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Abstract

In-context learning (ICL) greatly improves the
performance of large language models (LLMs)
on various down-stream tasks, where the im-
provement highly depends on the quality of
demonstrations. In this work, we introduce syn-
tactic knowledge to select better in-context ex-
amples for machine translation (MT). We pro-
pose a new strategy, namely Syntax-augmented
COverage-based In-context example selection
(SCOI), leveraging the deep syntactic structure
beyond conventional word matching. Specifi-
cally, we measure the set-level syntactic cov-
erage by computing the coverage of polyno-
mial terms with the help of a simplified tree-
to-polynomial algorithm, and lexical coverage
using word overlap. Furthermore, we devise an
alternate selection approach to combine both
coverage measures, taking advantage of syn-
tactic and lexical information. We conduct ex-
periments with two multi-lingual LLMs on six
translation directions. Empirical results show
that our proposed SCOI obtains the highest av-
erage COMET score among all learning-free
methods, indicating that combining syntactic
and lexical coverage successfully helps to se-
lect better in-context examples for MT. Our
code is available at https://github.com/
JamyDon/SCOI.

1 Introduction

In-context learning (ICL) has become a popular
prompting strategy to elicit the power of large lan-
guage models (LLMs) across a wide range of natu-
ral language processing (NLP) tasks (Brown et al.,
2020; Min et al., 2022; Dong et al., 2023). In ICL,
several demonstrations including both task input
and ground truth output are presented in the in-
put context, to make LLMs understand the specific
down-stream task and produce better results.

The performance of ICL highly depends on the
quality of in-context examples, and it is thus of
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great significance to explore selecting better ex-
amples for ICL (Rubin et al., 2022). There have
been numerous works on in-context example se-
lection for monolingual tasks like natural language
inference, commonsense reasoning and semantic
parsing (Li et al., 2023; Ye et al., 2023; Gupta
et al., 2023; Liu et al., 2024). Unlike these tasks
above, machine translation (MT) involves multi-
ple languages and requires a more sophisticated
design of in-context example selection. Recently,
there have some attempts on in-context example
selection specially for MT, which leverage word-
level matching (Agrawal et al., 2023), embedding-
based scoring (Moslem et al., 2023; Ji et al., 2024;
Zhu et al., 2024) or combination of superficial fea-
tures (Kumar et al., 2023).

In previous studies, for both statistical MT and
neural MT, syntax plays a crucial role in improving
model performance (Williams and Koehn, 2014;
Wu et al., 2017). However, in case of ICL, most ex-
isting works focus on superficial features but pay lit-
tle attention to the syntactic structure of sentences.
To achieve a high translation quality, it requires not
only an accurate word translation but also a proper
syntactic structure of the generated target sentence.
Hence, syntactic information should also play a big
part in MT even in the era of LLMs.

Compared with independent selection, it has
been proved that selecting in-context examples as
an entire set based on the set-level coverage leads
to a better diversity while reducing redundancy and
avoiding sub-optimal results (Gupta et al., 2023).
As a typical NLP task, MT would also benefit from
in-context examples with a high set-level coverage.
Therefore, beyond the conventional lexical cover-
age, high syntactic coverage is also necessary to
select informative in-context examples for MT.

In this work, we propose Syntax-augmented
COverage-based In-context example selection,
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SCOI 1, to boost LLMs’ performance on MT.
Specifically, to measure syntactic coverage, we
first simplify a tree-to-polynomial algorithm (Liu
et al., 2022), which is originally costly but has been
reduced to no more than quadratic time complex-
ity after simplification. Using this new algorithm,
we convert syntax trees into polynomials and then
compute the set-level syntactic coverage based on
vector representations of polynomial terms. Mean-
while, we compute the proportion of word overlap
to measure set-level lexical coverage. After that,
we design an alternate approach to combine both
coverage measures, so that word-level and syntax-
level features would complement each other.

We evaluate SCOI on 6 translation directions
(German, French, Russian into and out of English)
based on two open-source multi-lingual LLMs,
XGLM7.5B (Lin et al., 2022) and Alpaca (Taori
et al., 2023). Among all learning-free methods,
SCOI obtains the highest COMET scores on 4 out
of 6 translation directions and the highest average
COMET score. Especially, on Russian-to-English
and English-to-Russian translations, SCOI even
outperforms the learning-based CTQ Scorer (Ku-
mar et al., 2023) when using Alpaca.

Our contributions can be summarized as follows:

• Going beyond superficial word matching, we
introduce the knowledge of syntactic structure
to in-context example selection for MT.

• To take advantage of both word overlap and
syntactic resemblance, we propose a novel
framework to ensure a high set coverage at
both word and syntax level for in-context ex-
ample selection, and empirical experiments
validate the effectiveness of our method.

• We design a simplified tree-to-polynomial al-
gorithm owning a complexity upper bound of
no more than quadratic time. In contrast, that
of the original version could be polynomial
time with an arbitrarily large degree.

2 Related Work

Prompting LLMs for better performance has been
one of the mainstream trends of NLP research.
There have been a large number of studies on
prompting strategies for MT in recent years (Vi-
lar et al., 2023; Zhang et al., 2023). Puduppully
et al. (2023) decompose the translation process into

1/’skoUI/.

a sequence of word chunk translations to improve
LLMs’ performance on translation between lin-
guistically related languages. Ghazvininejad et al.
(2023) propose to present LLMs with a set of pos-
sible translations for a subset of the input words
from bilingual dictionaries to improve LLMs’ per-
formance on low-resource and out-of-domain MT.
He et al. (2024) prompt LLMs with selected knowl-
edge including keyword pairs, topics and sentence
pairs to emulate human-like translation. Zhang
et al. (2024) manage to teach LLMs an unseen lan-
guage on the fly with the help of a small parallel cor-
pus and a dictionary. Guo et al. (2024) first create a
textbook including vocabulary list, language exam-
ples with syntax patterns and translate instructions
using LLMs and then prompt LLMs with the text-
book just created to better translate low-resource
languages. Zhu et al. (2024) prompt LLMs with
both sentence-level and word-level demonstrations,
the former selected with a margin-based score and
the latter being word pairs most related to the test
input appeared in the former.

