
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 10097–10107
November 12-16, 2024 ©2024 Association for Computational Linguistics

Breaking ReLU Barrier:
Generalized MoEfication for Dense Pretrained Models

Jaeseong Lee1, Seung-won Hwang1∗, Wonpyo Park2, Mingi Ji2

1Computer Science and Engineering, Seoul National University
2Google

{tbvj5914,seungwonh}@snu.ac.kr
{wppark,mingiji}@google.com

Abstract

As the scale of language models (LMs) contin-
ues to grow, there is a heightened interest in re-
ducing the inference cost associated with these
models. Mixture-of-Experts (MoEs) present an
efficient alternative to dense models, while the
existing methods to convert pretrained dense
models to MoEs is limited to ReLU-based mod-
els with natural sparsity. This paper introduces
G-MoEfication, applicable to arbitrary dense
models, where ReLU-based activation sparsity
assumptions no longer hold. For generaliza-
tions, we encounter the dilemma of needing to
zero-out deactivated experts, while also avoid-
ing excessive zeroing-out to retain dense activa-
tion information. We publicly release our code1

and report results conducted with mBERT,
SantaCoder-1.1B, Phi-2-2.7B, and Falcon-7B
demonstrating the efficacy of our approach in
general scenarios: from multitask to multilin-
gual, from fine-tuning to zero-shot evaluation.

1 Introduction

Despite the remarkable performance exhibited by
recent language models (LMs), the increasing scale
of these models, as highlighted in (Zeng et al.,
2023), leads to a growing interest in mitigating the
inference cost associated with LMs. However, as
many emerging LMs are dense (Chowdhery et al.,
2022; Touvron et al., 2023), the substantial infer-
ence cost incurred by these models arises from the
necessity to activate all parameters, leading to sig-
nificant communication overhead because weights
are sharded across multiple accelerators.

The Mixture-of-Experts (Shazeer et al., 2017)
(MoE) emerges as a promising alternative. Unlike
dense models, MoE sparsely activates a subset of
parameters, referred to as experts. Moreover, only
the accelerator associated with the selected experts
is utilized, resulting in a remarkable reduction in
communication overhead.

∗Corresponding author
1https://github.com/thnkinbtfly/G-MoEfication

0

0.2

0.4

0.6

0.8

1

0 10 20 30

GeLU-based ReLU-based ours

Figure 1: Sparsity2 (y-axis) along the layer index (x-
axis) of a GeLU-based PLM (Phi-2) and a ReLU-based
PLM (OPT-2.7B).

Nevertheless, training a pretrained MoE model
is computationally inefficient and environmentally
detrimental (Zeng et al., 2023). Furthermore, MoE
training presents unique challenges, such as the
occurrence of expert collapse, where all experts
function identically (Kaddour et al., 2023).

To avoid pretraining costs, this paper explores
MoEfication, converting existing dense pre-trained
language models into MoE versions while retain-
ing the same parameters. This conversion, however,
is targeted for ReLU-based models (Zhang et al.,
2022). As ReLU is naturally sparse, as shown in
the activation pattern of a ReLU-based model (Fig-
ure 1 yellow line), its conversion into an MoE is
rather straightforward. Remarkably, this approach
achieves 95% of the original performance while
utilizing only a limited number of feed-forward
network (FFN) parameters.

Unfortunately, there is a recent divergence in the
trend of utilizing ReLU as an activation function.
Instead, new models opt for smoother variants for
better convergence, such as GeLU (Hendrycks and
Gimpel, 2016), where the activation pattern is no
longer sparse (Figure 1 blue line), thereby compli-

2We report (hard) sparsity for GeLU and ReLU, measuring
the ratio of zero activations, which we later relax in Section
3.2.1 for ours (Figure 1 grey line).

10097

cating MoEfication. A naïve approach would be,
ReLUfying the LMs, by simply replacing the ac-
tivation function with ReLU and further pretrain
the model (Zhang et al., 2022; Piórczyński et al.,
2023). However, this method incurs additional pre-
training costs (Zhang et al., 2022), which are pro-
hibitive given the prevailing trend of ever-growing
LM scales (Zeng et al., 2023).

In this paper, we propose Generalized MoEfica-
tion (G-MoEfication) to MoEfy arbitrary dense
LMs, without pretraining. Our primary challenge
is addressing the conflicting goals associated with
dense activations. With activations no longer sparse,
we encounter the dilemma of needing to zero-out
certain activations to deactivate specific experts,
while also avoiding excessive zeroing-out to pre-
vent substantial information loss in dense activa-
tions (Figure 1 blue line).

Our contribution lies in navigating this dilemma
by introducing representative values for each fea-
ture (Figure 3b). Maintaining representative values
instead of totally zeroing out would preserve in-
formation in activations. Simultaneously, our goal
is to zero-out the residuals from the representative
values, aiming to minimize information loss.

Desirably, representatives should avoid heavy
multiplication costs, retaining optimality. First, to
mitigate the heavy matrix multiplication, we en-
sure that the retained representatives remain static,
and we generate the multiplication results as an
embedding. During the inference step, this replaces
the heavy matrix multiplicative operation with a
lightweight vector additive operation (Figure 3c).
Second, regarding optimality, we formulate a cost
function to assess the sparsity of the residuals. Our
aim is to calculate the optimal representative value
that minimizes this measure.

Our contributions can be summarized as follows:

• We propose G-MoEfication, the first method
to convert arbitrary dense PLMs into MoE
without additional pretraining, to the best of
our knowledge.

• We identify a fundamental dilemma of bal-
ancing the need to zero-out activations while
preserving essential information. In response
to this dilemma, we propose the retention of
representatives for unselected experts.

• We evaluate on general scenarios –from mul-
titask to multilingual, from fine-tuned to zero-
shot evaluation, showing success in convert-

ing the given PLM into MoE. achieving per-
formance levels exceeding the original MoEfi-
cation.

• Our selection of experts also aligns with hu-
man knowledge.

• We publicly release code.1

2 Related Work

2.1 MoEs
MoEs were initially introduced to develop multi-
layer networks with small modules, known as ‘ex-
perts’, each specialized in a subset of tasks (Jacobs
et al., 1991). This approach has been promoted
for scaling models with minimal computational
overhead, treating different functional partitions of
feed-forward networks (FFNs) as conditionally ac-
tivated experts (Bengio, 2013). Then, it has been
widely adopted in the NLP field from its first imple-
mentation for recurrent neural networks (Shazeer
et al., 2017) to recent transformers (Lepikhin et al.,
2021; Fedus et al., 2022). However, training MoE
models from scratch can be unstable, often lead-
ing to expert imbalance or expert collapse (Shazeer
et al., 2017; Kaddour et al., 2023), which poses
challenges to their broader application.

