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Abstract

Neural speech codecs aim to compress in-
put signals into minimal bits while maintain-
ing content quality in a low-latency manner.
However, existing neural codecs often trade
model complexity for reconstruction perfor-
mance. These codecs primarily use convolu-
tional blocks for feature transformation, which
are not inherently suited for capturing the lo-
cal redundancies in speech signals. To com-
pensate, they require either adversarial dis-
criminators or a large number of model pa-
rameters to enhance audio quality. In re-
sponse to these challenges, we introduce the
Efficient Speech Codec (ESC)1, a lightweight,
parameter-efficient speech codec based on a
cross-scale residual vector quantization scheme
and transformers. Our model employs mirrored
hierarchical window transformer blocks and
performs step-wise decoding from coarse-to-
fine feature representations. To enhance bitrate
efficiency, we propose a novel combination of
vector quantization techniques along with a
pre-training paradigm. Extensive experiments
demonstrate that ESC can achieve high-fidelity
speech reconstruction with significantly lower
model complexity, making it a promising alter-
native to existing convolutional audio codecs.

1 Introduction

Recent advancements in deep learning have demon-
strated the superiority of neural speech codecs over
traditional ones, which rely on complex expert de-
sign and psycho-acoustic knowledge (Valin et al.,
2012; Dietz et al., 2015). Early efforts integrating
deep generative models, such as WaveNet (Oord
et al., 2016) and SampleRNN (Mehri et al., 2017),
into audio codecs have delivered promising results.
These models, acting as powerful decoders, synthe-
size high-quality speech from intermediate repre-
sentations produced by traditional codecs (Kleijn

1Code and pretrained models available at https://
github.com/yzGuu830/efficient-speech-codec

et al., 2018; Klejsa et al., 2019). However, their
auto-regressive nature of the decoding process of-
ten introduces significant inference latency, limit-
ing their practical application.

Alternatively, some end-to-end neural audio
codecs leverage the vector quantization (VQ) net-
work first introduced by Van Den Oord et al. (2017).
VQ networks use a learnable collection of code-
vectors, known as a codebook, to quantize con-
tinuous vectors by assigning them to the nearest
codeword. This discretization positions VQNs
well-suited for both generation and compression
tasks. Following this approach, existing VQ codecs
(Zeghidour et al., 2021; Défossez et al., 2023; Ku-
mar et al., 2023) typically employ a three-stage
architecture: a convolutional encoder and decoder,
and a residual vector quantization (RVQ) module
(Vasuki and Vanathi, 2006) applied in the latent
space. The encoder and decoder downsample and
upsample audio waveform features, creating hi-
erarchical representations. RVQ further refines
vanilla vector quantization by minimizing quan-
tization error through a series of codebooks that
recursively quantize the residuals from previous
stages. Additionally, these codecs employ adversar-
ial discriminators to remove artifacts and produce
high-fidelity audio reconstructions. Substantial ef-
fort has been dedicated to designing effective au-
dio discriminators, including an improved feature
matching loss (Kumar et al., 2019), as well as var-
ious multi-resolution waveform and spectrogram
discriminators (Kong et al., 2020; Zeghidour et al.,
2021; Défossez et al., 2023; gil Lee et al., 2023).
VQ-based audio codecs have demonstrated remark-
able performance in audio reconstruction, even at
ultra-low bitrates.

Despite these advantages, we find that convo-
lutional VQ codecs heavily depend on powerful
discriminators to produce high-quality audio, pos-
ing additional optimization challenges due to ad-
versarial training. Moreover, these codecs tend
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to confront computational constraints, as they re-
quire a large number of parameters to balance
high compression rates and reconstruction perfor-
mance. To address these issues, our work develops
a more parameter-efficient speech codec by reduc-
ing model complexity and implementing the follow-
ing architectural improvements: 1) replacing con-
volutional layers with efficient Swin-Transformer
Blocks (STBs) (Liu et al., 2021), which can better
model acoustic features; 2) utilizing the cross-scale
residual vector quantization (CS-RVQ) scheme
(Jiang et al., 2022a) instead of RVQ, extending
quantization from a fixed level to multiple levels.

In addition, training VQ codecs frequently leads
to a significant challenge: codebook collapse,
where a fraction of the codebook remains under-
utilized in representing input vectors. This issue
is frequently observed when training visual tok-
enizers for generative vision tasks (Takida et al.,
2022; Zhang et al., 2023; Huh et al., 2023). To
address this problem in speech compression, we
propose combining product vector quantization
(PVQ) (Baevski et al., 2019), code factorization
(Yu et al., 2022), and Euclidean normalization
(Łańcucki et al., 2020) to enhance codebook uti-
lization. Furthermore, we introduce a learning
paradigm to facilitate optimization, which includes
a pre-training stage where the codebooks are deac-
tivated and trained subsequently.

In summary, the key contributions of our work
are as follows:

• We introduce ESC, a fully transformer-based
speech codec with cross-scale quantization
structures. It achieves a superior tradeoff be-
tween compression rate, reconstruction qual-
ity, and model complexity, outperforming cur-
rent state-of-the-art models.

• We propose a novel combination of vector
quantization techniques within the cross-scale
residual vector quantization (CS-RVQ) frame-
work, coupled with a pre-training paradigm
that effectively mitigates codebook collapse
and enhances bitrate efficiency.

