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Abstract

Large language models (LLMs) are found to
have the ability of in-context generation (ICG):
when they are fed with an in-context prompt
concatenating a few somehow similar exam-
ples, they can implicitly recognize the pattern
of them and then complete the prompt in the
same pattern. ICG is curious, since language
models are usually not explicitly trained in the
same way as the in-context prompt, and the
distribution of examples in the prompt differs
from that of sequences in the pretrained cor-
pora. This paper provides a systematic study
of the ICG ability of language models, cover-
ing discussions about its source and influential
factors, in the view of both theory and empiri-
cal experiments. Concretely, we first propose
a plausible latent variable model to model the
distribution of the pretrained corpora, and then
formalize ICG as a problem of next topic pre-
diction. With this framework, we can prove that
the repetition nature of a few topics ensures the
ICG ability on them theoretically. Then, we use
this controllable pretrained distribution to gen-
erate several medium-scale synthetic datasets
(token scale: 2.1B~3.9B) and experiment with
different settings of Transformer architectures
(parameter scale: 4M~234M). Our experimen-
tal results further offer insights into how the
data and model architectures influence ICG.

1 Introduction

As the data and parameter scale continue to in-
crease, large language models (LLMs) have shown
strikingly emergent abilities (Wei et al., 2022a),
where one of the most exciting ones is in-context
learning (ICL) (Brown et al., 2020). Given an in-
context prompt that concatenates a few in-context
examples and a query input, LLMs can somehow
implicitly guess the "topic" of those examples and
complete the query input in the desired way. LLMs
can actually achieve more: they can imitate those
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examples using the topic learned in context (Mey-
erson et al., 2023) to generate new plausible exam-
ples, as shown in Figure 1. This in-context genera-
tion (ICG) ability forms the foundation of multiple
few-shot prompting methods like ICL and other
variants like Chain-of-thoughts (Wei et al., 2022b).

Intuitively, one might comment that LLMs learn
the ICG ability from data in the repetition mode,
which roughly refers to a type of text concatenated
with sequences under the same topic. This is true to
some extent. As known, typical pretrained corpora
contain (e.g. CommonCrawl1) internet data which
has an unneglectable portion of array-page data
such as IMDB2 review pages. After preprocess-
ing, these pages are converted to repetition mode
data, as shown in Figure 1a. However, this isn’t
enough to explain the ICG ability, since LLMs can
also generate sequences of in-context learned top-
ics that don’t appear to repeat and even are unseen
in the pretrained corpora. For example, Figure 1
shows sampled completions of Llama2-13B (Tou-
vron et al., 2023) given in-context prompts of dif-
ferent types of topics:

1. The first one is a repeated topic called "movie
review" (Figure 1a), where Llama2-13B naturally
has the ICG ability on it since this topic appears to
repeat in the pretrained corpora as mentioned.

2. The second type nonrepeated topic refers to
those that appear in the pretrained corpora but never
repeat, e.g., forward method in any class inherited
from nn.Module of Pytorch (Paszke et al., 2019)
code (Figure 1b). However, Llama2-13B can also
generate plausible codes of forward method when
prompting it with a few ones.

3. The last type unseen topic includes those that
never appear in the pretrained corpora. For exam-
ple, "unnatural addition" generates 2-digit arith-

1https://commoncrawl.org
2https://www.imdb.com
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?

Movie review

Movie review

  a solidly seaworthy chiller.

Movie review

Movie review

Movie review

Topic-repetition

  a fascinating and fun film.

  overly long and worshipful bio-doc.

  the script ? please.

  one of the worst films of 2002 .

  a masterpiece four years in the making.
  this film is predictable at every turn.
  interminably bleak , to say nothing of boring.
  must be seen to be believed.

  the acting of the young people is very good.

Model Input

Model Output

  import torch.nn as nn

  class LSTMPOSTagger(nn.Module):

      def __init__(self, vocab_size, emb_dim, hidden_dim, n_pos):
          super().__init__()
          self.embeddings = nn.Embedding(vocab_size, emb_dim)
          self.lstm = nn.LSTM(emb_dim, hidden_dim, batch_first=True)
          self.pos_head = nn.Linear(hidden_dim, n_pos)

      def forward(self, input_ids):
          embeds = self.embeddings(input_ids)
          hiddens, _ = self.lstm(embeds)
          pos_logprobs = self.pos_head(hiddens).log_softmax(-1)
          return pos_logprobs

Import library

Class name

Initial method

Forward method

Pytorch m
odule

  def forward(self, input_ids):
      embeds = self.embeddings(input_ids)
      hiddens, _ = self.lstm(embeds)
      pos_logprobs = self.pos_head(hiddens).log_softmax(-1)
      return pos_logprobs

  def forward(self, hiddens):
      logprobs = self.cls_head(hiddens).log_softmax(-1)
      return logprobs

  def forward(self, imgs):
      feature = self.cnn(imgs)
      feature = feature.flatten(1, -1)
      logprobs = self.cls_head(feature).log_softmax(-1)
      return logprobs

  def forward(self, imgs, imgs_text):
      feature = self.encoder(imgs)
      hm = self.embedding(imgs_text)
      out1 = self.rel_head(torch.cat([feature[:, -1:, :], hm[:, None, :]], dim=1))
      out1 = out1.sum(dim=1).max(-1)[0]
      out2 = self.rel_head(torch.cat([feature[:, 0:1, :], hm[:, [0], :]], dim=1))
      out2 = out2.sum(dim=1).max(-1)[0]
      return out1, out2

Model Input

Model Output  2-3=5
  1-1=2
  4-6=10
  4-2=6

  5-3=8

Model Input

Model Output
???

(a) ICG of repeated topics

(b) ICG of nonrepeated topics

???
(c) ICG of unseen topics

Figure 1: ICG examples (generated from Llama2-13B) of different kinds of topics.

metic expressions that input subtraction but expect
addition (like "1-1=2"), which is intuitively be-
lieved to never be seen in the pretrained corpora
(Rong, 2021). However, Llama2-13B can also rec-
ognize this topic and generate plausible sequences
in context, as shown in Figure 1c.

The above results show that LLMs can gener-
alize the repetition mode to nonrepeated and un-
seen topics. We term this phenomenon as the
topic generalization of ICG, abbreviated as ICG-
generalization. ICG-generalization is curious be-
cause LLMs are not explicitly trained in the way
they test. The biggest challenge of studying ICG
and its generalization is that the true pretrained dis-
tribution is not accessible. As a result, we don’t
know the topic of a sequence span or whether it
appears to repeat, making it difficult to evaluate
the ICG abilities of LLMs. To address this, we
turn to synthetic data generated from a known and
controlled pretrained distribution (Bowman et al.,
2015; McCoy et al., 2018; White and Cotterell,
2021; Xie et al., 2021; Papadimitriou and Jurafsky,
2023; Jumelet and Zuidema, 2023). The distribu-
tion is a hierarchical latent variable model (LVM)
as shown in Figure 2, where a document is guided
by two kinds of latent variables. The distribution
is not only plausible to explain the true pretrained
data but also convenient for analysis since it decou-
ples different levels of uncertainties.

Through the proposed pretrained distribution, we
can naturally formalize ICG as a problem of next
topic prediction, and then conduct mathematical

analysis. We first theoretically prove that (Theorem
1), under some mild assumptions, if the language
model fits the pretrained distribution well, then
it’s guaranteed to have the ICG ability on repeated
topics in terms of convergence in probability. As
a result, the ICG distribution (i.e., the generative
distribution conditioned on the in-context prompt)
converges to the true topic-paragraph distribution
in probability. Next, we study ICG-generalization
via exhaustive experiments, revealing that ICG-
generalization is caused by factors of both data
and models. Concretely, we use the controllable
pretrained distribution to generate several synthetic
datasets (token scale: 2.1B~3.9B), and train Trans-
former (Vaswani et al., 2017) language models with
different settings (parameter scale: 4M~234M). Ex-
periments show that data compositionality, propor-
tion of repeated topics, Transformer’s parameter
scale, and window size play crucial roles in en-
abling ICG-generalization, while the data topic
uncertainty and Transformer’s attention head size
have few influences3. Our study provides insights
to better understanding the ICG ability and LLMs.

