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Abstract

Fine-tuning large language models (LLMs) has
achieved remarkable performance across var-
ious natural language processing tasks, yet it
demands more and more memory as model
sizes keep growing. To address this issue, the
recently proposed Memory-efficient Zeroth-
order (MeZO) methods attempt to fine-tune
LLMs using only forward passes, thereby
avoiding the need for a backpropagation graph.
However, significant performance drops and
a high risk of divergence have limited their
widespread adoption. In this paper, we pro-
pose the Adaptive Zeroth-order Tensor-Train
Adaption (AdaZeta) framework, specifically
designed to improve the performance and con-
vergence of the ZO methods. To enhance
dimension-dependent ZO estimation accuracy,
we introduce a fast-forward, low-parameter ten-
sorized adapter. To tackle the frequently ob-
served divergence issue in large-scale ZO fine-
tuning tasks, we propose an adaptive query
number schedule that guarantees convergence.
Detailed theoretical analysis and extensive
experimental results on Roberta-Large and
Llama-2-7B models substantiate the efficacy of
our AdaZeta framework in terms of accuracy,
memory efficiency, and convergence speed.1

1 Introduction

Fine-tuning large language models (LLMs)
has demonstrated outstanding performance in
addressing numerous natural language pro-
cessing applications, such as natural language
understanding (Kenton and Toutanova, 2019),
question-answering (Xu et al.; Cheng et al.,
2023), and summarization (Zhang et al., 2024).
However, as the size of LLMs increases, the

1Code available on GitHub https://github.com/
yifanycc/AdaZeta.

training process consumes progressively more
GPU memory. In recent years, approaches such
as quantization (Tian et al., 2023; Dettmers et al.,
2024) and parameter-efficient fine-tuning (PEFT)
(Hu et al., 2021) have been proposed to reduce
memory costs during training by storing data with
lower bit-depth or updating only a portion of the
parameters. Despite these strategies effectively
reducing memory costs, overall memory usage
remains high due to the continuous reliance on a
backpropagation graph.

To further reduce the memory overhead, (Mal-
ladi et al., 2023) proposed the Memory-efficient
Zeroth-order (MeZO) method for LLM fine-tuning,
which shows over 8×memory reduction compared
with the first-order (FO) fine-tuning methods like
SGD (Amari, 1993) and AdamW (Loshchilov
and Hutter, 2018). Unlike FO methods, which
calculate gradients via backpropagation, the
MeZO method estimates gradients based on the
difference between loss values obtained from
two forward passes, thereby eliminating the need
for a backpropagation graph. However, two
main challenges persist in the zeroth-order (ZO)
fine-tuning of LLMs: 1) a significant performance
gap between FO and ZO approaches, and 2)
increased risk of divergence, particularly in the
ZO fine-tuning of large-scale LLMs, as observed
in recent studies (Gautam et al., 2024).

To improve the performance, various FO
optimization techniques have been adapted for ZO
fine-tuning scenarios, like the ZO-AdaMU method
(Jiang et al., 2024). However, these approaches fail
to accommodate the specific needs of ZO methods,
and add significant memory overhead from the
optimizer state. Given the dimensionality-related
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Figure 1: The evaluation loss curves for the SST-2, WiC, and CB tasks using the Llama-2-7B model. The proposed
AdaZeta method converges faster and effectively addresses the divergence problem using a much smaller batch size
(BS). Both MeZO-LoRA and AdaZeta use a learning rate of 1e-4, while Sparse-MeZO utilizes a 1e-6 learning rate.

nature of ZO convergence rates, (Liu et al., 2024)
propose the Sparse-MeZO method that generates
pruning masks based on the value of the weight
elements. Nevertheless, the Sparse-MeZO method
yields inconsistent performance across various
tasks and hyperparameter configurations. In
contrast to this approach, we consider using the
PEFT method to reduce the number of trainable
parameters. Although the ZO PEFT method like
MeZO-LoRA has been considered in (Malladi
et al., 2023), the improvements are limited as the
LoRA adapter fails to offer high representational
ability with an ultra-low rank. To solve this
problem, we involve tensorized adapters, which
offer high performance with even lower trainable
parameters than LoRA adapters.

To address the variance-related divergence
issue in large-scale ZO fine-tuning, previous
studies (Malladi et al., 2023; Jiang et al., 2024)
have primarily focused on adjusting the batch
size, as increasing the batch size can reduce the
noise in ZO gradient estimation. However, these
approaches introduce significant runtime overhead
and fail to improve performance significantly. To
further reduce variance, (Gautam et al., 2024)
introduced the MeZO-SVRG method, adapting
the first-order SVRG technique to the ZO context.
Despite its success, MeZO-SVRG suffers from a
slow and memory-inefficient fine-tuning process
due to the additional parameter copies and compu-
tation process that even doubles the memory cost
of the MeZO methods. In contrast to these works,
we consider reducing the ZO gradient variance

with a sublinearly increasing query2 schedule that
achieves not only better accuracy but also faster
convergence in terms of both steps and time.

This paper explores task-specific PEFT training
for ZO fine-tuning scenarios. We introduce the
Adaptive Zeroth-order Tensor-Train Adaption
(AdaZeta) framework, which incorporates fast-
forward tensorized adapters and an adaptive query
schedule. This combination can significantly
enhance the accuracy and convergence of ZO
fine-tuning, as demonstrated in Fig. 1. Our
contributions are summarized as follows:

• We introduce the AdaZeta framework, out-
performing other ZO fine-tuning methods
like MeZO, MeZO-LoRA, and Sparse-MeZO
across different tasks with faster convergence.

• We develop an adaptive query number sched-
ule that sub-linearly increases the number of
queries to address the persistent divergence
issue in ZO fine-tuning.

• We provide both theoretical and experimental
results to demonstrate the training efficiency
and performance of our method.

2 Background

2.1 Parameter-Efficient Fine-tuning

In recent years, various works related to PEFT
methods have been proposed. Beyond the most
widely used methods like Adapters (Houlsby
et al., 2019) and LoRA (Hu et al., 2021), there
are also methods exploring ultra-low trainable
parameter solutions (Zaken et al., 2022; Li and

2A query refers to request the gradient of the loss function
for one time in this paper (Bubeck et al., 2015)[Sec. 4.1.4].

2
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Figure 2: Illustration for tensorized linear layer and
tensorized adapters.

