.8 (millimetres)’]]
Definitions:
powerType: The subject entity uses the type of
power or energy source specified by the object
entity.
...
Now write a definition for each relation present
in the triplets extracted from the following text:
Text: Alan Shepard was an American who was
born on Nov 18, 1923 in New Hampshire, was
selected by NASA in 1959, was a member of the
Apollo 14 crew and died in California
Triplets: [[‘Alan Shepard’, ‘bornOn’, ‘Nov 18,
1923’], [‘Alan Shepard’, ‘participatedIn’, ‘Apollo

14’]]

This example prompt results in the definitions
for (bornOn: The subject entity was born on
the date specified by the object entity.) and
(participatedIn: The subject entity took part in
the event or mission specified by the object
entity.), which are then passed to the next stage as
side information used for canonicalization.

Phase 3: Schema Canonicalization: The third
phase aims to refine the open KG into a canoni-
cal form, eliminating redundancies and ambigui-
ties. We start by vectorizing the definitions of each
schema component using a sentence transformer to
create embeddings. Canonicalization then proceeds
in one of two ways, depending on the availability
of a target schema:

• Target Alignment: With an existing target
schema, we identify the most closely related
components within the target schema for each
element, considering them for canonicaliza-
tion. To prevent issues of over-generalization,
LLMs assess the feasibility of each potential
transformation. If a transformation is deemed
unreasonable, indicating no semantic equiva-
lent in the target schema, the component, and
its related triplets are excluded.

• Self Canonicalization: Absent a target
schema, the goal is to consolidate semanti-
cally similar schema components, standardiz-
ing them to a singular representation to stream-
line the KG. Starting with an empty canonical
schema, we examine the open KG triplets,
searching for potential consolidation candi-
dates through vector similarity and LLM veri-
fication. Unlike target alignment, components
deemed non-transformable are added to the
canonical schema, thereby expanding it.

Using our example, the prompt is:

Schema Canonicalization Prompt

Given a piece of text, a relational triplet extracted
from it, and the definition of the relation in it,
choose the most appropriate relation to replace it
in this context if there is any.
Text: Alan Shepard was born on Nov 18, 1923
and selected by NASA in 1959. He was a member
of the Apollo 14 crew.
Triplets: [‘Alan Shepard’, ‘participatedIn’,
‘Apollo 14’]
Definition of ‘participatedIn’: The subject entity

9823



took part in the event or mission specified by the
object entity.
Choices:
A. ‘mission’: The subject entity participated in
the event or operation specified by the object en-
tity.
B. ‘season’: The subject entity participated in the
season of a series specified by the object entity.
...
F. None of the above

Note that the choices above are obtained by us-
ing vector similarity search. After the LLM makes
its choice, the relations are transformed to yield:
[‘Alan Shepard’, ‘birthDate’, ‘Nov 18, 1923’],
[‘Alan Shepard’, ‘mission’, ‘Apollo 14’], which
forms our canonicalized KG.

3.2 EDC+R: iteratively refine EDC with
Schema Retriever

The refinement process leverages the data gener-
ated by EDC to enhance the quality of the extracted
triplets. Inspired by retrieval-augmented genera-
tion and prior work (Bi et al., 2024), we construct
a “hint” for the extraction phase (details in Ap-
pendix A.4), which comprises two main elements:

• Candidate Entities: The entities extracted by
EDC from the previous iteration, and entities
extracted from the text using the LLM;

• Candidate Relations: The relations extracted
by EDC from the previous cycle and relations
retrieved from the pre-defined/canonicalized
schema by using a trained Schema Retriever.

The inclusion of entities and relations from both
the LLM and the schema retriever provides a richer
pool of candidates for the LLM, which addresses
issues where the absence of entities or relations im-
pairs the LLM’s effectiveness. By merging the en-
tities and relations extracted in earlier phases with
new findings from entity extraction and schema
retrieval, the hint serves to aid the OIE by boot-
strapping from the previous round.

To scale EDC to large schemas, we employ a
trained Schema Retriever which allows us to ef-
ficiently search schemas. The Schema Retriever
works in a similar fashion to information retrieval
methods based on vector spaces (Ganguly et al.,
2015; Lewis et al., 2020); it projects the schema
components and the input text to a vector space
such that cosine similarity captures the relevance
between the two, i.e., how likely a schema compo-
nent to be present in the input text. Note that in

our setting, the similarity space is different from
the standard sentence embedding models where
cosine similarity in the vector space captures se-
mantic equivalence. Our Schema Retriever is a
fine-tuned variant of the sentence embedding model
E5-mistral-7b-instruct (Wang et al., 2023). We fol-
low the original training methodology detailed in
the paper, which involves utilizing pairs of text
and their corresponding defined relations. For de-
tails, please refer to the Appendix A.3. For a given
positive text-relation pair (t+, r+), we employ an
instruction template on t+ to generate a new text
t+inst = “Instruct: retrieve relations that are present
in the given text \n Query: {t+}”.

We then finetune the embedding model to distin-
guish between the correct relation associated with
a given text and other non-relevant relations using
the InfoNCE loss.

Back to our example, refinement with the
schema retriever adds the following relation to the
previous set: [‘Alan Shepard’, ‘selectedByNasa’,
‘1959’]. The relation ‘selectedByNasa’ is rather
obscure but was specified in the target schema.

4 Experiments

In this section, we describe experiments designed
to evaluate the performance of EDC and EDC+R.
Briefly, our results demonstrate that EDC signif-
icantly outperforms the state-of-the-art methods
in both Target Alignment and Self Canonicaliza-
tion settings. Refinement further improves EDC.
Source code for EDC and to replicate our experi-
ments are available in the supplementary materials,
with full tables in the Appendix C.

4.1 Experimental Setup

Datasets. We evaluate EDC using three KGC
datasets:

• WebNLG (Ferreira et al., 2020): We use the
test split from the semantic parsing task of
WebNLG+2020 (v3.0). It contains 1165 pairs
of text and triplets. The schema derived
from these reference triplets encompasses 159
unique relation types.

• REBEL (Cabot and Navigli, 2021): The
original test partition of REBEL comprises
105,516 entries. To manage costs, we select a
random sample of 1000 text-triplet pairs. This
subset induces a schema with 200 distinct re-
lation types.

9824



• Wiki-NRE (Distiawan et al., 2019): From
Wiki-NRE’s test split (29,619 entries), we
sample 1000 text-triplet pairs, resulting in a
schema with 45 unique relation types.

These datasets were chosen due to their richer
variety of relation types over alternatives like
ADE (Gurulingappa et al., 2012) (1 relation type),
SciERC (Luan et al., 2018) (7 relation types), and
CoNLL04 (Roth and Yih, 2004) (4 relation types)
used to evaluate previous LLM-based methods (Bi
et al., 2024; Wadhwa et al., 2023). This diversity
better mimics real-world complexity. In our experi-
ments, we focus on extracting relations as the only
schema component available across all datasets.
Relations, being a foundational element of KGs,
are prioritized over other components like entity
or event types. However, note that EDC can be
readily extended to other schema components.