2.2 Converting Dense Models to MoEs
To efficiently establish MoEs, researchers have
probed methods to build MoEs from dense PLMs.
Komatsuzaki et al. (2023) start from a given dense
checkpoint, replicate the existing FFN parameters
to build multiple experts, and continually pretrain
the upcycled MoE. With less than 40% of the pre-
training cost added, they obtain an MoE achieving
better performance than the original dense model.
However, the inference cost would not be reduced,
since even using one expert, the upcycled MoE
would need the same cost as the original dense
model for inference. Llama-MoE (Zhu et al., 2024)
continually pretrain the Llama to build an MoE
with over 200B tokens. However, such continual
pretraining would need tremendous cost consider-
ing the ever-growing scale of modern LMs (Zeng
et al., 2023).

Alternatively, some researchers (Zhang et al.,
2022; Piórczyński et al., 2023) investigated meth-
ods to convert the dense models to an MoE with the
same scale. For example, Zhang et al. (2022) pro-
pose a method to cluster FFN parameters into sev-
eral experts, and to train an expert selection module

10098

𝑥

𝜎(ℎ)

𝐹(𝑥)

𝑊1

Sparse feature

Corresponding weights

𝑊2

𝑊1𝑃 =

𝑃𝑇𝑊2 =

𝑃 =

0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

𝐸1,1 𝐸2,1

𝐸1,2

𝐸2,2

(a) (b)

𝑆 = {1}

Figure 2: (a) When σ is ReLU, σ(h) becomes sparse.
The corresponding weights can be unactivated. (b)
MoEfication aims to cluster such weights simultane-
ously unactivated. Adopted from Zhang et al. (2022).

to utilize a limited number of experts. However,
these methods assume the PLM to be ReLU-based,
thus to MoEfy the arbitrary PLM, they replace the
activation function to ReLU and additionally pre-
train the model. In contrast, our method is directly
applicable to arbitrary models, without additional
pretraining cost.

3 Proposed Method

We first formalize MoEfication under hard sparsity
assumption (Section 3.1), then propose to over-
come its limitation for generalization (Section 3.2).

3.1 Preliminaries: MoEfication
3.1.1 MoEfication under Hard Sparsity
Suppose the FFN layer in the given dense model is
formulated as follows:

h = xW1 + b1 (1)

F (x) = σ(h)W2 + b2 (2)

where x is the input of the FFN layer, and σ is the
activation function.

Meanwhile, an MoE is formulated as follows:

hi = xEi,1 + ei,1 (3)

FMoE(x) =

(∑

i∈S
σ(hi)Ei,2

)
+ b2 (4)

where Ei,1, Ei,2, ei,1 are the weights and biases of
experts. MoE typically utilizes a limited number of
experts, and S denotes the indices of such selected
experts.

The goal of MoEfication (Zhang et al., 2022)
is approximating the given dense model (Eq. 1-2)
as an MoE utilizing a limited number of experts
(Eq. 3-4), while keeping the same total parame-
ters. This goal is achieved through two stages. 1)
Expert construction: W1,W2, b1 are split into mul-
tiple experts, Ei,1, Ei,2, ei,1 respectively. 2) Expert
selection: Appropriately select S with a smaller
size than the total number of experts.

3.1.2 Utilizing Sparsity to Construct Experts
The key idea of splitting the given dense FFN layer
into multiple experts is grouping the neurons often
activated simultaneously (Figure 2a orange dots).
Since the neurons with similar vectors would show
similar activation patterns, they utilize balanced K-
means (Malinen and Fränti, 2014)3 to cluster W1

(Figure 2a orange weights). Figure 2b shows the
MoEfication result with the clusters. Formally, with
a permutation P representing clusters, W1P =
⊕Ei,1, b1P = ⊕ei,1, and P TW2 = ⊕Ei,2, where
⊕ denotes the concatenation, which is defined as
follows:

(⊕(A,B))i,j =

{
Ai,j if j ≤ ncols(A)

Bi,j otherwise
(5)

where ncols denote the number of columns of
given matrix. Concatenating several matrices are
naturally generalized.

Then from Eq. 1-3, the real output F (x) can be
re-formulated as follows:

hP = xW1P + b1P (6)

F (x) = σ(hP)P TW2 + b2 (7)

= (σ(x(⊕Ei,1) + (⊕ei,1)))⊕ Ei,2 + b2 (8)

=

(∑

i

σ(hi)Ei,2

)
+ b2 (9)

Note that with Eq. 9, we do not need any permuta-
tion at the inference stage to make the same outputs
as Eq. 2.

3.1.3 Expert Selection
To approximate the above formula into FMoE(x)
(Eq. 4), how to determine S appropriately remains.
With the intuition of unusing the experts with the
sparsest activations (Figure 2 grey regions), they

3Their experiment with the best expert selection method re-
veals similar performance between various expert construction
methods, thus we introduce only one of them.

10099

⨁

𝑥

𝜎(ℎ)

𝐹𝑀𝑜𝐸(𝑥)

𝑥

𝜎(ℎ)

𝑥

𝜎(ℎ)

𝑀Unactivated feature

Unactivated weights

Representative values

Corresponding weights

Precalculated vector

(a) (b) (c)

𝐹𝑀𝑜𝐸(𝑥) 𝐹𝑀𝑜𝐸(𝑥)

𝐸1,2

𝐸2,2

𝐸1,2

𝐸2,2

𝐸1,2

𝐸2,2

𝐸1,1 𝐸2,1 𝐸1,1 𝐸2,1 𝐸1,1 𝐸2,1

Figure 3: (a) Naïve MoEfication loses information. (b) Keeping representative values is beneficial, but hard to
avoid the heavy computation of additional experts. (c) Saving precalculated vectors as embedding achieves sparse
activation of experts, while recovering some information.

aim to minimize the difference between the real
activation and the MoE activation as follows:

min
S

||σ(h)−⊕(1(i ∈ S)σ(hi))||2
= min

S
|| ⊕ (1(i /∈ S)σ(hi))||2 (10)

where 1 denotes the indicator function, and ⊕ is
concatenation as we defined above. To illustrate
with Figure 2, if MLP selects S = {1}, 1(i ∈
S)σ(hi) denotes the features corresponding to the
selected expert i ∈ S = {1}, the orange dots in
Figure 2a. They train an MLP that selects S to
minimize Eq. 10.4 At the inference time, with the
selected S from the MLP, Eq. 9 is approximated as
Eq. 4.