Liang, 2021; Liu et al., 2022). In (Malladi et al.,
2023), researchers try to employ the LoRA and
prefix-tuning (Li and Liang, 2021) methods during
the ZO fine-tuning. However, the improvement
is limited and the detailed analysis of ZO PEFT
tuning is not discussed.

In this paper, we explore tensorized adapters,
an ultra-low-parameter PEFT method that com-
presses the weight matrices of adapter layers
using Tensor-Train (TT) decomposition. This
approach is examined in (Yang et al., 2024a),
where it demonstrates strong performance in
FO fine-tuning tasks. However, the contraction
process of TT format (Oseledets, 2011; Novikov
et al., 2015) involving a sequence of small tensor
factors slows down the forward pass, making it
less suitable for ZO methods that require two
forward passes per step. To solve this problem, we
propose parallel contraction methods to improve
the inference speed of tensorized adapter methods.

2.2 Tensorized Adapters

As shown in Fig. 2 (a), the tensorized adapters,
which are built upon tensorized linear layers, are
lightweight components injected during the fine-
tuning process to reduce the number of trainable
parameters. The weight in tensorized linear layers
is represented in the TT format. Compared with

a standard weight matrix W ∈ Rm×n in a typical
linear layer, the TT format represents its reshaped
2o-way tensor W ∈ Rk1×···×k2o as a sequence
of tensor factors [G1, · · · ,Go,Go+1, · · · G2o] (Os-
eledets, 2011), where each tensor factor Gi ∈
Rri−1×ki×ri has rank ri−1 and ri. The dimensions
ki are constrainted such that Πo

i=1ki = m and
Π2o

j=o+1kj = n. During the forward pass, the se-
quence of tensor factors is contracted and reshaped
back into the shape of a weight matrix as

W = Reshape(G1 × · · · × G2o). (1)

Note that in this paper, the tensor rank is held
constant, with the exception of the first and last
ranks, which are set r0 = r2o = 1. Also, the
weights in tensorized layers are initialized, stored,
and updated in TT-format instead of the matrix
form in a traditional linear layer.

The structure of tensorized adapters is shown
in Fig. 2 (b). Each tensorized adapter contains
two tensorized layers and a non-linear layer
in between. For each encoder/decoder block,
the tensorized adapters are attached after the
attention and feed-forward layer. Different from
(Yang et al., 2024a) that makes both tensorized
adapters and layer norm trainable, we freeze
the layer norm during the ZO fine-tuning, as
noisy gradient estimation of the scaling factor in
layer normalization can seriously degrade model
performance. The tensorized adapters reduce
trainable parameters by over 80×, making them a
better fit for ZO fine-tuning.

3 Methods

In this section, we first introduce some basic knowl-
edge of the ZO gradient estimator. Then, we
present our AdaZeta method, a powerful frame-
work designed to improve the performance of ZO
LLM fine-tuning with two main components: 1)
the fast-forward tensorized adapters, and 2) an
adaptive query number schedule. Finally, we pro-
vide a theoretical analysis of the convergence rate
of the AdaZeta method, demonstrating the im-
proved convergence rate theoretically.

3.1 Zeroth-order Estimation
Traditional ZO estimation has been widely studied
in both convex and non-convex optimization se-

3
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tups (Ghadimi and Lan, 2013; Malladi et al., 2023;
Chen et al., 2019). In our problem, considering a
supervised dataset D, mini-batch B with the size
of D and B respectively, we set the loss function
for our fine-tuning problem to be ℓ(w;B), where
the trainable parameter in the tensorized adapters
w ∈ Rd has a size of d. Then, the Randomized
Zeroth-order Gradient Estimation (RGE) at train-
ing step k is given as:

∇ℓ̂(wk) =

Qk∑

q=1

ℓB(wk + ϵzq)− ℓB(wk − ϵzq)

2ϵ
zq

where Qk is the query number at the training
step k, zq ∼ N (0, Id) is the vector-wise random
perturbation for each query q, and ϵ is a scaling
factor for the perturbation.

Unlike FO fine-tuning, which relies on back-
propagation, RGE requires only two forward
passes with perturbations added to the weights
of tensorized adapters, eliminating the need
for a backpropagation graph. Additionally, by
sublinearly increasing the number of queries at the
beginning of each epoch, we effectively reduce
the variance of the ZO gradient estimation by
involving distinct perturbations zq at each time of
query. Details of the setup will be discussed in the
following section.

3.2 The AdaZeta Framework

Previous ZO fine-tuning methods, such as MeZO,
typically estimate the gradient for a large number
of trainable parameters simultaneously using RGE.
This approach results in high variance due to the
dimension-related nature of the RGE method.
Although techniques like LoRA and prefix tuning
have been considered, few works consider the
tasks-specific PEFT adapters for the ZO LLMs
fine-tuning. Additionally, as shown in Fig. 1, we
have observed an increased risk of divergence
when using the MeZO-LoRA method during
fine-tuning. To address these issues, we propose
our AdaZeta framework to improve performance
and solve the instability problem of the vanilla
MeZO method. Our framework includes the
following components:

Fast Forward Tensorized Adapters. The

Algorithm 1 AdaZeta Algorithm
Input: Parameters w, loss function ℓ(·), ran-
dom seed sq, scaling factor ϵ, Query-realted con-
stant α, β, maximum query Qmax, learning rate
η.

1: for k = 1, · · · ,K do
2: Calculating query number at epoch ek start:

Qk := min(αeβk , Qmax)

3: for q = 1, · · · , Qk do
4: w ← w + ϵzq, zq ∼ N (0, Id, sq)
5: ℓq+ ← ℓ(w,B)
6: w ← w − 2ϵzq, zq ∼ N (0, Id, sq)
7: ℓq− ← ℓ(w,B)
8: w ← w + ϵzq, zq ∼ N (0, Id, sq)
9: Reset random seed sq for generating zq

10: end for
11: ∇w ℓ̂(w) = 1

Qk

∑Qk
q=1

[
ℓq+−ℓq−

2ϵ zq

]

12: w ← w − η ∗ ∇w ℓ̂(w)
13: end for

Parameter-efficient issue has been widely studied
in the FO cases, where people often freeze
the pre-trained model parameters and fine-tune
the LLMs by adding trainable adapters along
with the frozen pretrain weights. Since the ZO
estimation accuracy is dimension-dependent,
reducing dimensionality can significantly help
improve the gradient estimation quality. Thus,
we consider injecting the ultra-low parameter
tensorized adapters in our AdaZeta framework to
reduce the number of trainable parameters while
retaining the performance.