EDC Models. EDC contains multiple modules
that are powered by LLMs. Since the OIE mod-
ule is the key upstream module that determines the
semantic content captured in the KG, we tested
different LLMs of different sizes including GPT-
4 (Achiam et al., 2023), GPT-3.5-turbo (Brown
et al., 2020), and Mistral-7b (Jiang et al., 2023).
Mistral-7b was deployed on a local workstation,
whereas the GPT models were accessed via the
OpenAI API. For the framework’s remaining com-
ponents which required prompting, we used GPT-
3.5-turbo. In the canonicalization phase, the E5-
Mistral-7b model was utilized for vector similarity
searches without modifications.

4.1.1 Evaluation Criteria and Baselines
We evaluate our methods differently under Target
Alignment (when a schema is provided) and Self
Canonicalization (no schema) due to the inherently
different objectives: the former aims to recover the
ground-truth annotated triplets consistent with the
target schema while the latter is to extract seman-
tically correct and meaningful triplets that induce
a succinct and non-redundant KG without a pre-
defined target to compare against. For the datasets
above, the preivous LLM-based KGC methods
(ChatIE and CodeKGC) could not be used due to
the schema size. Although EDC is not intended for
small domain-specific datasets, we include the re-
sults on SciERC and CoNLL04 in the Appendix E
for the comprehensiveness of the evaluation.

Target Alignment. We compare EDC and
EDC+R against the specialized trained models for

each of the datasets:

• REGEN (Dognin et al., 2021) is the SOTA
model for WebNLG. It is a sequence-to-
sequence model that leverages pre-trained
T5 (Raffel et al., 2020) and Reinforcement
Learning (RL) for bidirectional text-to-graph
and graph-to-text generation.

• GenIE (Josifoski et al., 2022), a sequence-
to-sequence model that leverages pre-trained
BART (Lewis et al., 2019) and a constrained
generation strategy to constrain the output
triplets to be consistent with the pre-defined
schema. GenIE is the state-of-the-art model
for REBEL and Wiki-NRE.

Following previous work (Dognin et al., 2021; Mel-
nyk et al., 2022), we use the WEBNLG evalua-
tion script (Ferreira et al., 2020) which computes
the Precision, Recall, and F1 scores for the output
triplets against the ground truth in a token-based
manner. Metrics based on Named Entity Evalua-
tion were used to measure the Precision, Recall,
and F1 score in three different ways.

• Exact: Requires a complete match between
the candidate and reference triple, disregard-
ing the type (subject, relation, object).

• Partial: Allows for at least a partial match
between the candidate and reference triple,
disregarding the type.

• Strict: Demands an exact match between the
candidate and reference triplet, including the
element types.

Self Canonicalization. For evaluating self-
canonicalization performance, comparisons are
made with:

• Baseline Open KG, which is the initial open
KG output from the OIE (Open Information
Extraction) phase. This serves as a reference
point to illustrate the changes in precision and
schema conciseness resulting from the canon-
icalization process.

• CESI (Vashishth et al., 2018), recognized as
a leading clustering-based approach for open
KG canonicalization. By applying CESI to the
open KG, we aim to contrast its performance
against canonicalization by EDC.

9825



GPT-4 GPT-3.5 Mistral-7b
0.4

0.5

0.6

0.7

0.8

F1
 S

co
re

s
WebNLG

REGEN(Baseline)
EDC
EDC + R

GPT-4 GPT-3.5 Mistral-7b
0.2

0.3

0.4

0.5

0.6

F1
 S

co
re

s

REBEL

GenIE(Baseline)
EDC
EDC + R

GPT-4 GPT-3.5 Mistral-7b
0.3

0.4

0.5

0.6

0.7

F1
 S

co
re

s

Wiki-NRE

GenIE(Baseline)
EDC
EDC + R

Figure 2: Performance of EDC and EDC+R on WebNLG, REBEL, and Wiki-NRE datasets against baselines in the
Target Alignment setting (F1 scores with ‘Partial’ criteria). EDC+R only performs one iteration of refinement due
to diminishing marginal improvement.

Given that canonicalized triplets may use relations
phrased differently from the reference triplets or en-
tirely out-of-schema relations, a token-based evalu-
ation becomes unsuitable. Thus, we resort to man-
ual evaluation, focusing on three key aspects that
reflect the intrinsic quality of an extracted KG:

• Precision: The canonicalized triplets remain
correct and meaningful with respect to the text
compared to the OIE triplets.

• Conciseness: The schema’s brevity is mea-
sured by the number of relations types.

• Redundancy: We employ a redundancy score
— the average cosine similarity among each
canonicalized relation and its nearest coun-
terpart — where low scores indicate that the
schema’s relations are semantically distinct.

4.2 Results and Analysis
In the following, we focus on conveying our main
findings and results. For full results and tables,
please refer to the Appendix.

4.2.1 Target Alignment
The bar charts in Figure 2 summarize the Partial F1
scores obtained by EDC and EDC+R on all three
datasets with different LLMs for OIE compared
against the respective baselines. EDC demon-
strates performance that is superior to or on
par with the state-of-the-art baselines for all
evaluated datasets. Comparing the LLMs, GPT-4
emerges as the top performer, with Mistral-7b and
GPT-3.5-turbo exhibiting comparable results. The
disparity between our methods and the baselines is
more pronounced on the REBEL and Wiki-NRE

datasets; this is primarily due to the GenIE’s con-
strained generation approach, which falls short in
extracting triplets that include literals, such as num-
bers and dates.

Refinement (EDC+R) consistently and signif-
icantly enhances performance. Post-refinement,
the difference in performance between GPT-3.5-
turbo and Mistral-7b is larger, suggesting Mistral-
7b’s was not as able to leverage the provided hints.
Nevertheless, a single refinement iteration with the
hint improved performance for all the tested LLMs.

From the scores, it appears that EDC perfor-
mance is significantly better on WebNLG com-
pared to REBEL and Wiki-NRE. However, we ob-
served that EDC was penalized despite producing
valid triplets on the latter datasets. A reason for
this is that the reference triplets in these datasets
are non-exhaustive. For example, given the text
in the REBEL dataset, ‘Romany Love is a 1931
British musical film directed by Fred Paul and star-
ring Esmond Knight, Florence McHugh and Roy
Travers.’, EDC extracts: [‘Romany Love’, ‘cast
member’, ‘Esmond Knight’], [‘Romany Love’,
‘cast member’, ‘Florence McHugh’], [‘Romany
Love’, ‘cast member’, ‘Roy Travers’], which are
all semantically correct, but only the first triplet is
present in the reference set. The datasets also con-
tain reference triplets based on information extra-
neous to the text, e.g., ‘Daniel is an Ethiopian foot-
baller, who currently plays for Hawassa City S.C.’
has a corresponding reference triplet [‘Hawassa
City S.C.’, ‘country’, ‘Ethiopia’].