• Extensive comparisons with Descript’s audio
codec on a multilingual speech corpus demon-
strate that transformers and CS-RVQ, the core
components of ESC, are superior backbones
for speech foundation models than the main-
stream convolutions and RVQ.

2 Related Work

2.1 Neural Audio Codecs

Recently, most notable neural audio codecs have
been based on the vector quantization (VQ) net-
work, including SoundStream (Zeghidour et al.,
2021), EnCodec (Défossez et al., 2023), and De-
script’s audio codec (DAC) (Kumar et al., 2023).
SoundStream is distinguished as the first universal
codec capable of handling diverse audio types. En-
Codec improves compression rates by integrating a
lightweight transformer language model within the
discrete latent space and implements a streaming
architecture. Building on similar backbones, Ku-
mar et al. (2023) further explore the implications of
quantization dropout, a technique for bitrate scala-
bility, and demonstrate the superiority of periodic
inductive bias functions over common activation
functions for audio signal modeling (gil Lee et al.,
2023; Ziyin et al., 2020). These models directly
process audio waveforms and are classified as time-
domain codecs.

In contrast, frequency-domain codecs focus on
processing more intuitive audio spectrogram fea-
tures. Lyra (Kleijn et al., 2021), for example, con-
verts audio waveforms into log mel-spectrograms
and directly quantizes them into tokens. Due to the
non-invertibility of mel-spectrograms, it relies on a
vocoder (Kalchbrenner et al., 2018) for waveform
synthesis. To circumvent the inefficiencies associ-
ated with heavy vocoders, some frequency-domain
codecs, including TFNet (Jiang et al., 2022b) and
our ESC, employ the invertible Short-time Fourier
Transform (STFT) to convert waveforms into com-
plex spectra. This design enables the reconstructed
STFT spectra to be seamlessly inverted back into
waveforms without information loss using inverse-
STFT. Among recent audio codecs, DAC achieves
state-of-the-art compression ratios and reconstruc-
tion quality, though its computation bottlenecks are
sometimes overlooked.

2.2 Swin Transformers

Vision Transformers (ViTs) (Dosovitskiy et al.,
2020) have outperformed convolutional neural net-
works (CNNs) in various image processing tasks,
largely due to their superior ability to capture com-
plex patterns. The Swin Transformer (Liu et al.,
2021), a notable variant, enhances this capability
by employing a hierarchical approach with shifted
window attention mechanisms, enabling it to scale
efficiently to high-resolution signals while main-
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taining computational efficiency. In the context
of image compression, Swin Transformers have
demonstrated exceptional performance. Studies
by Zhu et al. (2021) and Zou et al. (2022) show
that Swin Transformers surpass CNNs in modeling
spatial hierarchies and long-range dependencies.
The attention mechanism facilitates the accurate
preservation of essential details and textures, even
at lower bitrates. These capabilities suggest that
transformers could also be effective in applications
beyond image compression, such as modeling au-
dio spectrograms.

2.3 Vector Quantization
In the Vector Quantized Variational Autoencoder
(VQ-VAE) (Van Den Oord et al., 2017), vector
quantization (VQ) functions as a trainable layer
that deterministically quantizes encoded latent vari-
ables by mapping them to their nearest neighbors
in an embedding codebook. A VQ layer, denoted
as Q(· ; C), is parameterized by a collection of con-
tinuous vectors C = {c1, ..., cK}, each referred to
as a codeword, with its associated index known as
a code. The layer quantizes a vector ze ∈ Rd to
zq ∈ Rd by selecting the Euclidean nearest code-
word ck from the codebook C, i.e.,

zq := ck = argmin
cj∈C

||ze − cj ||22. (1)

For convenience, we denote the output of the VQ
function as (zq, z̃q), where z̃q := k represents the
discrete code corresponding to the nearest code-
word. During compression, the encoding process
outputs the discrete index z̃q, which is stored with
a log2K bit budget. The decoding process starts
by retrieving the continuous vector zq from the
codebook using the index z̃q. The VQ function
Q(·; C) is non-differentiable due to the argmin op-
erator. Common strategies use a straight-through
estimator (STE) (Bengio et al., 2013) to bypass this
in back-propagation. In other words, the gradient
component ∂zq∂ze is estimated by identity. Addition-
ally, auxiliary losses including codebook loss and
commitment loss are proposed to pull the code-
words and latent features closer:

Lvq = ||sg(ze)− zq||22 + β||ze − sg(zq)||22. (2)

Here sg(·) denotes the stop-gradient operator. The
first term updates the codebook with an l2 error,
pushing the codewords towards the input vectors.
The second term ensures that ze commits to the em-
bedding without growing arbitrarily. The scalar β

balances the importance of updating the codebook
and the encoder.

2.4 Codebook Collapse

Straight-through estimators (STEs) can lead to sig-
nificant issues, most notably codebook collapse, as
detailed by Vuong et al. (2023). In a recent study,
Huh et al. (2023) provide a plausible explanation,
attributing the collapse to an internal codebook co-
variate shift during training. Frequent adjustments
in encoder representations cause misalignment with
the codebook, resulting in only a subset of code-
words being updated. Consequently, VQ layers are
prone to divergence, often ending up with a signifi-
cant number of inactive vectors. Various strategies
have been proposed in generative modeling context
to address this issue, including stochastic quanti-
zation (Takida et al., 2022; Zhang et al., 2023),
self-annealed soft-to-hard quantization (Agusts-
son et al., 2017), re-initializing codewords using
K-means centroids every few epochs (Łańcucki
et al., 2020; Dhariwal et al., 2020), and reformulat-
ing with finite scalar quantization (Mentzer et al.,
2024). In audio compression, Kumar et al. (2023)
address codebook collapse by down-projecting
codewords (Yu et al., 2022) and normalizing them
within a Euclidean ball (Łańcucki et al., 2020).