2 Settings

2.1 Pretrained Distribution

We assume the pretrained distribution is a hierarchi-
cal LVM as shown in Figure 2, where a document is
generated via the following steps: 1) Draw a latent

3These results are consistent with previous works about
attention head pruning (Michel et al., 2019; Voita et al., 2019)
and the importance of large attention size (Ratner et al., 2023).
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...

Figure 2: Bayesian network of the pretrained distribu-
tion, where the non-shaded nodes are latent variables.

mode α ∈ A from the mode prior p(α). 2) Draw a
latent outline β1:N ∈ BN containing topics of dif-
ferent paragraphs from the Markov mode-outline
distribution p(β1:N |α) parameterized by the mode
α. 3) Sample each paragraph xi ∈ Σ∗ (Σ is the
vocabulary) individually from the topic-paragraph
distribution p(x|βi), and concatenate them with
delimiters. The joint distribution of this LVM is:

p(α, β1:N , x1:N ) = p(α)p(β1:N |α)
N∏

i=1

p(xi|βi)

(1)
This distribution is plausible because: 1) It has a
clear realistic interpretation of how humans write
documents. Generally, humans would first deter-
mine the literature genre (e.g., narrative, letter, and
so on), and then plan a specific structure of that
genre before writing, as shown in Figure 1. Such
a process is modeled via the mode prior p(α) and
the mode-outline distribution p(β1:N |α). 2) It is
capable of describing any language marginal dis-
tribution via the marginalization over latent vari-
ables. Also, it is convenient to analyze because of
disentanglement: two kinds of uncertainties, topic-
transition and generation of paragraphs are han-
dled by two separated models p(βn|β1:n−1, α) and
p(xn|βn), respectively, instead of one entangled
marginal language distribution p(x1:N ).

2.1.1 Assumptions
The pretrained distribution has three additional
assumptions. Firstly, as mentioned, typical pre-
trained distributions for LLMs include the repe-
tition mode α̂ ∈ A that only generates repeated
outlines βN (β ∈ B) (βN represents a N -length
outline that each topic within is β). This formally
raises the following:

Assumption 1. There exists a mode α̂ ∈ A
called repetition mode such that p(βn+1|βn, α̂) =
1(βn+1 = βn) for all timesteps n. Other modes
α ∈ A/α̂ are called continuous modes, since the

outline under them seems to shift gradually and
continuously.

Secondly, we have to ensure that different modes
and topics are different to get rid of redundancy.
That is, they should be distinguished in terms of
distance measure of distribution:

Assumption 2. For two different modes α, α′ ∈ A
and an arbitrary context x1:n, define:

KLn

(
α∥α′) :=

∑

x

p(x|x1:n, α) log
p(x|x1:n, α)
p(x|x1:n, α′)

(2)
We assume that KLn (α∥α′) is at least bigger
than a constant for all α and α′: KLn (α∥α′) ≥
log c1 > 0. Likewise, for two different topics
β, β′ ∈ B, define:

KL(β∥β′) :=
∑

x

p(x|β) log p(x|β)
p(x|β′) (3)

We assume that KL(β∥β′) ≥ log c2 > 0.

Thirdly, for convenience and without loss of
plausibility, we assume that:

Assumption 3. For each paragraph x ∈ Σ∗, its
support from any topic β ∈ B is bounded by two
constants: 0 < c3 ≤ p(x|β) ≤ c4 < 1.

2.1.2 Topic Types
With Assumption 1, the likelihood of any repeated
outline βN under the repetition mode α̂ only de-
pends on the topic itself:

p(βN |α̂) = p(β1 = β|α̂) := p(β|α̂) (4)

where p(β|α̂) is the repetition prior measuring how
often the topic β is chosen to repeat under mode α̂.
Analogously, let p(β) be the topic prior assessing
the frequency of the topic β:

p(β) :=
∑

α∈A
p(β|α)p(α) (5)

According to the appearance, we can formally
group topics β ∈ B into three mutually exclusive
sets, as shown in Figure 1:

1. Repeated set R. ∀β ∈ R, p(β|α̂) > 0. That
is, each topic within has a chance to appear in
the repetition mode in the pretrained distribution.
By intuition, repeated topics account for a very
small proportion of all topics in realistic data, i.e.,
rR = |R|/|B| is small.
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2. Nonrepeated set C. ∀β ∈ C, p(β|α̂) =
0, p(β) > 0. In other words, this set contains
topics that don’t repeat but appear in the pretrained
corpora.

3. Unseen set U . ∀β ∈ U, p(β) = 0. Topics in
this set are never seen in the pretrained corpora.

2.2 Problem Formalization
According to the above setting, The ICG ability
could be formalized as the following:

Hypothesis 1. Given a language model pLM
trained on the pretrained distribution p and an
in-context prompt x1:N , where each sample xn ∼
p(x|β̂), the in-context topic-repetition rate (ICTR),
i.e., the probability that the language model gen-
erates a paragraph belonging to topic β̂ when
prompting with x1:N , is somehow close to 1:

pLM(β̂|x1:N ) := pLM(βN+1 = β̂|x1:N ) ≈ 1 (6)

Accordingly, the model ICG distribution
pLM(x|x1:N ) is somehow close to the true
topic-paragraph distribution p(x|β̂):

pLM(x|x1:N ) ≈ p(x|β) (7)

In this formalization, ICG is all about the next
topic prediction, where language models seem to
implicitly choose the topic of in-context examples
as the next topic. Our goal is to find support for
this hypothesis from the perspective of both theory
and empirical experiments.

3 Theoretical Support

Intuitively, the pretrained distribution itself ensures
the ICG ability for repeated topics R. This can be
explicitly formalized by the following theorem:

Theorem 1. Given an in-context prompt x1:N ,
where each sample xn ∼ p(x|β̂) and β̂ ∈ R, the
pretrained distribution has the following proper-
ties:

1. The data ICTR4 converges to 1 in probability
(corollary 4):

plim
N→∞

p(β̂|x1:N ) = 1 (8)

where we denote p(βN+1 = β|x1:N ) :=
p(β|x1:N ).

4Note that we use the prefix "data" to distinguish values
from pretrained distribution and language model distribution.

2. For any candidate paragraph x ∈ Σ∗, the
data ICG distribution p(x|x1:N ) converges to
the true topic-paragraph p(x|β̂) in probability
(corollary 5):

plim
N→∞

p(x|x1:N ) = p(x|β̂) (9)

If the language model pLM is expressive enough,
it would gradually approach the pretrained distribu-
tion p with the increase of the number of training
examples5. As a result, pLM would exhibit the
same properties p as shown in Theorem 1. There-
fore, the ICG ability for repeated topics directly
originates from the pretrained corpora.

Detailed theoretical results are provided in Ap-
pendix B. Here, we only present a proof sketch.
Proof Sketch. According to Section 2.1, ∀x ∈ Σ∗,
the data ICG distribution is:

p(x|x1:N ) =
∑

β∈B
p(β|x1:N )p(x|β) (10)

Therefore, the data ICG distribution p(x|x1:N )
is dominated by the topic predictive distribution
p(β|x1:N ), i.e., ICTR. p(β|x1:N ) can be further
decomposed as the mixture of modes:

p(β|x1:N ) =
∑

α∈A
p(α|x1:N )p(β|x1:N , α) (11)

Firstly, we can prove that if β̂ ∈ R, then
plimN→∞ p(α̂|x1:N ) = 1 (corollary 1). There-
fore, the mixture in formula (11) focuses on the
component of repetition mode p(β|x1:N , α̂) when
N is large:

p(β|x1:N ) ≈ p(β|x1:N , α̂)

=
p(β|α̂)∏N

n=1 p(xn|β)
p(x1:N |α̂)

(12)

This form is exactly the Bayesian posterior dis-
tribution, which is in accord with previous works
connecting ICL and Bayesian statistics (Xie et al.,
2021; Wang et al., 2023b; Hahn and Goyal, 2023).
Likewise, it turns out that the if β̂ ∈ R, then
plimN→∞ p(β̂|x1:N , α̂) = 1 (corollary 3), thus
establishing the first point of theorem 1. Since
the data ICG distribution p(x|x1:N ) depends on
the topic predictive distribution p(β|x1:N ), we can

5Previous works (Xie et al., 2021; Hahn and Goyal, 2023)
typically take this as the null hypothesis.
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prove the second point of theorem 1 analogously6.
In Appendix B and C, we also present a detailed for-
mula of the convergence, in which the convergence
speed depends on the distinguishment of different
modes and topics.