Among various prompting strategies, ICL plays
a key role. Rubin et al. (2022) suggest that the per-
formance of ICL strongly depends on the selected
in-context examples. Thus it is of great significance
to select better examples using various strategies.
Li et al. (2023) propose to train a unified demon-
stration retriever for ICL across a wide range of
tasks. Ye et al. (2023) make use of determinantal
point processes (DPPs) to ensure both relevance
and diversity of examples. Liu et al. (2024) se-
lect examples in a sequential rather than "select
then organize" way that leverages the LLM’s feed-
back on varying context, aiding in capturing inter-
relationships and sequential information among
examples. Gupta et al. (2023) define measure of
set-level information coverage and select examples
based on it, which inspires our work. Tang et al.
(2024) select in-context examples for grammatical
error correction based on ungrammatical syntax,
which is another inspirator of our work.

There are some example selection strategies cus-
tomized for MT. Agrawal et al. (2023) select ex-
amples based on n-gram overlap. Moslem et al.
(2023) select examples based on sentence embed-
ding similarity. Kumar et al. (2023) train language-
specific regression models to combine various fea-
tures for example selection. Ji et al. (2024) select
examples based on submodular functions combin-
ing surface/semantic similarity and diversity within
examples. To the best of our knowledge, no previ-
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Figure 1: Overview of SCOI. Each example is selected based on how well the test input is covered by the current
candidate plus the existing examples selected in previous steps at syntax level and word level alternately. In each
step, T , ei, ⊕, ci, Si denote the test input, the i-th selected example, concatenation of selected examples and one
candidate, the i-th candidate from the example database, the to-be-scored set including the selected examples plus
the i-th candidate, respectively.

ous work has made use of syntactic information in
in-context example selection for MT.

3 Method

We propose to select in-context examples based
on both syntactic and lexical coverage to better
apply LLMs for MT. Specifically, to measure the
set-level syntactic coverage, we first simplify a
tree-to-polynomial algorithm, making it practical
to run on large MT datasets, and then compute the
coverage of vector representations of polynomial
terms. To measure the set-level lexical coverage,
we simply consider the proportion of word overlap.
After that, we design an alternate strategy to take
advatage of both lexical and syntactic knowledge.
An overview of our proposed method, SCOI, is
presented in Figure 1.

3.1 Polynomial Representation of Syntactic
Structure

Liu et al. (2022) convert dependency trees into
polynomials recursively and compute the distance
between polynomials to measure the syntactic sim-
ilarity between sentences from different languages.
Specifically, given the number of dependency la-
bels d, dependency trees will be transformed into
polynomials based on two variable sets: X =
{x1, x2...xd} and Y = {y1, y2, ...yd}. Consider-
ing a leaf node with label l as nl, its corresponding
polynomial is P (nl, X, Y ) = xl. For a non-leaf

node ml with label l, its polynomial is:

P (ml, X, Y ) = yl +
k∏

i=1

P (ni, X, Y ), (1)

where n1, ..., nk are all child nodes of ml.
However, the algorithm can be of very high com-

plexity when the dependency tree is large. In MT,
there are often millions of data to be processed and
it is thus impractical to make use of the original
algorithm from Liu et al. (2022). Therefore, we pro-
pose a simplified polynomial algorithm, reducing
the complexity of tree-to-polynomial conversion to
no more than quadratic time.

Concretely, our newly defined polynomial is
based on only one variable set X = {x1, x2...xd}.
For a leaf node nl, its polynomial remains
P (nl, X) = xl. For a non-leaf node ml with child
nodes n1, ..., nk, its polynomial is:

P (ml, X) = xl · (1 +
k∑

i=1

P (ni, X)), (2)

where each term x
ex1
1 x

ex2
2 ...x

exd
d in the polynomial

corresponds to a path from the root node to one
certain node in the tree, and exi indicates the num-
ber of nodes with the i-th dependency label on that
path. Given a sentence with a dependency tree
rooted in Node r, the polynomial representing the
syntactic structure of that sentence is P (r,X).

We analyze the complexity of the original and
our simplified tree-to-polynomial algorithms in Ap-
pendix A.
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3.2 Measure of Set-level Syntactic Coverage
Given a test input x and a set of in-context ex-
amples Z, the set of salient aspects (e.g., entities,
keywords, etc.) of x being Sx, the set-level infor-
mation coverage of in-context examples is defined
as (Gupta et al., 2023):

SetCov(x, Z) =
∑

s∈Sx

max
z∈Z

c(s, z), (3)

where c(s, z) measures the coverage or recall of a
single salient aspect s by example z.

For better parallelization and to better fit the
salient aspects denoting syntax in this work, which
are vector representations of polynomial terms
from the tree-to-polynomial algorithm, we reformu-
late Equation 3 to the set-level syntactic coverage:

SynSetCov(x, Z) =
1

|Tx|
∑

s∈Tx

max
t∈TZ

c(s, t), (4)

where Tx is the multiset 2 of terms in the poly-
nomial representation of the dependency tree of
x, TZ =

⋃
z∈Z Tz is the multiset of all the terms

in polynomials of dependency trees of all the in-
context examples in Z, s and t denote terms in
Tx and TZ respectively, and c(s, t) computes the
similarity of term s and term t.

To compute c(s, t), we first compute the distance
between the two polynomial terms. Note that a
term t = x

ex1
1 x

ex2
2 ...x

exd
d can be written as a term

vector with d entries:

vt = [ex1 , ex2 , ..., exd
], (5)

where each entry represents the exponent of the cor-
responding variable. The distance between terms
s and t can thus be calculated by the Manhattan
distance (Craw, 2017) between vectors vs and vt:

d(s, t) = ∥ vs − vt ∥1. (6)

As distance is negatively correlated with sim-
ilarity, we compute c(s, t) using the normalized
distance:

c(s, t) =
1

1 + d(s, t)
. (7)

In this way, c(s, t) is a normalized value between
0 and 1. Note that each term in the polynomial
represents a root-to-node path in the tree. So
SynSetCov(x, Z) indicates the average coverage
of each path in the dependency tree of x by all the
dependency trees in Z.

2Since we take repeated elements into account, we use
multiset (Hickman, 1980) that allows repetition of elements
instead of set in this work.