When using σ as ReLU, σ(h) becomes sparse
(Figure 1 yellow line). Therefore, after minimiza-
tion, the value of Eq. 10 would be small. Thus, the
difference between the real output F (x) (Eq. 9)
and the MoE output FMoE(x) (Eq. 4).

F (x)− FMoE(x) =
∑

i/∈S
σ(hi)Ei,2 (11)

would be marginal.

3.2 G-MoEfication

However, when we use arbitrary activation function
σ, the assumption that σ(h) is sparse no longer

4We introduce only the best-performed selection method
in Zhang et al. (2022).

holds (Figure 1, blue line), in case of which zeroing-
out activations would be detrimental to the given
PLM.

To overcome this, we propose G-MoEfication in
this section. We first relax the notion of sparsity for
generalizing MoEfication (Section 3.2.1), based on
which we propose the selection of representation
value (Section 3.2.2) and expert (Section 3.2.3).

3.2.1 Soft Sparsity for MoEfication in General
Activation Functions

According to hard sparsity (Figure 1 blue), GeLU
would be hardly MoEfied. Meanwhile, sparsity s
of vector v ∈ RN can be straightforwardly gener-
alized to treat activations with sufficiently small ϵ
values as zero. Such softer sparsity and its signif-
icant benefits can also be found from prior work
in a different problem context of network compres-
sion, which zeros out activations below a thresh-
old (Kurtz et al., 2020), or removes entire layers
with small activations (Yu et al., 2018; Lin et al.,
2020; Tan and Motani, 2020). Activation quantiza-
tion methods (Liu et al., 2024) can also be seen as a
softer sparsity, quantizing near-zero activations as
zero. We formally define soft sparsity as follows:

s(v) =

∑
1(|vn| ≤ ϵ)

N
(12)

This notion subsumes hard sparsity when ϵ = 0,5

and we refer to generalized notion when we men-
tion sparsity from this point on.

5Figure 1 contrasts ϵ = 0 (blue) and ϵ = 0.03 (grey).

10100

0.1 0.0 0.1
0.0

0.2

0.4

0.6

0.8

1.0 1e6

0.1 0.0 0.1
0.0

0.2

0.4

0.6

0.8

1.0 1e6

Figure 4: Activation distribution comparison of FFN in
the 10th layer of mBERT. With the generalized notion
of sparsity, we can consider whether the activation dis-
tribution is sparse or not, as the ratio of values in the
grey region. We propose to shift the original distribution
(left) using representative values (right).

3.2.2 Optimizing Sparsity with
Representative Value

With this generalized notion of sparsity, Figure 4
(left) considers the ratio of activations contained in
a grey region with ϵ boundary as sparse. If the ratio
increases, the difference between real and MoE
output, Eq. 11, would be more marginal.

For such increase, Figure 4 (right) suggests a
distribution shift: Specifically, each activation value
σ(h) with a representative value r(σ(h)), is shifted
by a mapping r, to be σ(h) − r(σ(h)). This can
be implemented by keeping representative value
r(σ(h)) while zeroing-out only the residual σ(h)−
r(σ(h)), as in Figure 3b.
Maximal Sparsity of Residuals By keeping the
representative value r(σ(hi)) for unselected expert
(i /∈ S), the difference between real activation and
the MoEfied activation changes as follows (cf. Eq.
10):

min
S

||σ(h)−⊕(1(i ∈ S)σ(hi)+

1(i /∈ S)r(σ(hi)))||2
= min

S
|| ⊕ (1(i /∈ S)(σ(hi)− r(σ(hi))))||2

(13)

For ReLU-based models, as ⊕σ(hi) is assumed
to be sparse, the value of Eq. 10 was assumed
to be small (Zhang et al., 2022). Similarly, in
our generalized notion of sparsity, we can make
⊕(σ(hi) − r(σ(hi))) sparser, so that the assump-
tion of small Eq. 13 value holds.

Toward this goal of optimizing sparsity of
⊕(σ(hi) − r(σ(hi))), we first design a cost func-
tion l to measure how sparse the vector is. Since the
value 0 means the maximal sparsity, l(x) should
be smaller as x gets closer to 0. We simply adopt

l(x) = ||x||22, which also aligns with Eq. 13.6

Therefore, r(σ(hi)), the representative value as
defined above, should be the value that minimizes
the following formula:

min
r

l(⊕(σ(hi)− r(σ(hi)))) (14)

= min
r

∑

i

||σ(hi)− r(σ(hi))||22 (15)

Computational Efficiency Although introduc-
ing representative values would reduce the informa-
tion loss from MoEfying arbitrary PLMs, it incurs
additional computation overhead (Figure 3b green
regions) as follows. Introducing representative val-
ues change Eq. 4 as follows:

FMoE(x) =

(∑

i∈S
σ(hi)Ei,2

)
+ b2

+

(∑

i/∈S
r(σ(hi))Ei,2

)
(16)

Eq. 16 introduces additional computation overhead,∑
i/∈S r(σ(hi))Ei,2, compared with Eq. 4.
To avoid this heavy matrix-vector multiplication,

we design r(σ(hi)) to be a static vector ri, and pre-
calculate the multiplication results mi = riEi,2

(Figure 3c green dots). Then we introduce an em-
bedding M that stores these results. In this way, Eq.
16 changes as follows:

FMoE(x) =

(∑

i∈S
σ(hi)Ei,2

)

+ b2 +

(∑

i/∈S
mi

)
(17)

which unactivates the heavy matrix multiplication
(Figure 3c grey regions). Eq. 17 introduces only
lightweight vector addition operations,

∑
i/∈S mi,

compared with Eq. 4 (Table 4).
Moreover, by designing r as a static vector,

we can obtain a closed-form solution of Eq. 15
ri = µ(σ(hi)), where µ(x) denotes the mean of
the vector x.

To sum up, we collect the mean statistics of the
activation σ(h), and store the µ(σ(hi))Ei,2 vec-
tors as an embedding. The compensation of unused
experts could be calculated with a lightweight ad-
dition of vectors from the saved embedding. This

6Our preliminary experiment on multiPL-E Java shows
choosing l2 norm (0.1377) outperforms l1 norm (0.0970).

10101

NER avg POS avg FLOPs
G-MoEfication (FFN 35%) 83.85 89.77 58%
G-MoEfication (FFN 50%) 85.30 90.77 68%
G-MoEfication (FFN 75%) 86.46 91.55 85%
MoEfication (FFN 75%) 82.79 89.63 85%
Oracle 100% (mBERT) 87.32 91.91 100%

Table 1: Averaged NER and POS F1 of 5 runs over total 42 languages. G-MoEfication outperforming the original
MoEfication are bolded. We bolded the comparisons with the same number of FFN parameters in 1st column. At
the last column, we report the relative number of FLOPs compared to the original mBERT.

simple yet effective solution is applicable to arbi-
trary activation functions– from static activation
functions to adaptive activation functions (Farhadi
et al., 2019).

