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Abstract

Sequence-to-sequence (seq2seq) models
achieve comparable or better grammatical error
correction performance compared to sequence-
to-edit (seq2edit) models. Seq2edit models
normally iteratively refine the correction
result, while seq2seq models decode only once
without aware of subsequent tokens. Iteratively
refining the correction results of seq2seq
models via Multi-Pass Decoding (MPD)
may lead to better performance. However,
MPD increases the inference costs. Deleting
or replacing corrections in previous rounds
may lose useful information in the source
input. We present an early-stop mechanism
to alleviate the efficiency issue. To address
the source information loss issue, we propose
to merge the source input with the previous
round correction result into one sequence.
Experiments on the CoNLL-14 test set and
BEA-19 test set show that our approach can
lead to consistent and significant improvements
over strong BART and T5 baselines (+1.80,
+1.35, and +2.02 F0.5 for BART 12-2, large
and T5 large respectively on CoNLL-14 and
+2.99, +1.82, and +2.79 correspondingly on
BEA-19), obtaining F0.5 scores of 68.41 and
75.36 on CoNLL-14 and BEA-19 respectively.

1 Introduction

Grammatical Error Correction (GEC) aims to cor-
rect grammatical errors in the given sentence (Ng
et al., 2013, 2014). Nowadays, there are two
mainstream GEC approaches. Sequence-to-edit
(seq2edit) methods regard GEC as a sequence tag-
ging task, where the model predicts edit tags (e.g.,
keep, delete, insert, replace, etc.) for each token
iteratively for multiple rounds until all tokens are
assigned the keep tag (Malmi et al., 2019; Stahlberg
and Kumar, 2020; Omelianchuk et al., 2020; Yuan
et al., 2021). Seq2edit methods normally require
to correct for a number of correction rounds to
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complete the correction. In contrast, Sequence-to-
sequence (seq2seq) approaches consider the GEC
task as Machine Translation (MT) from ungram-
matical texts to grammatical texts (Zhao et al.,
2019; Kiyono et al., 2019; Wang et al., 2021; Li
et al., 2022; Fang et al., 2023a). The seq2seq model
encodes the input sentence and auto-regressively
decodes the corrected sentence. Current meth-
ods normally utilize the pre-trained models for
better performance, such as BERT (Devlin et al.,
2019) and XLNet (Yang et al., 2019) for seq2edit
(Omelianchuk et al., 2020), and BART (Lewis et al.,
2020) and T5 (Raffel et al., 2020) for seq2seq
(Kaneko et al., 2020; Liu et al., 2021).

Seq2seq models lead to comparable or better per-
formance than seq2edit approaches without using
language-specific edit operations. However, cur-
rent seq2seq GEC studies typically decode only
once without aware of subsequent tokens. Multi-
Pass Decoding (MPD) may enhance the perfor-
mance through iterative refinements (Ge et al.,
2018). Training MPD models to generate the gold
reference given its correction results may also ben-
efit its learning via self-correction (Li et al., 2021).

Multi-pass decoding leads to two problems: 1)
iterative decoding increases the inference computa-
tional costs, and 2) deleting or replacing in previ-
ous correction rounds may incur information loss.
We propose to introduce an early-stop mechanism
to alleviate the efficiency issue. It takes the hid-
den representation of the end-of-sentence token
(<eos>) as input, and stops MPD in cases: 1) the
next round’s correction result matches the current
correction result, or 2) the next round’s correction
result has a larger edit distance to the reference.
As for the information loss issue, we present meth-
ods to merge the source sentence and the previous
round’s correction output into a single sequence, as
pre-trained models normally do not have multiple
encoders for more than one inputs. We evaluate our
approach on the CoNLL 2014 and BEA 2019 GEC

9904



shared tasks, and obtain significant improvements
over the strong BART and T5 baselines, showing
the effectiveness of our method.

• To improve the efficiency of multi-pass decod-
ing, we present an early-stop mechanism to
terminate the multi-pass decoding when the
next decoding round would not lead to better
correction result.