As we have mentioned, ZO fine-tuning mainly
relies on gradient estimation with two forward
passes at each step. Thus, the speed of the forward
pass is a crucial factor for the overall speed of
ZO fine-tuning. Instead of using the sequential
contraction method during the forward pass as
in previous work, we propose a new parallel
contraction method to speed up the forward passes.
This method divides the sequence of tensor factors
into several groups to enable parallel processing
and avoid the presence of high-dimensional
tensors. Taking a bipartite case as an example, the

4
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contraction process in eq. (1) is replaced by:

W = R(
o∏

i=1

Gi
2o∏

j=o+1

Gj),

where Gi represents the i-th tensor factor, R(·)
represents the reshape operation. For larger
models, the tensor factors can be organized into
tripartite or quadripartite structures to accelerate
the inference speed of the tensorized methods.

Adaptive Query Adjustment for ZO esti-
mation. As previously noted, the training process
for existing ZO methods often exhibits instability,
particularly with large-size models where diver-
gence issues frequently occur. Previous studies
(Chen et al., 2019; Jiang et al., 2024) have explored
using a fixed multiple queries scheme to improve
the estimation accuracy in the optimization
community. However, utilizing a fixed number
of queries may significantly hinder the training
efficiency of large-scale ZO fine-tuning tasks, as
naively increasing the number of perturbations
greatly escalates training durations. To solve
this problem, we consider a simple but effective
sublinear increasing query number adjustment
schedule, where the number of queries is updated
at the beginning of each epoch ek. By expressing
the epoch in terms of the global training steps as
ek = ⌊k/⌈DB ⌉⌋, we have:

Qk := min(αeβk , Qmax) (2)

with a fixed scaling factor α ∈ (0, 1), a sublinear
increasing factor β ∈ (0, 1) and a max query
threshold Qmax. Then, the query number is fixed
for all training steps within each epoch. This
adjustment solves all divergence problems we
observed with theoretical guarantee and performs
even faster than the traditional way to solve the
divergence problem for ZO LLMs fine-tuning by
increasing the batch size.

The corresponding optimization algorithm
used in the AdaZeta framework is shown in
Alg. 1. We adjust the query number at the
beginning of each epoch. Different from the
MeZO algorithm, we obtain the gradient used
for the model update by taking the average over
multiple query results. Note that we fix the query

number to be 1 when fine-tuning medium-size
models like Roberta-Large since the noise of ZO
estimation is relatively low when the number of
trainable parameters is small. Later, we will show
that a sublinear increasing query number benefits
the convergence of the problem when the model
size is large, both theoretically and experimentally.

3.3 Theoretical Analysis
In this subsection, we give the theoretical analysis
for the AdaZeta framework. Our theoretical
analysis highlights why the tensorized adapter and
adaptive query schedule can significantly help
to improve the ZO convergence rate. Unlike the
theoretical analysis in the MeZO paper, which
focuses on the ”effective rank” for the Hessian of
loss, we focus on the dimension of the optimized
models d (number of trainable parameters)
instead. As the trainable parameters with PEFT
adapters are much smaller than the model size,
the theoretical analysis based on the exact dimen-
sion of the optimization problem can better help
us explore the behavior of different PEFT methods.

To align our analysis with LLM fine-tuning,
we consider a non-convex optimization setup and
study the convergence behavior regarding the
training steps k. It is important to note that the ZO
estimated gradient ∇ℓ̂ by the RGE, is an unbiased
estimation of the true gradient ∇ℓ when ϵ → 0,
which gives the fact Ez[∇ℓ̂] = ∇ℓ (Nesterov
and Spokoiny, 2017). First, we list the following
assumptions for our analysis:

A1: The loss function ℓ has an L-Lipschitz
continuous gradient, where for L > 0 we have:
∥∇ℓ(wi)−∇ℓ(wj)∥ ≤ L∥wi −wj∥,∀wi,wj

A2: At each step k, the gradient of loss
function ℓ is upper bounded as ∥∇ℓ∥ ≤ δ, ∀k.

Then, we offer the global convergence rate
for our AdaZeta algorithm:
Theorem 1. Under A1 and A2, randomly pick wT

from history with probability P (T = k) = 1
K ,

the convergence of the AdaZeta algorithm can be
bounded by:

E[∥∇ℓ(wT )∥2] ≤ O(
R+ ϵ2L+ C(d, ϵ)

∑
k

1
Qk

Kϵ
),

5
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Table 1: Comparative analysis of various ZO fine-tuning methods on the Roberta-Large models.

Methods RTE SST-2 SST-5 QNLI MNLI SNLI MR
FT 66.4 91.9 47.5 63.4 70.0 77.5 88.2

Zero-Shot 51.4 79.0 35.5 50.9 48.8 50.2 80.2
LP 59.4 76.0 40.3 57.6 56.5 66.0 86.6

BS=16
MeZO 52.7 90.5 31.1 59.9 60.5 63.5 85.5

MeZO-LoRA 52.7 84.2 44.8 60.3 58.5 65.6 85.7
AdaZeta 66.8 91.4 48.3 61.3 58.1 69.1 87.0

BS=64
MeZO 64.0 90.5 45.5 60.5 58.7 68.5 85.0

MeZO-LoRA 63.9 91.3 43.0 59.0 64.0 69.7 87.4
AdaZeta 64.3 91.5 49.6 60.7 68.1 68.7 86.5

where R is defined by the distance between the
start point and the optimal solution ℓ(w1) − ℓ∗,
the ZO perturbation scaling factor is represented
as ϵ, and C(d, ϵ) is a constant related to the model
parameter size d, which is defined at the end of the
proof in Appendix C.

Proof. Details can be found in Appendix C.

According to Theorem 1, we can observe that the
bound is related to the query schedule. For conve-
nience, take a simplified case with α = β = 0.5
and ignore the minimum in eq. (2), we have Qk =

1
2

√
⌊k/⌈DB ⌉⌋, gives

∑K
k=1

1
Qk
≤ 2

⌈
D
B

⌉
√⌊

K
⌈D
B
⌉

⌋
,

which guarantees the true gradient approaches zero
when K → ∞. In contrast, using a small con-
stant such as Q = 1 results in an upper bound
of O(C(d, ϵ)/Kϵ), which becomes challenging to
minimize due to the term C(d, ϵ) is directly propor-
tional to the model size d. Additionally, we observe
that the convergence rate is significantly influenced
by the model dimension d. Consequently, in this
paper, we also try to reduce the number of trainable
parameters with the tensorized adapters.