3.2.3 Expert Selection
With ri chosen as µ(σ(hi)), we can assume
⊕(σ(hi)− ri) to be as sparse as possible, thus the
minimum difference between the original output
and output of MoE (Eq. 13) would be small. Now,
we finally train an MLP that selects S to minimize
Eq. 13.

4 Experiments

Models Drawing from prior research on MoEfy-
ing arbitrary PLMs (Zhang et al., 2022; Piórczyński
et al., 2023), we adopt BERT (Devlin et al., 2019)
architecture as our target model for MoEfication,
which uses GeLU (Hendrycks and Gimpel, 2016)
as the activation function. To explain expert se-
lection aligns with linguistic genealogy, we opt
for the multilingual variant of BERT. Moreover,
we evaluate MoEficaiton on generation tasks, with
SantaCoder-1.1B (Allal et al., 2023).

Unlike prior studies where experiments were
invariably followed by a fine-tuning step (Zhang
et al., 2022; Piórczyński et al., 2023), we disentan-
gle the effect of fine-tuning from MoEfication in
our study. This approach is crucial as parameter
updates during fine-tuning might conceal potential
performance drops from MoEfication, particularly
in the context of recent trends favoring zero-shot
evaluation scenarios. Therefore, we design an ex-
periment without fine-tuning, and evaluate 0-shot
performance on Phi-2-2.7B (Hughes, 2023) and
Falcon-7B (Almazrouei et al., 2023).

Task Datasets and Languages for Evaluation
We evaluate mBERT, on diverse in-language per-
formance using XTREME benchmarks (Hu et al.,
2020-07-13/2020-07-18; Ruder et al., 2021). We fo-

cus on the NER and POS tasks, since these are the
tasks with the largest number of languages avail-
able in XTREME benchmarks. For reliable evalua-
tion, we omit languages with an insufficient amount
of train and test data.7 We evaluate SantaCoder-
1.1B on multiPL-E (Cassano et al., 2023) Java. We
fine-tune with MegaCodeTraining set,8, which we
filter to contain Java codes only. To evaluate Phi-
2 and Falcon-7B, we use the SuperGLUE bench-
mark (Wang et al., 2019), particularly with LM-
EVALUATION-HARNESS (Gao et al., 2021).

Implementation Details For expert construction,
we construct K = 64 experts, except for Falcon-
7B, where we use K = 128. Following Zhang
et al. (2022), for expert selection, we train 2-layered
MLP with tanh activation function, with hidden
and output units same as K, with Adam optimizer,
learning rate of 10−2, and batch size of 512, for 30
epochs.

To collect x and σ(h) values for training MLP
and calculating the representative value, we use
Wikipedia articles extracted with WIKIEXTRAC-
TOR.9 For mBERT, we sample 200 examples with
a sequence length of 128, spanning all languages
on which mBERT was pretrained. For SantaCoder-
1.1B, Phi-2 and Falcon-7B, with a sequence length
of 1024, we sample 5000 examples from English
Wikipedia for training MLP and to calculate the
representative values.

The evaluation settings of mBERT largely follow
Hu et al. (2020-07-13/2020-07-18). We fine-tune
with a batch size of 32, learning rate of 2e-5, for 2
epochs, or at least 2500 iterations. For SantaCoder-
1.1B, we use learning rate of 1e-5, batch size of
8. All fine-tuning and evaluation are conducted on
RTX 3090.

7We choose languages with the number of train and test
data examples larger than 100.

8huggingface.co/datasets/rombodawg/MegaCodeTraining
9https://github.com/attardi/wikiextractor

10102

SantaCoder Phi-2 Falcon
Java +params S-GLUE +params S-GLUE +params

G-MoEfication (ours) 13.77% 0.0041× 0.632 0.0021× 0.512 0.0029×
MoEficaion 8.44% 0.0038× 0.570 0.0019× 0.456 0.0028×
Oracle 17.81% - 0.641 - 0.539 -

Table 2: SantaCoder evaluation on multiPL-E Java, Phi-2 and Falcon evaluation on zero-shot SuperGLUE. We also
compare the added parameters for enabling MoEfication.