Algorithm 1 Greedy Optimization of Set Coverage
Require: Example database T ; test input x; desired number of demonstrations

k; coverage scoring function SynSetCov and WordSetCov.
1: Z ← ∅ ▷ Selected in-context examples.
2: Zcurr ← ∅ ▷ Current set cover.
3: curr_syn_cov← − inf
4: curr_word_cov← − inf
5: while |Z| < k do
6: if |Z| ≡ 0 (mod 2) then ▷ Odd-numbered to-be-selected example.
7: z∗, next_syn_cov = argmax

z∈T −Z
SynSetCov (x, Zcurr ∪ z)

8: if next_syn_cov > curr_syn_cov then ▷ Pick z∗.
9: curr_syn_cov← next_syn_cov
10: Z ← Z ∪ z∗

11: Zcurr ← Zcurr ∪ z∗

12: else ▷ Start a new one if no increase.
13: Zcurr ← ∅, curr_syn_cov← − inf
14: end if
15: else ▷ Even-numbered to-be-selected example.
16: z∗, next_word_cov = argmax

z∈T −Z
WordSetCov (x, Zcurr ∪ z)

17: if next_word_cov > curr_word_cov then ▷ Pick z∗.
18: curr_word_cov← next_word_cov
19: Z ← Z ∪ z∗

20: Zcurr ← Zcurr ∪ z∗

21: else ▷ Start a new one if no increase.
22: Zcurr ← ∅, curr_word_cov← − inf
23: end if
24: end if
25: end while
26: return Z

3.3 Measure of Set-level Lexical Coverage

In this work, we simply measure the set-level lexi-
cal coverage by computing the proportion of word
overlap:

WordSetCov(x, Z) =
|Wx ∩WZ |

|Wx|
, (8)

where Wx is the multiset of the words in x and
WZ =

⋃
z∈Z Wz is the multiset of all the words in

all the examples in Z.

3.4 Combining Syntactic and Lexical
Coverage

Combining syntax-level and word-level coverage
could make them complement each other and thus
help select better in-context examples for MT. In
this work, we propose an alternate way to combine
both.

For convenience, we number ICL examples start-
ing from 1. Specifically, for each odd-numbered
example, we select it based on how well the cur-
rent candidate, along with the existing examples
selected in previous steps, covers the test input in
syntax, while for each even-numbered example, we
select it based on set-level lexical coverage. To put
it more concretely, we select the first example with
the highest set-level (only the first example at this
time) syntactic coverage and the second example
with the highest set-level (including the first and
the second example) lexical coverage.

9959



Following Gupta et al. (2023), we use a greedy
algorithm to select the optimal set as shown in Al-
gorithm 1. It alternately selects examples that lead
to the maximum syntactic coverage (lines 7-11)
and lexical coverage (lines 16-20). If no example
brings further increase in coverage, the algorithm
reserves the selected examples and starts another
round (lines 12-13 and 21-22).

4 Experimental Setup

We follow Kumar et al. (2023) to set up our experi-
ments.

4.1 Datasets and Evaluation Metrics

Language ISO Code Dataset #Pairs (M)

German DE Europarl 1.83
French FR Europarl 1.92
Russian RU ParaCrawl 5.38

Table 1: Data statistics.

Test Set We perform our evaluation on the devtest
set of FLORES-101 (Goyal et al., 2022), which has
1012 sentences with translations in 101 languages.
We experiment between English and 3 common
languages including German, French and Russian.

Example Database We use Europarl (Koehn,
2005) for German and French and
ParaCrawl (Bañón et al., 2020) for Russian
as example database. Detailed statistics are shown
in Table 1.

Evaluation Metrics We report COMET (Rei
et al., 2020) scores from wmt20-comet-da, which
is considered a superior metric for MT nowa-
days (Kocmi et al., 2021). We report BLEU scores
from sacreBLEU (Post, 2018) in Appendix B.

4.2 Pre-processing

We parse all the datasets with spaCy (Honnibal
et al., 2020) to get dependency trees for our syntax-
based approaches. The spaCy models we use for
different languages are listed in Appendix C.

We use Sacremoses 3 to tokenize all the lan-
guages for the lexical coverage computation.

4.3 Large Language Models

XGLM7.5B (Lin et al., 2022) and Alpaca (Taori
et al., 2023) are used in our experiments. XGLM

3https://github.com/hplt-project/sacremoses

is a multilingual generative language model sup-
porting 30 languages and has 7.5B parameters
in total. Alpaca is a 7B model fine-tuned from
LLaMA (Touvron et al., 2023) on 52K instruction-
following data.

4.4 Implementation Details

The number of in-context examples is set to 4 in
our experiments.

For XGLM, we use the same prompt template
as used in Kumar et al. (2023):

[source] sentence: [X_1]
[target] sentence: [Y_1]
###
...
[source] sentence: [X_k]
[target] sentence: [Y_k]
###
[source] sentence: [X]
[target] sentence:

In the template, [source] and [target] refer
to the names of the source and target languages in
English (e.g., German, French, etc.). The ### sym-
bol is used as an example delimiter and a marker
for answer extraction in post-processing.

With the same symbols above, for Alpaca, we
use the same template as used in He et al. (2024):

Instruction: Translate the following
[source] text into [target].

[source]: [X_1]
[target]: [Y_1]
...
[source]: [X_k]
[target]: [Y_k]
[source]: [X]
[target]:

Noting that our test data and example databases
are the same as those used in Kumar et al. (2023),
we directly use the examples selected by BM25, R-
BM25 and CTQ Scorer from Kumar et al. (2023) 4.

Following Kumar et al. (2023), we remove in-
stances in the example database with more than
120 tokens in order to avoid overlong context.

4.5 Baselines

Zero-shot: No in-context examples are provided.

4https://github.com/AI4Bharat/CTQScorer
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Random: Examples are selected randomly for
each test input from the example database. We re-
port the average result of 3 different random seeds.

BM25: We use the BM25 algorithm imple-
mented by Bassani (2023) to retrieve the top-k
matching examples in the example database for
each test input.

Following Agrawal et al. (2023) and Kumar et al.
(2023), all the compared methods below re-rank
examples based on top-100 examples retrieved by
BM25 for each test input.

R-BM25: We evaluate R-BM25 (Agrawal et al.,
2023) for comparison, which ensures n-gram cov-
erage and diversity.