4 Experiments

Theory 1 can’t ensure the ICG ability for nonre-
peated and unseen topics β ∈ C ∪ U because they
have a zero repetition prior p(β|α̂) = 0 and so
the posterior under repetition mode is also zero:
p(β|x1:N , α̂) = 0. Then, the correct component
p(x|β) would never be selected under the repeti-
tion mode, preventing the ICG/ICL ability as a
consequence.

However, this is contrary to the real case, where
LLMs have the ICG-generalization ability: they are
able to generalize ICG/ICL abilities to nonrepeated
and unseen topics β ∈ C ∪ U . We speculate that
this might be caused by factors in both data and
model side:

• Data side: The compositionality of natural
language (Grandy, 1990) and the proportion of re-
peated topics rR. Compositionality considers the
meaning of a linguistic unit is a result of individ-
ual meanings of its sub-parts and how they are
combined (Anderson, 2018). In this view, non-
repeated and unseen topics might share the same
"sub-topics" with repeated topics. The bigger the
proportion of repeated topics, the more frequently
those sub-topics are shared. Therefore, LLMs may
be able to recombine those sub-topics to recognize
out-of-distribution topics in the repetition mode
and exhibit generalization.

• Model side: The Transformer (Vaswani et al.,
2017) structure. As the mainstream architecture
of NLP, the success of Transformer is believed
to originate from its strong generalization ability
(Hendrycks et al., 2020; Jiang and Bansal, 2021).

We conduct rich experiments to verify the above
arguments.

4.1 Synthetic Data
We conduct the experiments on synthetic data gen-
erated via the controllable pretrained distribution.

6Based on of theorem 1, for regular in-context learning
scenario where each example in the prompt is a tuple (xn, yn)
consisting of an input xn and an output yn, we can also obtain
similar theoretical conclusions about the ICL ability. Details
are shown in proposition 5 and corollary 6.

As mentioned, the distribution has three compo-
nents:

1. Mode prior p(α). We set the mode prior to be
uniform: p(α) = 1/|A|.

2. Mode-outline distribution p(β1:N |α). For con-
tinuous modes α ∈ A/α̂, we don’t exactly care
the outline under them, so we set p(β1:N |α) =∏N

n=1 p(βn|α) for convenience, where p(βn|α) is
a categorical distribution and its parameter is initial-
ized from a Dirichlet distribution. The Dirichlet pa-
rameters are 0 for unseen topics (so that p(β) = 0
for β ∈ U ) and 5 for others. We set the repe-
tition prior to be uniform: p(β|α̂) = 1/|R| =
1/|B|rR (β ∈ R).

3. Topic-paragraph distribution p(x|β). In order
to simulate the compositionality, each topic β ∈ B
is a tuple containing M subtopics ρ1:M , where
ρm ∈ B∗(m ∈ [M ]) and B = BM

∗ . Accordingly,
the paragraph x also contains M sub-paragraphs
s1:M , where each sub-paragraph is generated indi-
vidually:

p(x|β) =
M∏

m=1

p(sm|ρm) (13)

The composition arity M controls the data com-
positionality. Given a fix number of topics |B|,
the number of subtopics |B∗| = M

√
|B| decreases

when composition arity M increases, and differ-
ent topics are more likely to share sub-structures
as a result. Here, each sub-paragraph distribution
p(sm|ρm) is a Markov model whose initial prob-
ability vector πρm and transition matrix Aρm are
both sampled from Dir(γ1), where 1 is an one vec-
tor. γ actually controls the uncertainty of different
topics, where a lower value is expected to raise the
KL divergence between different topic-paragraph
models, making them easier to be distinguished, as
shown in Appendix D.

Data Parameter Settings
We set the number of modes |A| = 32, the num-
ber of topics |B| = 5314417, where 95% of top-
ics are unseen (|U | = 504868). We set the vo-
cab size |Σ| = 324, the length of sub-paragraph
|sm| = 3, and the number of paragraphs in a doc-
ument N = 30. Thus, each document contains

7We choose this number because its square, cube and
fourth root are all integers.
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Data

Topic

Mode

Testing set

Training set

31
12212 8452

183 134 200 62 69 22 103 181 66 73 248 114 310 145 87 18 102 222dd
18361

201 128 189 17 291 100 197 205 85d

15
3109 18361

94 43 72 142 255 252 188 255 159 201 214 27 71 253 139 2 299 205dd
23265

89 175 165 97 308 85 38 244 116d

0
491 491

39 54 223 64 107 154 120 114 25 219 90 225 173 44 80 120 113 194dd
491

260 220 189 173 44 51 120 305 223d

...

...

...

Continuous mode (id: 1~31)

Repetition mode (id: 0)

Nonrepeated topic (id: 518~26571)

Repeated topic (id: 0~517)

Unseen topic (id: 26572~531440)

d Delimiter

Paragraph (length: 9, vocab: 324)0
107652 107652

142 164 313 248 279 314 75 321 114 252 182 7 174 124 50 75 116 125dd
107652

142 164 313 188 185 256 1 278 8d

0
4582 4582

16 94 301 252 12 103 202 232 126 110 197 0 142 26 104 85 318 196dd
4582

121 293 113 313 117 39 128 49 292d

0
491 491

219 187 308 64 229 256 120 305 32 219 60 139 229 36 90 245 217 317dd
491

17 44 23 64 229 227 120 114 63d

...

...

...

...

...

Figure 3: Examples in the synthetic dataset, where we set M = 3, rR = 1/1024 and γ = 0.01. We also visualize
the latent variables mode α and outline β1:N for a better understanding.

Models L H D # params

X2S 3 6 384 4M
XS 4 8 448 8M
S 5 8 448 9M
M 6 8 512 15M
L 9 12 768 48M

XL 12 16 1024 114M
X2L 16 20 1280 234M

Table 1: Configurations of different models, where L is
the number of layers,H is the number of attention heads,
D is the hidden dimension. For parameter efficiency,
we use grouped query attention (Ainslie et al., 2023)
and set the number of key-value heads to be H/2.

30(3M + 1) tokens. For other parameters of pre-
trained distribution including composition arity M ,
the ratio of repeated topics rR, and topic uncer-
tainty γ, we adjust their values to study the effects
of data properties. In specific, we experiment with
M ∈ {2, 3, 4}, rR ∈ {2−d|d = {6, 7, · · · , 13}},
and γ ∈ {0.01, 0.02, · · · , 0.05}.

For each configuration of the pretrained distri-
bution, we generate 10M documents for training.
Therefore, the number of tokens in the synthetic
dataset ranges from 2.1B to 3.9B. Examples of the
synthetic dataset are shown in Figure 3.

4.2 Models

We study the effect of model size, attention win-
dow size, and the number of attention heads of
Transformer. Table 1 shows configurations of dif-
ferent experimental models, where the parameters
scales from 4M to 237M. The models are based on
the Transformers (Wolf et al., 2020) implementa-

tion of Mistral (Jiang et al., 2023a). We train each
model for 1 epoch on one NVIDIA A100 (40GB).

4.3 Evaluation Metrics

We aim to evaluate the overall ICG performance
and the ICG-generalization ability of models using
ICTR. Firstly, we define topic-wise ICTR as the
expectation of prompt-wise ICTR8:

πβN = Ep(x1:N |βN ) [pLM(β|x1:N )] (14)

Then, we can obtain the average ICTR of different
kinds of topics:

ICTRB
N =

1

|B|
∑

β∈B
πβN , ICTRR

N =
1

|R|
∑

β∈R
πβN

ICTRC
N =

1

|N |
∑

β∈C
πβN , ICTRU

N =
1

|U |
∑

β∈U
πβN

(15)
Here, ICTRB

N measures the overall ICG abil-
ity, while ICTRC

N and ICTRU
N reflect the ICG-

generalization ability, where higher values sug-
gest better generalizations. In the experiments,
since each pretrained document has 30 paragraphs,
the trained model at most supports 29-shot in-
context prompts. So by default, we reported
ICTRB/R/C/U

29 , which is short of ICTRB/R/C/U .
Following Liu et al. (2022), to get a compact and

clear picture of the experimental results, we define
four statuses of a trained model by thresholding the
values of ICTRs as shown in Table 2.

