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Abstract

This paper explores an intriguing observation:
fine-tuning a large language model (LLM) with
responses generated by a LLM often yields bet-
ter results than using responses generated by
humans, particularly in reasoning tasks. We
conduct an in-depth investigation to under-
stand why this occurs. Contrary to the com-
mon belief that these instances is due to the
more detailed nature of LLM-generated con-
tent, our study identifies another contributing
factor: an LLM is inherently more "famil-
iar" with LLM generated responses. This fa-
miliarity is evidenced by lower perplexity be-
fore fine-tuning. We design a series of experi-
ments to understand the impact of the "famil-
iarity" and our conclusion reveals that this "fa-
miliarity" significantly impacts learning per-
formance. Training with LLM-generated re-
sponses not only enhances performance but
also helps maintain the model’s capabilities
in other reasoning tasks after fine-tuning on
a specific task. Our code and data are pub-
lic at https://github.com/XuanRen4470/I-Learn-
Better-If-You-Speak-My-Language.

1 Introduction

Recent research has demonstrated that a large lan-
guage model (LLM) can generate training data
for another LLM (Dai et al., 2023; Edwards
et al., 2022; Møller et al., 2024; Guo et al., 2023;
Ubani et al., 2023; Piedboeuf and Langlais, 2023a;
Agrawal et al., 2023; Xu et al., 2023; Kieser et al.,
2023; Taori et al., 2023; Peng et al., 2023; Xu et al.,
2024). This approach offers a method for transfer-
ring knowledge from a larger model to a smaller
one, or for creating supplementary training mate-
rials, such as rationales (Zhang et al., 2024; Kang
et al., 2023; Li et al., 2022), or refined step-by-
step reasoning (Hsieh et al., 2023; Ho et al., 2022;
Magister et al., 2023; Fu et al., 2023).

* Corresponding author.

In this paper, we made an intriguing observa-
tion that fine-tuning an LLM (dubbed target LLM)
with responses generated by a LLM, either target
LLM or other LLMs, often yields better results
than using responses provided by humans in chain-
of-thought reasoning tasks, as shown in Table 1.
The prevailing view attributes the successful train-
ing results of LLM-generated data to the fact that
LLMs provide more details than human-annotated
data, such as ‘chain-of-thought-style’ reasoning
process(Hsieh et al., 2023; Ho et al., 2022; Mag-
ister et al., 2023; Fu et al., 2023). However, our
experiments have found numerous counterexam-
ples. As shown in Figure 1 , target responses that
include more details and utilize chain of thought
styles do not necessarily result in better training
outcomes. This indicates there are other factors
contributing to the excellent performance of LLM
generated responses.

The observation above motivates us to investi-
gate the underlying reason for this phenomenon.
We found that whether the target LLM is familiar
with the target responses is a crucial factor influ-
encing model training on reasoning tasks.

Our main hypothesis are as follows:

• Given the same question, the target LLM is
inherently familiar with responses generated
by itself or other LLMs.

• The target LLM can better adapt to and lever-
age responses in its familiar styles, leading to
improved outcomes.

The following section of this paper will examine
the hypothesis through a series of experiments. We
will measure ‘familiarity,’ conduct ablation studies
by creating different variants of LLM-generated
responses, and evaluate their performance to un-
derstand various factors in the process. This will
provide insights into our hypothesis.
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Training Mistral-7B on MATH Algebra
Ground truth (Acc 20.6%, Avg token length 162.4): We use the distance formula: $$\\sqrt{(8 - 0)^2 + (0 - 15)^2} = \\sqrt{64 + 
225} = \\boxed {17}.$$- OR -\n\nWe note that the points $(0, 15)$, $(8, 0)$, and $(0, 0)$ form a right triangle with legs of 
length 8 and 15. This is a Pythagorean triple, so the hypotenuse must have length $\\boxed{17}$. Final Answer: 17

GPT-4 Prediction(Acc 30.2 %, Avg token length 326.6): The distance between two points in a plane can be calculated using the 
Pythagorean theorem, which states that the distance `d` between two points `(x1, y1)` and `(x2, y2)` is given by:\n\nd = 
\u221a((x2 - x1)\u00b2 + (y2 - y1)\u00b2)\n\nFor the points (0,15) and (8,0), we can plug in these values into the 
formula:\n\nd = \u221a((8 - 0)\u00b2 + (0 - 15)\u00b2)\nd = \u221a(64 + 225)\nd = \u221a289\nd = 17\n\nFinal Answer: 17