• We propose source information fusion meth-
ods to address the information loss issue
due to deleting or replacing edit opera-
tions in preceding correction rounds, and
present comparison-based sequence merging
approach to ensure the efficiency of source
information fusion.

• Our method brings about +1.80, +1.35, and
+2.02 F0.5 improvements over the strong
BART 12-2, large and T5 baselines respec-
tively on CoNLL-14 test set, and +1.75,
+1.64, and +2.99, +1.82, and +2.79 corre-
spondingly on the BEA-19 test set, showing
the effectiveness of our approach.

2 Preliminaries: Sequence-to-sequence
GEC

The seq2seq model M comprises an encoder and
a decoder. It takes the input sequence x to correct,
and generates the corrected sequence x̂.

The encoder takes the input sequence x, and
computes the contextual hidden state vectors he:

he = encoder(x) (1)

The decoder generates the hidden state hkd based
on the encoder hidden states he and the decoding
history x̂<k:

hkd = decoder(he, x̂
<k) (2)

where x̂k is the kth token in the sequence. x̂0 is
the start-of-sequence token <sos>. x̂<k means the
token sequence from x̂0 to x̂k−1.

The decoder classifier conditions on the decoder
hidden state hkd, and predicts the probability of
each token in the vocabulary. The decoder selects
the token with the highest probability as x̂k for
subsequent decoding steps:

x̂k = classifier(hkd) (3)

Algorithm 1 Multi-pass decoding with early-stop.
Input: Input sentence to correct x, GEC model
M , early-stop classifier Ce, maximum number of
decoding rounds n, early-stop threshold τ ; Output:
Corrected sentence y.

1: x̂0, h
<eos>
0 = M(x);

2: pe = Ce(h
<eos>
0 );

3: if pe > τ then
4: y = x̂0;
5: else
6: for t = 1 to n do
7: x̂t, h

<eos>
t = M(x, x̂t−1);

8: pe = Ce(h
<eos>
t );

9: y = x̂t;
10: if x̂t−1 == x̂t or pe > τ then
11: break;
12: end if
13: end for
14: end if
15: return y

The decoder repeats this process until the clas-
sifier produces the end-of-sequence token (<eos>)
given the hidden state h<eos>

d .
Pre-training by reconstructing the corrupted text

can compress the knowledge of large-scale corpus
into model parameters. And fine-tuning pre-trained
models (such as BART and T5) for GEC can lead
to better performance (Sun et al., 2021; Rothe et al.,
2021).

3 Our Method

3.1 Multi-pass Decoding with Early-stop

In the GEC task, the seq2seq GEC model M takes
the input sentence x that might be incorrect, and
generates the corrected sentence x̂. Instead of us-
ing x̂ as the final result, multi-pass decoding itera-
tively repeats the correction process, by feeding the
correction result of the previous round x̂t−1 into
the model and asking the model to correct x̂t−1

into x̂t, until x̂t = x̂t−1. The termination condi-
tion involves decoding the same sequence twice.
This increases the computational costs for infer-
ence while improving the performance. We train
an early-stop mechanism together with the seq2seq
model to address this issue.

The early-stop mechanism introduces a light-
weight logistic regression classifier Ce to predict
the probability of stopping the multi-pass decod-
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We broughtgo to the orchard and apples but, forget pears .

We bringgo to the orchard and apples but, forget pears

We bringgo to the orchard and apples but, forget pears .
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Figure 1: Source information fusion.

ing. Ce consists of a weight vector we and a bias
scalar be. During the decoding of x̂t−1, we take
the decoder hidden representation h<eos>

d,t−1 of the
special end-of-sentence token (<eos>) to compute
the early-stop probability:

pe = σ(h<eos>
t−1 • we + be) (4)

where “•” and “σ” are dot-product and sigmoid.
We optimize the Binary Cross Entropy (BCE)

loss between pe and the early-stop label ye:

le = BCE(pe, ye) (5)