8The computation of prompt and topic-wise ICTR is non-
trivial, so we present it in Appendix E.
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X2S XS S M L XL X2L
Model size

1/8192

1/4096

1/2048

1/1024

1/512

1/256

1/128

1/64
Ra

tio
 o

f r
ep

ea
te

d 
to

pi
cs

 r R

.00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .01

.00 .01 .02 .03 .06 .06 .05

.00 .00 .06 .15 .35 .24 .18

.00 .03 .08 .18 .46 .47 .60

.00 .03 .06 .27 .51 .52 .64

.00 .03 .16 .22 .56 .57 .68

Composition arity M=2

X2S XS S M L XL X2L
Model size

.00 .01 .01 .01 .01 .02 .00
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(a) ICG-generalization results of models in different sizes trained on pretrained distribution with different composition arities M
and proportions of repeated topics rR, where the topic uncertainty γ is set to 0.01. Note that when rR = 0, all the models pose
underfit and the largest ICTRB (achieved when model is XL and M = 4) doesn’t exceed 10−7. We omit this since it’s trival.
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(b) ICG-generalization results of models in different
sizes trained on pretrained distribution with different
topic uncertainties γ, where we set M = 3 and
rR = 1/1024.
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(c) ICG-generalization results of model L with dif-
ferent window sizes and numbers of attention heads,
where we set M = 3, rR = 1/1024, and γ = 0.01.

Figure 4: ICG-generalization results, where the color suggests the status of the corresponding model, and the
number in the cell shows the corresponding ICTRB

29.

ICTRR ICTRC ICTRU Status

< 0.65 - - Underfit
≥ 0.65 < 0.65 < 0.65 Overfit
≥ 0.65 ≥ 0.65 < 0.65 C-Generalization
≥ 0.65 ≥ 0.65 ≥ 0.65 U-Generalization

Table 2: Definitions of different statuses.

4.4 Results & Discussions

Our experiments suggest the following arguments.

Data compositionality enables both ICG and
ICG-generalization. Figure 4a shows the results
of different composition arities. Clearly, we can
see that data compositionality enables ICG and
ICG-generalization, specifically: 1) As the com-
position arity M increases, the overall ICG per-
formance consistently improves for models in any
sizes trained on the pretrained distribution with dif-
ferent repeated topic proportions rR. Notably, the
improvement is especially significant when we in-
crease M from 2 to 3. For example, for all rR, the

ICTRB
29 value nears 0 for many small models when

M = 2, but is lifted to a considerable level when
M = 3. 2) The models are easier to generalize on
ICG when M is higher. When M = 2, most mod-
els are even hard to overfit on repeated topics, and
only model X2L can generalize ICG to both non-
repeated and unseen topics only when rR = 1/64.
On the contrary, when M = 3 or M = 4, models
in all sizes exhibit the ICG-generalization ability
with much smaller rR.

The model emerges the ICG-generalization
as the proportion of repeated topics rises. As
shown in Figure 4a, the model typically tends to
overfit only on repeated topics when rR is small,
and then suddenly emerges the ICG-generalization
ability when rR hits the threshold. The threshold
mainly corresponds to the data compositionality,
where a higher composition arity M leads to a
lower threshold and so makes the model easier to
generalize. For example, for model X2L, the gener-
alization threshold of rR is 1/64 whenM = 2, and
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Figure 5: ICTR∗
29 of different topics for model L trained

on the pretrained distribution with different topic uncer-
tainty γ, where the other parameters in the pretrained
distribution are: M = 3, rR = 1/1024.

decreases to 1/2048 when M = 3. We speculate
this is because the more compositionality of the
data, the more likely that nonrepeated and unseen
topics share sub-topics with repeated ones, there-
fore the less proportion of repeated topics is needed
for generalization.

Topic uncertainty doesn’t affect ICG-general-
ization. As shown in Figure 5, Topic uncertainty
mainly affects the fitting difficulty of the data rather
than the ICG-generalization difficulty: As the topic
uncertainty γ increases, the ICTR29 of model L
for all kinds of topics decreases consistently. Also,
we don’t observe apparent ICG performance gaps
between those topics.

Larger models do better on ICG and ICG-gen-
eralization. Model size is considered to be a great
factor impacting the ability of language models
(Wei et al., 2022a). This is also verified in our ex-
periments, which we find: 1) As shown in Figure
4a, obviously, larger models not only achieve bet-
ter ICTRB

29, but also require less repeated topics to
generalize to nonrepeated and unseen topics. 2) As
shown in Figure 4b, larger models are able to deal
with topics with more uncertainties, i.e., bigger γ,
where models larger than model M are capable of
ICG-generalization when γ = 0.02 but smaller
models pose underfit (Especially for model X2S,
whose ICTRB

29 is 0). 3) As shown in Figure 6a, in
most cases, larger models achieve better ICTRB

given fewer demonstrations. However, curiously,
this does not hold when the number of shots N is
too small. For example, ICTRB

2 of model X2S, XS,
S, and M are typically greater than that of model L,
XL, and X2L. We speculate this might be because
when N is small, larger models are more cautious

in identifying the repetition mode.

Big window size is necessary for ICG and ICG–
generalization. Recently, Wang et al. (2023a)
show that LLMs conduct ICL by collecting infor-
mation of demonstrations in the prompt from pre-
vious label words. Specifically, the hidden states
of previous label words are good summarizations
of corresponding demonstrations. Thus, the model
needs to attend to all those previous "anchors" to
conduct ICL, which hints that a small window size
might harm the ICL performance. For example,
in the experimental results of Jiang et al. (2023b),
we can find that the ICL performance of RWKV
(Peng et al., 2023) series is generally inferior to
that of classic Transformer structures. Our exper-
iments also support this argument. As shown in
Figure 4c and 6b, when the number of attention
heads is fixed, a low window size would cause
underfit. In most cases, when we increase the win-
dow size, the model is shifted to overfit and finally
U-Generalization, the overall ICTRB

29 also rises
at the same time. Note that there also exists the
emergent phenomenon, where the model suddenly
learns ICG and ICG-generalization when its win-
dow size hits a threshold.

Big number of attention heads is not neces-
sary for ICG and ICG-generalization. Multi-
head/group attention is always believed to be one
of the most important components of state-of-the-
art Transformer models. By intuition, different
heads can potentially attend onto different parts of
the text, making the model more expressive. How-
ever, our experiments show this mechanism is not
very important for ICG and ICG-generalization.
As shown in Figure 4c, reducing the number of
attention heads H for XL model hardly change
the model status. Also, we can find that when the
model size is fixed, the model with the highest over-
all ICG performance does not necessarily have the
most attention heads. We speculate this is because
the attention pattern for ICG is relatively simple, so
different heads are actually functional equivalent.
This is consistent with Michel et al. (2019), which
finds that the performance of many tasks including
machine translation and natural language inference
is insensitive to the number of attention heads.

Generalizations towards nonrepeated and un-
seen topics are almost the same. As shown in
Figure 4, in most cases, no matter how pretrained
distributions and models are configured, the mod-
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Figure 6: ICTRB
∗ of different model configurations, where we set M = 3, γ = 0.01, and rR = 1/1024.

els generally end with either underfit, overfit, or
U -Generalization, but hardly in the status of C-
Generalization. This suggests that nonrepeated top-
ics, though appear in the pretrained distribution,
are not easier for models to generalize than unseen
ones.

5 Related Works

As one of the most exciting emergent abilities
(Wei et al., 2022a), the mechanism of ICL (Brown
et al., 2020) has been widely studied in previous
works. Empirically, researchers usually perturb
the in-context prompt (e.g. label, order or choice
of demonstrations) in order to observe effects of
different aspects of both prompt and model archi-
tectures (Min et al., 2022; Yoo et al., 2022; Lu et al.,
2022; Wei et al., 2023; Jiang et al., 2023b). A few
works try to interpret ICL theoretically and conduct
experiments on controlled synthetic datasets (Xie
et al., 2021; Han et al., 2023; Garg et al., 2022;
Jiang, 2023; Panwar et al., 2023; Bai et al., 2024).
As a typical example, Garg et al. (2022) show that
Transformers can learn some function classes (e.g.
linear functions) in-context when explicitly train-
ing them to do so. However, these works only
show appearance of ICL with synthetic data of rep-
etition mode9. Comparing to them, Our synthetic
data originates from a more plausible pretrained
distribution. This distribution is much more plausi-
ble, since realistic data also has many continuous
modes. So our results are more applicable for the
realistic case. Furthermore, out experiments are
to our knowledge the first to investigate the ICG
ability (which beyond ICL) of language models.