Step by step (Acc 23.9 %, Avg token length 452.0): To find the distance between two points in a Cartesian coordinate system, 
we use the distance formula, which is derived from the Pythagorean theorem. For two points (x1, y1) and (x2, y2), the 
distance (d) between them is given by:\n\nd = \u221a[(x2 - x1)\u00b2 + (y2 - y1)\u00b2]\n\nLet's calculate the distance 
between the points (0,15) and (8,0).\n\nStep 1: Assign the values to the respective coordinates:\n(x1, y1) = (0, 15)\n(x2, 
y2) = (8, 0)\n\nStep 2: Substitute these values into the distance formula:\nd = \u221a[(8 - 0)\u00b2 + (0 -
15)\u00b2]\n\nStep 3: Calculate the squares of the differences:\nd = \u221a[(8)\u00b2 + (-15)\u00b2]\nd = \u221a[64 + 
225]\n\nStep 4: Sum the squares:\nd = \u221a[289]\n\nStep 5: Take the square root to find the distance:\nd = \u221a[289]\nd = 
17\n\nTherefore, the distance between the points (0,15) and (8,0) is 17 units.\n\nFinal Answer: 17.0

Figure 1: This figure shows training outcomes for different data generation methods, demonstrating that more
details do not always improve performance.

2 Empirical Study Protocols

The purpose of this paper is to understand and in-
vestigate the aforementioned phenomenon through
empirical analysis. We begin by introducing our
study protocols, including the datasets and evalua-
tion approaches used.

2.1 Training and Evaluation approaches
Without loss of generality, we denote the training
data as question and response pairs (q, r). We will
use a subset of the Llama2 benchmark (Touvron
et al., 2023) to create the training dataset. We will
use a subset of the Llama2 benchmark that contains
human-labeled explicit reasoning processes to cre-
ate the training dataset. The question and response
pairs in these datasets are human-constructed. Ad-
ditionally, we will use an LLM to generate new re-
sponses, following r′ = LLM(q, P ), where LLM
denotes the language model and P denotes the
prompt used to create the response. We will ex-
plore different P in the following experiment. This
creates a synthetic version of dataset {(q, r′)}.

Our training approach for the Llama2-13b-
chat(Touvron et al., 2023) and Mistral-7b-Instruct-
v2(Jiang et al., 2023) models involves specific adap-
tations to optimize performance. For general, fully
supervised fine-tuning of the Llama2-13b-chat and
Mistral-7b-Instruct-v2 models, we employ a de-
fault learning rate of 2e-5, a batch size of 32, and a
warm-up period comprising 10% of the total steps.
In contrast, Given the small size of the training
datasets, such as MBPP and HumanEval, we re-
duced the batch size to 10 to accommodate the
limited data. For the Llama2-13b-chat model train-
ing on the HumanEval dataset, we set the learning
rate to 2e-4. This adjustment was necessary as

lower rates proved insufficient for the model to ef-
fectively learn from this dataset. Additionally, we
use a cosine learning rate schedule and fine-tune
only the Q and V matrices of the LORA(Hu et al.,
2021) parameters with a rank of 8. All models are
trained and evaluated using half-precision.

We evaluate the fine-tuned model in two dif-
ferent ways. One is called in-domain evaluation,
which assesses performance on the tasks of the
training set. The other is called cross-task evalu-
ation, which evaluates performance across tasks
on other datasets. The purpose of using cross-task
evaluation is to test if the model can benefit from
the training process of a similar task and if the
model will forget its capability on other tasks after
training on a specific task.

We have developed an evaluation script to auto-
matically measure and report the pass@1 accuracy
of models for each dataset. For the HumanEval
dataset, we utilize its built-in testing script to en-
sure the accuracy of results. Our evaluation scripts
require answers to follow a specific format, detailed
in Appendix F. The models not trained in this for-
mat have demonstrated difficulty adhering to it for
coding tasks, such as MBPP and HumanEval (Chen
et al., 2021; Austin et al., 2021). Therefore, cross-
domain evaluations are not conducted for MBPP
and HumanEval.