3 Efficient Speech Codec (ESC)

3.1 Overall Architecture

As illustrated in Figure 1, ESC operates on the
complex spectrum X ∈ R2×F×T derived from the
Short-Time Fourier Transform (STFT) of a speech
signal. Here, the real and imaginary components of
X are treated as separate channels. Instead of us-
ing strided convolutions, ESC comprises a series of
mirrored transformer encoder and decoder layers,
each performing downsampling or upsampling to
create coarse and fine representations, as described
in Section 3.3. Starting from the quantized latents
at the bottleneck VQ, the decoder progressively
reconstructs the original spectrum by leveraging
multi-level quantized residuals between the inter-
mediate features of the encoder and decoder. This
cross-scale decoding mechanism is further detailed
in Section 3.4. Finally, the reconstructed spectrum
X̂ is transformed back into a waveform through the
inverse-STFT.
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Figure 1: The framework of ESC: input speech is transformed to a complex STFT X and linearly embedded into
patches. Encoder STBs iteratively halve the frequency resolution and produce hierarchical feature representations.
Mirrored decoder STBs recover the frequency resolution by progressively leveraging coarse-to-fine quantized
residual features between encoder and decoder hidden states. The entire network is solely composed of efficient
transformer blocks and vector quantization layers. The figure displays a scenario when the deepest 3 of n+ 1 total
bitstreams (solid lines) are transmitted, with others left inactive.

3.2 Notations
We first define some notations for clarity. The en-
coder and decoder are denoted by Fϕ(·) and Gψ(·),
respectively, each being a composition of individ-
ual layer functions fϕ1 , . . . , fϕn and gψ1 , . . . , gψn .
We use Z ∈ RC×F×T to denote a spectrum fea-
ture and z ∈ RCF to denote a flattened time frame
vector in Z . Specifically, Zei refers to the feature
after the i-th encoder layer, and Zqi denotes the
i-th decoder feature.

Zei = fϕi ◦ ... ◦ fϕ1 ◦ Ze0 (3)

Zqi = gψi
◦ ... ◦ gψ1 ◦ Zq0 , (4)

Here, Ze0 is the original input feature and Zq0 is
the latent representation at the bottleneck.

3.3 Transformer Encoder and Decoder
To effectively capture redundancies within audio
signals, we replace convolutional layers with hier-
archical Swin Transformer blocks (STBs) and their
extended decoding counterparts.
Patchify. The encoder starts with a linear patchify
module, where the complex spectrum X is divided
into small patches and linearly up-projected:

X ∈ R2×F×T Patchify−−−−→ Ze0 ∈ RC0×H0×W0 . (5)

Here, the patch size across the frequency and tem-
poral dimensions is ( FH0

, T
W0

). This step reduces

the input resolution to alleviate the computational
burden on attention computation. At the end of the
decoder, a symmetric de-patchify module reshapes
the decoded patch feature Zqn and linearly down-
projects it to produce a recovered spectrum X̂ .
Swin Transformer blocks. STBs in both the
encoder and decoder employ window-based multi-
head self-attention (W-MSA), partitioning spec-
trum features into smaller windows and comput-
ing attention in parallel within each window. This
approach enables more efficient computation com-
pared to vanilla attention mechanisms. To ensure
connections between windows, STBs cascade two
interleaved W-MSAs, with the outputs of the first
being shifted for the second. This design allows
STBs to capture local and global feature dependen-
cies both effectively and efficiently.
Downsampling and upsampling. ESC maintains
temporal resolution while scaling frequency resolu-
tion to equalize bitrates across different bitstreams.
To achieve this, we modify the original patch merg-
ing/splitting modules with a single-dimensional
pixel unshuffle/shuffle module (Shi et al., 2016)
along the frequency dimension. During encoder
downsampling, an intermediate encoder spectrum
feature Zei ∈ RCi×Hi×Wi is first reshaped and
then projected by Pei ∈ RvCi×Ci+1 as follows:

reshape−−−−→ RvCi×Hi
v
×Wi

proj−−→ RCi+1×Hi
v
×Wi , (6)
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where v is the down-scaling factor. The upsampling
process mirrors this operation in reverse. An inter-
mediate decoder feature Zqi ∈ RCi×Hi×Wi is first
projected by Pqi ∈ RCi×vCi+1 and then reshaped,
resulting in an up-scaled frequency resolution:

proj−−→ RvCi+1×Hi×Wi
reshape−−−−→ RCi+1×vHi×Wi . (7)

Overall, the transformer encoder and decoder lay-
ers are mirrored, creating symmetric and hierar-
chical representations of the input audio spectrum.
With these backbones, ESC is a fully transformer-
based codec without any convolutional modules.