9One might think that the synthetic data of Xie et al. (2021)
is not in the repetition mode. However, the assumption 3 of
their work actually implies that the repetition mode dominates
the synthetic corpora. For example, if we take ∆ = 0, the
synthetic examples are all in the repetition mode.

6 Conclusions

This paper provides a systematic study of ICG abil-
ity of language models. Firstly, we propose a plau-
sible latent variable pretrained distribution, formal-
izing ICG as a problem of next topic prediction.
Then, we prove that the repetition nature of a few
topics ensures the ICG ability on them theoretically.
We also conduct rich experiments to study the ef-
fects of different factors of data and model architec-
tures on ICG and ICG-generalization. We believe
this paper is beneficial to a better understanding of
the ICG ability, as well as large language models.

7 Limitations

The major limitation of this work is that we
don’t provide a theoretical support for ICG-
generalization, while doing so is non-trivial. Now
we can only speculate the ICG-generalization re-
sults from the smoothing effects of neural prob-
ability approximator (e.g. Transformer), where
unseen inputs would have non-zero probabilities
(Xie et al., 2017). Therefore, nonrepeated and un-
seen topics might have a non-zero repetition prior,
making them possible to be chosen as the topic of
the next paragraph. This phenomenon might be
especially obvious when these topics are similar to
repeated ones according to our experimental results.
Further work on the theoretical understanding of
ICG-generalization might take similarities between
topics into account.
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A Lemmas

To access the theoretical results in Appendix B, the
following lemmas are useful.

Lemma 1. For an arbitrary continuous mode α ∈
A/α̂, let

sn =

n∑

i=1

log
p(xi|x1:i−1, α)

p(xi|x1:i−1, α̂)
+ KLi−1(α̂∥α)

(16)
where

KLi−1(α̂∥α) = Ep(x|x1:i−1,α̂)

[
log

p(x|x1:i−1, α̂)

p(x|x1:i−1, α)

]

(17)
Then, sn is a martingale about x1:n.

Proof. This lemma is easy to prove according to
the definition of martingale so we omit it.
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Lemma 2. Let zn (n ∈ [N ]) be a series of positive
random variables, ∀t ≥ 0,

P

(
N∑

n=1

zn ≥ t

)
≤

N∑

n=1

P

(
zn ≥ t

N

)
(18)

Proof. Firstly, we have:

P

(
N∑

n=1

zn ≥ t

)
= P

(
N∑

n=1

zn ≥ t, zN ≥ t

N

)

+ P

(
N−1∑

n=1

zn ≥ N − 1

N
t, zN ≥ t

N

)

+ P

(
N∑

n=1

zn ≥ t,

N−1∑

n=1

zn ≥ N − 1

N
t

)

≤ P

(
N−1∑

n=1

zn ≤ N − 1

N
t, zN ≥ t

N

)

+ P

(
N−1∑

n=1

zn ≥ N − 1

N
t, zN ≤ t

N

)

+ 2P

(
N−1∑

n=1

zn ≥ N − 1

N
t, zN ≥ t

N

)

= P

(
N−1∑

n=1

zn ≥ N − 1

N
t

)
+ P

(
zN ≥ t

N

)

(19)
Then, according to this recursion,

P

(
N∑

n=1

zn ≥ t

)

≤ P

(
N−1∑

n=1

zn ≥ N − 1

N
t

)
+ P

(
zN ≥ t

N

)

≤ P

(
N−2∑

n=1

zn ≥ N − 2

N
t

)
+ P

(
zN−1 ≥

t

N

)

+ P

(
zN ≥ t

N

)

· · ·

≤
N∑

n=1

P

(
zN ≥ t

N

)

(20)
So the result is proved.

B Complete Theoretical Results

We analyze the data ICG distribution p(x|x1:N ),
where x1:N are independent and identical dis-
tributed with PDF p(x|β̂) and x is an arbitrary

value in the domain of paragraph. As shown in
Section 2.1, x depends on its topic:

p(x|x1:N ) =
∑

β∈B
p(β|x1:N )p(x|β) (21)

where the topic predictive distribution
p(β|x1:N ) := p(β1:N = β|x1:N ) controls
the strength of each topic for the N + 1-th
paragraph. We then study the property of this
distribution.

Note that the topic predictive distribution can
also analogously be factorized as the mixture of
modes:

p(β|x1:N ) =
∑

α∈A
p(α|x1:N )p(β|x1:N , α) (22)

where the mode posterior p(α|x1:N ) controls the
strength of each mode.

B.1 Property of mode posterior
Firstly, we study the property of the mode posterior
p(α|x1:N ).

Proposition 1. Let:

pmax(α̂) = max
α∈A/α̂

p(α) (23)

If t satisfies:

|A|pmax(α̂)c
−N
1

p(α̂) + |A|pmax(α̂)c
−N
1

≤ t < 1 (24)

and β̂ ∈ R, for repetition mode α̂, we have:

P(1− p(α̂|x1:N ) ≥ t)

≤ |A|e−
(
N log c1+log

tp(α̂)
|A|(1−t)pmax(α̂)

)2

8N log2(c4/c3)

(25)

For any continuous mode α ∈ A/α̂, we also have:

P(p(α|x1:N ) ≥ t)

≤ |A|e−
(
N log c1+log

tp(α̂)
|A|(1−t)pmax(α̂)

)2

8N log2(c4/c3)

(26)

Proof. Firstly, note that the absolute martingale
residual difference of sn in formula (17) is
bounded:

|sn − sn−1|

=

∣∣∣∣log
p(xn|x1:n−1, α)

p(xn|x1:n−1, α̂)
+ KLn−1(α̂∥α)

∣∣∣∣

≤
∣∣∣∣log

p(xn|x1:n−1, α)

p(xn|x1:n−1, α̂)

∣∣∣∣+ |KLn−1(α̂∥α)|

≤ 2 log
c4
c3

(27)
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Then, according to Azuma’s inequity (Azuma,
1967), ∀ϵ > 0, we have:

P

(
N∑

n=1

log
p(xn|x1:n−1, α)

p(xn|x1:n−1, α̂)
+ KLn−1(α̂∥α) ≥ ϵ

)

≤ e
− ϵ2

8N log2(c4/c3)

(28)
Since KLi−1(α̂∥α) ≥ log c1, we can rewrite for-
mula (28) as:

P

(
N∑

i=1

log
p(xn|x1:n−1, α)

p(xn|x1:n−1, α̂)
≥ ϵ−N log c1

)

≤ e
− ϵ2

8N log2(c4/c3)

(29)
Let t = eϵ−N log c1 ∈ [c−N

1 , 1) and rearrange the
formula, we can obtain the following inequality
about the ratio of mode likelihoods:

P

(
p(x1:N |α)
p(x1:N |α̂) ≥ t

)
≤ e

− (N log c1+log t)2

8N log2(c4/c3) (30)

The ratio of mode likelihoods has a direct impact
to the mode posterior. First, for repetiton mode α̂,
∀0 < t < 1, we have:

P(1− p(α̂|x1:N ) ≥ t) = P

(
1

p(α̂|x1:N )
≥ 1

1− t

)

= P


 ∑

α∈A/α̂

p(α)

p(α̂)

p(x1:N |α)
p(x1:N |α̂) ≥ t

1− t




≤
∑

α∈A/α̂

P

(
p(x1:N |α)
p(x1:N |α̂) ≥ tp(α̂)

(|A| − 1)(1− t)p(α)

)

≤
∑

α∈A/α̂

P

(
p(x1:N |α)
p(x1:N |α̂) ≥ tp(α̂)

|A|(1− t)pmax(α̂)

)

(31)
where we unpack the probability in the third line
using lemma 2. Now, if

tp(α̂)

|A|(1− t)pmax(α̂)
≥ c−N

1

⇒ t ≥ |A|pmax(α̂)c
−N
1

p(α̂) + |A|pmax(α̂)c
−N
1

(32)

then we can apply formula (30):

P(1− p(α̂|x1:N ) ≥ t)