4 Experiments

In this section, we conduct comprehensive experi-
ments to evaluate the performance of our proposed
AdaZeta framework across several LLMs with
different scales on a variety of natural language
understanding and generation tasks (Socher et al.,
2013; Williams et al., 2017; Rajpurkar et al.,
2016). We demonstrate that our methods surpass
a comprehensive array of memory-efficient
baselines, including inference-only methods such

as Zero-shot (Brown et al., 2020), In-Context
Learning (ICL), and Linear Probing (LP) (Kumar
et al., 2021), as well as ZO fine-tuning methods
like MeZO, MeZO-LoRA (Malladi et al., 2023),
and Sparse-MeZO (Liu et al., 2024). Also,
the first-order fine-tuning (FT) baseline is also
provided as a reference.

Initially, we present experimental evidence
using Roberta-Large models (Liu et al., 2019),
illustrating that the integration of tensorized
adapters can significantly enhance the efficiency
of ZO fine-tuning by reducing the number of
trainable parameters. Subsequently, we enabled
our proposed adaptive query schedule method to
show the effectiveness of the AdaZeta framework
on large-scale Llama-2-7B models (Touvron et al.,
2023), which not only enhances performance but
also ensures robust convergence. All experiments
are conducted on NVIDIA Tesla A100-40GB
GPUs, with further details about the experimental
setup available in Appendix A.

4.1 Medium-size Roberta-Large Models

We initially evaluated the effectiveness of using
tensorized adapters on RoBERTa-large models
across various tasks, including single-sentence
tasks like SST-2 and SST-5, natural language
inference tasks such as QNLI, MNLI, SNLI,
RTE, and the sentiment analysis dataset Movie
Reviews (MR). The results are summarized in
Table 1. Experiments were conducted under
a 16-shot setup, with 16 data samples in each
class of the datasets. We monitored the best test
accuracy every 500 steps, using a test pool of
1,000 data samples. Note that, similar to previous

6
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Table 2: Comparative analysis of various ZO fine-tuning methods on the Llama-2-7B model.

Methods RTE CB BoolQ WSC WIC SST2 MultiRC COPA ReCoRD SQuAD
FT 61.7 66.1 84.6 63.4 65.9 94.0 45.4 86.0 81.1 90.7

LoRA 85.5 67.8 84.8 62.5 73.9 94.8 85.0 81.0 79.4 90.5
Zero-Shot 49.5 32.1 65.1 36.5 50.6 79.7 55.8 59.7 80.9 54.7

ICL 54.5 58.9 67.4 65.4 52.7 81.2 58.7 84.4 80.1 67.1
MeZO 54.6 73.0 68.6 52.8 57.8 85.8 62.6 86.0 70.8 72.5

MeZO-LoRA 59.6 74.0 71.6 53.0 55.2 86.8 67.2 89.0 72.0 80.0
Sparse-MeZO 58.6 76.0 67.8 53.0 56.8 85.2 61.2 86.0 70.6 64.4

AdaZeta 74.0 75.0 79.4 52.2 58.0 91.0 68.2 94.0 71.2 80.0

ZO fine-tuning studies, we fixed the number of
queries to 1 in this subsection. This decision
is based on the observation that gradient noise
is relatively small in medium-sized Bert-based
models. The following conclusions have been
reached:

AdaZeta Shows Higher Accuracy than
Other ZO Fine-Tuning Methods. According to
our observations in Table 1, AdaZeta outperforms
other ZO fine-tuning approaches in terms of eval-
uation accuracy. Compared with MeZO-LoRA,
which also involves PEFT adapters, AdaZeta
outperforms in 5 out of 7 tests under both 16 and
64 batch size (BS) settings. This advantage shows
the effectiveness of improving ZO estimation
accuracy by further reducing the number of
trainable parameters with the tensorized adapter.
This is supported by the dimension-related
convergence rate proved in Section 3.3.

AdaZeta Demonstrates Improved Conver-
gence. Compared to the MeZO-LoRA method,
the AdaZeta method exhibits superior convergence
when the batch size is 16. Given our 16-shot
training setup, it is reasonable to expect that the
16 batch size scenario would outperform the 64
batch size scenario if the fine-tuning process
converges effectively. However, a performance
decline is observed with the MeZO-LoRA method,
indicating that it is adversely affected by ZO
gradient noise. Comparatively, the AdaZeta
method achieves consistent results across both
setups by reducing such noise with less trainable
parameters, effectively showcasing its ability to
aid in convergence.

4.2 Large-scale Llama-2 Models

In the previous section, we demonstrated how
utilizing the tensorized adapter method enhances
ZO fine-tuning performance by reducing gradient
noise through a decrease in trainable parameters.
In this section, we assess the effectiveness of the
AdaZeta framework with the large-scale Llama-2-
7B model. Differing from the experiments on the
Roberta-Large models, we enabled the adaptive
query schedule method proposed in our AdaZeta
framework to mitigate the commonly observed
divergence issues in large-scale ZO fine-tuning.

To highlight the challenge of our experiments,
we adopt a low-data resource approach using
datasets from SuperGLUE (Wang et al., 2019)
and generative tasks such as SQuAD (Rajpurkar
et al., 2016) and DROP (Dua et al., 2019). Our
experimental protocol follows the prompted-based
fine-tuning strategy outlined in the MeZO paper
(Malladi et al., 2023). The quantitative results
are summarized in Table 2 and the training
curves have been shown in Fig. 1. Note that it is
reasonable to observe some large accuracy gap
between different methods under different tasks,
which has also been observed in previous MeZO
and PEFT papers (Malladi et al., 2023; Hu et al.,
2023). The following conclusions are drawn:

AdaZeta Method Demonstrates Superior
Performance Over Traditional ZO Fine-Tuning.
The AdaZeta framework delivers exceptional
accuracy results across a variety of tasks, out-
performing all ZO baseline methods such as
MeZO and MeZO-LoRA in 8 out of 10 tasks.
Compared with traditional inference-only methods
like ICL and Zero-shot, AdaZeta significantly
surpasses them with respect to test accuracy.

7
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Table 3: Required GPU hours (GPU numbers × Train-
ing hours) to achieve each evaluation loss for different
ZO fine-tuning methods on Llama-2-7B model.