2.2 Dataset and API

We utilized the Llama2 benchmark (Touvron
et al., 2023) to select five datasets that include
a detailed reasoning process in their annota-
tions. This category includes GSM8K(Cobbe
et al., 2021), MATH(Hendrycks et al., 2021), Hu-
manEval(Chen et al., 2021), MBPP(Austin et al.,
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2021), and ECQA (Aggarwal et al., 2021), where
the ground truth comprises a complete human-
labeled problem-solving process or rationale, not
just the final answer. For example, the ground truth
in GSM8K involves comprehensive mathematical
reasoning, and the coding datasets’ ground truths
consist of complete codes, which are logical se-
quences by nature. We included coding datasets
like MBPP and HumanEval in this category, as
developing code inherently involves logical reason-
ing, even though it may not always be presented
in the form of a traditional chain of thought. Our
model was trained on one dataset and subjected to
in-domain testing on the same dataset, as well as
cross-domain testing on other datasets. Our selec-
tion includes all coding and mathematics datasets
within the Llama2 benchmark. We chose to use
the ECQA dataset because it includes human an-
notated rationales, unlike the CQA(Talmor et al.,
2018) dataset included in the Llama2 benchmark.

Code: We evaluated coding ability using the Hu-
manEval (Chen et al., 2021) and MBPP (Austin
et al., 2021) datasets. Note that the HumanEval
dataset contains only 164 testing data points with
no training data. We divided the training task into
two parts: in the first part, we trained on the first 82
data points and tested on the last 82. In the second
part, we reversed this order. Ultimately, we aver-
aged the test results from both parts. For the MBPP-
full dataset, as opposed to the MBPP-sanitized ver-
sion which includes fewer training data points, we
utilized all available training data (374 data points)
and testing data (500 data points)

Commonsense Reasoning: For Commonsense
QA task, we selected the ECQA (Aggarwal et al.,
2021) dataset, which provides explanations for the
answers from CQA(Talmor et al., 2018) dataset.
We combined these explanations with the multiple-
choice answers to form the ground truth training
data. We used the first 1000 training and test data
points for training and evaluation.

Math: We conducted training and evaluations
on the GSM8K (Cobbe et al., 2021) and MATH
(Hendrycks et al., 2021) datasets. The MATH
dataset encompasses several categories. We con-
ducted training and evaluations exclusively within
the algebra category. For the evaluation, we de-
veloped a script that compares the ground-truth
answer with the model’s final prediction. This
script accurately evaluates responses that are nu-
merical. However, in the MATH dataset, some
answers contain inequalities or complex mathemat-

ical expressions. We filtered out these data points
and used only those with numerical answers for
both training and evaluation. After excluding data
points with non-numerical answers, we used the
first 1000 training data points for training and all
the testing data points for testing. As a result, we
obtained 1000 training and 1314 testing data points
for GSM8K, and 1000 training and 752 testing data
points for MATH (algebra).

API: We did our experiment with use gpt-4-
1106-preview (OpenAI, 2023) from OpenAI and
claude-3-5-sonnet-20240620 (Anthropic, 2023)
from Anthropic.

3 Observation and Hypothesis

3.1 Observation 1: Superior Performance of
LLMs Over Human-Annotated Labels

Our study is inspired by a compelling observa-
tion: when an advanced LLM, such as GPT-4 or
Claude 3.5, is used to generate responses to ques-
tions, and these questions along with their gen-
erated responses are used as a synthetic dataset,
fine-tuning a smaller LLM (such as Llama2-13B-
Chat or Mistral-7B-Instruct-v2) on this synthetic
dataset often yields better performance than us-
ing the original dataset with human-provided an-
swers. The detailed experimental results are pre-
sented in Table 1. As demonstrated, the majority
of the low-performance data points (14 out of 17),
marked in red, reflect accuracies when training with
human-annotated ground truth. Using synthetic
datasets consistently yields higher in-domain per-
formance compared to human-answered datasets.
Notably, we observe a significant improvement in
math-related tasks, often exceeding a 10% absolute
increase in in-domain performance. Additionally,
the model trained on the synthetic data achieves
higher cross-domain performance. This observa-
tion motivates us to investigate the underlying rea-
sons.