In MPD training, we first decode x̂t, and label ye
of the previous decoding round based on x̂t−1, x̂t
and the gold GEC reference r. ye is true if: 1) x̂t
equals to x̂t−1, or 2) the edit distance between r and
x̂t is larger than that with x̂t−1. The edit-distance
condition aims to ensure that multi-pass decoding
will not deteriorate the performance. To provide
the training label of the current decoding round
for the early-stop classifier Ce, the decoding result
of the next round x̂t+1 is always generated during
training, to compare the edit distances between the
reference with the current round decoding result x̂t
and the next round decoding result x̂t+1.

The training loss is the weighted combination of
the original seq2seq generation loss lseq2seq and le:

l = lseq2seq + λ ∗ le (6)

We use Algorithm 1 for inference. We use a max-
imum number of decoding rounds n of 3, and early-
stop if x̂t = x̂t−1 or pe > τ . λ and τ are default
to 1 and 0.5 respectively. λ of 1 treats the correc-
tion task and the early-stop classifier equally during
training. A threshold of 0.5 indicates to early-stop
if the probability is larger than 0.5, which is reason-
able for the binary classification task. The number

of decoding rounds is tested on the development
set, and using a value larger than 3 does not lead
to better performance. We did not carefully tune λ
and τ despite this may lead to better performance.

3.2 Source Information Fusion during
Iterative Correction

If the model deletes or replaces tokens in previous
rounds, the original tokens are infeasible for there-
after correction rounds, even they might be valu-
able references for subsequent correction rounds.
As shown in the example in Figure 1, the model
requires to correct:

“We go to the orchard and brought apples, but
forget pears.”

to:
“We go to the orchard and buy apples, but forget

pears.”
The model only fixes the tense of the verb

“brought” by replacing it with “bring” in the first
round. When the model correcting the semantic
meaning of the verb “bring” in the second round,
choosing from “pick” and “buy” could be hard if
it is not aware of the existence of the wrong verb
“brought” in the source input. Despite “brought”
is wrongly spelt, it encourages the model to select
“buy” instead of “pick”, as the past tense of “buy”
(“bought”) is closer to “brought” than the past tense
of “pick” (“picked”).

Thus, keeping all source tokens feasible in all
correction rounds may benefit the performance.
But pre-trained seq2seq models normally do not
have multiple encoders for both the source sentence
x and the decoding result of the previous correc-
tion round x̂t−1. Concatenating x and x̂t−1 as the
input of the encoder results in long and redundant
sequences. The unchanged tokens also have two
distant positions in the concatenated sequence. To
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Method CoNLL 2014 (test) BEA 2019 (test)
P R F0.5 P R F0.5

LLaMa 2 - 7B (zero-shot) (Touvron et al., 2023) 27.41 42.24 29.48 45.85 53.58 47.21
LLaMa 2 - 7B (fine-tune) (Touvron et al., 2023) 65.64 41.81 58.92 66.28 49.15 61.96

Seq2edit
PIE (Awasthi et al., 2019) 66.1 43.0 59.7 – – –
Lichtarge et al. (2019) 66.7 40.6 59.8 – – –
Kiyono et al. (2019) 72.4 46.1 65.0 65.5 59.4 64.2
Kaneko et al. (2020) 72.6 46.4 65.2 72.3 61.4 69.8
ERRANT tags (Stahlberg and Kumar, 2020) 63.0 45.6 58.6 68.8 63.4 67.7
GECToR (Omelianchuk et al., 2020) 77.5 40.1 65.3 79.2 53.9 72.4
Yuan et al. (2021) 60.4 39.0 54.4 60.8 50.8 58.5
GST (Parnow et al., 2021) 78.4 39.9 65.7 79.4 54.5 72.8
Tarnavskyi et al. (2022) 76.1 41.6 65.3 80.70 53.39 73.21
Lai et al. (2022) 70.73 43.88 63.01 81.33 51.55 72.91
LET (Yang et al., 2023b)† 61.2 40.9 55.6 61.8 52.1 59.5