3.4 Cross-Scale Residual Vector Quantization

To achieve parameter-efficient modeling of audio
signals, ESC employs multi-scale features that cap-
ture coarse-to-fine information. It integrates the
more intuitive residual-based cross-scale vector
quantization (CS-RVQ) framework proposed by
Jiang et al. (2022a), eliminating the need for ad-
ditional networks to merge encoder and decoder
features for improved reconstruction quality. As
depicted in Algorithm 1, Algorithm 2 and Figure 1,
the decoding process is conditioned on the encoded
quantized residuals between encoder and decoder
features from low-to-high resolution scales. This
approach differs from the commonly used residual
vector quantization scheme, which operates solely
at the lowest scale, relying on the highest-level in-
formation while overlooking low-level details.
Encoding. The encoding process begins with the
encoder Fϕ(·), creating multi-scale encoder fea-
tures ze1 , ...,zen . zen is first quantized by the bot-
tleneck quantizer Q0 to form the lowest bitstream.
This represents the simplest case when the num-
ber of transmitted bitstream s is set to 1, and CS-
RVQ reduces to a fixed-scale VQ at the bottleneck.
For higher bitstreams, the residual between sym-
metric encoder and decoder at higher resolutions,
zen−i+1−zqi−1 , is quantized by Qi. The quantized
residual qi is then added back to zqi−1 and decoded
by the subsequent decoder layer gϕi(·), producing
the next decoder feature zqi . Recursively, residuals
at higher resolutions are progressively quantized,
forming the remaining bitstreams (see Algorithm 1,
Lines 3-6). This mechanism enables multi-scale
learning, allowing the decoder layers to incremen-
tally reduce quantization errors by conditioning on
encoder-decoder residual features. When s > 2,
this encoding process requires forward passing s−2
additional decoder layers to produce residuals at

Algorithm 1 CS-RVQ Encoding

Require: A flattened time frame ze0 ∈ RC0H0 , en-
coder Fϕ(·), decoder Gψ(·), vector quantizers
Q0, Q1, ..., Qs−1, number of bitstreams s

1: ze1 , ...,zen ← Fϕ(ze0) ▷ Encoder forward pass

2: zq0 , z̃q0 ← Q0(zen) ▷ bottom VQ

3: for i = 1 . . . s− 2 do
4: qi, z̃qi ← Qi(zen−i+1 − zqi−1)
5: zqi ← gψi

(zqi−1 + qi)
6: end for ▷ Encoding involves s− 2 decoder layers

7: if s > 1 then
8: qs−1, z̃qs−1 ← Qi(zen−s+2 − zqs−2)
9: end if

10: return z̃q0 , z̃q1 , ..., z̃qs−1

Algorithm 2 CS-RVQ Decoding

Require: Codes z̃q0 , z̃q1 , ..., z̃qs−1 , decoder Gψ(·),
vector quantizers Q0, Q1, ..., Qs−1

1: zq0
Q0←−− z̃q0 ▷ Retrieve codewords from bottom VQ

2: for i = 1 . . . s− 1 do
3: qi

Qi←− z̃qi
4: zqi ← gψi

(zqi−1 + qi)
5: end for ▷ Decoding refined by quantized residuals

6: for i = s . . . n do
7: zqi ← gψi

(zqi−1)
8: end for ▷ Continue with regular decoding

9: return zqn

higher levels. After encoding, the input ze0 is com-
pressed into multi-level codes z̃q0 , z̃q1 , . . . , z̃qs−1 .

Decoding. The decoding process starts by retriev-
ing the quantized latent at the bottom VQ using
code z̃q0 , which provides the initial decoder in-
put zq0 . At higher levels, the codes z̃q1 , ..., z̃qs−1

are iteratively used to retrieve codewords, produc-
ing multi-scale low-to-high quantized residuals
q1, ..., qs−1. In Algorithm 2, Lines 2-5, each quan-
tized residual qi is added back to the corresponding
decoder feature zqi−1 to refine the decoding pro-
cess. Starting from the s-th decoder layer, there are
no quantized residuals, and the remaining layers
perform regular decoding. Finally, the recovered
frame vector zqn is obtained, benefiting from s− 1
quantized residual features.
Training. During training, the encoding and de-
coding processes are concatenated to form a com-
plete forward pass. To enable bitrate scalability, we
sample s ∼ Uniform{1, . . . , n} at a rate p within
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each training mini-batch. p is a hyperparameter
that balances the reconstruction quality at different
bitrates, as proposed by Kumar et al. (2023).

3.5 Mitigating Codebook Collapse

ESC performs a per-frame vector quantization. Be-
fore nearest neighbor searching, each input spec-
trum frame feature inZ needs to be flattened, merg-
ing the frequency and channel dimensions. This ap-
proach can result in large input vector dimensions
for VQ, increasing the optimization challenges as-
sociated with codebook underutilization.
Vector quantization setups. To optimize the
codebooks effectively, we modify the vanilla VQ
by combining product vector quantization with
code-vector factorization at each bitstream. Specif-
ically, a flattened d-dimensional frame vector zei
is split into a set of l sub-vectors. Each sub-vector
z
(m)
ei is down-projected by Win ∈ R

d
l
×u, where

u ≪ d, and then quantized using an individual
codebook Cm. The selected code-vector is then
up-projected by Wout ∈ Ru×

d
l to form z

(m)
qi :

zei ≡ {z(m)
ei | z(m)

ei ∈ R
CiHi

l ,m = 1, ..., l}, (8)

z(m)
qi = W⊤

out argmin
cj∈Cm

||W⊤
in z

(m)
ei − cj ||2. (9)