These issues can be attributed to the distinct
methodologies employed in the creation of these
datasets. For WebNLG, annotators were asked to

9826



Table 1: Ablation study results (F1 scores with all cri-
teria) on schema retriever, the LLM used for OIE is
GPT-3.5-turbo. S.R. stands for Schema Retriever.

Dataset Method Partial Strict Exact
EDC+R 0.794 0.753 0.772

WebNLG EDC+R w/o S.R. 0.752 0.701 0.721
EDC 0.746 0.688 0.713
EDC+R 0.559 0.516 0.529

REBEL EDC+R w/o S.R. 0.517 0.466 0.482
EDC 0.506 0.449 0.473
EDC+R 0.693 0.685 0.657

Wiki-NRE EDC+R w/o S.R. 0.653 0.645 0.641
EDC 0.647 0.638 0.640

compose text solely from the triplets. Thus, the
text and the triplets have a direct correspondence,
and the text typically does not include informa-
tion other than what is apparent from the triplets.
In contrast, REBEL and Wiki-NRE are created
by aligning text and triplets using distant supervi-
sion (Smirnova and Cudré-Mauroux, 2018). This
approach can result in less straightforward triplet
extraction and incomplete reference sets, leading
to overly pessimistic evaluations for methods like
EDC, which generate correct triplets not present in
the dataset. (Han et al., 2023; Wadhwa et al., 2023).
On average, EDC extracts one additional triplet per
sentence on REBEL and Wiki-NRE compared to
the reference set, while on WebNLG, it extracts a
similar number of triplets to the reference.

Ablation study on schema retriever. To evaluate
the impact of the relations provided by the schema
retriever during refinement, we conducted an abla-
tion study with GPT-3.5-turbo by removing these
relations. The results in Table 1 show that ablating
the Schema Retriever leads to a decline in perfor-
mance. Qualitatively, we find that the schema re-
triever helps to find relevant relations that are chal-
lenging for the LLMs to identify during the OIE
stage. For example, given the text ‘The University
of Burgundy in Dijon has 16,800 undergraduate
students’, the LLMs extract [‘University of Bur-
gundy’, ‘location’, ‘Dijon’] during OIE. Although
semantically correct, this relation overlooks the
more specific relation present in the target schema,
namely ‘campus’, for denoting university’s loca-
tion. The schema retriever successfully identifies
this finer relation, enabling the LLMs to adjust their
extraction to [‘University of Burgundy’, ‘campus’,
‘Dijon’]. This experiment highlights the schema
retriever’s value in facilitating the extraction of pre-
cise and contextually appropriate relations.

Table 2: Performance of EDC in the Self Canonical-
ization setting (human-evaluated precision and schema
metrics). The best result for each dataset and metric is
bolded. Prec. stands for precision, No. Rel. stands for
the number of relations and Red. stands for redundancy
score.

Dataset Method Prec.(↑) No. Rel.(↓) Red.(↓)
EDC 0.956 200 0.833

WebNLG CESI 0.724 280 0.893
Open KG 0.982 529 0.927
EDC 0.867 225 0.831

REBEL CESI 0.504 307 0.854
Open KG 0.903 667 0.895
EDC 0.898 106 0.833

Wiki-NRE CESI 0.753 114 0.849
Open KG 0.909 204 0.881

4.2.2 Self Canonicalization
Here, we focus on evaluating EDC’s self-
canonicalization performance (utilizing GPT-3.5-
turbo for OIE). We omit refinement in Self Canon-
icalization setting as it has already been stud-
ied above and in subsequent iterations, the self-
constructed canonicalized schema becomes the tar-
get schema. Following prior work (Wadhwa et al.,
2023; Kolluru et al., 2020), we conducted a tar-
geted human evaluation of knowledge graphs. This
evaluation involved two independent annotators
assessing the reasonableness of triplet extractions
from given text without prior knowledge of the sys-
tem’s details. We observed a high inter-annotator
agreement score of 0.94.

The evaluation results and schema metrics are
summarized in Table 2.While the open KG gen-
erated by the OIE stage contains semantically
valid triplets (which affirms the previous findings
that LLMs are competent open information extrac-
tors (Li et al., 2023)), there is a significant degree
of redundancy within the resultant schema. EDC
accurately canonicalizes the open KG and yields
a schema that is both more concise and less re-
dundant compared to CESI. EDC avoids CESI’s
tendency toward over-generalization — in line with
prior work (Putri et al., 2019), we observed CESI
inappropriately clusters diverse relations such as
‘place of death’, ‘place of birth’, ‘date of death’,
‘date of birth’, and ‘cause of death’ into a single
‘date of death’ category.

5 Conclusion

In this work, we presented EDC, an LLM-based
three-phase framework that addresses the problem
of KGC by open information extraction followed
by post-hoc canonicalization. Experiments show

9827



that EDC and EDC+R are able to extract better
KGs than specialized trained models when a tar-
get schema is available and dynamically create a
schema when none is provided. The scalability and
versatility of EDC opens up many opportunities
for applications: it allows us to automatically ex-
tract high-quality KGs from general text using large
schemas like Wikidata (Vrandečić and Krötzsch,
2014) and even enrich these schemas with newly
discovered relations.

6 Limitations and Future Directions

There are several limitations that we would like to
address in future works.

• We only considered schema canonicalization
within the scope of this paper, it is of great
interest to incorporate an entity de-duplication
mechanism in the future to reduce the redun-
dancy in the constructed KGs, e.g., via coref-
erence resolution (Sukthanker et al., 2020).
We briefly explored this approach and the pre-
liminary results can be found in Appendix F.

• EDC’s components can be further improved to
boost performance. Specifically, the schema
retriever may benefit from training on more
diverse and higher-quality data.

• Due to time and resource constraints, we only
tested different LLMs for OIE while all the
other modules of EDC rely on GPT-3.5-turbo,
it will be beneficial to test the smaller open-
source models’ performance on the other tasks
as well.

• EDC is a costly framework, involving a large
number of LLM calls. When GPT-3.5-turbo is
used for all components, the cost was around
0.009 USD per example in our experiments.
It is possible to have certain components re-
placed by smaller fine-tuned models — previ-
ous works have shown smaller language mod-
els can be fine-tuned for OIE (Wadhwa et al.,
2023) and smaller BERT-based classifiers can
be trained for schema canonicalization. We
also explored the possibility of combining the
two stages of OIE and Schema Definition in
Appendix G.

• We are looking to apply EDC towards embod-
ied AI and robotics. Specifically, KGs can
form memory sources for VLMs, containing

facts about humans (Zhang and Soh, 2023),
the task or goal (Xie et al., 2023), and the
environment.