Seq2seq
Zhao et al. (2019) 71.6 38.7 61.2 – – –
T5 large (Rothe et al., 2021) – – 66.1 – – 72.06
BIFI (Yasunaga et al., 2021)† 78.0 40.6 65.8 79.4 55.0 72.9
SynGEC (Zhang et al., 2022b) 74.7 49.0 67.6 75.1 65.5 72.9
BART (12-2) (Yakovlev et al., 2023) 69.2 49.8 64.2 68.3 57.1 65.6
AMR-GEC (Cao and Zhao, 2023) 70.3 48.2 64.4 73.5 55.9 69.1
BTR (Zhang et al., 2023) 71.62 48.74 65.47 74.68 60.27 71.27
Cao et al. (2023a)† 65.10 32.29 54.11 65.10 32.29 54.11
GEC-DePenD (Yakovlev et al., 2023) 73.2 37.8 61.6 72.9 53.2 67.9
TemplateGEC (Li et al., 2023) 74.8 50.0 68.1 76.8 64.8 74.1
TransGEC (Fang et al., 2023b)† 74.7 51.6 68.6 – – –
Multimodal-GEC (Fang et al., 2023a)† 75.0 53.2 69.3 77.1 66.7 74.8
unsupervised GEC (Cao et al., 2023b)† 75.0 53.8 69.6 78.8 68.5 76.5

BART (12-2)∗ 72.56 44.73 64.53 69.62 63.56 68.32
+ MPD 73.70 47.39 66.33 72.98 65.35 71.31

BART (12-12)∗ 72.04 52.55 67.06 73.14 64.65 71.27
+ MPD 74.78 51.08 68.41 75.28 65.46 73.09

T5 large∗ 71.73 50.44 66.14 74.25 66.54 72.57
+ MPD 74.77 50.34 68.16 77.81 66.95 75.36

Table 1: Main results. “*” and “†” denote our replication and using additional datasets respectively. BART (12-2)
means the BART model with 12/2 encoder/decoder layers.

encode x and x̂t−1 efficiently with the single en-
coder, we propose to merge x and x̂t−1 into a single
sequence, as shown in Figure 1. Specifically, we
first compare x with x̂t−1, then extract the com-
mon and different segments, and finally merge the
segments into a single sequence according to their
orders in corresponding sequences. The merged
sequence contains unchanged tokens, inserted to-
kens and deleted tokens with their original orders.
Replacing can be regarded as an insertion plus a
deletion.

We use edit tags or separated position encodings
to distinguish tokens in the merged sequence. For
edit tags, we use “e” (equal), “d” (delete) and “i”
(insert) to represent the tokens’ roles in the merged
sequence, standing for tokens in both x and x̂t−1,
appearing only in x, and newly added to x̂t−1 re-
spectively. We add an embedding layer for edit tags

and add the edit embeddings to the word embed-
dings of the seq2seq model before encoder layers.
For position encoding, we use 2 position labels for
the merged sequence: source position stands for
the token’s position in x and decode position for
its position in x̂t−1. The position of the token is 0
if it does not appear in the sequence. To mitigate
the gap between the new position embeddings and
pre-trained models, the new position embeddings
are initialized based on the pre-trained position em-
beddings. But we reduce the weights of position
embeddings by half. This is because position em-
beddings are added twice when using the merged
sequence as the input: once for the source position
and another for the decode position.
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Method
BEA 2019 (dev)

P R F0.5

BART (12-2)∗ 69.69 50.27 64.69
+ MPD 72.11 50.54 66.44

BART (12-12)∗ 71.62 49.73 65.82
+ MPD 71.86 54.20 67.46

T5 large∗ 71.75 51.85 65.63
+ MPD 71.69 54.33 67.38

Table 2: Results on the BEA-19 development set.