Fuzzy: We evaluate Fuzzy (Moslem et al., 2023),
where examples that are most similar in sentence-
level embedding are selected. We use sentence
transformers (Reimers and Gurevych, 2019) with
paraphrase-multilingual-MiniLM-L12-v2
(Reimers and Gurevych, 2020) to reimplement it.

CTQ Scorer: We evaluate CTQ Scorer (Kumar
et al., 2023) for comparison, which is a learning-
based method combining multiple features includ-
ing number of tokens, similarity in LaBSE embed-
dings (Feng et al., 2022), perplexity, etc. It trains a
specific regression model for each language pair.

SCOI: Our proposed method described in Sec-
tion 3.

5 Results and Analysis

5.1 Main Results
Main results are shown in Table 2. SCOI obtains
the highest COMET scores of 4 out of 6 transla-
tion directions and the highest average COMET
score among all learning-free methods using both
XGLM and Alpaca, showing competitive perfor-
mance across language models. Using XGLM,
SCOI outperforms the learning-based CTQ Scorer
on "RU-EN", while using Alpaca, SCOI even out-
performs CTQ Scorer on both "RU-EN" and "EN-
RU". Note that Alpaca seems not good at generat-
ing Russian, and its performance gain with 4-shot
random examples is fairly poor compared with the
zero-shot baseline. But SCOI greatly improves its
performance on "EN-RU" and shows amazing abil-
ity in teaching an LLM to better translate into a
language that appeared less during training.

We observe that SCOI shows obvious preference
across different languages. For example, it fails

to benefit "FR-EN" but improves performance on
"RU-EN". Besides different natures of different
languages, this might be also due to different ca-
pabilities of syntax parsers for different languages.
We find that when the parser performs poorly (e.g.,
the French parser), SCOI also performs less com-
petitively, while a more powerful parser (e.g., the
Russian one) leads to better performance of SCOI.
Details of the relation between parser and SCOI’s
performance can be found in Appendix D.

XGLM’s zero-shot COMET scores on "out of
English" directions are negative values. This might
be due to that XGLM fails to follow the machine
translation task in the prompt and sometimes pro-
duces a wrong language.

We also experiment on GPT-3.5 (Ouyang et al.,
2022), which is an API-based LLM. Results are
presented in Appendix E.

5.2 Ablation Study

To explore the effect of syntactic and lexical in-
formation, we perform ablation experiments using
XGLM. Since SCOI uses both syntactic and lexical
coverage, we evaluate the syntactic coverage-only
and lexical coverage-only selection methods.

As shown in Table 3, either word-only or syntax-
only coverage has limitations on some transla-
tion directions. For instance, the syntax-coverage
method performs poorly on "FR-EN" and "EN-DE"
while the word-coverage one performs less compet-
itively on "RU-EN" and "EN-DE". With the help
of alternate word-coverage and syntax-coverage,
our proposed method of combined coverage makes
the best of both worlds by and large, performing
satisfactorily on all directions except "EN-FR" and
achieves the highest average score.

5.3 Experiments with Different Selection
Modes

We explore different modes of in-context example
selection including top-k, DPP and our proposed
coverage-based SCOI using XGLM to see how
to make the most of syntactic information in in-
context example selection.

Top-k We select the top-k examples with the
highest syntactic similarity based on the polyno-
mial distance used in Liu et al. (2022) for each test
input from the example database. Note that we can
write polynomial terms as term vectors as shown
in Equation 5. In this way, a polynomial P can
be written as a set of term vectors VP . Then, fol-

9961



System
Into EN Out of EN

Avg.DE FR RU DE FR RU

XGLM

Zero-shot 60.26 70.40 50.63 -28.39 -5.13 -123.67 4.02

Learning-free
Random 63.53 70.80 53.41 43.03 53.23 42.70 54.45
BM25 63.21 71.36 52.48 44.13 55.54 44.58 55.22

R-BM25 64.13 71.18 54.06 44.83 55.21 45.92 55.89
Fuzzy 64.40 71.92 53.37 44.45 55.23 44.69 55.68

SCOI (ours) 64.67 71.26 54.08 44.87 55.31 46.47 56.11

Learning-based
CTQ Scorer 65.38 70.65 53.48 45.52 56.00 48.59 56.60

Alpaca

Zero-shot 68.95 76.12 57.13 41.01 54.41 24.66 53.71

Learning-free
Random 69.71 76.64 57.47 42.60 56.58 28.61 55.27
BM25 69.08 76.41 58.52 43.65 57.34 32.63 56.27

R-BM25 69.71 76.70 57.69 43.87 59.17 34.78 56.99
Fuzzy 69.72 76.36 58.12 44.10 57.25 30.57 56.02

SCOI (ours) 69.79 76.08 58.66 44.10 57.97 36.26 57.14

Learning-based
CTQ Scorer 70.39 76.57 58.63 45.55 58.71 35.68 57.59

Table 2: COMET scores of 4-shot ICL performance of SCOI and other methods for translation on all 6 directions of
2 language models. The zero-shot baseline of each model is listed in the first row. All methods except CTQ Scorer
are learning-free, which do not require task, language or LLM-specific training. "Avg." refers to the average score
across all 6 directions. The highest scores among learning-free methods are in bold text.

Method
Into EN Out of EN

Avg.DE FR RU DE FR RU

SCOI 64.67 71.26 54.08 44.87 55.31 46.47 56.11

w/o syntax 64.44 71.52 53.33 43.99 55.52 46.22 55.84
w/o word 63.84 70.95 53.30 42.55 56.25 46.82 55.62

Table 3: Ablation results of SCOI on XGLM. "w/o syn-
tax" refers to select using word-level coverage only and
"w/o word" refers to select using syntax-level coverage
only.

Mode
Into EN Out of EN

Avg.DE FR RU DE FR RU

BM25 63.21 71.36 52.48 44.13 55.54 44.58 55.22

Top-k 64.15 70.79 53.71 43.22 54.75 46.49 55.52
DPP 63.64 70.71 53.65 43.61 55.55 45.48 55.44
SCOI 64.67 71.26 54.08 44.87 55.31 46.47 56.11

Table 4: COMET scores of 4-shot ICL performance on
XGLM of different selection modes, all trying to make
use of syntactic information.

lowing Liu et al. (2022), we compute the distance
between two polynomials (P and Q) as:

d(P,Q) =

∑
s∈VP

min
t∈VQ

∥ s− t ∥1 +
∑

t∈VQ

min
s∈VP

∥ s− t ∥1

| VP | + | VQ | ,

(9)

where ∥ s− t ∥1 is the Manhattan distance (Craw,
2017) between term vector s and t. Instances with
top-k lowest polynomial distances to the test input
are used as the in-context examples.