ar

he

io

vo

sw

yo

vi

ceb

war

id

ms

min

mg

jv su
tl

eu

ta

ml

te

kn

sq

hy
cs

sk

ru

be

ltlv

bg

mk

pl

uk

sr

sh

hr

sl

bs

cy

br

ga

de

lb
bar

nl

af

sv

en

fy

sco

nds

da

no

nn

is

el

ne

mr

fa

tg

bn

bpy

pnb

paur

hi

gu

fr

es

it

pt
ca

ro

gl

la

ast

oc

ht

pmslmo

an

scn

ja

ka

ko

mn

ce

my

new

zh

th

tr

tt
azb

kk
az

uz

ky

ba

cv

fi
hu
et

arhe

io

vo

swyo

vi

ceb
war

id

ms

min

mg

jv

su

tl

eu

ta

ml

te

kn

sq

hy

cssk

ru
be

ltlv
bg

mk

pl

uk

sr sh
hr

sl
bs

cy

br

ga

de

lb
barnl

af
sv

en

fy

sco

nds

da
no

nn
is

el

ne

mr

fa
tg

bn

bpy

pnb

pa

ur

hi

gu

fr

es

it

pt

ca

ro

gl

la

ast

oc

ht

pmslmo

an

scn

ja

ka
ko

mn

ce

my

new

zh

th

tr

tt

azb

kk

azuz

ky

ba
cv

fi
hu

et

ar
he

iovo

sw
yo

vi

ceb

war

id

ms

min

mg

jv

su

tl

eu

ta

ml

te

kn

sq

hy

cs
sk

ru

be

lt

lv

bg

mk

pl

uksrsh hr

sl

bs

cy

br

ga

de

lb

bar
nl

af
sv

en

fy

sco

nds
da

no

nn
is

el

ne

mr

fa

tg

bn

bpy

pnb

pa

ur

hi
gu

fr

es

it

pt

ca

ro

gl

la

ast

oc

ht

pms

lmo

an

scn

ja

ka

ko

mn

ce

my

new

zhth

tr

tt
azb

kk

az

uzky
ba

cv
fi

hu

et

ar
he

io

vo

swyo

vi
ceb

war

id
ms

min

mg

jv

su

tl

eu

ta

ml

te

kn

sq

hy

cs

sk

ru
be

lt

lvbg
mk

pluk

sr

sh

hr

sl

bscy

br

ga
de

lb

bar

nl

af

sv

en

fy

sco
nds

da

no
nn

is
el

ne

mr

fa

tg

bn

bpy

pnb

pa

ur

higu

fr

es
it
pt

ca

ro

gl

la

ast

oc

ht

pmslmo
an

scn

ja

ka

ko

mn

ce

my

new

zh

th

tr

tt

azb

kk

az

uz

ky
ba

cv

fi

hu

et

ar
he

io

vo

sw

yo

vi

ceb
war

id

ms

min

mg

jv

sutl

eu

ta

ml

te

kn

sq

hy

cs

sk

ru
be

lt

lv

bg

mk

pl

uk

sr

sh
hr

sl
bs

cybr
ga

de

lb
bar

nl
af

sv

en
fy

sco

nds
da
nonn

is

el

ne

mr

fa

tg

bn

bpy

pnb

pa

ur

hi

gu

fr

es

it
pt

ca

ro

gl

la

ast

oc

ht

pms

lmo

an

scn

ja

ka

ko

mn

ce

my

new

zh

th

tr

tt

azb

kk

az

uz

ky
ba

cv

fi

hu

et

ar

he

io

vo

sw

yo

vi

ceb

war

id

ms

min

mg

jv

su

tl

eu

ta

ml

te

kn

sq

hy

cs

sk

ru

be
ltlv

bg

mk

pl
uk

sr

sh

hr

sl

bs

cy br

ga

de

lb
bar

nlaf

sv

en

fy

sco

nds

da

no

nn

is

el

ne

mr
fa

tg

bn

bpy

pnb

pa

ur

hi

gu

fr
es

it

pt

ca ro

gl

la

ast

oc

ht

pms
lmo

an

scn

ja

ka

ko

mn

ce

my

new

zh

th

tr

tt

azb

kk

az

uz

kyba

cv

fi

hu

et

ar

he

io

vo

sw

yo

vi

ceb

war

id

ms

min

mg

jv

su

tl

eu

ta

ml

te

kn

sq

hy

cs

sk

rube

lt
lv

bg

mk

pl
uk

sr

sh

hr sl
bs

cy

br
ga

de
lbbar

nl af

sv

en

fy

sco

nds

da

no
nn

is

el

ne

mr

fa

tg

bn

bpy

pnb

pa

ur

hi

gu

fr

es

it
pt

ca

ro

gl

la

ast

oc

ht

pms

lmo

an

scn

ja

ka

ko

mn

ce

my

new

zh

th

tr
tt

azb

kk
az uz

ky

ba
cv

fi

hu

et

ar
he

io

vo

sw

yo

vi

ceb

war

idms

minmg

jv
su

tl

eu

ta
ml

te

kn

sq

hy

cs
sk

ru

be

lt

lv

bg

mk
pl

uk

sr

sh

hr
slbs

cy

br

ga

de

lb
bar

nlaf

sv
en

fy

sco

nds

da
no

nn

is

el

ne
mr

fa

tg

bn

bpy

pnb

pa

ur

hi

gu

fr
es it

pt

caro

gl
la

ast

oc

ht

pms
lmo

an

scn

jaka
ko

mn

ce

my

new

zh

th

tr
tt

azb

kk

az

uz

ky
ba

cv

fi

hu

et

ar

he

io

vo

sw

yo

vi

ceb
war

id

ms

min

mg

jv

su

tl

eu

ta

ml

te

kn

sq

hy

cssk

ru
be

lt

lv

bg
mk

pl

uk

sr

sh

hr

sl
bs

cy

br ga

de
lb

bar

nl af

sv

en

fy

sco
nds

da

no
nn

is

el

ne

mr

fa

tg

bn

bpy

pnb

pa

ur

hi

gu

fr
es

it
pt

ca

ro
gl

la

ast

oc

ht

pms

lmo

an

scn

ja

ka

ko

mn

ce

my

new

zh

th

tr

tt azb

kk

az

uz ky
ba

cv

fi

hu

et

ar
he

io

vo

sw

yo

vi

ceb
war

idmsmin
mg

jv
su

tl

eu
ta

ml

te

kn

sq

hy

cs

sk

ru

be
lt

lv

bg

mk
pl
uksr

sh
hrsl

bs

cy

brga

delb

bar

nl

af
sv

en

fy

sco

nds

da
nonn

is

el

ne

mr

fa

tg

bn

bpy

pnb

pa

ur
hi

gu

fr
es

itpt
ca

ro

glla

astoc

ht

pmslmo
anscn

ja

ka

ko

mn

ce

my

new

zh

th

trtt

azb

kk
az

uz

ky
bacv

fi

hu

et

ar
he

io

vo

sw

yo

vi

ceb

war

id

ms

min
mg

jv

su

tl
eu

ta

ml

te

kn

sq

hy

cs

sk

ru

be

lt
lv

bg

mk

pl

uk

srsh
hr

sl

bscy

br

ga

de

lbbar

nl af

sv
en

fy

sco

nds

da
no
nn

is

el

ne

mr

fa

tg

bn

bpy

pnb

pa

ur

hi

gu

fr

es

itpt

ca

ro

gl
la

ast

oc

ht

pmslmo
anscn

ja

ka

ko

mn

ce

my

new

zh

th

tr

tt
azb

kk

az
uz

ky
ba

cv

fi

hu

et

ar

he

io
vo

sw

yo
vi

ceb

war
id

ms

min

mg

jv

su

tl

eu

taml

te

kn

sq

hy

cs

sk

ru

be

lt

lv

bg

mk

pl

uk

sr

sh
hr

sl

bs

cy
br

ga

de

lb

bar

nl
af

sv

en

fy

sco

nds
da

nonn

is

el

ne

mr

fa

tg

bn

bpy

pnb

pa

ur

hi

gu

fr

es

it

pt

ca

ro

gl

la

ast

oc

ht

pms

lmo

an

scn

ja

ka

ko

mn

ce

my

new
zh

th

tr

tt

azb

kk

az
uz

ky
ba

cv

fi

hu

et

Afro-Asiatic

Artificial Language

Atlantic-Congo

Austroasiatic

Austronesian

Basque (Isolate)

Dravidian

IE

IE_Armenic

IE_Balto-Slavic

IE_Celtic

IE_Germanic

IE_Graeco-Phrygian

IE_Indo-Iranian

IE_Italic

Japonic

Kartvelian

Koreanic

Mongolic-Khitan

Nakh-Daghestanian

Sino-Tibetan

Tai-Kadai

Turkic

Uralic

Figure 5: UMAP projection of expert selection pattern over 103 languages. Each color corresponds to a specific
language family. We visualize expert selection of each layer; 1st layer (top left) to 12th layer (bottom right).