4 Experiments

4.1 Settings

To test the effectiveness of our approach, we con-
ducted experiments using the strong BART (12-2),
BART (12-12) and T5 large baselines, and strictly
followed the settings of Yakovlev et al. (2023) for
data processing and BART fine-tuning. We used
the same data set as Yakovlev et al. (2023), and
the models were fine-tuned for 3 stages following
Omelianchuk et al. (2020). Our Multi-Pass De-
coding (MPD) method was only applied in the last
stage. As this is more efficient than applying to
all stages, and the model may produce more rea-
sonable correction results (x̂0 is normally no worse
than x compared to r) after the second stage. The
original GEC training loss (M(x)→r) was still
kept. We implemented our approaches based on
the Neutron implementation (Xu and Liu, 2019) of
the Transformer.

We evaluated on the CoNLL 2014 test set (Ng
et al., 2014) with M2 scorer (Dahlmeier and Ng,
2012) and the BEA 2019 test set, and validated
on the BEA 2019 (W&I+L) development set, and
reported precision (P), recall (R) and F0.5 scores
following common practices.

Despite all these datasets are in English, they are
widely used by the community, and we suggest that
our approaches are language-agnostic and can be
easily adapted to the other languages, as verified in
Section 4.5.

4.2 Main Results

Based on the ablation studies, the MPD train-
ing only used single-pass decoding results, and
the inference was multi-pass with early-stop (Sec-
tion 4.3). We used both edit tags and position en-
coding for source information fusion (Section 4.4).
Results on the CoNLL 2014 test set and BEA 2019

test set are shown in Tables 1 and 2 respectively.
Table 1 shows that: 1) the performance of the

powerful LLaMa 2 -7B Large Language Model
(LLM) is far behind fine-tuned seq2edit and
seq2seq methods even after fine-tuning, and 2)
MPD can significantly and consistently improve
the performance of all our baselines with different
model sizes and settings (+1.80, +1.35 and +2.02
F0.5 over BART 12-2, BART 12-12 and T5 large
respectively). Results in Table 2 on the BEA-19
development set are also consistent. Although we
only applied our methods to the widely used BART
and T5 baselines, we suggest that our method is
likely to bring about further improvements with
more advanced baseline models.

4.3 Ablation Study for MPD Training and
Inference

In addition to training the model to generate the
gold reference r given the input x, the MPD train-
ing also takes the output of the previous decoding
round x̂i−1 as the input. The output of the previous
decoding round may be either the result of a sin-
gle decoding round like Omelianchuk et al. (2020),
or the result of several decoding rounds until the
inference termination condition. We study the ef-
fects of single-round and multi-round decoding
for MPD training while using multi-pass decoding
with early-stop for inference.

For single-round decoding in MPD training, we
use the model to decode x into x̂0, and train the
model to generate r given x and x̂0:

M(x, x̂0) → r (7)

For multi-round decoding in MPD training, we
start from x as x̂−1 and iteratively decode x̂i−1 to
x̂i for several rounds until meeting the termination
condition, and train the model to generate r given
x and x̂i:

M(x, x̂i) → r (8)

We also study the effects of the maximum num-
ber of decoding rounds with/without early-stop for
MPD inference while using single-round decoding
in MPD training. Additionally, we compare our
simple early-stop mechanism with the policy net-
work proposed by Geng et al. (2018). Geng et al.
(2018) employ reinforcement learning method to
decide the number of decoding rounds based on the
differences between the two consecutive decoding
passes, and optimize the BLEU-based reward for
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Setting BEA 2019 dev CoNLL 2014 test SpeedP R F0.5 P R F0.5

BART (12-2) 69.69 50.27 64.69 72.56 44.73 64.53 1.00x
BART (12-4) 70.05 50.81 65.11 73.21 45.98 65.46 0.61x
BART (12-2) * 2 (Ensemble) 70.15 50.73 65.16 73.48 45.67 65.50 0.49x

Training
Single-round 72.11 50.54 66.44 73.70 47.39 66.33 0.83xMulti-round 71.06 52.01 66.21 73.33 47.46 66.12