3.2 Observation 2: Significantly Lower
Perplexity of LLM generated responses
Over Human-Annotated Labels

We measured the perplexity of responses as as-
sessed by the target LLMs (Mistral-7B-Instruct-v2
and Llama2-13B-chat). An interesting observa-
tion, shown in Figure 2, is that responses generated
by LLMs such as GPT-4, Claude 3.5, Mistral-7B-
Instruct-v2, and Llama2-13B-chat, using a zero-
shot approach, exhibit significantly lower perplex-
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Figure 2: Average Perplexity Comparison

ity compared to those provided by humans for the
same input questions from the training data. Lower
perplexity suggests that LLMs are more familiar
with responses generated by other LLMs or them-
selves than with human-generated responses.

3.3 Hypotheses

From Observation 2, we notice that given the same
question, the average perplexity of responses gen-
erated by LLMs is consistently lower than the per-
plexity of ground truth annotated by humans. This
observation leads us to pose our first hypothesis:
When generating target responses for the same
question, one LLM inherently more familiar with
data generated by another LLM. We not only ob-
served consistently lower perplexity from advanced
LLMs (GPT-4 and Claude 3.5) across tasks in Ob-
servation 2 but also noted that LLMs trained on
advanced LLMs generated responses consistently
outperform the same LLMs trained using human-
annotated data. This phenomenon leads us to pro-
pose our second hypothesis: An LLM performs
better when trained on data it is familiar with.

4 Investigation of the hypotheses

In this section, we conduct an in-depth investiga-
tion about the aforementioned hypotheses. Our
investigations are organized into two parts. In Sec-
tion 4.1, we examine to what extend the familiarity
contribute to higher performance of using LLM
generated responses. Particularly, we conduct ex-
periments to ablate the factor that LLM could in-
troduce additional reasoning details to the original
human-provided response. In Section 4.2, we ex-
periment to determine if a model, when used alone
without the assistance of a more advanced model,

can rewrite ground truth into a form it is more fa-
miliar with, thereby enhancing training outcomes.
The advantage of this experimental design is that it
allows us to evaluate the effect of familiarity while
removing any benefits that might arise from using
a more advanced language model.

4.1 Understand the impact of “familiarity”

Experiment 1: Is observation 1 only rooted from
more detailed reasoning steps provided by the
LLM other than familiarity?
Our observation 1 suggests that using advanced
LLMs generated data leads to better training effec-
tiveness than using human-annotated ground truth.
Our second hypothesis posits that this enhanced
learning by LLMs on LLMs responses could be
attributed to familiarity with the data. It is a com-
mon belief that LLMs often includes more detailed
content than human annotators, which could con-
tribute to improved training outcomes. However,
we question whether the superior results from ad-
vanced LLMs are solely due to the addition of more
details, or if familiarity plays a significant role as
well.

To investigate whether the superior performance
is due to the additional detail provided by advanced
LLMs compared to humans, we designed the fol-
lowing experiment. We employed different meth-
ods to have GPT-4 generate data in a detailed, step-
by-step manner. For each dataset, we established
a control group: one group involved GPT-4 trans-
forming ground truth into its own detailed style,
while the other had GPT-4 mimic the style of the
human-labeled ground truth, adding detail to build
upon it in a step-by-step style. As shown in Ta-
ble 2, in the vast majority of cases, the training
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Method Training Dataset and Model Type GSM8K Math Algebra ECQA HumanEval MBPP
Groundtruth GSM8K, Mistral 0.434 0.162 0.594
GPT-4 Answer Directly 0.597 0.246 0.597
Claude Answer Directly 0.586 0.230 0.595
Groundtruth GSM8K, Llama 0.364 0.141 0.565
GPT-4 Answer Directly 0.428 0.128 0.575
Claude Answer Directly 0.433 0.110 0.548
Groundtruth Math algebra, Mistral 0.264 0.206 0.554
GPT-4 Answer Directly 0.553 0.302 0.608
Claude Answer Directly 0.554 0.277 0.606
Groundtruth Math algebra, Llama 0.36 0.126 0.575
GPT-4 Answer Directly 0.35 0.150 0.561
Claude Answer Directly 0.317 0.137 0.54
Groundtruth ECQA, Mistral 0.258 0.134 0.68
GPT-4 Answer Directly 0.462 0.223 0.722
Claude Answer Directly 0.457 0.213 0.714
Groundtruth ECQA, Llama 0.132 0.0798 0.631
GPT-4 Answer Directly 0.379 0.156 0.656
Claude Answer Directly 0.38 0.129 0.678
Groundtruth HumanEval, Mistral 0.363 0.191 0.583 0.323
GPT-4 Answer Directly 0.313 0.163 0.581 0.366
Claude Answer Directly 0.383 0.181 0.553 0.372
Groundtruth HumanEval, Llama 0.0705 0.083 0.528 0.146
GPT-4 Answer Directly 0.125 0.105 0.552 0.159
Claude Answer Directly 0.296 0.104 0.435 0.140
Groundtruth MBPP, Mistral 0.392 0.176 0.527 0.276
GPT-4 Answer Directly 0.399 0.186 0.568 0.354
Claude Answer Directly 0.439 0.189 0.573 0.37
Groundtruth MBPP, Llama 0.328 0.132 0.556 0.2
GPT-4 Answer Directly 0.351 0.140 0.574 0.202
Claude Answer Directly 0.339 0.122 0.546 0.204