Additionally, both the projected vector W⊤
in z

(m)
ei

and codebook Cm are l2 normalized before comput-
ing the distance matrix. This equalizes the scales of
input vectors and codewords, enhancing codebook
optimization by allowing a larger subset of code-
words to receive gradients (Łańcucki et al., 2020).
Pre-training paradigm. Training transformers
can be challenging, and jointly training them with
VQ layers is even more difficult. To address this,
we propose a pre-training paradigm that includes
a warm-start to facilitate the learning process. Ini-
tially, all VQ layers are deactivated, meaning no
quantization occurs. During this "pre-training"
stage, only the encoder and decoder are updated
within the CS-RVQ framework, allowing latent fea-
tures to bypass the quantizers and flow directly
into the decoder layers. Once the encoder and
decoder have converged by minimizing reconstruc-
tion objectives, we resume training the entire VQ
codec as usual. This approach helps mitigate the
distribution shift of encoder representations by pre-
optimizing the encoder. It helps stabilize codebook
training and improve bitrate efficiency. Moreover,
pre-training an auto-encoder is simpler, as it avoids

the quantization errors associated with VQs. The
detailed algorithm is provided in Appendix A.

3.6 Training Objectives

To train our codec, we use a combination of recon-
struction loss Lrecon and vector quantization loss
Lvq. The reconstruction loss, Lrecon, consists of
two components: an l2 distance between the com-
plex spectrum X and its reconstruction X̂ , which
forces the model to reconstruct the real and imagi-
nary parts, weighted by λ1, and a multi-scale mel-
spectrogram loss (Kumar et al., 2023), weighted by
λ2. These are denoted as Lstft and Lmel:

Lrecon = λ1Lmel + λ2Lstft. (10)

Lvq comprises the standard codebook and com-
mitment losses as described in Equation 2. It is
averaged across the l product vector quantizers and
summed over all s bitstreams. The final objective
for joint optimization is the summation of Lrecon
and Lvq. To deactivate the VQ layers during the
pre-training stage, Lvq is set to zero.

4 Experiments

4.1 Experimental Setup

Datasets. We extract 150 hours of 16kHz multilin-
gual clean speech from the DNS Challenge dataset
(Reddy et al., 2021). Training samples are clipped
into 3-second segments, and validation samples
into 10-second segments. For evaluation, we com-
pile 1158 multilingual 10-second speech clips with
non-overlapping speakers from the LibriSpeech
(Panayotov et al., 2015), Multilingual LibriSpeech
(Pratap et al., 2020), and AIShell (Shi et al., 2020)
datasets.
Baselines. We compare our ESC against the cur-
rent state-of-the-art time-domain codec DAC, by
reproducing three versions2 on our dataset:
1) DAC-Base (adversarial): Descript’s original re-
leased codec, operating on 16kHz audio signals. It
has 74M parameter count in total. Its associated
discriminator has 42M additional parameter count.
2) DAC-Tiny (adversarial): A smaller version of
DAC-Base, with reduced encoder and decoder di-
mensions, for a fair comparison with ESC.
3) DAC-Tiny (non-adversarial): A smaller and
non-adversarial version of DAC to assess the im-
pact of discriminators on improving audio fidelity.

2Reproduction settings are detailed in Appendix B.1.
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Figure 2: Reconstruction quality evaluation of different baseline codecs: dashed lines represent DAC baselines and
solid lines represent our ESC models, with x-axis being transmission bits per second and y-axis being PESQ (↑),
Mel-Distance (↓) and SI-SDR(↑). The metrics are averaged over our composed 1158 10-second speech clips.

Implementation details. Similar to DAC base-
lines, we provide different versions of ESC3:
1) ESC-Base (non-adversarial): A base version
codec consisting of 6 encoder/decoder layers, with
bitrates ranging from 1.5 to 9.0 kbps. It contains
8.39M parameters when operating at 9.0 kbps.
2) ESC-Base (adversarial): An adversarial version
using the same multi-scale multi-band waveform
and spectrogram discriminator in DAC.
3) ESC-Large (non-adversarial): A scaled-up ver-
sion with increased Swin Transformer layer depth,
having 15.58M parameters at 9.0 kbps.
Our ESC variants are trained using the AdamW op-
timizer (Loshchilov, 2017) with a learning rate of
1e-4 and a weight decay of 1e-2. Training runs up
to 0.4 million iterations without learning rate sched-
ulers. The proposed pre-training phase consists of
0.75 million iterations. After pre-training, the code-
books are initialized with a Kaiming normalization
distribution (He et al., 2015). The quantization
dropout rate p is set to 0.75. Loss weighting hy-
perparameters are set as λ1 = 0.25, λ2 = 1.0, and
the commitment loss weighting β = 0.25. For
ESC-Base (adversarial), the Lstft component is
eliminated. We use the HingeGAN (Lim and Ye,
2017) adversarial loss formulation and the l1 fea-
ture matching loss (Kumar et al., 2019), following
the approach of DAC.
Automatic evaluation metrics. We use objective
metrics to efficiently evaluate reconstruction per-
formance. These include the PESQ score (Union,

3Complete configurations are detailed in Appendix B.2.

Real Time Factor ↑
Codec Bitrate #Param. Enc. Dec.