Inference
Policy network (2018) 71.32 50.35 65.84 73.01 46.95 65.71 0.27x
without Ce

n = 1 71.81 50.13 66.09 73.49 46.84 65.98 0.46x
n = 2 71.39 50.34 65.88 73.04 46.91 65.72 0.41x
n = 3 71.46 50.49 65.98 73.07 47.12 65.82 0.38x

with Ce, n = 3 72.11 50.54 66.44 73.70 47.39 66.33 0.83x

Table 3: Results of various MPD training and inference settings. Speed is the inference speed on the BEA 2019 dev
set.

machine translation. While in our experiment for
the GEC task, we used the F0.5 score as the reward
instead of BLEU.

To analyze the inference efficiency of our ap-
proach, we compare our method with the BART
(12-4) baseline with vanilla fine-tuning and the
ensemble of 2 vanilla BART (12-2) models initial-
ized with different random seeds (Tarnavskyi et al.,
2022). Both the BART (12-4) setting with 4 de-
coder layers and the ensemble can lead to better
performance but slower inference speed compared
to the BART (12-2) baseline.

Results in Table 3 show that: 1) for MPD train-
ing, both settings obtain similar performance, but
the single-round decoding setting achieves slightly
higher F0.5 scores while being more computation-
ally efficient, 2) the performances of different num-
bers of maximum decoding rounds are also similar,
larger n leads to slower inference, but the early-
stop mechanism can mitigate this and bring about
the best performance, 3) multi-pass decoding based
on the policy network can also lead to consistent
F0.5 improvements on the two shared tasks, but
our simple early-stop method is more efficient than
the policy network (Geng et al., 2018) and leads
to higher F0.5 scores, and 4) the performance of
our MPD method with the BART (12-2) setting
achieves better performance than both the BART
(12-4) baseline with vanilla fine-tuning and the en-
semble of 2 vanilla BART (12-2) models, and it is
also faster than the BART (12-4) and the ensemble
baselines for inference. This shows that our method
can achieve better performance more efficiently.

Previous state-of-the-art multi-pass decoding
study for NMT (Geng et al., 2018) uses very com-

plex reinforcement learning method to decide the
required number of decoding rounds. The rein-
forcement learning training might be unstable and
lead to unstable performances. Our supervised
method directly trains the simple binary classi-
fier based on the representation of the decoded
sequence. We suggest that our early-stop method
is easy to implement and very effective in practice.

4.4 Effects of Source Information Fusion

We test the effects of different source information
fusion methods with the BART (12-2) setting, in-
cluding: 1) using only x̂t−1 instead of both x̂t−1

and x for MPD inference (“None”), 2) sequence
concatenation (“Concat”), 3) edit tags (“Edit”), 4)
position encoding (“Pos”), and 5) both edit tags
and position encoding (“Pos+Edit”). Results are
shown in Table 4.

Table 4 shows that: 1) vanilla MPD without
source information fusion (“None”) can already
lead to +0.80 and +1.09 F0.5 improvements on
the BEA-19 development set and the CoNLL-14
test set respectively, showing the effectiveness of
multi-pass decoding, 2) source information fusion
through sequence concatenation (“Concat”) can
lead to +0.46 and +0.12 F0.5 score improvements
on the BEA 2019 development set and the CoNLL-
14 test set respectively than without source infor-
mation fusion (“None”), showing the positive ef-
fects of source information fusion, 3) both posi-
tion encoding (“Pos”) and edit tags (“Edit”) bring
about higher F0.5 scores than sequence concatena-
tion (“Concat”) while being more efficient, empiri-
cally showing the advantages of our sequence merg-
ing approach, and position encoding consistently
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Method BEA 2019 dev CoNLL 2014 test
P R F0.5 P R F0.5

BART (12-2) 69.69 50.27 64.69 72.56 44.73 64.53
None 69.66 52.82 65.49 71.30 49.77 65.62
Concat 70.34 52.79 65.95 72.67 47.59 65.74
Edit 70.73 52.65 66.18 72.80 47.83 65.92
Pos 71.06 52.45 66.36 73.22 47.47 66.05
Pos+edit 72.11 50.54 66.44 73.70 47.39 66.33