Baselines We compare G-MoEfication with the
following baselines: a) MoEfication: We directly
apply the conventional MoEfication (Zhang et al.,
2022) with arbitrary activation functions intact.
b) Random expert: We randomly choose and fix
some experts, bypassing dynamic selection from
the trained MLP. c) Pruning (SNIP): We utilize a
popular training-free pruning method, SNIP (Lee
et al., 2019) as an alternative to expert selection.
d) Oracle: The original dense PLM serves as a
reference point.

4.1 Experimental Results
RQ1: Effectiveness of G-MoEfication G-
MoEfication successfully MoEfy the given
PLM, mBERT (Table 1): We achieve above
96% of performance on both NER and POS, on
average. For example, utilizing only 35% of FFN
parameters, our MoEfied mBERT achieves 96% of
performance on NER, and 97.7% of performance

on POS, with only 58% of computation.
We emphasize that the original MoEfication (the

fourth line in the tables) cannot achieve such per-
formance. For example, even with more than twice
our FFN parameters (FFN 75%), the conventional
MoEfication is inferior to the performance of G-
MoEfication (FFN 35%). SantaCoder-1.1B exper-
iment with 85% of FFN (Table 2) shows that the
trend is similar for code generation also.

Finally, we highlight that the complexity intro-
duced by G-MoEfication is negligible compared to
MoEfication, having similar number of FLOPs and
added parameters (Table 1,2)

RQ2: G-MoEfication on Zero-Shot Scenarios
In contrast to prior research (Zhang et al., 2022;
Piórczyński et al., 2023), we isolate the impact of
fine-tuning within MoEfication. Specifically, we ap-
ply MoEfication to Phi-2 and Falcon-7B, selecting
experts with 85% of FFN parameters without any

10103

NER POS
Random expert + rep. value 85.66 91.37
Pruning (SNIP) + rep. value 86.01 91.41
G-MoEfication 86.46 91.55

Table 3: Comparison of various FFN parameter selection
methods on mBERT. We report the average scores over
all languages.

additional parameter updates. Our MoEfied model
consistently achieves over 95% performance on av-
erage, even with a limited number of experts (see
Table 2). This performance surpasses that of the
original MoEfication approach, which exhibits a
significant decline in performance.

RQ3: Alignment of Expert Selection With Hu-
man Knowledge We explore whether the pat-
tern of expert selection aligns with human knowl-
edge, such as linguistic genealogy. We sample the
selection frequencies of each expert given inputs
of each language and project these vectors using
UMAP (McInnes et al., 2018). Languages within
the same linguistic family are colored identically.

As depicted in Figure 5, expert selection corre-
lates with linguistic genealogy. Clusters of IE_Italic
or Turkic languages in every layer. While we ac-
knowledge that UMAP or visualization may have
its limitations in representing human knowledge,
this observation qualitatively suggests the align-
ment between expert clusters and human knowl-
edge.

RQ4: Effectiveness of Expert Selection Method
To validate the necessity of MoE architecture, we
replace the expert selection module with two base-
lines: Random expert and SNIP Pruning (Lee et al.,
2019). For SNIP, instead of dividing FFNs into
multiple experts we directly pruned activations on
selected channels. For a fair comparison, we apply
our representative values to compensate the unused
experts. We use 75% of FFN parameters.

As illustrated in Table 3, employing an expert
selection module yields superior results compared
to other baselines. This validates the necessity of
MoE to attain such performance levels. Importantly,
our approach also mitigated the occurrence of ex-
pert collapse, as evidenced by outperforming the
random expert selection baseline.

RQ5: Computational Impact of r as Static Value
A significant contribution of our work is the de-
sign of a representative value mapping r as a static

FLOPs
mBERT 100%
GMoE w/o static vector (FFN 35%) 101%
GMoE w/ static vector (FFN 35%) 58%

Table 4: mBERT FLOPs comparison of G-MoEfication
with and without designing r as a static vector. We report
the relative FLOPs compared with mBERT.

corpus SuperGLUE
Wikipedia 0.632
Twitter 0.578
Ubuntu 0.578

(a)

corpus Java
Wikipedia 13.8%
The Stack 13.4%

(b)

Table 5: Performance comparison varying corpus on (a)
SuperGLUE evaluation on Phi-2-2.7B, and (b) multiPL-
E Java evaluation on SantaCoder-1.1B.

vector, aimed at reducing computational costs. As
illustrated in Table 4, this design choice has a sub-
stantial impact. Without such a design, the number
of FLOPs slightly increases due to additional MLPs
for expert selection. Conversely, by designing r as a
static value, the number of FLOPs is nearly halved.

RQ6: Importance of General-Domain Corpus
for r The precalculated static vectors and MLPs
for expert selection are prepared once using
the Wikipedia corpus. A natural question arises:
Wouldn’t it be better to utilize target domain-
focused corpus? To address this question, we utilize
‘The Stack’ (Kocetkov et al., 2023), a collection of
code corpora, to compare performance on a Java
generation task. In addition, we consider Twitter
and Ubuntu corpora (Xing et al., 2022).

The short answer is no. Table 5a shows that a
utilizing domain-specific corpus hardly generalizes
to tasks in different domains. In contrast, general-
domain corpus such as Wikipedia shows decent
performance. Moreover, even if the domain aligns
well, such as ‘The Stack’ on Java generation task,
the performance gain is not noticeable (Table 5b).

Overall, employing a general-domain corpus is

#samples SuperGLUE
5000 0.632
1000 0.598
100 0.585

Table 6: SuperGLUE evaluation on Phi-2 varying the
number of sample sizes to calculate r.

10104

NER avg POS avg FLOPs
G-MoEfication (FFN 35%) 83.68 88.57 58%
G-MoEfication (FFN 50%) 85.12 89.92 68%
Oracle (SiLU-mBERT) 86.87 91.15 100%

Table 7: Averaged NER and POS F1 of 5 runs over total 42 languages. At the last column, we report the relative
number of FLOPs compared to the original SiLU-mBERT.

the most efficient solution, which generalizes to
diverse tasks.

RQ7: Impact of Number of Samples for r Intu-
itively, as the number of samples to calculate r is
increased, we would expect more accurate statistics,
leading to further performance gains. Table 6 em-
pirically validates such gains. Regarding the sam-
ple size, we empirically find using 5000 samples
is satisfactory, though how to choose the number
systematically is left as a future work.