≤ |A|e−
(
N log c1+log

tp(α̂)
|A|(1−t)pmax(α̂)

)2

8N log2(c4/c3)

(33)

As for continuous modes α ∈ A/α̂, note that:

P(p(α|x1:N ) ≥ t) ≤ P


 ∑

α∈A/α̂

p(α|x1:N ) ≥ t




= P(1− p(α̂|x1:N ) ≥ t)

≤ |A|e−
(
N log c1+log

tp(α̂)
|A|(1−t)pmax(α̂)

)2

8N log2(c4/c3)

(34)

Based on proposition 1, we can immediately
obtain the following two corollaries:

Corollary 1. If β̂ ∈ R, plimN→∞ p(α̂|x1:N ) = 1

Proof. To prove the results, we need to prove that,
∀ϵ > 0, δ > 0, there exists N0 such that when
N ≥ N0,

P(1− p(α̂|x1:N ) ≥ ϵ) < δ (35)

Firstly, note that when ϵ > 1 or δ ≥ 1, the above
formula holds trivially. When 0 < ϵ ≤ 1, define:

N̂(ϵ) = logc1
|A|(1− ϵ)pmax(α̂)

tp(α̂)
(36)

If N ≥ N̂(ϵ), then

ϵ ≥ |A|pmax(α̂)c
−N
1

p(α̂) + |A|pmax(α̂)c
−N
1

(37)

Therefore, according to proposition 1, we have:

P(1− p(α̂|x1:N ) ≥ ϵ) ≤ f(N) (38)

where

f(N) = |A|e−
(
N log c1+log

tp(α̂)
|A|(1−ϵ)pmax(α̂)

)2

8N log2(c4/c3) (39)

Since f(N) ∈ (0, |A|2] is a monotonic decreasing
function in the domain of [N̂(ϵ),∞], ∀δ ∈ (0, 1)
there must exists N ′ ≥ N̂(ϵ) such that δ = f(N ′),
or equivalently, N ′ = f−1(δ). Let’s set N0 =
⌈f−1(δ)⌉+ 1. If N ≥ N0,

P(1− p(α̂|x1:N ) ≥ ϵ) ≤ f(⌈f−1(δ)⌉+ 1) < δ
(40)

Therefore, the result is proven.

Corollary 2. If t satisfies:

|A|5/2pmax(α̂)c
−N
1

p(α̂) + |A|pmax(α̂)c
−N
1

≤ t < 1 (41)
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and β̂ ∈ R, we have:

P(|p(β|x1:N )− p(β|x1:N , α̂)| ≥ t)

≤ |A|2e−


N log c1+log

tp(α̂)

|A|(|A|
3
2 −t)pmax(α̂)




2

8N log2(c4/c3)

(42)

Proof. Let pα
N ∈ ∆|A| be the topic posterior vec-

tor:

pα
N =




· · ·
p(α|x1:N )

· · ·


 ∈ ∆|A| (43)

and δα̂ be the one-hot vector peaking at α̂. ∀0 <
t < 1, Obviously:

P
(
∥pα

N − δα̂∥2 ≥ t
)

≤ P


 ∑

α∈A/α̂

p(α|x1:N ) + 1− p(α̂|x1:N ) ≥ t




≤
∑

α∈A/α̂

P

(
p(α|x1:N ) ≥ t

|A|

)

+ P

(
1− p(α̂|x1:N ) ≥ t

|A|

)

(44)
If

t

|A| ≥
|A|pmax(α̂)c

−N
1

p(α̂) + |A|pmax(α̂)c
−N
1

⇒ t ≥ |A|2pmax(α̂)c
−N
1

p(α̂) + |A|pmax(α̂)c
−N
1

(45)

then we can apply formula (25) and (26) to get the
following:

P
(
∥pα

N − δα̂∥2 ≥ t
)

≤ |A|2e−
(
N log c1+log

tp(α̂)
|A|(|A|−t)pmax(α̂)

)2

8N log2(c4/c3)

(46)

Now, denote:

pβ
·|N,α =




· · ·
p(β|x1:N , α)

· · ·


 ∈ [0, 1]|A| (47)

Then, ∀0 < t < 1, we have:

P(|p(β|x1:N )− p(β|x1:N , α̂)| ≥ t)

= P

(∣∣∣∣
(
pα
N − δα̂

)T
pβ
·|N,α

∣∣∣∣ ≥ t

)

≤ P
(∥∥∥pα

N − δα̂
∥∥∥
2

∥∥∥pβ
·|N,α

∥∥∥
2
≥ t
)

≤ P

(∣∣∣pα
N − δα̂

∣∣∣ ≥ t√
|A|

)
(48)

If t ≥ |A|5/2pmax(α̂)c
−N
1

p(α̂)+|A|pmax(α̂)c
−N
1

, we can then apply for-

mula (46) to obtain the result.

B.2 Property of topic posterior under
repetition mode

Secondly, we study the property of the topic poste-
rior under the repetition mode p(β|x1:N , α̂).
Proposition 2. Let

pmax(β̂) = max
β∈B/β̂

p(β|α̂) (49)

If t satisfies:

|B|pmax(β̂|α̂)c2−N

p(β̂|α̂) + |B|pmax(β̂|α̂)c2−N
≤ t < 1 (50)

Then, for the ground-truth topic β̂, if β̂ ∈ R, we
have:

P(1− p(β̂|x1:N , α̂) ≥ t) ≤
∑

β∈B/β̂

≤ |B|e−
2

(
N log c2+log

tp(β̂|α̂)

|B|(1−t)pmax(β̂|α̂)

)2

N log2(c4/c3)

(51)

For any other topic β ∈ R/β̂, we also have:

P(p(β|x1:N , α̂) ≥ t)

≤ |B|e−
2

(
N log c2+log

tp(β̂|α̂)

|B|(1−t)pmax(β̂|α̂)

)2

N log2(c4/c3)

(52)

Proof. For any topic β ∈ B/β̂, let

sn =

n∑

i=1

log
p(xi|β)
p(xi|β̂)

(53)

Since each demonstration xn is independently sam-
pled from p(x|β̂), all the addends in the above
formula are independent. Also, note that:

E[sn] =
n∑

i=1

E

[
log

p(xi|β)
p(xi|β̂)

]
= nKL(β̂∥β)

≥ n log c2∣∣∣∣∣log
p(xi|β)
p(xi|β̂)

∣∣∣∣∣ ≤ log
c4
c3

(54)
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Then, according to Hoeffding’s inequity (Hoeffd-
ing, 1994), ∀ϵ > 0,

P

(
N∑

i=1

log
p(xi|β)
p(xi|β̂)

≥ ϵ−N log c2

)

≤ P

(
N∑

i=1

log
p(xi|β)
p(xi|β̂)

≥ ϵ−NKL(β̂∥β)
)

= P

(
N∏

i=1

p(xi|β)
p(xi|β̂)

≥ eϵ−NKL(β̂∥β)
)

≤ e
− 2ϵ2

N log2(c4/c3)

(55)
Let t = eϵ−N log c2 ≥ c2

−N , we have:

P

(
N∏

n=1

p(xn|β)
p(xn|β̂)

≥ t

)
≤ e

− 2(N log c2+log t)2

N log2(c4/c3) (56)

The rest of proof of is very similar to that of propo-
sition 1, ∀t ≥ |B|pmax(β̂|α̂)c2−N

p(β̂|α̂)+|B|pmax(β̂|α̂)c2−N
,

P(1− p(β̂|x1:N , α̂) ≥ t) ≤
∑

β∈B/β̂

P

(
N∏

n=1

p(xn|β)
p(xn|β̂)

≥ tp(β̂|α̂)
|B|(1− t)pmax(β̂|α̂)

)

≤ |B|e−
2

(
N log c2+log

tp(β̂|α̂)

|B|(1−t)pmax(β̂|α̂)

)2

N log2(c4/c3)

(57)
And ∀β ∈ R/β̂,

P(p(β|x1:N , α̂) ≥ t)

≤ |B|e−
2

(
N log c2+log

tp(β̂|α̂)

|B|(1−t)pmax(β̂|α̂)

)2

N log2(c4/c3)

(58)

Likewise, we can also obtain the following coro-
lary:

Corollary 3. If β̂ ∈ R, plimN→∞ p(β̂|x1:N , α̂) =
1.