ESC-Base
3.0 kbps 8.10M 33.66 34.97
6.0 kbps 8.21M 27.84 33.02
9.0 kbps 8.39M 24.45 33.95

DAC-Tiny
3.0 kbps 7.96M 42.26 49.52
6.0 kbps 8.07M 44.66 48.63
9.0 kbps 8.17M 43.00 49.10

ESC-Large
3.0 kbps 15.30M 17.91 20.81
6.0 kbps 15.41M 15.48 19.87
9.0 kbps 15.58M 13.73 20.56

DAC-Base
3.0 kbps 73.99M 12.77 3.36
6.0 kbps 74.15M 11.43 3.13
9.0 kbps 74.31M 11.81 3.25

Table 1: Complexity evaluation results of different base-
line codecs: RTFs are measured from 100 10-second
speech clips on an Intel Xeon Platinum 8352V CPU.

2007) from the speech enhancement domain, fol-
lowing Jiang et al. (2022a); the l1 distance between
log mel-spectrograms of reference and decoded
waveforms (Mel-Distance) (Kumar et al., 2023);
and the scale-invariant source-to-distortion ratio
(SI-SDR) (Le Roux et al., 2019). To measure codec
inference latency, we use the real-time factor (RTF),
defined as the ratio of speech audio duration to
model processing time (Défossez et al., 2023).

4.2 Comparison with DAC

We provide a thorough comparison focusing on
compression rate, reconstruction quality, and infer-
ence efficiency, as shown in Table 1 and Figure 2.
Performance evaluation. First, it is important
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to note that ESC-Base and DAC-Tiny are similar
in model size, each with approximately 8 million
trainable parameters. Our results show that ESC-
Base consistently outperforms DAC-Tiny across
all bitrates, even without an adversarial discrim-
inator. In contrast, DAC-Tiny’s reconstruction
quality significantly drops without a discrimina-
tor in training, particularly in SI-SDR statistics.
This indicates a heavy reliance of DAC models on
GANs for maintaining high reconstruction qual-
ity. Notably, ESC-Base is compatible with the
same convolution-based GAN discriminator used
in DAC, as evidenced by its improved performance
across all metric curves in its adversarial variant.
Additionally, ESC-Large demonstrates that increas-
ing ESC’s model size can further enhance perfor-
mance, with its PESQ curve matching that of DAC-
Base, the top-performing and largest model. While
DAC-Base achieves higher SI-SDR values, ESC-
Large records a smaller Mel-Distance. Thus, we
conclude that the two codecs achieve comparable
performance, even though ESC-Large is trained
without an adversarial discriminator.
Complexity evaluation. Despite their exceptional
performance, Descript’s top-performing codecs
face significant computational challenges. This
is evident from Table 1, where the decoding real-
time factor (RTF) for DAC-Base is approximately
3.0, making it rather impractical for real-time appli-
cations. In contrast, our transformer-based ESC
achieves much higher decoding RTFs (approxi-
mately 34), indicating superior computational ef-
ficiency. Although ESC-Base is not as fast as
DAC-Tiny due to the overhead of attention com-
putation, it offers substantially better speech re-
construction capabilities, striking a favorable bal-
ance between compression performance and com-
putation latency. Future work could incorporate
transformer speedup techniques such as FlashAt-
tention (Dao et al., 2022) to further enhance ESC’s
latency further. Moreover, following the CS-RVQ
scheme, ESC possesses faster encoding speeds at
lower bitrates—a capability not evidently found in
DAC models.

These results suggest that our transformer-
based codec, equipped with CS-RVQ, is a more
parameter-efficient foundation model compared to
time-domain convolutional counterparts. ESC is
shown to be a more lightweight and effective neural
speech codec, as ESC-Large achieves comparable
performance to DAC-Base without the need for a
powerful discriminator. Specifically, it boasts ap-

Method Bitrate PESQ ↑ Mel dist. ↓ SI-SDR ↑ VQ util. ↑

CNN + RVQ
3.0 kbps 2.71 2.82 0.57 96.8%
6.0 kbps 2.93 2.69 1.03 98.2%
9.0 kbps 2.96 2.68 1.05 98.7%

CNN + CS-RVQ
3.0 kbps 2.70 2.81 2.19 96.6%
6.0 kbps 3.47 2.41 3.79 97.7%
9.0 kbps 3.75 2.25 4.16 97.3%

SwinT + RVQ
3.0 kbps 2.97 2.22 0.77 98.1%
6.0 kbps 3.14 2.08 1.35 99.0%
9.0 kbps 3.16 2.07 1.39 99.2%

ESC-Base
(SwinT + CS-RVQ)

3.0 kbps 3.07 2.21 3.55 97.8%
6.0 kbps 3.73 1.80 4.74 98.3%
9.0 kbps 3.92 1.62 5.33 97.9%

ESC-Base
w/o Pre-training

3.0 kbps 3.09 2.25 1.75 97.7%
6.0 kbps 3.53 1.97 2.87 98.1%
9.0 kbps 3.58 1.89 2.88 86.5%

Table 2: Performance evaluation of different ablation
models: results are obtained from the 1157 10-second
speech clips in our test dataset.

proximately ×4.8 smaller model size, ×1.4 faster
encoding speed, and ×6.4 faster decoding speed.