Methods SST2 WIC CB MultiRC
MeZO-LoRA(BS=64) 3.0 4.8 8,6 30.0
MeZO-LoRA(BS=16) 0.6 1.1 3.1 10.8

Sparse-MeZO 4.1 3.6 4.3 6.4
AdaZeta 1.1 1.0 0.9 12.1

Moreover, the AdaZeta method even outperforms
the FO-AdamW methods over several tasks like
RTE, CB, and COPA, which require 8× more
GPU memory.

AdaZeta Method Effectively Addresses
Divergence Issues in ZO Fine-Tuning. We
can observe from the table that the MeZO and
MeZO-LoRA methods achieve unsatisfied results
in some tasks like SST2, RTE, and BoolQ
compared with our proposed method, which is
led by the convergence issue. Also, we have
shown that the AdaZeta method achieves lower
evaluation loss much faster than the MeZO-LoRA
and Sparse-MeZO methods across all tasks in
Fig. 1. For example, the MeZO-LoRA method
requires nearly 6K steps to achieve a loss of 0.4,
whereas the AdaZeta method achieves the same
degree of loss minimization in less than 1K steps,
which represents a 6× speed-up with the same
1e-4 learning rate. Traditional ways to solve such
divergence issues through increasing the batch
size are hard to follow in the large-scale LLMs
fine-tuning tasks. In contrast, the adaptive query
schedule in the AdaZeta framework successfully
mitigates this issue without increasing the training
memory, thereby improving training outcomes.
Additionally, we observed that combining LoRA
with the adaptive query schedule significantly
improves performance in certain tasks. Future
work could also explore incorporating the adaptive
query schedule into the MeZO-LoRA method to
further enhance stability.

4.3 Memory Training Time Efficiency

In this section, we evaluate the memory and time
efficiency of the AdaZeta method. Specifically, we
test the peak memory cost of different fine-tuning
methods over the Llama-2-7B model and study the
trade-off between memory, accuracy, and training

AdaZeta
(Ours)

Figure 3: Trade-off between the accuracy and memory
cost for different fine-tuning methods. We can observe
that the AdaZeta method achieves the best accuracy
among the memory-efficient methods.

time. The result is summarized in Fig. 3 and
further discussion about training memory can be
referred to Appendix B.1.

According to Fig. 3 (refer to Appendix B.1
for numerical results), the AdaZeta method
requires only 14GB of memory to fine-tune the
SST2 tasks on the Llama-2-7B model, which
achieves over 8×Memory Reduction Relative to
the FT Method. Also, compared with other ZO
fine-tuning methods like MeZO, MeZO-LoRA,
and Sparse-MeZO, the AdaZeta method utilizes
similar or even less memory to achieve variance
reduction. Traditional ways to reduce the ZO
gradient estimation noise like increasing the batch
size, consume significantly more memory than the
AdaZeta method as shown in Fig. 3.

In Table 3, we measure the total GPU hours
required to achieve a certain threshold of training
loss across four tasks (SST2, WIC, CB, MultiRC).
For the applicability of the experiments, we
established an evaluation loss threshold that all
methods could achieve. According to the results,
it is evident that the AdaZeta method converges
on-par or faster than other ZO fine-tuning methods
with even better results than the MeZO-LoRA and
Sparse-MeZO methods under the large-batch size
case. Note that we did not utilize the gradient
accumulation technique for the 64 batch size case,
which may significantly increase the training time.
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Table 4: Compare with first-order LoRA method under low ranks and batch sizes.

Setup LoRA/r=1/BS=1 LoRA/r=1/BS=8 LoRA/r=8/BS=8 AdaZeta/r=8/BS=1 MeZO-LoRA/r=8/BS=16 AdaZeta/r=8/BS=16
Memory (GB) 35.60 96.65 96.72 14.05 23.02 23.01

4.4 Further Comparison with LoRA
In this section, we further compare our AdaZeta
method with the first-order LoRA method in terms
of training memory usage across different ranks
and batch sizes. The results for the CB task are
presented in Table 4. We make the following
observations under two scenarios:

Reducing the LoRA Rank: Reducing the
LoRA rank (even down to 1) has minimal impact
on training memory in the first-order setting. The
reason is that the backpropagation graph—which
contains intermediate gradient information—still
needs to be retained, spanning almost the entire
model in the vanilla LoRA approach.

Reducing the Batch Size: Reducing the
batch size is a more effective way to reduce the
training memory for both FO and ZO cases. With
the existence of a backpropagation graph, it is
reasonable to observe a larger reduction of training
memory of the FO method than ZO when reducing
the number of batch sizes. However, we can
observe that even when comparing our method
with the LoRA method using a batch size of 1,
our method is still 2.5× more memory-efficient.
Additionally, even comparing AdaZeta/r=8/BS=16
with LoRA/r=1/BS=1, we still achieve nearly a
50% reduction in memory usage. However, we
would like to remark that the batch size of 1 setup
is rarely used in practice due to the following
reasons:

• First, reducing the batch size will dramati-
cally increase the training time of the LoRA
method.

• Second, such a small batch size leads to large
stochastic noise during the fine-tuning pro-
cess, which further harms the training perfor-
mance. (Hu et al., 2023)

5 Conclusion

In this paper, we propose an adaptive zeroth-order
fine-tuning framework with tensor-train decompo-

sition, named AdaZeta. Compared with previous
ZO fine-tuning works, the AdaZeta method
achieves significantly better fine-tuning results
across various tasks and models. Theoretical
analysis has confirmed that our proposed methods
enjoy better convergence, which is consistent with
our experimental results on both Roberta-Large
and Llama-2 models across various fine-tuning
tasks.

Future work could explore improving the
efficiency of the AdaZeta method by implementing
distributed optimization across multiple GPUs
for handling multiple queries concurrently at
each step. Additionally, applying the adaptive
query schedule to other PEFT methods may yield
significantly better performance compared to the
original MeZO algorithm.
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Limitations

The primary limitation of this work is related to
accelerating the proposed method. Currently, mul-
tiple queries at each training step are executed se-
quentially in a for-loop, which restricts further
speed enhancements. This process can poten-
tially be optimized by implementing parallel or
distributed optimization techniques on GPUs, al-
lowing for the simultaneous execution of multiple
queries, as these queries are independent of each
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other with different random seeds.