7 Ethical Considerations

Artifact usage. The datasets we used in the
paper are only leveraged for research purposes
and we strictly follow the corresponding licenses
(e.g. WebNLG uses cc-by-nc-sa-4.0). It is to
be noted that, due to the nature of the task, the
datasets may inherently contain information about
individuals (especially celebrities). Software and
code for this paper is publicly available at https:
//github.com/clear-nus/edc.

Human annotators. The two annotators (1 male
and 1 female) are recruited university students. The
annotators are compensated fairly and given abun-
dant and flexible time to complete the tasks. The
collection protocol is determined exempt by our
institution’s IRB committee.

Potential Risks. The use of current LLMs may
incur risks such as hallucinations (Xu et al., 2024)
and privacy issues (Yao et al., 2024).

Acknowledgements

This research is supported by the National Research
Foundation Singapore and DSO National Labora-
tories under the AI Singapore Programme (AISG
Award No: AISG2-RP-2020-016).

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Oshin Agarwal, Heming Ge, Siamak Shakeri, and
Rami Al-Rfou. 2020. Knowledge graph based syn-
thetic corpus generation for knowledge-enhanced
language model pre-training. arXiv preprint
arXiv:2010.12688.

Zhen Bi, Jing Chen, Yinuo Jiang, Feiyu Xiong, Wei Guo,
Huajun Chen, and Ningyu Zhang. 2024. Codekgc:
Code language model for generative knowledge
graph construction. ACM Transactions on Asian
and Low-Resource Language Information Process-
ing, 23(3):1–16.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot

9828

https://github.com/clear-nus/edc
https://github.com/clear-nus/edc


learners. Advances in neural information processing
systems, 33:1877–1901.

Pere-Lluís Huguet Cabot and Roberto Navigli. 2021.
Rebel: Relation extraction by end-to-end language
generation. In Findings of the Association for Com-
putational Linguistics: EMNLP 2021, pages 2370–
2381.

Eunsol Choi, Omer Levy, Yejin Choi, and Luke Zettle-
moyer. 2018. Ultra-fine entity typing. arXiv preprint
arXiv:1807.04905.

Sarthak Dash, Gaetano Rossiello, Nandana Mihin-
dukulasooriya, Sugato Bagchi, and Alfio Gliozzo.
2020. Open knowledge graphs canonicalization
using variational autoencoders. arXiv preprint
arXiv:2012.04780.

Bayu Distiawan, Gerhard Weikum, Jianzhong Qi, and
Rui Zhang. 2019. Neural relation extraction for
knowledge base enrichment. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 229–240.

Pierre L Dognin, Inkit Padhi, Igor Melnyk, and Payel
Das. 2021. Regen: Reinforcement learning for text
and knowledge base generation using pretrained lan-
guage models. arXiv preprint arXiv:2108.12472.

Thiago Castro Ferreira, Claire Gardent, Nikolai Ilinykh,
Chris Van Der Lee, Simon Mille, Diego Moussallem,
and Anastasia Shimorina. 2020. The 2020 bilingual,
bi-directional webnlg+ shared task overview and eval-
uation results (webnlg+ 2020). In Proceedings of the
3rd International Workshop on Natural Language
Generation from the Semantic Web (WebNLG+).

Debasis Ganguly, Dwaipayan Roy, Mandar Mitra, and
Gareth JF Jones. 2015. Word embedding based gen-
eralized language model for information retrieval. In
Proceedings of the 38th international ACM SIGIR
conference on research and development in informa-
tion retrieval, pages 795–798.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. Ppdb: The paraphrase
database. In Proceedings of the 2013 conference
of the north american chapter of the association for
computational linguistics: Human language tech-
nologies, pages 758–764.

Liang Guo, Fu Yan, Yuqian Lu, Ming Zhou, and
Tao Yang. 2021. An automatic machining process
decision-making system based on knowledge graph.
International journal of computer integrated manu-
facturing, 34(12):1348–1369.

Qingyu Guo, Fuzhen Zhuang, Chuan Qin, Hengshu
Zhu, Xing Xie, Hui Xiong, and Qing He. 2020. A
survey on knowledge graph-based recommender sys-
tems. IEEE Transactions on Knowledge and Data
Engineering, 34(8):3549–3568.

Harsha Gurulingappa, Abdul Mateen Rajput, Angus
Roberts, Juliane Fluck, Martin Hofmann-Apitius, and
Luca Toldo. 2012. Development of a benchmark

corpus to support the automatic extraction of drug-
related adverse effects from medical case reports.
Journal of biomedical informatics, 45(5):885–892.

Ridong Han, Tao Peng, Chaohao Yang, Benyou Wang,
Lu Liu, and Xiang Wan. 2023. Is information extrac-
tion solved by chatgpt? an analysis of performance,
evaluation criteria, robustness and errors. arXiv
preprint arXiv:2305.14450.

Xiao Huang, Jingyuan Zhang, Dingcheng Li, and Ping
Li. 2019. Knowledge graph embedding based ques-
tion answering. In Proceedings of the twelfth ACM
international conference on web search and data min-
ing, pages 105–113.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Martti-
nen, and S Yu Philip. 2021. A survey on knowledge
graphs: Representation, acquisition, and applications.
IEEE transactions on neural networks and learning
systems, 33(2):494–514.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Martin Josifoski, Nicola De Cao, Maxime Peyrard,
Fabio Petroni, and Robert West. 2022. GenIE: Gen-
erative information extraction. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 4626–4643,
Seattle, United States. Association for Computational
Linguistics.

Serafina Kamp, Morteza Fayazi, Zineb Benameur-El,
Shuyan Yu, and Ronald Dreslinski. 2023. Open
information extraction: A review of baseline tech-
niques, approaches, and applications. arXiv preprint
arXiv:2310.11644.

Keshav Kolluru, Vaibhav Adlakha, Samarth Aggarwal,
Soumen Chakrabarti, et al. 2020. Openie6: Iterative
grid labeling and coordination analysis for open infor-
mation extraction. arXiv preprint arXiv:2010.03147.

Luong Thi Hong Lan, Tran Manh Tuan, Tran Thi Ngan,
Nguyen Long Giang, Vo Truong Nhu Ngoc, Pham
Van Hai, et al. 2020. A new complex fuzzy inference
system with fuzzy knowledge graph and extensions
in decision making. Ieee Access, 8:164899–164921.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.9829

https://doi.org/10.18653/v1/2022.naacl-main.342
https://doi.org/10.18653/v1/2022.naacl-main.342


Bo Li, Gexiang Fang, Yang Yang, Quansen Wang, Wei
Ye, Wen Zhao, and Shikun Zhang. 2023. Evaluating
chatgpt’s information extraction capabilities: An as-
sessment of performance, explainability, calibration,
and faithfulness. arXiv preprint arXiv:2304.11633.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024. Lost in the middle: How language mod-
els use long contexts. Transactions of the Association
for Computational Linguistics, 12:157–173.