DPP Inspired by Ye et al. (2023) and Yang
et al. (2023), we explore selecting in-context exam-
ples for MT using Determinantal Point Processes
(DPPs). DPPs are elegant probabilistic models ca-
pable of selecting a representative subset from a
larger, potentially redundant set.

To incorporate both lexical diversity (differences
in vocabulary coverage between different exam-
ples) and syntactic relevance (similarity between
the candidate example and the test input) in the
in-context example selection process, we utilize
the same equation that combines diversity and rele-
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vance as used in Ye et al. (2023):

log det(L′
S) =

1

λ

∑

i∈S
ri + log det(LS), (10)

where ri represents syntactic relevance, measured
by the normalized polynomial distance between
each candidate example and the test input, and
LS denotes lexical diversity, constructed through
the dot product of word vectors of all candidate
examples.

Given log det(L′
S), we can select the represen-

tative subset Sbest of size k as follows:

Sbest = argmax
S⊆Z,|S|=k

det(L′
S). (11)

For the actual selection of Sbest, we utilize the
exact implementation of the greedy algorithm from
Ye et al. (2023), originally proposed in Chen et al.
(2018). Other details of DPP are presented in Ap-
pendix F.

Results Results are shown in Table 4. Note that
all the methods re-rank on the basis of top-100
examples of each test input retrieved by BM25.
Thus BM25 is a comparable baseline.

The top-k mode does achieve a slightly higher
average score compared with BM25 but in fact
shows some performance drop on "FR-EN", "EN-
DE" and "EN-FR" directions. This indicates simply
re-ranking based on only syntactic closeness cannot
necessarily secure improvement.

The DPP mode shows a slight improvement on
average, but its performance fluctuates across trans-
lation directions. This indicates that simply incor-
porating syntax similarity into the relevance term
in DPP does not necessarily yield desired improve-
ment and how to effectively combine lexical and
syntactic information using DPPs still requires ex-
ploration, which we leave for future work.

SCOI, however, performs better compared with
the baselines above, obtaining highest or compet-
itive scores across all 6 translation directions and
getting the highest average score. This proves that
selecting examples based on syntactic and lexical
coverage alternately effectively leverages syntactic
information and leads to better ICL performance.

5.4 Analysis on the Selection Order
In this section, we analyze the effect of the order
of alternating during the selection of SCOI.

By default, the order of alternating is syntax-
first, i.e., selecting odd-numbered examples using

Order
Into EN Out of EN

Avg.DE FR RU DE FR RU

Word First 64.45 70.64 53.76 45.39 55.91 45.63 55.96
Syntax First 64.67 71.26 54.08 44.87 55.31 46.47 56.11

Table 5: COMET scores of 4-shot ICL performance on
XGLM of different orders of alternating.

syntactic coverage and even-numbered ones using
lexical coverage. We experiment on a reversed
order (i.e., word-first) for comparison.

Experimental results on XGLM are shown in Ta-
ble 5. On average, the syntax-first order is slightly
better than the word-first one. This indicates that
focusing on syntax first can organize a better set of
in-context examples.

5.5 Analysis on the Measure of Coverage

Coverage
Into EN Out of EN

Avg.DE FR RU DE FR RU

Cosine Similarity 64.35 71.54 53.89 45.41 55.36 46.06 56.10
Normalized Distance 64.67 71.26 54.08 44.87 55.31 46.47 56.11

Table 6: COMET scores of 4-shot ICL performance on
XGLM of different measures of coverage.

As described in Section 3.2, we compute the cov-
erage of polynomial terms c(s, t) in Equation 4 by
Equation 6 and 7, which is the normalized Manhat-
tan distance between two term vectors. For com-
parison, we also explore cosine similarity as the
measure of coverage:

c(s, t) =
vs · vt

∥ vs ∥∥ vt ∥
, (12)

where vs and vt are the vectors described in Equa-
tion 5 representing terms s and t respectively. Thus,
c(s, t) is measured by the cosine similarity be-
tween vs and vt.

Experimental results are shown in Table 6. The
difference of performance between the two mea-
sures is not significant and thus we infer that the
measure of coverage has little effect on the perfor-
mance of SCOI.

5.6 Case Analysis
An end-to-end German-to-English case is pre-
sented in Table 7, showing the test input, ground
truth, selected examples of SCOI and model predic-
tion of XGLM with in-context examples selected
by BM25 and SCOI separately. The set of in-
context examples selected by SCOI brings a good
demonstration at both syntax level and word level.
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DE EN

Input & Gold Nach einer Woche voller Verluste in der Zwischenwahl erzählte
Bush dem Publikum von der Ausweitung des Handels in Asien.

After a week of losses in the midterm election, Bush told an audi-
ence about the expansion of trade in Asia.

BM25 Prediction - After a week of losses in the mid-election campaign, President
Bush told his audience that trade in Asia had been expanded.

Example-1 Deshalb geht meiner Ansicht nach der Verlust von Sprachen mit
dem Verlust von Lebensweisen einher. I think, therefore, that if we lose languages we lose forms of life.

Example-2

Ich stimme mit dem Standpunkt der Berichterstatterin überein und
bin mit den eingeführten Veränderungen, wie der Ausweitung der
Mindestdauer des Mutterschaftsurlaubs von 14 auf 20 Wochen, dem
Grundsatz einer Bezahlung in voller Höhe des bisherigen Einkom-
mens, der Einführung von Gesundheitsschutzbestimmungen am
Arbeitsplatz und dem Verbot der Kündigung, einverstanden.

I agree with the position of the rapporteur and with the changes
introduced, such as the extension of the minimum period for mater-
nity leave from 14 to 20 weeks, the principle of pay equivalent to
complete earnings, the establishment of health and safety require-
ments in the workplace, and the prohibition of dismissal.

Example-3
Es muss eine grundlegende Strategie sein, die alle Ursachen der
Krise einbezieht: die Veränderung der Ernährungsgewohnheiten in
Asien, die rasche Ausweitung des Anbaus von Biokraftstoffen usw.