Potential Risks

This paper provides a cost-effective solution that
operates with a minimal memory footprint. Even
though we need to fine-tune large-scale models,
the proposed method can alleviate the burden on
data centers and reduce CO2 emissions. However,
we acknowledge that prolonged training times, es-
pecially with multiple GPUs, can pose environ-
mental challenges. Consequently, our ongoing re-
search endeavors are focused on developing more
efficient training methods and preserving compu-
tational power with ecological considerations in
mind.
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A Detail of Experiment Setup

A.1 Dataset Setup

Table 5: Metrics that we use to evaluate the benchmark
for the Roberta-Large Model.

Task Name Metric

SST-2 Accuracy
SST-5 Accuracy
QNLI Accuracy
MNLI Matched Acc.
SNLI Accuracy
RTE Accuracy

Our research utilized a variety of tasks to
measure the performance of the Roberta-Large
model, including sentiment analysis (SST-2, SST-5
(Socher et al., 2013), MR (Pang et al., 2002)),
and natural language inference (MNLI (Wang
et al., 2018), QNLI (Williams et al., 2018), SNLI
(Bowman et al., 2015), RTE (Wang et al., 2018))
tasks. Table 5 summarizes the evaluation metrics
used for these tasks.

Further, we extended our experiments on a
large-scale Llama-2-7B model to include tasks
from the SuperGLUE benchmark (Wang et al.,
2019), which involves both classification (CB,
BoolQ, WSC) and reasoning tasks (COPA and
ReCoRD), as well as additional generation tasks,
SQuAD (Rajpurkar et al., 2016). For these tests,
we introduced a challenging low-resource data
condition, limiting our samples to 1,000 for
training, 500 for validation, and 1,000 for testing,
as detailed in the prompt-based task settings from
Appendix D of (Malladi et al., 2023). The metrics
for these evaluations are outlined in Table 6.

Table 6: Metrics that we use to evaluate SuperGLUE
and generations tasks.

Task Name Metric

CB F1
BoolQ Accuracy
WSC F1
COPA Accuracy

ReCoRD F1
SQuAD F1

A.2 Baselines

In this section, we provide a detailed introduction
to the baseline method considered in our experi-
ments, which are listed as follows:

Full-model First-Order Fine-Tuning (FT)
is the most widely used method for fine-tuning
LLMs. In this process, the model is initialized
with pre-trained weights, and all model parameters
are updated by the first-order optimizer. In this
paper, the AdamW optimizer (Loshchilov and
Hutter, 2018) is used to conduct the first-order
experiments.

Zero-shot/In-context-learning (ICL) is the
most widely used method for fine-tuning large
language models (LLMs). In this process, the
model is initialized with pre-trained weights,
and all model parameters are updated by the
first-order (FO) optimizer. In this paper, the
AdamW optimizer (Loshchilov and Hutter, 2018)
is used to conduct the first-order experiments.

Linear-probing (LP) method involves freezing
the pretrained weights of the model and adding
a final linear classifier layer, implemented using
the scipy package. By fine-tuning this layer with
the first-order method, we only need to construct
a small backpropagation graph. However, this
method is not suitable for generative tasks.
Therefore, we only apply the LP method in the
Roberta-Large experiments.

Memory-Efficient Zeroth-Order (MeZO)
was first proposed in (Malladi et al., 2023),
which fine-tunes LLMs using only the forward
pass. The MeZO method significantly reduces
memory costs by eliminating the need for a
backpropagation graph and has demonstrated
superior performance compared to inference-only
methods like Zero-shot, ICT, and LP methods
across various downstream tasks.

Memory-Efficient Zeroth-Order with LoRA
adapters (MeZO-LoRA) is a derivative method
introduced in (Malladi et al., 2023), which freezes
the pretrained weights and fine-tunes only the
injected LoRA adapters (Hu et al., 2021). The
MeZO-LoRA method is the most relevant baseline
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in this field compared to our work. However,
its performance improvement over the MeZO
method is limited, and the mechanisms behind
zeroth-order parameter-efficient fine-tuning are
not extensively discussed.

Sparse Memory-efficient Zeroth-Order
(Sparse-MeZO) is a recently proposed method
aiming to enhance the performance and conver-
gence speed of the MeZO method (Liu et al., 2024).
However, as the code and detailed layer-wise
hyperparameter setup have not been released, we
have reproduced the method using a fixed sparsity
ratio for each layer. This ratio is selected based on
the best overall outcome as presented in Fig. 6 of
their paper.

A.3 Hyperparameters

In this section, we outline the detailed setup of
hyperparameters utilized in our study. The specific
choices of hyperparameters, such as learning rate,
training steps, and batch size, are summarized in
Table 7. In our experiments, we strive to maintain
a consistent learning rate across different methods
for the same tasks. However, for approaches
like full-model fine-tuning, we opt for a lower
learning rate to ensure convergence. This principle
is also applied in our large-scale experiments
on the Llama-2-7B model, details of which are
summarized in Table 8.

In addition to the standard hyperparameter
configuration, we also consider the shape of
tensor factors in our methods. To represent
a layer with input and output dimensions of
o and p, respectively, we employ a list of m
tensor factors Gi ∈ Rr×kir, where the product
Πk1 · · · km = o · p. The specific shapes of ki
corresponding to different values of o and p, given
a bottleneck size of 8 or 64 for the tensorized
methods, are detailed in Table 9. Note that the
optimal factors shape and tensor rank for the
tensor-train method can only be determined by
the experiments’ trail. However, previous work
also explores the possibility of utilizing the
adaptive rank to improve the performance (Yang
et al., 2024b), which may further improve the
performance of our AdaZeta method.

Table 7: The hyperparameter grids used for Roberta-
Large experiments are detailed as follows. We fine-tune
each task for 80K steps, except for the FT method,
which is conducted over 20 epochs. We record the best
model checkpoint based on the validation loss every
200 training steps.

Experiment Hyperparameters Values

FT Batch size {8, 16, 64}
Learning rate {1e-6, 5e-7}

MeZO Batch size {16, 64}
Learning rate {1e-6, 5e-7}

ϵ 1e-3

MeZO-LoRA Batch size {16, 64}
Learning rate {1e-4, 5e-5}
LoRA rank 8

ϵ 1e-3

Sparse-MeZO Batch size {16, 64}
Learning rate {1e-5, 1e-6}
sparse ratio 0.75

ϵ 1e-3

AdaZeta Batch size {16, 64}
Learning rate {1e-4, 5e-5}

Bottleneck dimension 64
Tensor Rank 5

ϵ 1e-3

B Additional Experiments

B.1 Additional Momeory Comparison results
In this section, we provide more quantitative
results about the training memory comparison
between the FO and ZO fine-tuning methods. In
addition to the training memory on SST2 tasks
we measure in Section 4.3, we further profile the
memory cost on WIC, CB, and MultiRC tasks.
The results are shown in Table 10.