RQ8: Experiments on Different Activation
Functions The experiments above are done
on GeLU-based models. We evaluate our
method on another popular activation function,
SiLU (Hendrycks and Gimpel, 2016; Elfwing
et al., 2018). We change the activation function of
mBERT to SiLU, then compare the G-MoEfication
performance with original one. Table 7 shows that
our method is successful on SiLU-based models.

5 Conclusion

This paper introduces G-MoEfication, a novel
methodology applicable to arbitrary dense mod-
els, overcoming the limitations imposed by ReLU-
based activation sparsity assumptions. Our techni-
cal contribution is identifying and overcoming the
dilemma of zeroing out deactivated experts, while
simultaneously preserving dense activation infor-
mation to ensure optimal model performance.

Limitation

In this work, we focused on MoEfying given
PLM as-is. However, the performance would
more increase if we change the activation func-
tions (Mirzadeh et al., 2024) or sparsification (Song
et al., 2024). Nevertheless, this would require con-
tinual pretraining, needing much more computa-
tional cost than ours, which we leave as future
work.

Acknowledgements

This research was partially supported by the MSIT
(Ministry of Science and ICT), Korea, under the
ITRC (Information Technology Research Center)
support program (IITP-2024-2020-0-01789) super-
vised by the IITP (Institute for Information & Com-
munications Technology Planning & Evaluation),
MSIT/IITP grant (2022-0-00995, Automated reli-
able source code generation from natural language
descriptions), and a gift grant from Google.

References
Loubna Ben Allal, Raymond Li, Denis Kocetkov,

Chenghao Mou, Christopher Akiki, Carlos Munoz
Ferrandis, Niklas Muennighoff, Mayank Mishra,
Alex Gu, Manan Dey, Logesh Kumar Umapathi,
Carolyn Jane Anderson, Yangtian Zi, Joel Lamy
Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry
Abulkhanov, Manuel Romero, Michael Lappert,
Francesco De Toni, Bernardo García del Río, Qian
Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue
Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab
Mangrulkar, David Lansky, Huu Nguyen, Danish
Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau,
Yacine Jernite, Sean Hughes, Daniel Fried, Arjun
Guha, Harm de Vries, and Leandro von Werra. 2023.
SantaCoder: Don’t reach for the stars!

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-
shamsi, Alessandro Cappelli, Ruxandra Cojocaru,
Mérouane Debbah, Étienne Goffinet, Daniel Hesslow,
Julien Launay, Quentin Malartic, Daniele Mazzotta,
Badreddine Noune, Baptiste Pannier, and Guilherme
Penedo. 2023. The Falcon Series of Open Language
Models.

Yoshua Bengio. 2013. Deep learning of representations:
Looking forward. In International conference on
statistical language and speech processing, pages
1–37. Springer.

Federico Cassano, John Gouwar, Daniel Nguyen, Syd-
ney Nguyen, Luna Phipps-Costin, Donald Pinckney,
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,
Molly Q Feldman, Arjun Guha, Michael Greenberg,
and Abhinav Jangda. 2023. MultiPL-E: A Scal-
able and Polyglot Approach to Benchmarking Neural
Code Generation. IEEE Transactions on Software
Engineering, 49(7):3675–3691.

10105

https://doi.org/10.48550/arXiv.2301.03988
https://doi.org/10.48550/arXiv.2311.16867
https://doi.org/10.48550/arXiv.2311.16867
https://doi.org/10.1109/TSE.2023.3267446
https://doi.org/10.1109/TSE.2023.3267446
https://doi.org/10.1109/TSE.2023.3267446

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. PaLM: Scaling Language
Modeling with Pathways. arXiv:2204.02311 [cs].

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. 2018.
Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning.
Neural Networks, 107:3–11.

Farnoush Farhadi, Vahid Partovi Nia, and Andrea Lodi.
2019. Activation Adaptation in Neural Networks.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. The
Journal of Machine Learning Research, 23(1):5232–
5270.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black,
Anthony DiPofi, Charles Foster, Laurence Golding,
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff,
Jason Phang, Laria Reynolds, Eric Tang, Anish Thite,
Ben Wang, Kevin Wang, and Andy Zou. 2021. A
framework for few-shot language model evaluation.
Zenodo.

Dan Hendrycks and Kevin Gimpel. 2016. Gaus-
sian error linear units (gelus). arXiv preprint
arXiv:1606.08415.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Graham
Neubig, Orhan Firat, and Melvin Johnson. 2020-07-
13/2020-07-18. XTREME: A massively multilingual
multi-task benchmark for evaluating cross-lingual

generalisation. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, volume 119
of Proceedings of Machine Learning Research, pages
4411–4421. PMLR.

Alyssa Hughes. 2023. Phi-2: The surprising power of
small language models.

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan,
and Geoffrey E. Hinton. 1991. Adaptive mixtures of
local experts. Neural Computation, 3(1):79–87.

Jean Kaddour, Joshua Harris, Maximilian Mozes, Her-
bie Bradley, Roberta Raileanu, and Robert McHardy.
2023. Challenges and Applications of Large Lan-
guage Models.

Denis Kocetkov, Raymond Li, Loubna Ben allal, Jia LI,
Chenghao Mou, Yacine Jernite, Margaret Mitchell,
Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf,
Dzmitry Bahdanau, Leandro Von Werra, and Harm
de Vries. 2023. The Stack: 3 TB of permissively li-
censed source code. Transactions on Machine Learn-
ing Research.

Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp,
Carlos Riquelme Ruiz, Basil Mustafa, Joshua Ainslie,
Yi Tay, Mostafa Dehghani, and Neil Houlsby. 2023.
Sparse upcycling: Training mixture-of-experts from
dense checkpoints. In The Eleventh International
Conference on Learning Representations.

Mark Kurtz, Justin Kopinsky, Rati Gelashvili, Alexan-
der Matveev, John Carr, Michael Goin, William Leis-
erson, Sage Moore, Nir Shavit, and Dan Alistarh.
2020. Inducing and Exploiting Activation Sparsity
for Fast Inference on Deep Neural Networks. In
Proceedings of the 37th International Conference on
Machine Learning, pages 5533–5543. PMLR.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip
Torr. 2019. SNIP: SINGLE-SHOT NETWORK
PRUNING BASED ON CONNECTION SENSITIV-
ITY. In International Conference on Learning Rep-
resentations.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. 2021.
Gshard: Scaling giant models with conditional com-
putation and automatic sharding. In 9th International
Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net.