Pai Liu, Wenyang Gao, Wenjie Dong, Songfang Huang,
and Yue Zhang. 2022. Open information extrac-
tion from 2007 to 2022–a survey. arXiv preprint
arXiv:2208.08690.

Yi Luan, Luheng He, Mari Ostendorf, and Han-
naneh Hajishirzi. 2018. Multi-task identification
of entities, relations, and coreference for scien-
tific knowledge graph construction. arXiv preprint
arXiv:1808.09602.

Pedro Henrique Martins, Zita Marinho, and André FT
Martins. 2019. Joint learning of named entity
recognition and entity linking. arXiv preprint
arXiv:1907.08243.

Igor Melnyk, Pierre Dognin, and Payel Das. 2022.
Knowledge graph generation from text. arXiv
preprint arXiv:2211.10511.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–41.

Yasumasa Onoe and Greg Durrett. 2020. Fine-grained
entity typing for domain independent entity linking.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 8576–8583.

Shon Otmazgin, Arie Cattan, and Yoav Goldberg. 2023.
LingMess: Linguistically informed multi expert scor-
ers for coreference resolution. In Proceedings of the
17th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 2752–
2760, Dubrovnik, Croatia. Association for Computa-
tional Linguistics.

Rifki Afina Putri, Giwon Hong, and Sung-Hyon
Myaeng. 2019. Aligning open ie relations and kb
relations using a siamese network based on word em-
bedding. In Proceedings of the 13th International
Conference on Computational Semantics-Long Pa-
pers, pages 142–153.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1–67.

Dan Roth and Wen-tau Yih. 2004. A linear program-
ming formulation for global inference in natural lan-
guage tasks. In Proceedings of the eighth conference

on computational natural language learning (CoNLL-
2004) at HLT-NAACL 2004, pages 1–8.

Alisa Smirnova and Philippe Cudré-Mauroux. 2018. Re-
lation extraction using distant supervision: A survey.
ACM Computing Surveys (CSUR), 51(5):1–35.

Rhea Sukthanker, Soujanya Poria, Erik Cambria, and
Ramkumar Thirunavukarasu. 2020. Anaphora and
coreference resolution: A review. Information Fu-
sion, 59:139–162.

Qingyu Tan, Lu Xu, Lidong Bing, Hwee Tou Ng, and
Sharifah Mahani Aljunied. 2022. Revisiting docred
– addressing the false negative problem in relation
extraction. In Proceedings of EMNLP.

Shikhar Vashishth, Prince Jain, and Partha Talukdar.
2018. Cesi: Canonicalizing open knowledge bases
using embeddings and side information. In Proceed-
ings of the 2018 World Wide Web Conference, pages
1317–1327.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Communi-
cations of the ACM, 57(10):78–85.

Somin Wadhwa, Silvio Amir, and Byron C Wallace.
2023. Revisiting relation extraction in the era of large
language models. In Proceedings of the conference.
Association for Computational Linguistics. Meeting,
volume 2023, page 15566. NIH Public Access.

Hongwei Wang, Miao Zhao, Xing Xie, Wenjie Li, and
Minyi Guo. 2019. Knowledge graph convolutional
networks for recommender systems. In The world
wide web conference, pages 3307–3313.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,
Rangan Majumder, and Furu Wei. 2023. Improving
text embeddings with large language models. arXiv
preprint arXiv:2401.00368.

Xiang Wei, Xingyu Cui, Ning Cheng, Xiaobin Wang,
Xin Zhang, Shen Huang, Pengjun Xie, Jinan Xu,
Yufeng Chen, Meishan Zhang, et al. 2023. Zero-
shot information extraction via chatting with chatgpt.
arXiv preprint arXiv:2302.10205.

Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong,
and Harold Soh. 2023. Translating natural language
to planning goals with large-language models. arXiv
preprint arXiv:2302.05128.

Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli.
2024. Hallucination is inevitable: An innate lim-
itation of large language models. arXiv preprint
arXiv:2401.11817.

Yifan Yao, Jinhao Duan, Kaidi Xu, Yuanfang Cai, Zhibo
Sun, and Yue Zhang. 2024. A survey on large lan-
guage model (llm) security and privacy: The good,
the bad, and the ugly. High-Confidence Computing,
page 100211.

9830

https://doi.org/10.18653/v1/2023.eacl-main.202
https://doi.org/10.18653/v1/2023.eacl-main.202
https://arxiv.org/abs/2205.12696
https://arxiv.org/abs/2205.12696
https://arxiv.org/abs/2205.12696


Michihiro Yasunaga, Hongyu Ren, Antoine Bosse-
lut, Percy Liang, and Jure Leskovec. 2021. Qa-
gnn: Reasoning with language models and knowl-
edge graphs for question answering. arXiv preprint
arXiv:2104.06378.

Hongbin Ye, Ningyu Zhang, Hui Chen, and Huajun
Chen. 2022. Generative knowledge graph construc-
tion: A review. arXiv preprint arXiv:2210.12714.

Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao.
2015. Distant supervision for relation extraction via
piecewise convolutional neural networks. In Proceed-
ings of the 2015 conference on empirical methods in
natural language processing, pages 1753–1762.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou,
and Jun Zhao. 2014. Relation classification via con-
volutional deep neural network. In Proceedings of
COLING 2014, the 25th international conference on
computational linguistics: technical papers, pages
2335–2344.

Bowen Zhang and Harold Soh. 2023. Large language
models as zero-shot human models for human-robot
interaction. In 2023 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages
7961–7968. IEEE.

Lingfeng Zhong, Jia Wu, Qian Li, Hao Peng, and Xin-
dong Wu. 2023. A comprehensive survey on auto-
matic knowledge graph construction. ACM Comput-
ing Surveys, 56(4):1–62.

Shaowen Zhou, Bowen Yu, Aixin Sun, Cheng Long,
Jingyang Li, Haiyang Yu, Jian Sun, and Yongbin
Li. 2022. A survey on neural open information ex-
traction: Current status and future directions. arXiv
preprint arXiv:2205.11725.

Andrej Žukov-Gregorič, Yoram Bachrach, and Sam
Coope. 2018. Named entity recognition with parallel
recurrent neural networks. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 69–74.

9831



A Implementation Details

A.1 Models and Infrastructures Details
We use two OpenAI models, GPT-3.5-turbo and
GPT-4 (sizes currently unknown), and an open-
source model, Mistral-7b (7 billion parameters).
The training and inference of open-source mod-
els are done with a single machine with an AMD
EPYC 7543P 32-Core Processor and 252GB of
RAM, equipped with 4 NVIDIA RTX A6000
(48GB) GPUs. We accessed GPT-3.5-turbo and
GPT-4 via the OpenAI API. Code for EDC is avail-
able at https://github.com/clear-nus/edc.