4.3 Ablation Study

To investigate the effectiveness of the proposed
components in ESC, we conducted thorough ab-
lation experiments4 by training frequency-domain
codecs operating on complex STFT spectra with
different architectures. For fair comparisons, all
other ablation models listed in Table 2 have similar
model sizes to ESC-Base.
Swin Transformers and CNNs. To demonstrate
that transformers are superior auto-encoder back-
bones in neural speech coding, we focus on two
pairs of experiments: CNN/SwinT + RVQ and
CNN/SwinT + CS-RVQ. In these experiments, the
channel dimensions of the CNN blocks are set to
match the hidden dimensions of the Swin Trans-
former Blocks (STBs). The comparison, as shown
in Table 2, reveals that transformer-based codecs
consistently outperform CNN-based codecs across
all performance metrics and bitrates, regardless of
the quantization scheme used.
CS-RVQ and RVQ. Table 2 highlights that CS-
RVQ is a superior quantization scheme compared
to RVQ, regardless of whether the backbone is
CNN or STB. RVQ-based codecs hit performance
bottlenecks, as adding more VQs does not improve
audio quality (e.g., from 6.0 kbps to 9.0 kbps).
However, codecs using the CS-RVQ scheme do
not face such bottlenecks at higher bitrates and
consistently outperform their RVQ counterparts.
CS-RVQ is therefore a superior vector quantization
framework that leverages multi-scale features ef-
fectively.

4Implementation setups are detailed in Appendix B.3.
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Effect of pre-training paradigm. To evaluate
the efficacy of the pre-training stage, we conducted
an experiment of ESC-Base w/o pre-training. We
monitored the VQ utilization rate, calculated as the
sum of entropy (in bits) divided by the maximum
number of bits from all transmitted bitstreams. This
metric reflects bitrate efficiency and the fraction of
seldom-used codewords. The results indicate that
models with pre-training achieve a near 1.0 uti-
lization rate. However, ESC-Base w/o pre-training
displays a lower utilization rate at 9.0 kbps, and
its reconstruction performance is also inferior to
that of the fully pre-trained ESC-Base. These find-
ings suggest that the pre-training paradigm indeed
helps avoid bitrate wastage and improve audio re-
construction quality.

5 Conclusions

In this paper, we introduce ESC, the first fully
transformer-based neural speech foundation model
designed for multilingual speech coding. ESC sur-
passes existing state-of-the-art time-domain VQ-
based codecs in terms of complexity and achieves
comparable compression performance without the
need for a powerful adversarial discriminator. Our
extensive evaluations demonstrate that the cross-
scale residual vector quantization scheme and the
Swin Transformer backbones are better suited for
neural speech coding than the convolutional blocks
and residual vector quantization utilized in main-
stream codecs. Overall, our study suggests a
promising direction for speech foundation models.
Future research could focus on expanding multi-
scale vector quantization techniques and investigat-
ing additional transformer variants optimized for
speech signal modeling.

6 Limitations

First, recent neural audio codecs are increasingly
utilized in downstream generation tasks, where the
codec acts as a foundation model to create discrete
acoustic representations (Borsos et al., 2023; Kreuk
et al., 2022; Siuzdak, 2023; Wang et al., 2023; Du
et al., 2024). These compressed representations,
treated as acoustic tokens, are suitable for auto-
regressive language modeling in generative tasks.
However, our work does not explore this important
aspect. A promising future direction would be to
evaluate ESC in downstream applications such as
speech synthesis and speech recognition. We an-
ticipate that the cross-scale code representations

learned from transformer backbones could offer
advantages over the fixed-scale features of main-
stream convolutional codecs in these tasks.

Second, different automatic metrics for audio
evaluation can produce inconsistent results, which
is evidenced in our results. To further strengthen
our conclusions, it is necessary to conduct subjec-
tive evaluations involving human evaluators, such
as MUSHRA listening tests (Series, 2014). Despite
this limitation, we provide a collection of demo
speech samples publicly available in our codebase,
which we hope will help demonstrate ESC’s per-
formance and compensate for the absence of sub-
jective metrics.

Besides, the primary focus of this work is to
demonstrate the superiority of transformer and
cross-scale frameworks over other mainstream
methods, rather than to develop a production-ready
codec like DAC or EnCodec. Nonetheless, given
the scalability of transformers (Kaplan et al., 2020),
increasing the ESC model size and training it on
larger and more diverse audio datasets also repre-
sent a promising direction for enhancing its practi-
cal applicability.

Finally, as discussed in Section 3.4, the
cross-scale residual vector quantization (CS-RVQ)
scheme requires the partial use of decoder layers
during the encoding process, introducing additional
latency as the bitrate increases. Similar to residual
vector quantization, CS-RVQ requires careful sam-
pling of the transmitted bitstream during training
to achieve scalable bitrates within a single model.
This sampling strategy can lead to performance
trade-offs across different bitrates and may cause
instability during training. Therefore, future re-
search in speech foundational models could explore
leveraging alternative recurrent structures (Toderici
et al., 2017; Johnston et al., 2018; Diao et al., 2020)
to improve coding scalability and address these
challenges.
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A Pre-training Paradigm

The proposed pre-training paradigm for optimiz-
ing vector quantization layers is detailed in Algo-
rithm 3. During the pre-training phase, all vector
quantization layers are bypassed, effectively reduc-
ing the codec to a standard autoencoder trained
solely on reconstruction losses (Lines 2-4). Once
the encoder and decoder reach a certain level of con-
vergence, the VQ layers are reactivated, and joint
optimization resumes. In the pre-training phase,
we set the argmin nearest-neighbor selection as
an identity function, making zq equal to the input
vector ze.