Table 1: Human-annotated data Vs. data generated directly by GPT-4/Claud 3.5. In-domain performance is
highlighted in grey. Data points are highlighted when accuracy is more than 15% below the highest accuracy on the
same dataset and model. There are 14, 1, and 2 red data points for Groundtruth, GPT-4, and Claude, respectively.

effectiveness of the first group, which used GPT-
4’s own style, was superior to that of the second
group, which followed the human-annotated style.
In addition, it is noteworthy that using the Mistral
7B model for training on math algebra, converting
ground truth into step-by-step answers was even
detrimental. Both of the step by step groundtruth
transformation methods achieves accuracy below
24% on Math Algebra, much lower than 30.2%
achieved by ‘GPT-4 answer directly’(Gpt-4 answer
directly represents employing GPT-4 to generate re-
sponses using only the questions from the training
datasets. For the ECQA task, we provide GPT-4
with gold labels (excluding rationales) to guide its
response generation.) We speculate that one possi-
ble reason for this is that adding ‘more than enough
details’ may sometimes complicate the model’s
reasoning process. We have included additional
experiments in the appendix A, involving various
GPT-4 (refer to Table 6) and Claude 3.5 (refer to
Table 7) generated variants with different token

lengths (shorter or longer), which generally con-
form to the patterns described above. For clarity
and conciseness, Table 2 only includes 2 examples
of the step-by-step variants.

After preliminary validation of our hypotheses,
we made another intriguing observation: Accord-
ing to Table 2, the ‘GPT-4 answer directly’ dataset,
characterized by a shorter average token length of
target responses compared to both ‘step by step’
and ‘step by step transformation of GT’ datasets,
suggests fewer details in its content. Despite this,
the performance of the data directly generated by
GPT-4 frequently ranks among the best of all GPT-
4 answer variants. Meanwhile, other data gener-
ation methods exhibited significantly lower per-
formance than GPT-4’s direct answers on at least
two tasks, as highlighted in red in Table 2. This
suggests that, given a problem, the data directly
generated by an advanced LLM might yield the
good training results. We observed the same pat-
tern in Table 6 and Table 7. Artificially defined
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Method Training Dataset and Model Type GSM8K Math Algebra ECQA token length
Zeroshot Mistral 0.413 0.185 0.504
Zeroshot Llama2 0.35 0.125 0.597
GPT-4 Answer Directly Mistral 0.597 0.246 0.597 179.94
GPT-4 Step-by-step 0.574 0.224 0.591 282.9
GPT-4 Detailed Step-by-Step transformation of GT 0.506 0.196 0.602 315.028
GPT-4 Answer Directly Llama 0.428 0.128 0.575 179.941
GPT-4 Step-by-step 0.402 0.134 0.553 290.92
GPT-4 Detailed Step-by-Step transformation of GT 0.396 0.114 0.553 315.028
GPT-4 Answer Directly Mistral 0.553 0.302 0.608 328.76
GPT-4 Step-by-step 0.533 0.239 0.583 451.99
GPT-4 Detailed Step-by-Step transformation of GT 0.468 0.223 0.582 484.368
GPT-4 Answer Directly Llama 0.35 0.150 0.561 328.76
GPT-4 Step-by-step 0.344 0.145 0.593 450.08
GPT-4 Detailed Step-by-Step transformation of GT 0.299 0.110 0.545 484.368
GPT-4 Answer Directly Mistral 0.462 0.223 0.722 176.54
GPT-4 Step-by-step 0.481 0.203 0.71 325.15
GPT-4 Detailed Step-by-Step transformation of GT 0.487 0.186 0.68 322.855
GPT-4 Answer Directly Llama 0.379 0.156 0.656 176.54
GPT-4 Step-by-step 0.363 0.140 0.648 337.30
GPT-4 Detailed Step-by-Step transformation of GT 0.135 0.106 0.66 322.855