Zi Lin, Jeremiah Liu, Zi Yang, Nan Hua, and Dan Roth.
2020. Pruning Redundant Mappings in Transformer
Models via Spectral-Normalized Identity Prior. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 719–730, Online. As-
sociation for Computational Linguistics.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie
Chang, Pierre Stock, Yashar Mehdad, Yangyang Shi,
Raghuraman Krishnamoorthi, and Vikas Chandra.
2024. LLM-QAT: Data-Free Quantization Aware

10106

http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1016/j.neunet.2017.12.012
https://doi.org/10.1016/j.neunet.2017.12.012
https://doi.org/10.48550/arXiv.1901.09849
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
https://doi.org/10.1162/neco.1991.3.1.79
https://doi.org/10.1162/neco.1991.3.1.79
https://doi.org/10.48550/arXiv.2307.10169
https://doi.org/10.48550/arXiv.2307.10169
https://openreview.net/forum?id=qrwe7XHTmYb
https://openreview.net/forum?id=qrwe7XHTmYb
https://doi.org/10.18653/v1/2020.findings-emnlp.64
https://doi.org/10.18653/v1/2020.findings-emnlp.64

Training for Large Language Models. In Findings of
the Association for Computational Linguistics ACL
2024, pages 467–484, Bangkok, Thailand and virtual
meeting. Association for Computational Linguistics.

Mikko I. Malinen and Pasi Fränti. 2014. Balanced
K-Means for Clustering. In Structural, Syntactic,
and Statistical Pattern Recognition, Lecture Notes in
Computer Science, pages 32–41, Berlin, Heidelberg.
Springer.

Leland McInnes, John Healy, and James Melville. 2018.
Umap: Uniform manifold approximation and pro-
jection for dimension reduction. arXiv preprint
arXiv:1802.03426.

Seyed Iman Mirzadeh, Keivan Alizadeh-Vahid, Sachin
Mehta, Carlo C del Mundo, Oncel Tuzel, Golnoosh
Samei, Mohammad Rastegari, and Mehrdad Fara-
jtabar. 2024. ReLU strikes back: Exploiting activa-
tion sparsity in large language models. In The Twelfth
International Conference on Learning Representa-
tions.

Mikołaj Piórczyński, Filip Szatkowski, Klaudia Bałazy,
and Bartosz Wójcik. 2023. Exploiting Transformer
Activation Sparsity with Dynamic Inference.

Sebastian Ruder, Noah Constant, Jan Botha, Aditya Sid-
dhant, Orhan Firat, Jinlan Fu, Pengfei Liu, Junjie Hu,
Dan Garrette, Graham Neubig, and Melvin Johnson.
2021. XTREME-R: Towards More Challenging and
Nuanced Multilingual Evaluation. In Proceedings
of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 10215–10245,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc V. Le, Geoffrey E. Hinton, and
Jeff Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. In 5th
International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net.

Chenyang Song, Xu Han, Zhengyan Zhang, Shengding
Hu, Xiyu Shi, Kuai Li, Chen Chen, Zhiyuan Liu,
Guangli Li, Tao Yang, and Maosong Sun. 2024.
ProSparse: Introducing and Enhancing Intrinsic Acti-
vation Sparsity within Large Language Models.

Chong Min John Tan and Mehul Motani. 2020. Drop-
Net: Reducing Neural Network Complexity via It-
erative Pruning. In Proceedings of the 37th Inter-
national Conference on Machine Learning, pages
9356–9366. PMLR.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan

Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open Foundation and Fine-
Tuned Chat Models.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman. 2019. SuperGLUE: A stick-
ier benchmark for general-purpose language under-
standing systems. In Proceedings of the 33rd Interna-
tional Conference on Neural Information Processing
Systems, 294, pages 3266–3280. Curran Associates
Inc., Red Hook, NY, USA.

Yujie Xing, Jinglun Cai, Nils Barlaug, Peng Liu, and
Jon Atle Gulla. 2022. Balancing Multi-Domain Cor-
pora Learning for Open-Domain Response Genera-
tion. In Findings of the Association for Computa-
tional Linguistics: NAACL 2022, pages 2104–2120,
Seattle, United States. Association for Computational
Linguistics.

Xin Yu, Zhiding Yu, and Srikumar Ramalingam. 2018.
Learning Strict Identity Mappings in Deep Residual
Networks. In 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 4432–
4440, Salt Lake City, UT. IEEE.

Qingcheng Zeng, Lucas Garay, Peilin Zhou, Dading
Chong, Yining Hua, Jiageng Wu, Yikang Pan, Han
Zhou, Rob Voigt, and Jie Yang. 2023. GreenPLM:
Cross-Lingual Transfer of Monolingual Pre-Trained
Language Models at Almost No Cost. In Proceed-
ings of the Thirty-Second International Joint Con-
ference on Artificial Intelligence, pages 6290–6298,
Macau, SAR China. International Joint Conferences
on Artificial Intelligence Organization.

Zhengyan Zhang, Yankai Lin, Zhiyuan Liu, Peng Li,
Maosong Sun, and Jie Zhou. 2022. MoEfication:
Transformer Feed-forward Layers are Mixtures of
Experts. In Findings of the Association for Computa-
tional Linguistics: ACL 2022, pages 877–890, Dublin,
Ireland. Association for Computational Linguistics.

Tong Zhu, Xiaoye Qu, Daize Dong, Jiacheng Ruan,
Jingqi Tong, Conghui He, and Yu Cheng. 2024.
LLaMA-MoE: Building Mixture-of-Experts from
LLaMA with Continual Pre-training.

10107

https://doi.org/10.1007/978-3-662-44415-3_4
https://doi.org/10.1007/978-3-662-44415-3_4
http://arxiv.org/abs/1802.03426
http://arxiv.org/abs/1802.03426
https://doi.org/10.48550/arXiv.2310.04361
https://doi.org/10.48550/arXiv.2310.04361
https://doi.org/10.18653/v1/2021.emnlp-main.802
https://doi.org/10.18653/v1/2021.emnlp-main.802
https://doi.org/10.48550/arXiv.2402.13516
https://doi.org/10.48550/arXiv.2402.13516
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.18653/v1/2022.findings-naacl.162
https://doi.org/10.18653/v1/2022.findings-naacl.162
https://doi.org/10.18653/v1/2022.findings-naacl.162
https://doi.org/10.1109/CVPR.2018.00466
https://doi.org/10.1109/CVPR.2018.00466
https://doi.org/10.24963/ijcai.2023/698
https://doi.org/10.24963/ijcai.2023/698
https://doi.org/10.24963/ijcai.2023/698
https://doi.org/10.18653/v1/2022.findings-acl.71
https://doi.org/10.18653/v1/2022.findings-acl.71
https://doi.org/10.18653/v1/2022.findings-acl.71
https://doi.org/10.48550/arXiv.2406.16554
https://doi.org/10.48550/arXiv.2406.16554