A.2 Prompting-related hyperparameters
We use few-shot prompting for all modules of
EDC, we empirically choose 6-shot examples from
the respective datasets. For the MCQ used in the
Schema Canonicalization phase, we retrieve top-5
semantically similar relations from the schema as
candidates. For refinement, the schema retriever
retrieves top-10 most relevant relations from the
schema as candidate relations. These hyperparame-
ters are empirically chosen to balance performance
and inference costs.

A.3 Schema Retriever Training
We follow the original training methodology de-
tailed in the original paper (Wang et al., 2023),
which involves utilizing pairs of text and their cor-
responding defined relations. For a given positive
text-relation pair (t+, r+), we employ an instruc-
tion template on t+ to generate a new text t+inst =
“Instruct: retrieve relations that are present in the
given text \n Query: {t+}”.

We then finetune the embedding model to distin-
guish between the correct relation associated with
a given text and other non-relevant relations using
the InfoNCE loss,

minL = − log
ϕ(t+inst, r

+)

ϕ(t+inst, r
+) +

∑
ni∈N ϕ(t+inst, ni)

Here, N denotes the set of negative samples, and
ϕ represents the cosine similarity function. Please
see the appendix for additional training details.

For training, we synthesized a dataset of text-
relation pairs using the TEKGEN dataset (Agarwal
et al., 2020), a large-scale text-triplets dataset cre-
ated by aligning Wikidata triplets to Wikipedia text.
The training dataset comprised 37,500 pairs, evenly
divided between positive and negative samples. We

adopted an online open-source implementation and
hyperparameter configurations for training.

The performance of the fine-tuned schema re-
triever was assessed on the test splits of WebNLG,
REBEL, and Wiki-NRE datasets. The recall@10
scores on these datasets were 0.823, 0.663, and
0.818, respectively, indicating the effectiveness of
the retriever across different knowledge graph con-
texts.

A.4 Details of Refinement Hint

The refinement hint consists of candidate entities
and candidate relations. This section details the
obtainment of them and how they are used to im-
prove the OIE performance. We will carry on using
the example used in Section 3: “Alan Shepard was
born on Nov 18, 1923 and selected by NASA in
1959. He was a member of the Apollo 14 crew”
and the triplets extracted by EDC in the first iter-
ation are [’Alan Shepard’, ‘birthDate’, ‘Nov 18,
1923’], [’Alan Shepard’, ’mission’, ’Apollo 14’].

A.4.1 Obtaining Candidate Entities
The candidate entities come from two sources:

• Entities extracted by EDC from the previous
iteration, i.e. [‘Alan Shepard’, ‘Nov 18,
1923’, ‘Apollo 14’]

• Entities extracted from the text by prompting
the LLM to perform an entity extraction task,
similar to the triplet extraction task.

Entity Extraction Prompt

Given a piece of text, extract a list of enti-
ties from it.
Here are some examples:
Example 1:
Text: The 17068.8 millimeter long ALCO
RS-3 has a diesel-electric transmission.
Entities: [’ALCO RS-3’, ’Diesel-electric
transmission’, ’17068.8 (millimetres)’]
...
Now please extract entities from the follow-
ing text: Alan Shepard was born on Nov 18,
1923 and selected by NASA in 1959. He
was a member of the Apollo 14 crew.

and the resultant entities are [‘Alan Shepard’,
‘Nov 18, 1923’, ‘NASA’, ‘1959’, ‘Apollo
14’]

The entities are then merged together as the can-
didate entities.

9832

https://github.com/clear-nus/edc


A.4.2 Obtaining Candidate Relations
The candidate relations also come from two
sources:

• Relations extracted by EDC from the previous
iteration, i.e. [‘birthDate’, ‘mission’]

• Relations extracted by the schema retriever,
by calculating the relevance score between
the input text and the relations in the schema.
The top 5 retrieved relations in this case are
[‘birthDate’, , ‘selectedByNasa’, ‘mission’,
‘draftPick’, ‘occupation’].

The relations and their corresponding definitions
are then merged together as the candidate relations.
It is to be noted that, similar to other RAG-based
methods, there is a chance that the retriever may
retrieve irrelevant information. In this case, the re-
lation definitions can come in handy as it provides
more information for the LLMs to decide whether
the relation is a valid one with respect to the text or
not.

A.4.3 Usage of Hint for Refined OIE
The refinement hint is then included in the prompt
appropriately to instruct the LLMs to consider (but
is not limited to) the candidate entities and candi-
date relations:

Refined OIE Prompt

Given a piece of text, extract relational triplets in
the form of [Subject, Relation, Object] from it.
Here are some examples:
Example 1:
Text: The 17068.8 millimeter long ALCO RS-3
has a diesel-electric transmission.
Entities: [’ALCO RS-3’, ’Diesel-electric transmis-
sion’, ’17068.8 (millimetres)’]
Triplets: [[’ALCO RS-3’, ’powerType’, ’Diesel-
electric transmission’], [’ALCO RS-3’, ’length’,
’17068.8 (millimetres)’]]
...
Now please extract triplets from the following
text: Alan Shepard was born on Nov 18, 1923
and selected by NASA in 1959. He was a member
of the Apollo 14 crew. Entities: [‘Alan Shepard’,
‘Nov 18, 1923’, ‘NASA’, ‘1959’, ‘Apollo 14’]
Here are some potential relations and their de-
scriptions you may look out for during extraction:
1. birthDate: The subject entity was born on the
date specified by the object entity.
2. mission: The subject entity participated in the
event or operation specified by the object entity.
3. selectedByNasa: The subject entity was se-
lected by NASA in the year specified by the object
entity.
...

Figure 3: An example screenshot of the questionnaire
including the instructions given to the annotators.

The extracted triplets by the refined OIE
are:[’Alan Shepard’, ‘birthDate’, ‘Nov 18,
1923’], [’Alan Shepard’, ’mission’, ’Apollo 14’],
[’Alan Shepard’, ’selectedByNasa’, ’1959’]. It
successfully recovers the subtle and fine-grained
relation ‘selectedByNasa’ that would have been
missed without using the hint. Also, the semanti-
cally rich descriptions help the LLM avoid exces-
sively extracting noisy relations retrieved by the
schema retriever.

We found it important to include the entities
from both sources, i.e. extractions from the last
round and discovered by a separate module (entity
extraction or schema retriever). The significance
of the schema retriever is already shown in the
ablation study in Sec 4.2.1.

B Annotation Instruction

An example screenshot is provided in Figure 3
to illustrate the format of questionnaires and in-
structions the annotators are given. The purpose
of collection of the data was communicated to the
annotators verbally.