Table 2: Performance comparison of models trained on data constructed using different methods. ntrain = 1000.
Data points are labeled as low performance when accuracy is more than 15% below the highest accuracy on the
same dataset using the same model. See Table 6 and Table 7 for additional experiments with GPT-4 and Claude 3.5.

prompts that add information to the ground truth
may lead to the generation of target responses that
do not conform to the LLM’s linguistic or logical
preferences.

Experiment 2: The impact of familiarity
This section introduces a method for assessing

the influence of style ‘familiarity’. We direct ad-
vanced LLMs to produce several varient of re-
sponses to the same query, grouping them into
two distinct datasets based on their perplexity lev-
els—high and low. We then evaluate and compare
the learning outcomes using these two sets. One
concern of this experiment is that advanced LLMs
may produce answers with different level of de-
tails. To eliminate this factor, we first let advanced
LLMs to generate one answer and then direct it
to paraphrase the generated answer. In this way,
we can create responses that vary in perplexity but
maintain the same semantic meaning.

After training on those two sets of training data,
we examine their performance, shown in Table 3.
As seen, training on the higher-perplexity training
set consistently shows slightly lower performance
than the lower perplexity counterpart, particularly
noticeable in the in-domain performance on two
math datasets. For example, when training the
Mistral model on the Math Algebra dataset, the
GPT-4 answer with lower perplexity set achieves a
30% accuracy rate, while the GPT-4 answer higher
perplexity set only reached 23%. Since they are
only differed in the style of the text, this result

demonstrated that the familiarity of LLMs with the
stylistic aspects of target responses significantly
affects training outcomes.

From these findings, we conclude that LLMs
perform poorly when trained on unfamiliar data,
explaining the suboptimal training results with
human-annotated data.
Discussion: Why are LLMs often familiar with
responses generated from other LLMs? (Huh et al.,
2024) propose the Platonic Representation Hypoth-
esis, suggesting that different AI models exhibit
convergent behavior. This hypothesis supports our
findings that LLMs possess intrinsic familiarity
with both themselves and others. Additionally,
the familiarity may stem from overlapping train-
ing data used during pre-training stages, as many
LLMs, including GPT-4, share similar datasets, in-
fluencing their output styles and content.

4.2 Achieving high familiarity by exploring
the target LLM generated responses

In the experiments described above, we validated
two hypotheses. All the studies mentioned use ad-
vanced LLMs to generate responses, chosen for its
advanced capabilities to directly produce correct
answers and reliably follow diverse instructions.
However, there is a concern regarding the "familiar-
ity" factor: would this argument still hold without
the involvement of an advanced LLM? If valid, the
argument should apply to some extent even without
using advanced LLMs.
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Method Model Type GSM8K GSM8K Perplexity Math Algebra Math Algebra Perpleity ECQA ECQA Perplexity
GPT-4 Answer with Lower Perplexity Mistral 0.600 2.20 0.303 2.10 0.722 6.15
GPT-4 Answer with Higher Perplexity 0.547 5.58 0.231 4.66 0.702 11.13
GPT-4 Answer with Lower Perplexity Llama2 0.424 2.21 0.153 2.36 0.655 5.11
GPT-4 Answer with Higher Perplexity 0.38 4.19 0.131 4.35 0.654 7.69
Claude Answer with Lower Perplexity Mistral 0.586 2.36 0.277 2.24 0.714 4.02
Claude Answer with Higher Perplexity 0.494 5.96 0.218 8.98 0.7 10.63
Claude Answer with Lower Perplexity Llama2 0.433 2.04 0.137 2.33 0.678 3.51
Claude Answer with Higher Perplexity 0.326 3.36 0.121 5.51 0.619 5.69

Table 3: GPT-4/Claude 3.5: Answers with Lower Perplexity vs. Higher Perplexity. ntrain = 1000.