We can observe from the table that the AdaZeta
method achieves 5-8× memory reduction on
different tasks. Also, the AdaZeta method utilizes
similar or even less memory than the other MeZO,
MeZo-LoRA, and Sparse-MeZO methods with
an additional variance reduction feature, which
largely improves the ZO fine-tuning accuracy.
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Table 8: The hyperparameter grids used for Llama-2-
7B experiments are outlined as follows. We fine-tune
each task for 5K steps using our AdaZeta method, 10K
steps for other ZO fine-tuning methods (MeZO, MeZO-
LoRA, Sparse-MeZO), and 5 epochs for the first-order
Full-model Fine-Tuning (FT) method. We record the
best model checkpoint based on the validation loss every
200 training steps.

Experiment Hyperparameters Values

FT Batch size {8, 16, 64}
Learning rate {1e-6, 5e-7}

MeZO Batch size {16, 64}
Learning rate {1e-6, 5e-7}

ϵ 1e-3

MeZO-LoRA Batch size {16, 64}
Learning rate {1e-4, 5e-5}
LoRA rank {5, 8, 16}

ϵ 1e-3

Sparse-MeZO Batch size {16, 64}
Learning rate {1e-5, 1e-6}
sparse ratio 0.75

ϵ 1e-3

AdaZeta Batch size {16, 64}
Learning rate {1e-4, 5e-5}

Bottleneck dimension {8, 64}
Tensor Rank {5, 8, 16}

Query Constants α = 0.85, β = 0.45
Maximum Query Qmax = 20

ϵ 1e-3

Table 9: The shape settings of the tensorized adapters
in AdaZeta Method

Bottleneck size Matrix Shape Tensor Shape

8 768× 64 [8, 8, 12, 4, 4, 4]
4096× 64 [16, 16, 16, 4, 4, 4]
64× 768 [4, 4, 4, 12, 8, 8]
64× 4096 [4, 4, 4, 16, 16, 16]

64 768× 8 [8, 8, 12, 2, 2, 2]
4096× 8 [16, 16, 16, 2, 2, 4]
8× 768 [2, 2, 2, 12, 8, 8]
8× 4096 [2, 2, 2, 16, 16, 16]

Table 10: Quantitative results for the memory profiling
over SST2 and MultiRC tasks.

Methods SST2 WIC CB MultiRC
FT 118.65 115.3 151.97 191.97

MeZO 15.08 15.22 23.01 41.17
MeZO-LoRA 14.75 15.23 23.02 41.18

MeZO-LoRA(BS=64) 21.07 25.30 71.70 84.30
Sparse-MeZO 14.35 15.21 23.01 42.13

AdaZeta 14.73 15.22 23.01 41.17
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C Proof of Theorem 1

To retain the readability of the proof, we use a single-column format in the following. To provide the
proof of Theorem 1, we first present a Lemma regarding the bound of gradient noise. Recall from the
gradient estimation rule that:

∇ℓ̂(wk) =
1

B

∑

bi∈B
ĝ(wk; bi) (3)

ĝ(wk; bi) =
1

Qk

Qk∑

j=1

ĝ(wk; bi, ui,j), (4)

where there are two sources of randomness: a) The randomness leads by the mini-batch sampling and b)
The randomness leads by the presence of ZO gradient estimation. Based on these two randomnesses, we
define two gradient noises as hk and ek, respectively.

hk := ∇ℓ̂(wk)−∇ℓ(wk) =
1

B

∑

bi∈B
ĝ(wk; bi)−∇ℓ(wk) (5)

ek := ĝ(wk; bi)−∇ℓ(wk) =
1

Qk

Qk∑

j=1

ĝ(wk; bi, ui,j)−∇ℓ(wk) (6)

Here, we first bound the gradient noise hk with a fact given in stochastic gradient descent theory. We
consider the noise concerning the mean of the ZO estimated gradient ∇ℓ(wk), where the loss function ℓ
is a randomized smoothing version of ℓ.

Lemma 1. Based on the definition in eq. (5) and the Assumption A2, we can bound the L2-norm of the
gradient noise hk by taking expectation:

E[∥hk∥2] ≤
N −B

NB(B − 1)Qk

∑

i

(2dδ2 +
ϵ2L2d2

2
+ 2δ2) (7)

Proof. For convenience, we consider a general case that the mini-batch B is formed by uniform sampling
without replacement and follows the i.i.d. fashion. Then, according to (Lohr, 2009)[Section 2.8, Page 48],
the following holds for a random sampling noise:

E[∥hk∥2] =
N −B

NB
Λ2, (8)

where Λ2 is the sample variance of the gradient ĝ(wk; bi), which is defined as:

Λ2 =
1

B − 1

B∑

i=1

∥ĝ(wk; bi)−∇ℓ(wk)∥2 (9)

=
1

B − 1

B∑

i=1

∥∇ℓ(wk) + ek −∇ℓ(wk)∥2 (10)

=
1

B − 1

B∑

i=1

∥ek∥2, (11)

where ek is defined as the gradient noise leads by the ZO estimation in eq. (5).
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Finally, we need to bound the variance Λ2, related to the ZO gradient estimation noise. Taking
expectation with respect to the i.i.d. random perturbation vector u, we have:

Eu[Λ
2] ≤ Eu[

1

B − 1

B∑

i=1

∥eik∥2] (12)

≤ 1

(B − 1)Q2
k

∑

i

Eu[∥
Qk∑

j=1

(ĝ(wk; bi, ui,j)−∇ℓ(wk))∥] (13)

(a)
=

1

(B − 1)Qk

∑

i

Eu[∥ĝ(wk; bi, ui,1)−∇ℓ(wk)∥], (14)

where (a) is given under the case that ui,j is i.i.d, which obtain:

Eu[∥ĝ(wk; bi, ui,j)−∇ℓ(wk)∥] = Eu[∥ĝ(wk; bi, ui,1)−∇ℓ(wk)∥] (15)

Finally, we need to bound the term Eu[∥ĝ(wk; bi, ui,1)−∇ℓ(wk)∥], which gives:

Eu[∥ĝ(wk; bi, ui,1)−∇ℓ(wk)∥]] (16)

≤ Eu[∥ĝ(wk; bi, ui,1)−∇ℓ(wk; bi)∥] + Eu[∥∇ℓ(wk; bi)−∇ℓ(wk)∥] (17)
(a)

≤ 2d∥ĝ(wk; bi, ui,1)∥+
ϵ2L2d2

2
+ Eu[∥∇ℓ(wk)∥] + Eu[∥∇ℓ(wk; bi)∥] (18)

(b)

≤ 2dδ2 +
ϵ2L2d2

2
+ 2δ2, (19)

where (a) follows a similar idea of the proof in (Ghadimi and Lan, 2013)[eq. (3.21)] and (b) is given by
using the bound of the gradient in Assumption A2.