Table 4: Results of source information fusion methods.

brings about slightly better performance than edit
tags, probably because of the pre-trained position
embedding initialization, and 4) the combination
of position encoding and edit tags (“Pos+Edit”)
leads to the best performance, but the difference is
small compared to using only position encoding,
probably because position encoding and edit tags
provide similar information in denoting the roles
of tokens in the two sequences despite in different
forms and are complementary to some extent.

4.5 Verification on the Other Language

We suggest that our approach is language-agnostic.
To test its effectiveness on the other languages,
we also conducted experiments on Chinese GEC
datasets exactly following the experiment settings
of Yang and Quan (2024). Specifically, we used
the combination of the Lang-8 corpus provided by
NLPCC 2018 (Zhao et al., 2018b), the HSK dataset
and FCGEC training set (Xu et al., 2022) as the
training set, MuCGEC development set (Zhang
et al., 2022a) for validation, and tested on the
NLPCC 2018 test set, FCGEC development set
and NaCGEC test set (Ma et al., 2022).

For evaluation metrics, we follow previous work
and report word-level precision (P) / recall (R) /
F-measure (F0.5) performance on NLPCC18-Test
using the official MaxMatch scorer (Ng et al., 2014)
and PKUNLP word segmentation tool. For the
FCGEC development set and the NaCGEC test
set, we report the character-level P / R / F0.5 scores
using the ChERRANT scorer (Zhang et al., 2022a).

We use a large Transformer and the pre-trained
BART model as the baselines. The batch size is
1024 and the maximum sentence length of training
data is 128. The maximum number of training
epochs is 20 and 10, respectively, and the beam
size is 10. Results are shown in Tables 5 and 6.

Tables 5 and 6 show similar phenomena as Ta-
bles 1 and 2. Our method also leads to consistent
and significant improvements on all Chinese test
sets (+2.06, +2.30, and +3.45 F0.5 score improve-

ments on the NLPCC 2018 test set, FCGEC devel-
opment set and the NaCGEC test set respectively
over the strong BART baseline).

5 Related Work

Seq2edit GEC. Seq2edit GEC methods (Malmi
et al., 2019; Awasthi et al., 2019; Stahlberg and
Kumar, 2020) iteratively assign edit operations to
tokens, such as insertion, deletion, replacement, or
language-specific transformations (Omelianchuk
et al., 2020), etc., and improve the performance
with self-correction (Parnow et al., 2021), type-
based multi-turn training (Lai et al., 2022), decou-
pled error detection (Tan et al., 2023), etc. Due
to the limited correction ability of pre-defined edit
operations, seq2edit models normally require to
iteratively correct the sentence for multiple rounds
and naturally benefit from multi-round correction.

Seq2seq GEC. Seq2seq GEC methods (Fang
et al., 2023a; Li et al., 2022; Liu et al., 2021; Wang
et al., 2021) transform the input sentence using
seq2seq models. Recent studies mainly focus on:
1) unsupervised pre-training (Grundkiewicz et al.,
2019), 2) shallow aggressive (Sun et al., 2021)
or non-autoregressive decoding (Yakovlev et al.,
2023) to accelerate the inference, 3) leveraging
language-specific knowledge (Mita and Yanaka,
2021; Fei et al., 2023; Kaneko et al., 2022) or syn-
tax (Zhang et al., 2022b), 4) decoding methods on
fluency boost (Ge et al., 2018), SMT and NMT
integration (Grundkiewicz and Junczys-Dowmunt,
2018), precision-recall trade-off (Sun and Wang,
2022), re-ranking (Zhang et al., 2023) or decoding
interventions (Zhou et al., 2023), and 5) optimized
multi-task training schedule (Bout et al., 2023). As
most seq2seq methods only decode once, we sug-
gest that our work is complementary and can be
easily adapted to these methods for further improve-
ments.