Proof. The proof is identical to the proof of corol-
lary 4 so we omit it.

B.3 Property of topic predictive distribution

Based on the above results, we are able to investi-
gate the property of the topic predictive distribution
p(β|x1:N ).

Proposition 3. If t satisfies:

1 > t ≥ max





2|A|5/2pmax(α̂)c
−N
1

p(α̂)+|A|pmax(α̂)c
−N
1

2|B|pmax(β̂|α̂)c2−N

p(β̂|α̂)+|B|pmax(β̂|α̂)c2−N

(59)

Then, for the ground-truth topic β̂, if β̂ ∈ R, we
have:

P(1− p(β̂|x1:N ) ≥ t)

≤ |A|2e−


N log c1+log

tp(α̂)

|A|(2|A|
3
2 −t)pmax(α̂)




2

8N log2(c4/c3)

+ |B|e−
2

(
N log c2+log

tp(β̂|α̂)

|B|(2−t)pmax(β̂|α̂)

)2

N log2(c4/c3)

(60)

For other topics β ∈ B/β̂, we also have:

P(p(β|x1:N ) ≥ t)

≤ |A|2e−


N log c1+log

tp(α̂)

|A|(2|A|
3
2 −t)pmax(α̂)




2

8N log2(c4/c3)

+ |B|e−
2

(
N log c2+log

tp(β̂|α̂)

|B|(2−t)pmax(β̂|α̂)

)2

N log2(c4/c3)

(61)

Proof. For the ground-truth topic β̂ and any 0 <
t < 1, we have:

P(1− p(β̂|x1:N ) ≥ t)

= P(p(β̂|x1:N , α̂)− p(β̂|x1:N )+

1− p(β̂|x1:N , α̂) ≥ t)

≤ P(|p(β̂|x1:N , α̂)− p(β̂|x1:N )|+
1− p(β̂|x1:N , α̂) ≥ t)

≤ P

(
|p(β̂|x1:N , α̂)− p(β̂|x1:N )| ≥ t

2

)

P

(
1− p(β̂|x1:N , α̂) ≥

t

2

)

(62)

Therefore, if

1 > t ≥ max





2|A|5/2pmax(α̂)c
−N
1

p(α̂)+|A|pmax(α̂)c
−N
1

2|B|pmax(β̂|α̂)c2−N

p(β̂|α̂)+|B|pmax(β̂|α̂)c2−N

(63)

we can then apply corollary 2 and proposition 2 to
prove formula (60). Meanwhile, for other topics
β ∈ B/β̂, we have:

P(p(β|x1:N ) ≥ t) ≤ P


 ∑

β∈B/β̂

p(β|x1:N ) ≥ t)




= P(1− p(β̂|x1:N ) ≥ t))
(64)
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Then, if t satisfies formula (63), we can obtain
formula (61).

The property of the topic predictive distribution
can be summarized more compactly via the follow-
ing corollary:

Corollary 4. If β̂ ∈ R, plimN→∞ p(β̂|x1:N ) = 1.

Proof. The proof is identical to the proof of corol-
lary 4 so we omit it.

B.4 Property of in-context generative
distribution

According the property of the topic predictive dis-
tribution, we can finally study the property of the
in-context generative distribution.

Proposition 4. If t satisfies:

1 > t ≥ max





2c4|A|5/2|B|3/2pmax(α̂)c
−N
1

p(α̂)+|A|pmax(α̂)c
−N
1

2c4|B|3/2pmax(β̂|α̂)c2−N

p(β̂|α̂)+|B|pmax(β̂|α̂)c2−N

(65)

and β̂ ∈ R, for any candidate paragraph x ∈ Σ∗,
we have:

P(|p(x|x1:N )− p(x|β̂)| ≥ t)

≤ |A|2|B|e−


N log c1+log

tp(α̂)

|A|(2|A|
3
2 |B|

3
2 c4−t)pmax(α̂)




2

8N log2(c4/c3)

+ |B|2e−
2


N log c2+log

tp(β̂|α̂)

|B|(2|B|
3
2 c4−t)pmax(β̂|α̂)




2

N log2(c4/c3)

(66)

Proof. Let pβ
N ∈ ∆|B| be the topic predictive vec-

tor:

pβ
N =




· · ·
p(β|x1:N )

· · ·


 ∈ ∆|B| (67)

and δβ̂ be the one-hot vector peaking at β̂. For all
0 < t < 1, we have:

P
(
∥pβ

N − δβ̂∥2 ≥ t
)

≤ P


 ∑

β∈B/β̂

p(β|x1:N ) + 1− p(β̂|x1:N ) ≥ t




≤
∑

β∈B/β̂

P

(
p(β|x1:N ) ≥ t

|B|

)

+ P

(
1− p(β̂|x1:N ) ≥ t

|B|

)

(68)

If

t

|B| ≥ max





2|A|5/2pmax(α̂)c
−N
1

p(α̂)+|A|pmax(α̂)c
−N
1

2|B|pmax(β̂|α̂)c2−N

p(β̂|α̂)+|B|pmax(β̂|α̂)c2−N

⇒ t ≥ max





2|A|5/2|B|pmax(α̂)c
−N
1

p(α̂)+|A|pmax(α̂)c
−N
1

2|B|2pmax(β̂|α̂)c2−N

p(β̂|α̂)+|B|pmax(β̂|α̂)c2−N

(69)

Then we can apply results from proposition 3 to
get the following:

P
(
∥pβ

N − δβ̂∥2 ≥ t
)

≤ |A|2|B|e−


N log c1+log

tp(α̂)

|A|(2|A|
3
2 |B|−t)pmax(α̂)




2

8N log2(c4/c3)

+ |B|2e−
2

(
N log c2+log

tp(β̂|α̂)

|B|(2|B|−t)pmax(β̂|α̂)

)2

N log2(c4/c3)

(70)
Now, denote:

px
·|β =




· · ·
p(x|β)
· · ·


 ∈ [c3, c4]

|B| (71)

Therefore, For all 0 < t < 1,

P(|p(x|x1:N )− p(x|β̂)| ≥ t)

= P

(∣∣∣∣
(
pβ
N − δβ̂

)T
px
·|β

∣∣∣∣ ≥ t

)

≤ P
(∥∥∥pβ

N − δβ̂
∥∥∥
2

∥∥∥px
·|β

∥∥∥
2
≥ t
)

≤ P

(∥∥∥pβ
N − δβ̂

∥∥∥
2
≥ t√

|B|c4

)
(72)

Therefore, if t satisfies formula (65), we can then
apply formula (66) to prove the result.

Proposition 4 directly supports the following
corollary:

Corollary 5. If β̂ ∈ R, plimN→∞ p(x|x1:N ) =
p(x|β̂).

Proof. The proof is identical to the proof of corol-
lary 4 so we omit it.

B.5 Property of in-context predictive
distribution

We can generalize the property of ICG distribution
to the in-context predictive distribution as well,
which forms the theoretical foundation of ICL.
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Proposition 5. If t satisfies:

1 > t ≥ max





4c23c
2
4|A|5/2|B|3/2pmax(α̂)c

−N
1

p(α̂)+|A|pmax(α̂)c
−N
1

4c23c
2
4|B|3/2pmax(β̂|α̂)c2−N

p(β̂|α̂)+|B|pmax(β̂|α̂)c2−N

(73)

and β̂ ∈ R, we have

P
(∣∣∣p(y|(x, y)1:N , x)− p(y|x, β̂)

∣∣∣ ≥ t
)

≤ |A|2|B|e−


N log c1+log

tp(α̂)

|A|(4|A|
3
2 |B|

3
2 c23c

2
4−t)pmax(α̂)




2

8N log2(c4/c3)

+ |B|2e−
2


N log c2+log

tp(β̂|α̂)

|B|(4|B|
3
2 c23c

2
4−t)pmax(β̂|α̂)




2

N log2(c4/c3)

(74)

Proof. ∀0 < t < 1, we have

P
(∣∣∣p(y|(x, y)1:N , x)− p(y|x, β̂)

∣∣∣ ≥ t
)

= P

(∣∣∣∣∣
p(x, y|(x, y)1:N )

p(x|(x, y)1:N )
− p(x, y|β̂)

p(x|β̂)

∣∣∣∣∣ ≥ t

)