C Detailed Results of Target Alignment

C.1 Complete Results

The complete results of EDC and EDC+R on
WebNLG, REBEL and Wiki-NRE are summarized
in Table 3, Table 4 and Table 5 respectively. EDC
performs better than or comparable to state-of-the-
art baseline models in terms of all metrics (Preci-
sion, Recall, and F1) in all criteria (Partial, Strict,
and Exact) and EDC+R is able to consistently im-

9833



Table 3: Complete results of EDC and EDC+R on WebNLG dataset against the baseline REGEN (Precision, Recall,
F1 with ‘Partial’, ‘Strict’ and ‘Exact’ criteria). EDC+R only performs 1 iteration of refinement. The best results are
bolded.

Partial Strict Exact
Method LLM for OIE Precision Recall F1 Precision Recall F1 Precision Recall F1

GPT-4 0.776 0.796 0.783 0.729 0.741 0.733 0.751 0.765 0.756
EDC GPT-3.5 0.739 0.760 0.746 0.684 0.697 0.688 0.708 0.722 0.713

Mistral-7b 0.723 0.739 0.728 0.668 0.679 0.672 0.692 0.703 0.696
GPT-4 0.814 0.831 0.820 0.782 0.794 0.786 0.796 0.808 0.800

EDC+R GPT-3.5 0.788 0.806 0.794 0.749 0.761 0.753 0.768 0.781 0.772
Mistral-7b 0.756 0.775 0.762 0.716 0.727 0.720 0.735 0.747 0.739

Baseline REGEN 0.755 0.788 0.767 0.713 0.735 0.720 0.714 0.738 0.723

Table 4: Complete results of EDC and EDC+R on REBEL dataset against the baseline REGEN (Precision, Recall,
F1 with ‘Partial’, ‘Strict’, and ‘Exact’ criteria). EDC+R only performs 1 iteration of refinement. The best results are
bolded.

Partial Strict Exact
Method LLM for OIE Precision Recall F1 Precision Recall F1 Precision Recall F1

GPT-4 0.543 0.552 0.546 0.498 0.503 0.500 0.511 0.517 0.514
EDC GPT-3.5 0.503 0.512 0.506 0.448 0.453 0.449 0.471 0.476 0.473

Mistral-7b 0.512 0.523 0.516 0.450 0.457 0.453 0.481 0.488 0.483
GPT-4 0.599 0.606 0.601 0.557 0.561 0.559 0.572 0.576 0.574

EDC+R GPT-3.5 0.556 0.565 0.559 0.513 0.519 0.516 0.527 0.533 0.529
Mistral-7b 0.525 0.550 0.531 0.461 0.462 0.462 0.506 0.511 0.505

Baseline GENIE 0.381 0.391 0.385 0.353 0.361 0.356 0.362 0.369 0.364

Table 5: Complete results of EDC and EDC+R on Wiki-NRE dataset against the baseline REGEN (Precision, Recall,
F1 with ‘Partial’, ‘Strict’, and ‘Exact’ criteria). EDC+R only performs 1 iteration of refinement. The best results are
bolded.

Partial Strict Exact
Method LLM for OIE Precision Recall F1 Precision Recall F1 Precision Recall F1

GPT-4 0.682 0.686 0.683 0.675 0.679 0.677 0.676 0.680 0.678
EDC GPT-3.5 0.645 0.651 0.647 0.636 0.640 0.638 0.638 0.643 0.640

Mistral-7b 0.644 0.650 0.647 0.636 0.640 0.637 0.637 0.641 0.639
GPT-4 0.712 0.715 0.713 0.708 0.710 0.709 0.708 0.711 0.709

EDC+R GPT-3.5 0.691 0.696 0.693 0.684 0.688 0.685 0.685 0.689 0.687
Mistral-7b 0.661 0.667 0.663 0.647 0.652 0.649 0.656 0.661 0.658

Baseline GENIE 0.482 0.486 0.484 0.462 0.464 0.463 0.477 0.479 0.478

Table 6: Results (F1 scores with all criteria) of further iterative refinement, the LLM used for OIE is GPT-3.5-turbo.
EDC+2xR is EDC with 2 iterations of refinement.

WebNLG REBEL Wiki-NRE
Method Partial Strict Exact Partial Strict Exact Partial Strict Exact
EDC+2xR 0.797 0.761 0.775 0.564 0.521 0.535 0.697 0.689 0.660
EDC+R 0.794 0.753 0.772 0.559 0.516 0.529 0.693 0.685 0.657
EDC 0.746 0.688 0.713 0.506 0.449 0.473 0.644 0.634 0.637

Table 7: Results (F1 scores with all criteria) of ablating the entities and relations extracted from the last round from
the refinement hint, the LLM used for OIE is GPT-3.5-turbo. EDC+R-lastround is EDC with refinement but entities
and relations extracted from the last round are removed from the refinement hint.

WebNLG REBEL Wiki-NRE
Method Partial Strict Exact Partial Strict Exact Partial Strict Exact
EDC+R 0.794 0.753 0.772 0.559 0.516 0.529 0.693 0.685 0.657
EDC+R-lastround 0.748 0.698 0.720 0.534 0.485 0.505 0.634 0.622 0.625
EDC 0.746 0.688 0.713 0.506 0.449 0.473 0.644 0.634 0.637

9834



Table 8: The average number of triplets extracted per sentence on all three datasets. The baseline model for WebNLG
is REGEN while the baseline for Rebel and Wiki-NRE is GENIE. Numbers in the brackets are the difference from
the reference annotations.

LLM for OIE WebNLG REBEL Wiki-NRE
GPT-4 3.47(+0.04) 5.11(+1.11) 3.49(+0.63)
GPT-3.5 3.44(+0.01) 5.01(+1.01) 3.49(+0.63)
Mistral7b 3.45+(0.02) 4.68(+0.68) 3.75(+0.89)
Baseline - 2.20(-1.80) 3.08(+0.22)
Reference 3.43 4.00 2.86

prove upon this in all aspects as well. These re-
sults more comprehensively demonstrate the per-
formance of EDC and EDC+R.

C.2 Effect of More Refinement Iterations

Table 6 shows the result of an extra iteration of
refinement with EDC on all datasets. Although
further refinement improves the results in a stable
manner, we observe diminishing returns and hence,
only report one iteration in the main results.

C.3 Ablation Study on Last-Round
Extractions

Table 7 shows the result of ablating the relations
and entities from the last round’s extractions from
the refinement hint. It shows the importance of
performing the refinement in an iterative manner.
Merging the two sources led to better coverage of
the entities and relations in the text, resulting in
better KGC.