Method Model Type GSM8K Math Algebra ECQA
Groundtruth Mistral 0.434 0.206 0.68
Correct predicted sample + groundtruth 0.491 0.227 0.578
Correct preidcted sample only 0.449 0.257 0.586
Style Transfered Groundtruth 0.51 19.6 0.69
Percentage of training data used in Style Transfered Groundtruth 73.7% 24% 91.2%

Table 4: Performance Comparison when not using advanced LLMs. ntrain = 1000.

This section seeks to develop a method that en-
hances the “familiarity” of responses without re-
quiring more advanced LLMs than the target LLM.

Use the same model for train and groundtruth
style transfer: We devised a method to rewrite the
ground truth data in a style that resembles language
model-generated responses using the Mistral-7B-
Instruct-V2 model. The experiment results are
shown in Table 4. Initially, we posed questions
from the training dataset and recorded the answers
that were correctly predicted by Mistral. We doc-
umented two such correct predictions. These two
correct responses were then used as in-context ex-
amples to guide Mistral on how to rewrite ground
truth data. Specifically, we used two recorded pre-
dictions as example target responses, their corre-
sponding questions as example questions, and the
related ground truth as the example ground truth.
The in-context prompt informed Mistral that its task
was to rewrite the ground truth in its own styles.
For more details, please refer to Figure 6.

Subsequently, we presented all questions and
their corresponding ground truths from the training
dataset to Mistral for style rewriting. We recorded
Mistral’s predictions and paired these with the orig-
inal inputs to form a new training dataset, which
we named "style transferred ground truth."

We noticed that even when provided with the
ground truth, the Mistral model struggles to suc-
cessfully rewrite answers for mathematical tasks.
Therefore, we ran the rewritten math answers
through our evaluation script and found that only
73.7% of the GSM8K answers, 91.2% of the ECQA
answers and 24% of the Math Algebra answers
passed the script. We only used the answers that

passed the script for training.
This experiment was conducted solely with Mis-

tral and not with the Llama model, due to our ob-
servations that Llama2-13b-chat lacks sufficient
in-context following capabilities required for suc-
cessful ground truth style transformation. We show
a failure example in AppendixD. As a compara-
tive experiment, we created the ‘correct predicted
samples only’ dataset. For each sample in this
dataset, we had the Mistral model perform zero-
shot generation 5 times, and using an evaluation
filter, we randomly selected one correct prediction
that passed the filter to be paired with the original
input as a training sample. If the model failed to
generate a correct answer in all 5 attempts, we did
not include that data in the training dataset. The
construction method for the ‘correct predicted sam-
ples’ and ‘correct predicted samples only’ datasets
is similar. The only difference is that if the sample
fails to produce a correct answer, we include the
ground truth in the dataset as the correct answer.

As shown in Table 3, the Mistral model trained
with style-transferred ground truth data outper-
formed the model trained with original ground truth
data and other methods in all cases except for the
Math Algebra dataset, where only 24% of the train-
ing data was used. To fairly compare the training
effectiveness of the ‘style transferred ground truth’
and the original ground truth, we recorded the IDs
of the data used by the ‘style transferred ground
truth’. We identified a corresponding set of 240
original ground truth data points for comparison.
We found that training with only these 240 data
points resulted in a 17.4% accuracy using the orig-
inal ground truth, which is lower than the 19.6%
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achieved by the ‘style transferred ground truth’.
This demonstrates that data processed using the
‘ground truth style transfer’ method yields better
training outcomes than data labeled by humans.

Interestingly, on the ECQA dataset, models
trained with correct answers generated by Mistral
in a zero-shot fashion performed worse than those
trained directly with ground truth. By reading the
‘correct predicted samples only’ dataset, we found
that many instances classified as correct by the
evaluation filter did not result from sound reason-
ing by the model. Therefore, the effectiveness of
the self-training method depends significantly on
whether the evaluation filter used to select correct
predictions can truly identify accurate responses.