= P

(∣∣∣∣∣
p(x|β̂)p(x, y|(x, y)1:N )

p(x|(x, y)1:N )p(x|β̂)
−p(x, y|β̂)p(x|(x, y)1:N )

∣∣∣∣∣ ≥ t

)

≤ P
(∣∣∣p(x|β̂)p(x, y|(x, y)1:N )

−p(x, y|β̂)p(x|(x, y)1:N )
∣∣∣ ≥ t

c23

)

= P
(∣∣∣p(x|β̂)

(
p(x, y|(x, y)1:N )− p(x, y|β̂)

)

+ p(x, y|β̂)
(
p(x|β̂)− p(x|(x, y)1:N )

)∣∣∣ ≥ t

c23

)

≤ P

(∣∣∣p(x|(x, y)1:N )− p(x|β̂)
∣∣∣ ≥ t

2c23c4

)

+ P

(∣∣∣p(x, y|(x, y)1:N )− p(x, y|β̂)
∣∣∣ ≥ t

2c23c4

)

(75)
Therefore, if t satisfies:

1 > t ≥ max





4c23c
2
4|A|5/2|B|3/2pmax(α̂)c

−N
1

p(α̂)+|A|pmax(α̂)c
−N
1

4c23c
2
4|B|3/2pmax(β̂|α̂)c2−N

p(β̂|α̂)+|B|pmax(β̂|α̂)c2−N

(76)

we can use the results of proposition 4 to obtain the
results.

We can also obtain the following convergence
corollary from proposition 5:

Corollary 6. If β̂ ∈ R, plimN→∞ p(y|x1:N , x) =
p(y|x, β̂).

Proof. The proof is identical to the proof of corol-
lary 4 so we omit it.

C Convergence Speed

We can also observe the convergence speed from
p(β̂|x1:N ) to 1 from proposition 3. Specifically,
take the derivative of the upper-bound to N in for-
mula (60), we can see that the convergence speed
is around

O


−

(
e

log2 c1
8 log2(c4/c3)

)−N

−
(
e

2 log2 c2
log2(c4/c3)

)−N



(77)
Therefore, the higher the distinction between dif-
ferent modes and topics, i.e, the higher log c1 and
log c2, the faster the convergence of the data ICTR.

D Expectation of KL(β̂∥β)

According to the settings, each topic β ∈ B con-
tains a few sub-topics, then the expectation of
KL(β̂∥β) depends on KL divergences of those sub-
topics:

E
[
KL(β̂∥β)

]
=

M∑

m=1

Eρ̂m,ρm [KL(ρ̂m∥ρm)]

=
M∑

m=1

Eρ̂m,ρm

[∑

s

p(s|ρ̂m) log
p(s|ρ̂m)

p(s|ρm)

]

(78)
Given that β̂ and β are different, there at least exists
one subtopic is different between them, so:

E
[
KL(β̂∥β)

]
≥ Eρ̂,ρ [KL(ρ̂∥ρ)] (79)

Note that for each ρ ∈ B∗, the sub-paragraph dis-
tribution p(s|ρ) = p(s|Ãρ) is Markovian, where
Ãρ = [πρ,Aρ] is a row concatenation of the ini-
tial probability vector πρ and transition matrix Aρ

sampled from Dir([γ]|Σ|). Let T be the length of s.
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Expand the KL divergence, we have

Eρ̂,ρ [KL(ρ̂∥ρ)] = ET
ρ̂,ρ [KL(ρ̂∥ρ)]

= EÃρ̂,Ãρ

[
KL
(
p(·|Ãρ̂)∥p(·|Ãρ

)]

= EÃρ̂,Ãρ


 ∑

s1:T−1

∑

sT

p(s1:T−1|Ãρ̂)Ã
sT−1,sT
ρ̂ log

p(s1:T−1|Ãρ̂)Ã
sT−1,sT
ρ̂

p(s1:T−1|Ãρ)Ã
sT−1,sT
ρ

]

= ET−1
ρ̂,ρ [KL(ρ̂∥ρ)] + EÃρ̂,Ãρ


 ∑

sT−1,sT

p(sT−1|Ãρ̂)Ã
sT−1,sT
ρ̂ log

Ã
sT−1,sT
ρ̂

Ã
sT−1,sT
ρ

]

(80)
Note that Assumption 3 actually implicit that
p(sT |Ãρ) is bounded for all T and ρ ∈ B∗. We
assume the lower bound is c5. Then, the second
term of the above formula has the following lower
bound:

EÃρ̂,Ãρ


 ∑

sT−1,sT

p(sT−1|Ãρ̂)Ã
sT−1,sT
ρ̂ log

Ã
sT−1,sT
ρ̂

Ã
sT−1,sT
ρ

]

≥ c5EÃρ̂,Ãρ


 ∑

sT−1,sT

Ã
sT−1,sT
ρ̂ log

Ã
sT−1,sT
ρ̂

Ã
sT−1,sT
ρ




= c5EÃρ̂


 ∑

sT−1,sT

Ã
xT−1,xT

ρ̂ log Ã
xT−1,xT

ρ̂




− c5EÃρ̂,Ãρ


 ∑

sT−1,sT

Ã
xT−1,xT

ρ̂ log Ã
xT−1,xT
ρ




= c5|Σ| [ψ(γ + 1)− ψ(|Σ|γ + 1)]

− c5|Σ| [ψ(γ)− ψ(|σ|γ)]

=
c5(|Σ| − 1)

γ
(81)

where ψ(x) is the digamma function, and we use
the property ψ(x + 1) = ψ(x) + 1/x to simplify

the above formula. Therefore, we have:

ET
ρ̂,ρ [KL(ρ̂∥ρ)] ≥ ET−1

ρ̂,ρ [KL(ρ̂∥ρ)] + c5(|Σ| − 1)

γ

≥ET−2
ρ̂,ρ [KL(ρ̂∥ρ)] + 2c5(|Σ| − 1)

γ

· · ·

≥Tc5(|Σ| − 1)

γ
(82)

Therefore, the expectation of KL(β̂∥β) is bounded:

E
[
KL(β̂∥β)

]
≥ Tc5(|Σ| − 1)

γ
(83)

We can see that the lower the value of γ, the larger
the expected topic-wise KL divergence, and the
more significant the topic distinction is.

E Computation of Prompt and Topic-wise
ICTR

According to the definition, given an in-context
prompt x1:N , where each sample xn ∼ p(x|β̂),
ICTR is the probability that the language model
generates a paragraph also belonging to topic β̂.
Thus, to measure the belongness of the generated
paragraph, we use the mixture of topic-paragraph
models

∑
β∈B π

β
x1:Np(x|β) to fit the ICG distri-

bution of the target language model pLM(x|x1:N ).
Here, p(x|β) is fixed, and we sample L1 para-
graphs from pLM(x|x1:N ) to fit πβx1:N using EM
algorithm (Bishop and Nasrabadi, 2006) as shown
in Algorithm 1. As a result, the estimated πβ̂x1:N

can represent the ICTR given the in-context prompt
x1:N .

We further compute the topic-wise ICTR to sum-
marize the ICG ability of a specific topic. Topic-
wise ICTR is the expectation of prompt-wise ICTR:

πβN = Ep(x1:N |βN )

[
πβx1:N

]
≃ 1

L2

L2∑

l=1

πβ
xl
1:N

(84)

Here, we use Monte-Carlo sampling to estimate
the expectation, where xl1:N is the l-th sample of∏N

n=1 p(xn|β̂). Due to the large number of the
topics (531441) in the pretrained distribution, for
simplicity, L1 and L2 are both set to 1. Thus, the
evaluation of a model just requires 531441 forward
passes, where the time consumption is acceptable.
In-context prompts for evaluation is shown in Fig-
ure 3.
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Algorithm 1 Prompt-wise ICTR computation

Randomly initialize πβ
x1:N

.
for l = 1, · · · , L1 do

xl ∼ pLM(x|x1:N )
end for
while not convergence do

for l = 1, · · · , L1 do

ωβ,l
x1:N

=
πβ
x1:N

p(xl|β)
∑

β′∈B π
β′
x1:N

p(xl|β)
end for
πβ
x1:N

=
∑L1

l=1
ωβ,l
x1:N

L1

end while
pLM(β|x1:N )← πβ

x1:N

return pLM(β|x1:N )
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