Algorithm 3 Pre-training Paradigm
1: repeat
2: X̂ = Gψ(Fϕ(X ))
3: L = Lrecon(X , X̂ )
4: take gradient descent step on∇ϕL,∇ψL
5: until converged
6: activate VQs and continue learning as usual

B Experiment Details

B.1 DAC Reproduction Setups

Our customized reproduction of DAC models
closely follows the official development scripts.
The original DAC model, designed for 16kHz audio
signals, employs 12 VQ layers in its residual VQ
module, supporting bitrates ranging from 0.5 kbps
to 6.0 kbps. To ensure a fair comparison with ESC
at similar bitrate levels, we extended the number
of VQ layers in the RVQ module to 18, resulting
in DAC-Base. For DAC-Tiny, we reduced the en-
coder dimension from 64 to 32 and the decoder
dimension from 1536 to 288, while keeping other
parameters unchanged. All DAC baselines were
trained for 0.4 million iterations with a batch size of
16 on our multilingual speech dataset. Additional
configuration details can be found in the official
release5.

B.2 ESC Architecture Configurations

Overall, all three ESC variants are trained in dis-
tributed setups for 0.4 million iterations across 4
NVIDIA RTX 4090 GPUs with a total batch size

5The official configuration for 16kHz DAC model
is available at https://github.com/descriptinc/
descript-audio-codec/blob/main/conf/final/16khz.
yml
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of 36. These experiments took approximately 100
GPU hours.

B.2.1 Model Parameters

The parameter configurations for ESC-Base are
provided in Table 3. For STFT transformation, we
use a 20 ms window length and a 5 ms hop length,
implemented with torchaudio. The number of FFT
points is set to 382, resulting in a frequency dimen-
sion of 192. In the Swin Transformer, the layer
depth represents the number of Swin Transformer
Blocks (STBs) cascaded at each encoder and de-
coder layer. We use GELU activation functions
and LayerNorm for normalization. In the down-
sampling/up-sampling module, we use a scaling
factor of v = 2 to un-shuffle/shuffle along the fre-
quency resolution only. Before the vector quanti-
zation layers, ESC processes two overlapping time
frames together. To implement this, the flattened
spectrum feature Z is reshaped from RWi×HiCi

to RWi/2×2HiCi . Each frame is then split into
sub-vectors, down-projected, and l2 normalized
before computing the distance matrix. The VQ
layer at each bitstream of ESC-Base consumes
log2 1024 × 3 × 150 = 4500 bits per 3-second
input speech (i.e., 1.5 kbps bitrate). For the scaled-
up ESC-Large variant, we increase the STB layer
depth from 2 to 4 while keeping the other configu-
rations unchanged.

Modules Parameters Values

STFT Window/Hop Length [20ms, 5ms]
Number of FFT 382

Encoder/Decoder

Patch Size [3, 2]
Layer Dims C1, ..., C6 [45, 72, 96, 144, 192, 384]

Attention Heads [3, 3, 6, 12, 24, 24]
Layer Depth 2

Scaling Factor v 2

Vector Quantization
Product VQ Size l 3

Codevector Dimension u 8
Codebook Size K 1024

Table 3: Parameter configurations of model variant ESC-
Base, which comprises 6 encoder/decoder layers.

B.2.2 Adversarial Training Setup

In the ESC-Base (adversarial) variant, the GAN
discriminator is identical to the one used in DAC,
consisting of a multi-period discriminator (MPD),
multi-band discriminator (MBD), and multi-scale
STFT discriminator (MSD), totaling over 42 mil-
lion parameters. The adversarial loss formulation
follows the official DAC-Base (adversarial) config-
uration. Additionally, we maintain the pre-training
paradigm for 0.75 million iterations in this variant,

with the discriminator intervening in training only
after the pre-training stage finishes.

B.3 Details on Ablation Experiments
All ablation models operate on the complex STFT
spectrum, as in ESC (SwinT + CS-RVQ), using
the same STFT configurations specified in Table 3.
These models were trained for 0.25 million itera-
tions, with 0.025 million iterations allocated for
pre-training. The Swin Transformer configurations
mirror those used in ESC-Base. Similarly, the vec-
tor quantization setup in the CS-RVQ models fol-
lows that of ESC-Base. In total, the ablation exper-
iments required approximately 80 hours on 4 RTX
4090 GPUs.

B.3.1 Convolution Blocks
For models with CNN backbones, the convolu-
tional channel dimensions were set to match the
hidden sizes of the STB-based models. Each CNN
block consists of one residual unit and one down-
sampling/upsampling 2D convolutional layer with
a stride of 2 along the frequency resolution only.
The residual unit consists of two 2D convolutional
layers, each followed by BatchNorm and Paramet-
ric ReLU activation.

B.3.2 Residual Vector Quantization Setups
For models using RVQs, we adapted the basic RVQ
framework commonly used in time-domain codecs.
To process frequency-domain spectrum features at
the latent bottleneck, we combined RVQ with prod-
uct vector quantization. Specifically, the flattened
time frame vector is split into sub-group vectors,
which are then recursively quantized, as in standard
RVQs. We set the number of product VQs to 3 and
the number of residual VQs to 6, ensuring the bi-
trate levels match those of ESC-Base (1.5 kbps per
bitstream, 6 in total).
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