It must be a basic strategy that tackles all the causes of the crisis:
changing food habits in Asia, the rapid rise in the cultivation of
biofuels, etc.

Example-4
Das hat seinen Widerhall bei seinem Publikum gefunden, von dem
in dieser Woche 50.000 die Online-Petition für seine Freilassung
unterzeichnet haben.

This has resonated among his audience, 50 000 of whom have this
week signed the online petition asking for his release.

SCOI Prediction - After a week of losses in the mid-term election, Bush told the
audience about the expansion of trade in Asia.

Table 7: An end-to-end German-to-English translation example. "Input & Gold" refers to the test input and the gold
reference. "BM25 Prediction" refers to XGLM’s prediction given the test input and examples selected by BM25,
which are shown in Appendix G. "Example-i" refers to the i-th example selected by SCOI. "SCOI Prediction"
shows the predict of XGLM given the test input and the 4 in-context examples selected by SCOI.

For instance, the first example, which is selected
based on syntactic coverage, shows very close
syntactic structure to the test input, with multiple
prepositional phrases ("meiner Ansicht nach", "von
Sprachen", "mit dem Verlust von Lebensweisen"),
a very alike structure of main clause (a verb and a
noun phrase) and similarly complex noun phrases
("der Verlust von Sprachen mit dem Verlust von
Lebensweisen"). The second example, which is
selected based on lexical coverage, covers many
words as expected ("einer", "voller", "Ausweitung",
etc.). The third example, again selected based on
syntactic coverage, again shows very homologous
syntactic structure including use of multiple prepo-
sitional phrases, complex noun phrases and similar
main clause. The fourth example, based on lexi-
cal coverage, covers some other important words
("Publikum", "Woche", etc).

Table 7 also compares SCOI’s system output
with that of BM25. BM25 fails to construct the
proper syntactic structure when translating the Ger-
man phrase "der Ausweitung des Handels in Asien"
and turns it into a reported clause "that trade in Asia
had been expanded", thus losing accuracy. Note
that "der Ausweitung des Handels in Asien" (the
expansion of trade in Asia) does not include tempo-
ral information and it could be a bygone, a current
state or a future trend, while the result of BM25 as-
sumes that it is something that happened in the past,
which is inconsistent with the original meaning of
the input sentence. However, SCOI, combining
syntactic and lexical coverage, is able to output the
exact noun phrase "the expansion of trade in Asia",

which is consistent with the syntactic structure in
the source German sentence and much more ac-
curate in translation. For the complete end-to-end
case of BM25, please refer to Appendix G.

6 Conclusion

In this work, we introduce syntactic information
to in-context example selection for MT. First, we
measure set-level syntactic coverage with coverage
of polynomial terms based on a simplified algo-
rithm that converts syntax trees into polynomials.
Then, we propose to select in-context examples for
MT based on syntactic and lexical coverage alter-
nately to combine information of syntax and word.
Our proposed method obtains the highest average
COMET score among all learning-free methods,
indicating that combining syntactic and lexical cov-
erage during in-context example selection is help-
ful for MT. We call on the NLP community to pay
more attention to syntactic knowledge for syntax-
rich tasks like MT.
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Limitations

Syntax Parser Our syntax-based method is
based on reliable parsers and might not work well
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for low-resource languages. Meanwhile, depen-
dency parsing could be costly when dealing with
large datasets, which makes SCOI more time-
consuming in such situations.

Semantics We have not tried semantic informa-
tion (e.g., sentence embeddings) in our method.

Word-level Coverage We have not tried other
advanced word-level coverage methods (e.g.,
weighted words based on their frequencies or n-
gram features).

The Original Tree-to-Polynomial Algorithm
Due to limited time, we have not completed the
evaluation of the original tree-to-polynomial algo-
rithm on our method to compare with our simplified
version. In fact, the algorithm got stuck at a long
sentence with a large dependency tree and failed
to finish that instance before we killed the process
due to overlong running time.

The Simplified Tree-to-Polynomial Algorithm
There might be some information loss in the sim-
plified tree-to-polynomial algorithm. For example,
each term in the polynomial only presents the num-
ber of each dependency label on its corresponding
root-to-node path but cannot show the exact order
of these labels. In other words, our simplified tree-
to-polynomial algorithm is a many-to-one mapping
and is thus irreversible.

Ethics Statement

Task Time (min)

BM25 Pre-selection 12
Dependency Parsing 60

Tokenization 4
Combined Coverage 9

LLM Inference 90

Table 8: Average computation time on German into/out
of English using XGLM.

Computational Budget We run pre-processing
and in-context example selection on Intel® Xeon®

Gold 6348 CPU and the LLM’s inference on
NVIDIA A40 (we set batch size to 2). Table
8 presents the average computation time, with
XGLM as the LLM. The major bottleneck of com-
putation time lies in syntax parsing, which is due
to the large size of the example database.

Reproducibility All the experiments are repro-
ducible since all the methods are deterministic and
sampling is disabled during LLM generation.

Artifact License

spaCy MIT
Sacremoses MIT
retriv MIT
XGLM MIT
Alpaca Apache-2.0
COMET Apache-2.0
sacreBLEU Apache-2.0
FLORES-101 CC-BY-SA-4.0
Europarl Unknown
ParaCrawl CC0
CTQ Scorer MIT

Table 9: Licenses of scientific artifacts we use.

Scientific Artifacts We cite all the creators of
scientific artifacts we use in this paper. Licenses
of these scientific artifacts are shown in Table 9.
Our use of these artifacts is consistent with their
intended use.
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A Analysis of Tree-to-Polynomial
Algorithms

A.1 Original Algorithm from Liu et al. (2022)

We denote the cost of the algorithm if the tree has
n nodes by T (n) (then T (1) = O(1)), the number
of nodes in the tree rooted in node m by | m |, the
number of terms in the polynomial of node m by
∥ m ∥. Note that if | m |= n, then

k∑

i=1

| ni | = n− 1. (13)

For simplicity, we assume that the cost of ad-
dition of polynomial terms is the same as that of
multiplication.