MPD in NMT. MPD has been investigated to
improve Neural Machine Translation (NMT) (Xia
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Method P R F0.5

LLMs (zero-shot)
LLaMa2-7B (Touvron et al., 2023) 11.79 11.46 11.72
BaiChuan-7B (Yang et al., 2023a) 20.87 23.28 21.31

LLMs (fine-tune)
LLaMa2-7B (Touvron et al., 2023) 45.85 27.44 40.43
BaiChuan-7B (Yang et al., 2023a) 51.69 27.92 44.17

Seq2edit
BERT-base-Chinese(Devlin et al., 2019) 41.38 24.55 36.39
HRG (Hinson et al., 2020) 36.79 27.82 34.56
SG-GEC (Wu and Wu, 2022) 50.56 25.24 42.11

Seq2seq
AliGM(Zhao et al., 2018a) 41.00 13.75 29.36
YouDao(Fu et al., 2018) 35.24 18.64 29.91
BLCU(Li et al., 2019) 47.63 12.56 30.57
(Qiu and Qu, 2019) 36.88 18.94 31.01
MaskGEC(Zhao and Wang, 2020) 44.36 22.18 36.97
GPT2-Chinese (Du, 2019) 41.94 36.13 40.63
WCDA(Tang et al., 2021) 47.29 23.89 39.49
Copy(Zhao et al., 2019) 51.25 32.55 45.97
SynGEC(Zhang et al., 2022b) 49.96 33.04 45.32
TemplateGEC (Li et al., 2023) 54.5 27.4 45.5
unsupervised GEC (Cao et al., 2023b) 57.1 28.9 47.8
Alirector (Yang and Quan, 2024) 51.76 33.49 46.67

Ours
Transformer 42.37 23.49 36.50

+ MPD 46.64 24.08 39.28
BART 50.63 31.83 45.28

+ MPD 52.56 33.89 47.34

Table 5: Results on the NLPCC 2018 test set.

Method
FCGEC dev NaCGEC test

P R F0.5 P R F0.5

Transformer 47.83 22.99 39.33 59.67 28.69 49.07
+ MPD 58.67 24.76 46.06 65.61 31.73 54.06

BART 56.26 40.71 52.27 65.85 40.79 58.64
+ MPD 59.21 41.57 54.58 68.82 44.64 62.09

Table 6: Results on the FCGEC development set and NaCGEC test set.

et al., 2017; Mahmood et al., 2017; Zhang et al.,
2018; Geng et al., 2018; Liu et al., 2019). Au-
tomatic Post-Editing (APE) can also be regarded
as a special case of MPD (Correia and Martins,
2019; Pal et al., 2020; Bhattacharyya et al., 2022;
Jung et al., 2023). These studies also underline the
importance of source information fusion, but they
employ dual-encoder structures for the source input
and the decoded sequence as they are in different
languages and quite different in spelling. While we
are the first: 1) addressing the efficiency issue of
MPD with an early-stop mechanism, and 2) deriv-
ing source information fusion methods to benefit
from pre-trained seq2seq models that have only
a single encoder, given that the two sequences in

GEC are normally close.

6 Conclusion

We utilize multi-pass decoding to improve the per-
formance of seq2seq grammatical error correction.
We present an early-stop mechanism to alleviate
the inference efficiency issue, and derive source in-
formation fusion approaches to address the source
information loss issue.

Our experiments on the CoNLL-14 test set and
the BEA-19 test set show that our approach can
lead to significant improvements (+1.80, +1.35,
+2.02 F0.5 scores for BART 12-2, large and
T5 large respectively on CoNLL-14 and +2.99,
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+1.82, and +2.79 correspondingly on BEA-19)
over strong baselines, showing the effectiveness
of our method.

Limitations

We only applied our methods on the widely used
BART and T5 baselines, without applying it to the
state-of-the-art sequence-to-sequence grammatical
error correction framework.
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