C.4 Discussion on KGC Dataset Annotations

As stated in Section 4.2, we observe that EDC
is penalized by the scorer on Rebel and Wiki-
NRE datasets due to incomplete annotations. This
echoes the previous finding in (Wadhwa et al.,
2023; Han et al., 2023) that LLMs can often extract
correct results that are missing in the annotations,
which results in overly pessimistic evaluations. As
shown by Table 8, EDC tends to extract signif-
icantly more triplets compared to the reference
annotations and the baseline GenIE. Furthermore,
as shown from the manual evaluation in Table 2,
many of these triplets are indeed meaningful and
correct with respect to the input text. Regardless,
despite the automatic evaluation result on EDC
being overly pessimistic, it still exceeds the base-
line by a large margin and the actual performance
may be even larger considering the difference in
the number of triplets extracted.

D Experiments on a Novel Dataset

Since the tested datasets were created several years
ago and the training set of the LLMs used are un-
known, there is a risk the LLMs have already been
trained on these datasets. To address this concern,
we create a novel small-scale dataset (50 entries) of
fictional entities and information, e.g. “Evergreen
University was where Emily Johnson received her
degree in Biology” and annotated them using the
schema of Wiki-NRE. Table 9 shows that EDC and
EDC+R still obtain performance superior to the
baseline GenIE model.

E Comparison against previous
LLM-based approaches

Although this is not the intended use scenario for
EDC, we include these experimental results for a
more comprehensive evaluation to compare against
existing LLM-based methods. We conduct exper-
iments on three datasets, CoNLL04 (4 relation
types) (Roth and Yih, 2004), SciERC (7 relation
types) (Luan et al., 2018) and our sub-sampled ver-
sion of Wiki-NRE (45 relation types), which is
the only dataset we use in our main experiments
that can fit in the context window. To ensure com-
parison fairness, we use GPT-3.5-turbo for all the
compared methods.

As shown in Table 10, when the relation num-
ber is small (CONLL and SciERC), EDC alone
may not be superior to the baseline methods due
to excluding the schema in the prompt. However,
through refinement, EDC+R is able to achieve sig-
nificantly better results. This may be attributed
to the usage of the semantically rich relation de-
scriptions in the refinement step. Specifically, it
helps correct two types of errors that may occur
during extraction: 1. the Definition step helps dis-
ambiguate homonyms, e.g., the word "follows" has
two different meanings for "John follows Taoism"
v.s. "John follows Mary". EDC changes the "fol-
lows" in "John follows Taoism" to "adheres to". 2.

9835



Table 9: Complete results of EDC and EDC+R on the novel fictional dataset against the baseline GenIE (Precision,
Recall, F1 with ‘Partial’, ‘Strict’ and ‘Exact’ criteria). EDC+R only performs 1 iteration of refinement. The best
results are bolded. The LLM used for OIE is GPT-3.5-turbo.

Partial Strict Exact
Method Precision Recall F1 Precision Recall F1 Precision Recall F1
EDC 0.731 0.771 0.751 0.687 0.704 0.691 0.702 0.720 0.707
EDC+R 0.761 0.782 0.767 0.733 0.750 0.738 0.733 0.750 0.738
GenIE 0.521 0.547 0.530 0.426 0.443 0.432 0.467 0.483 0.472

Table 10: Complete results of EDC, EDC+R on CONLL, SciERC and Wiki-NRE datasets against the previous
LLM-based approaches, CodeKGC and ChatIE. The LLMs used here are GPT-3.5-turbo to ensure comparison
fairness. The best results are bolded.

Partial Strict Exact
Dataset Method Precision Recall F1 Precision Recall F1 Precision Recall F1

EDC 0.536 0.552 0.543 0.481 0.491 0.485 0.503 0.515 0.509
CONLL EDC+R 0.580 0.593 0.585 0.514 0.522 0.517 0.549 0.558 0.552

CodeKGC 0.542 0.55 0.545 0.503 0.506 0.504 0.542 0.546 0.543
ChatIE 0.463 0.477 0.468 0.360 0.366 0.363 0.418 0.427 0.421
EDC 0.389 0.408 0.395 0.288 0.301 0.292 0.352 0.365 0.357

SciERC EDC+R 0.447 0.461 0.451 0.340 0.349 0.343 0.406 0.416 0.410
CodeKGC 0.389 0.398 0.392 0.277 0.283 0.279 0.346 0.353 0.349
ChatIE 0.351 0.367 0.357 0.212 0.221 0.215 0.294 0.302 0.297
EDC 0.645 0.651 0.647 0.636 0.640 0.638 0.638 0.643 0.640

Wiki-NRE EDC+R 0.691 0.696 0.693 0.684 0.688 0.685 0.685 0.689 0.687
CodeKGC 0.611 0.614 0.612 0.605 0.607 0.606 0.607 0.609 0.608
ChatIE 0.569 0.574 0.571 0.541 0.545 0.543 0.553 0.557 0.555

Using the relation definitions, we find the Refine-
ment step corrects head-tail relation errors, e.g., for
a relation "father", it is unclear if the subject or
the object is the father, and the definition prevents
inconsistent use. This error-correcting effect was
not possible in previous methods.

When tested on Wiki-NRE, which has a
moderately-sized schema, EDC already signifi-
cantly outperforms the baseline methods, poten-
tially due to the confusion of the LLMs when deal-
ing with long context (Liu et al., 2024). Further-
more, we observe that ChatIE and CodeKGC may
still output out-of-schema relation words although
the entire schema is provided in the prompt, echo-
ing the previous findings (Wadhwa et al., 2023).

F Combine EDC with other IE tools

EDC can be integrated with other IE tools, in-
cluding chunking, coreference, and entity de-
duplication. This is beneficial in scenarios such
as processing long documents that exceed the con-
text window length of LLMs. We ran experiments
on Re-DOCRED (Tan et al., 2022) by combining
EDC with LingMess (Otmazgin et al., 2023), a
SOTA coreference resolution method and simple
sentence-level chunking. We observed an increase
of strict micro F1 score from 0.132 to 0.234, while

directly prompting the LLMs only achieves 0.060.
We also explored the effect of entity dedu-

plication in combination with EDC. We used
CESI (Vashishth et al., 2018), a SOTA post-hoc
canonicalization method to deduplicate the entities
in the resulting KGs from EDC. And we observe a
slightly improved F1 score from 0.516 to 0.520 on
the REBEL dataset under the ‘Partial’ criteria.

G Combining OIE and Schema Definition

As an attempt to reduce the cost of EDC, we ex-
plored combining the OIE and Schema Definition
steps. We previously separated these two steps be-
cause our preliminary experiments showed OIE to
be more challenging and separating the two sub-
tasks allowed us to use a more expensive model
for OIE and a smaller, cheaper model for schema
definition. However, separate LLM calls increases
latency of the pipeline (and cost if the same LLM
is used). Also, making the LLMs output the defi-
nitions along with the extracted triples might im-
prove consistency. In a further experiment combin-
ing EDC and Schema Definition on REBEL using
GPT-3.5-turbo, we observed slight performance
gains (0.516 to 0.518 under the ‘Partial’ criteria)
and token cost reduction (≈ 3k to 2k tokens per
example).

9836