To get the polynomial of ml in Equation 1, we
need to compute the polynomial of each ni (each is
T (| ni |) and the sum is T1(n) =

∑k
i=1 T (| ni |))

and the multiplication of the former polynomials
(which is the sum of the multiplication of all possi-
ble combinations of terms from the child nodes and
each combination requires multiplying k terms to-
gether plus an addition thus the overall cost should
be T2(n) = O((1+(k−1))·∏k

i=1 ∥ ni ∥)) 5. Then
the overall cost of computing Equation 1 is

5Here the additions include the addition of the whole prod-
uct of former polynomials and yl.
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Figure 2: An example tree with t+ 2 layers and 4t+ 3
nodes. mj

i denotes the j-th node on the i-th layer.

T (n) = T1(n) + T2(n)

=
k∑

i=1

T (| ni |) +O(k ·
k∏

i=1

∥ ni ∥). (14)

Consider a tree as shown in Figure 2 with t+ 2
layers and 4t+3 nodes, where mj

i denotes the j-th
node on the i-th layer. The cost of computing the
polynomial of mj

t should be O(t) since it is just to
add t single-variable terms together according to
Equation 1. Then, the cost of computing the poly-
nomial of mi

t+1 should be O(2t+ 2t2) according
to Equation 14, which can be further simplified to
O(t2). Finally, the cost of computing the polyno-
mial of m1

t+2, which is also the polynomial repre-
senting the whole tree, should be O(2t2 + 2(t2)2)
according to Equation 14, which can be further
simplified to O(t4). Thus in this tree, the cost is:

T̂ (4t+ 3) = O(t4). (15)

Let s = 4t+ 3, we simplify Equation 15 and have:

T̂ (s) = O(s4). (16)

Therefore, we prove that the original tree-to-
polynomial algorithm can be of quartic time com-
plexity in some cases.

In fact, given any constant p = 2q where q is a
positive integer, we can construct a tree in the way
as shown in Figure 2 with t+q layers and pt+p−1
nodes. Let m1

t+q denote the root node. For each
i between 1 and q and each j between 1 and 2q−i,
mj

t+i has two child nodes m2j−1
t+i−1 and m2j

t+i−1. For
each i between 2 and t and each j between 1 and
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2q, mj
i has only one child node mj

i−1. Finally, for
each j between 1 and 2q, mj

1 is the leaf node. In
this way, the cost of computing the polynomial
of mj

t is O(t) as discussed above. That of mj
t+1,

mj
t+2, ..., mj

t+q should be O(t2), O(t4), ..., O(t2
q
)

recursively, the last one with q times of recursion
being T̂ (pt+p−1) indeed. Let s = pt+p−1, we
again ignore the constant factors and insignificant
terms and then have:

T̂ (s) = O(s2
q
) = O(sp). (17)

Thus we prove that the complexity of the original
tree-to-polynomial algorithm can be polynomial of
arbitrarily large degree p = 2q in some cases. So
when dealing with very large dependency trees of
long sentences, the original algorithm can be quite
time-consuming and thus impractical for applica-
tion in MT where there can be millions of data to
be processed.

However, we have not proven the exact lower
bound of the cost or the average cost according to
Equation 14, which we leave for future work.

A.2 Our Simplified Algorithm
We use the same symbols as in Section A.1. Given
| m |= n, Equation 13 still holds in this section.
Moreover, in our simplified algorithm, the number
of terms in a polynomial equals to the number of
nodes in the tree rooted in the corresponding node:

∥ m ∥=| m |, (18)

and
∥ ni ∥=| ni | . (19)

To get the polynomial of ml in Equation 2, we
need to compute the polynomial of each ni (each is
T (| ni |)), the sum of 1 and all the former polyno-
mials (which is O(

∑k
i=1 ∥ ni ∥)), the multiplica-

tion of xl (which can be seen as multiply xl with all
the terms in the former polynomials plus 1 and thus
should be O(1 +

∑k
i=1 ∥ ni ∥) and can be further

simplified to O(
∑k

i=1 ∥ ni ∥)). Then the overall
cost of computing Equation 2 is

T (n) =

k∑

i=1

T (| ni |) + 2 ·O(

k∑

i=1

∥ ni ∥). (20)

We then apply Equation 13 and 19 and ignore the
constant factors to get

T (n) =

k∑

i=1

T (| ni |) +O(n). (21)

Then

T (n)−
k∑

i=1

T (| ni |) = O(n). (22)

Analogously,

∀1 ≤ i ≤ k, T (| ni |)−
ki∑

j=1

T (| nij |) = O(| ni |),

(23)
where ni has ki child nodes denoted by nij . Thus

k∑

i=1

T (| ni |)−
k∑

i=1

kj∑

j=1

T (| nij |) =
k∑

i=1

O(| ni |)

= O(n− 1).

(24)

With the recursive boundary

T (1)− 0 = O(1), (25)

we can continue the process recursively (in fact,
each level of recursion corresponds to a layer in
the tree) until each node has appeared on left-hand
side and add together Equation 22, 24 and so on to
get

T (n) = O(n) +O(n− 1) +O(n− 1− k) + ...

≤ O(n2).

(26)

Thus we prove that the complexity of our simpli-
fied tree-to-polynomial algorithm is no more than
quadratic time.

B BLEU Results

The BLEU scores of our main results are shown in
Table 10.

C The spaCy Models Used for Parsing

The spaCy models and their corresponding ver-
sions we use for dependency parsing are listed in
Table 11.

D Effect of Parser

In order to better understand the relation between
the performance of SCOI and the capability of the
parser, we compare the labeled attachment scores
(LAS) of different parsers used in our experiments
reported on the official website of spaCy 6. Ta-
ble 12 shows performance gains of SCOI over the

6https://spacy.io/models/
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System
Into EN Out of EN

Avg.DE FR RU DE FR RU

XGLM

Zero-shot 31.13 32.68 23.96 10.41 17.8 5.56 20.26

Learning-free
Random 31.31 32.68 24.85 19.63 28.79 17.57 25.81
BM25 31.06 33.34 24.47 20.16 29.79 18.18 26.17

R-BM25 31.16 32.99 24.71 20.00 29.17 17.93 25.99
Fuzzy 31.95 33.08 24.42 20.29 29.77 18.01 26.25

SCOI (ours) 31.51 32.88 24.85 20.45 29.39 18.25 26.22

Learning-based
CTQ Scorer 32.02 32.35 25.29 20.94 30.59 18.53 26.62

Alpaca

Zero-shot 33.57 35.73 26.25 20.86 29.08 15.55 26.84

Learning-free
Random 33.50 36.24 26.48 20.08 29.05 15.82 26.86
BM25 33.16 35.11 26.58 20.23 29.76 15.99 26.81

R-BM25 33.47 35.42 26.23 20.46 29.64 16.27 26.92
Fuzzy 33.51 35.51 26.02 20.26 29.58 15.87 26.79

SCOI (ours) 33.93 35.44 26.69 20.70 29.61 16.53 27.15

Learning-based
CTQ Scorer 33.75 35.83 26.56 20.99 30.23 16.26 27.27

Table 10: BLEU scores of 4-shot ICL performance of SCOI and other methods for translation on all 6 directions of
2 language models. The zero-shot baseline of each model is listed in the first row. All the methods except CTQ
Scorer are learning-free, which do not require task, language or LLM-specific training. "Avg." refers to the average
score across all 6 directions. The highest scores among learning-free methods are in bold text.