Putting it all together we can obtain the upper bound for the gradient noise ∥hk∥.

Now we begin to present the proof of Theorem 1:

We start from the gradient updating rule in the AdaZeta algorithm, which gives wt+1 = wt − η∇ℓ̂(wk).
By using Taylor’s theorem on the exact smoothed loss ℓ(wk), we have:

ℓ(wk+1) = ℓ(wk − η∇ℓ̂(wk)) (20)

= ℓ(wk)− η∇ℓ̂k(wk)
⊤∇ℓ(wk) +

η2

2
∇ℓ̂(wk)

⊤∇ℓ(wk)
2∇ℓ̂(wk) (21)

Taking expectations on both sides gives:

Ewt [ℓ(wk+1)] = Ewt [ℓ(wk)]− ηEwt [∇ℓ̂(wk)
⊤∇ℓ(wk)] +

η2

2
Ewt [∇ℓ̂(wk)

⊤∇ℓ(wk)
2∇ℓ̂(wk)]

(a)
≤ Ewt [ℓ(wk)]− ηEwt [∇ℓ(wk)

2] +
η2L

2
Ewt [∇ℓ̂(wk)

2],

where (a) can be proved with the use of the Lipschitz smoothness gradient denied in Assumption A1 that
gives x and y, we have ∥∇ℓ(x) −∇ℓ(y)∥ ≤ L∥x − y∥. Additionally, by the mean value theorem for
vector-valued functions, there exists for any point c on the line segment between x and y such that:

∇f(y)−∇f(x) = ∇2f(c)(y − x). (22)
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Taking the norms on both sides and using the Lipschitz condition, we have:
∥∥∇2f(c)(y − x)

∥∥ = ∥∇f(y)−∇f(x)∥ ≤ L∥y − x∥. (23)

Finally, since this must hold for any y and x, and since the norm of the Hessian matrix is the supremum
of

∥∥V 2f(c)(y − x)
∥∥ /∥y − x∥ for non-zero y − x, it follows that:

∥∥∇2f(c)
∥∥ ≤ L (24)

Rearrange and we obtain:

ηE[∥∇ℓ(wk)∥2] ≤ E[ℓ(wk)]− E[ℓ(wk+1)] +
η2L

2
E[∇ℓ̂(wk)

2] (25)

Taking summation over steps k = 1, · · · ,K gives:

K∑

k=1

ηE[∥∇ℓ(wk)∥2] ≤ E[ℓ(w0)− ℓ(wK)] +
K∑

k=1

η2L

2
E[∇ℓ̂(wk)

2] (26)

(a)
≤ E[ℓ0 − ℓ∗] + ϵ2L+

K∑

k=1

η2L

2
E[∇ℓ̂(wk)

2] (27)

(b)
≤ R+ ϵ2L+

K∑

k=1

η2L

2
E[∇ℓ̂(wk)

2], (28)

where (a) is using the Lemma 1 in (Liu et al., 2018) that ℓ(w0)− ℓ(wT ) ≤ ℓ(w0)− ℓ(w0) + ℓ∗ − ℓ∗ ≤
(ℓ(w0)− ℓ∗) + ϵ2L and (b) is given by setting R := ℓ(w1)− ℓ∗. Now, the key to the bound comes from
the last term in the right of the inequation.

To bound the last term, we first represent the noise gradient ∇ℓ̂k(wk)
2 as a combination of the

true gradient and the gradient noise introduced in eq. (5), which gives:

∇ℓ̂(wk) := ∇ℓ(wk) + hk (29)

Taking eq. (29) back into eq. (26), using the results from Lemma 1, taking the expectation over all
randomness and average over the maximum steps K, we obtain:

1

K

K∑

k=1

ηE[∥∇ℓ(wk)∥2]

≤ R

K
+

ϵ2L

K
+

1

K

K∑

k=1

η2L

2
E[∇ℓ̂(wk)

2]

≤ R

K
+

ϵ2L

K
+

1

K

K∑

k=1

η2L

2
E[∥∇ℓ(wk)∥+ ∥hk∥]

=
R

K
+

ϵ2L

K
+

η2Lδ

2
+

1

K

K∑

k=1

η2L

2

N −B

NB
Λ2

≤ R

K
+

ϵ2L

K
+

η2Lδ

2
+

1

K

K∑

k=1

η2L

2

N −B

NB
(

1

(B − 1)Qk

∑

i

Eu[∥ei,1∥]] +
Bϵ2L

2(B − 1)
)
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≤ R

K
+

ϵ2L

K
+

η2Lδ

2
+

1

K

K∑

k=1

η2L

2

N −B

NB
(

∑
i(2dδ

2 + ϵ2L2d2

2 + 2δ)

(B − 1)Qk
+

Bϵ2L

2(B − 1)
)

=
R+ ϵ2L+ C(d, ϵ)

∑
k

1
Qk

K
+

η2Lδ

2
+

Bϵ2L

2(B − 1)

= O(
R+ ϵ2L+ C(d, ϵ)

∑
k

1
Qk

K
),

where C(d, ϵ) is a constant defined as C(d, ϵ) :=
∑K

k=1
η2L
2

N−B
NB (

∑
i(2dδ

2+ ϵ2L2d2

2
+2δ)

(B−1) )
Divide both side with η and use the trick to introduce some randomly chosen wT from the history with

probability P (T = k) = 1
K , we finish the proof as:

E[∥∇ℓ(wT )∥2] =
1

K

K∑

k=1

E[∥∇ℓ(wk)∥2] ≤ O(
R+ ϵ2L+ C(d, ϵ)

∑
k

1
Qk

Kϵ
) (30)
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