Language spaCy Model Version

DE de_core_news_sm 3.7.0
EN en_core_web_sm 3.7.1
FR fr_core_news_sm 3.7.0
RU ru_core_news_sm 3.7.0

Table 11: The spaCy models and their versions of dif-
ferent languages used for dependency parsing.

Direction ∆ Parser LAS

DE-EN +1.46 de_core_news_sm 0.90
FR-EN -0.10 fr_core_news_sm 0.83
RU-EN +1.60 ru_core_news_sm 0.95

Out of EN (Avg.) +0.80 en_core_web_sm 0.90

Table 12: Performance gains ("∆") of SCOI over BM25
using XGLM and capabilities of corresponding parsers
on different translation directions. "LAS" refers to the
labeled attachment score of a parser.

BM25 baseline using XGLM and capabilities of
corresponding parsers. The results show that a bet-
ter parser leads to better performance of SCOI and
incidate that SCOI is highly dependent on parsers.

E Results on GPT-3.5

We call OpenAI’s API 7 of gpt-3.5-turbo-0125
to evaluate different in-context example selection
methods on GPT-3.5. Results are presented in Ta-
ble 13.

It seems the difference between in-context exam-
ple selection methods is not so significant as that on
smaller LLMs. This might be because that the ca-
pability of GPT-3.5 has been strong enough so that
in-context examples bring limited help. For such
large-scaled models, design and organization of
prompt and use of additional information or knowl-
edge might be more crucial in improving perfor-
mance of ICL.

F Details of DPPs

We set the λ in Equation 10 to 0.5 to balance syn-
tactic relevance and lexical diversity. As mentioned

7https://openai.com/api/
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System
Into EN Out of EN

Avg.DE FR RU DE FR RU

Learning-free
Random 77.52 81.78 67.02 69.04 84.12 71.26 75.12
BM25 77.54 81.60 66.17 68.93 84.06 71.73 75.01

R-BM25 77.24 81.54 66.45 69.25 84.08 71.46 75.00
Fuzzy 77.36 81.89 66.52 68.83 84.33 72.49 75.24

SCOI (ours) 77.17 81.89 66.38 69.07 84.31 72.13 75.16

Learning-based
CTQScorer 77.40 81.99 66.77 69.33 83.78 73.06 75.39

Table 13: Results on GPT-3.5.

DE EN

Input & Gold Nach einer Woche voller Verluste in der Zwischenwahl erzählte
Bush dem Publikum von der Ausweitung des Handels in Asien.

After a week of losses in the midterm election, Bush told an audi-
ence about the expansion of trade in Asia.

Example-1

Ich stimme mit dem Standpunkt der Berichterstatterin überein und
bin mit den eingeführten Veränderungen, wie der Ausweitung der
Mindestdauer des Mutterschaftsurlaubs von 14 auf 20 Wochen, dem
Grundsatz einer Bezahlung in voller Höhe des bisherigen Einkom-
mens, der Einführung von Gesundheitsschutzbestimmungen am
Arbeitsplatz und dem Verbot der Kündigung, einverstanden.

I agree with the position of the rapporteur and with the changes
introduced, such as the extension of the minimum period for mater-
nity leave from 14 to 20 weeks, the principle of pay equivalent to
complete earnings, the establishment of health and safety require-
ments in the workplace, and the prohibition of dismissal.

Example-2 Deshalb geht meiner Ansicht nach der Verlust von Sprachen mit
dem Verlust von Lebensweisen einher. I think, therefore, that if we lose languages we lose forms of life.

Example-3
Herr Minister, diese Woche wird von dem erklärten Willen des
Europäischen Parlaments geprägt sein, gegen den Verlust der biolo-
gischen Vielfalt anzukämpfen.

Minister, this week will have been marked by the desire shown by
the European Parliament to fight against the loss of biodiversity.

Example-4 Nach dem, was mir erzählt wurde, nicht gut. From what I was told I suspect they were not good.

Prediction - After a week of losses in the mid-election campaign, President
Bush told his audience that trade in Asia had been expanded.

Table 14: An end-to-end "DE-EN" translation example of BM25, with the same test input in Table 7.

in Section 5.3, the word vectors WN×T , used to
compute lexical diversity, where N is the number
of documents (candidate examples) and T is the
number of terms (words) in each test input, are
constructed as follows:

Wi,j = idfj ×
(

tfi,j × (k1 + 1)

tfi,j + k1 × (1− b+ b× li)

)
,

(27)
where i and j refer to the i-th candidate exam-

ple and the j-th term in a test input, respectively.
Here, idfj is the inverse document frequency of
the j-th term across all candidate examples, tfi,j
is the term frequency of the j-th term in the i-th
candidate example, and li is the length of the i-th
candidate example. The parameters k1 and b are
hyperparameters.

G The Example of BM25

An end-to-end German-to-English translation ex-
ample of BM25 is shown in Table 14, the test in-
put is the same as that of SCOI discussed in Sec-
tion 5.6.

BM25 mainly focuses on lexical similarity and
does not take coverage into consideration. For
example, the word "Publikum" is not covered by
BM25 since it is based on the Top-k mode while

SCOI does cover it. Moreover, it does not empha-
size the similarity in syntax. Even though some
examples contain similar syntactic structure (e.g.,
the second example is just the first example selected
by our method), BM25 fails to put these examples
in the front to allow LLMs pay more attention to
those more helpful examples.
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