5 A hybrid approach: creating responses
using “minimal change” principal

Generally speaking, our experiments highlight
two essential characteristics of effective responses.
First, the target LLM must be "familiar with" the
response. Second, the response must be accurate.
The approach detailed in Section 4.2 utilizes out-
puts generated by the target LLM to ensure "fa-
miliarity" and employs "rewriting ground-truth re-
sponse" to maintain accuracy. Familiarity is effec-
tively assured as the response is produced by the
model itself, often resulting in low perplexity. How-
ever, as shown in the experiments in Section 4.2,
the strategy of "rewriting ground-truth response"
frequently fails to guarantee correctness. In this
section, we explore a hybrid approach where we
use responses from the target LLM to achieve high
familiarity and employ GPT-4 to make minimal
adjustments to correct any inaccuracies, thereby
ensuring both familiarity and correctness.

We call this approach “minimal change” and
its construction process is as follows: For a given
question, we first request a response from the target
LLM, such as Llama2 or Mistral. We then instruct
GPT-4 to copy the correct portions of the predic-
tion and revise any erroneous parts of the response.
When correcting errors, GPT-4 is required to make
minimal changes to accurately adjust the answer.
Note that this construction process ensures that
the target LLM is “familiar” with the response as
the response is largely generated from itself. The
“minimal change” principal, on the other hand, min-
imizes the influence from the GPT-4.

This method involves minimal intervention by
GPT-4 in the initial predictions to ensure that the

original language style is largely retained. To ef-
fectively guide GPT-4 in producing these mini-
mally changed training datasets, we used a specific
prompt, outlined in the ‘Minimum Change Prompt
and Method’ section of the Appendix C.

Results from our ‘Minimum Change’ experi-
ments are presented in Table 5. The data consis-
tently show lower perplexity compared to ground
truth data across all datasets, indicating a high level
of model familiarity with LLM-generated data. Fur-
thermore, performance across various setups was
not only similar (with in-domain performance dif-
ferences within 5% on most datasets) but also com-
parable to models trained with direct GPT-4 re-
sponses. Although the data was minimally modi-
fied based solely on outputs from Mistral/Llama2,
theoretically, the logic and quality of the modified
answers, as well as the level of detail, should be
inferior to answers directly generated by GPT-4. To
verify whether the minimum change approach min-
imally added details, we measured the overall av-
erage token length. We first calculated the average
token length for each dataset—GSM8K, Math Al-
gebra, ECQA, MBPP, and HumanEval—and then
averaged these results to obtain a composite mean.
We found that the target responses from the min-
imum change were not only significantly shorter
than those from ‘direct GPT-4 answers’ but also
shorter than the initial predictions from Mistral/L-
lama2. Surprisingly, on the HumanEval and Math
Algebra tasks, the performance of models trained
with minimally changed data even surpassed those
trained with data generated by GPT-4. On other
datasets, the performance of the minimum change
data was comparable to that of GPT-4. This under-
scores the effectiveness of training LLMs on data
distributions familiar to them, demonstrating that
minimal changes to maintain the original structure
can be as effective as more detailed alterations. For
more experiment details, see Appendix B.

6 Related Works

Training on synthetic data has been widely em-
ployed to enhance model performance, particu-
larly when training data is scarce. Most of previ-
ous studies have focused on generating additional
data to augment existing datasets (Dai et al., 2023;
Edwards et al., 2022; Møller et al., 2024; Guo
et al., 2023; Ubani et al., 2023; Piedboeuf and
Langlais, 2023a; Agrawal et al., 2023; Piedboeuf
and Langlais, 2023b; Yu et al., 2024) or to create
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Method Model Type GSM8K Math Algebra ECQA MBPP HumanEval Avg Perplexity Avg Token Length
GPT-4 Answer Directly Mistra 0.597 0.302 0.722 0.354 0.365 3.81 164.642
Minimum Change on Mistral Predictions 0.562 0.314 0.699 0.354 0.409 2.47 133.944
Minimum Change on LlaMA Predictions 0.547 0.297 0.709 0.364 0.427 3.51 132.323
Average Token Length for Mistral Initial Predictions 152.993
GPT-4 Answer Directly Llama 0.428 0.150 0.656 0.2 0.158 3.58 167.469
Minimum Change on LlaMA Predictions 0.433 0.166 0.649 0.2 0.213 2.75 132.323
Minimum Change on Mistral Predictions 0.402 0.161 0.647 0.218 0.183 3.32 133.945
Average Token Length for Llama Initial Predictions 165.793

Table 5: Comparing the experimental results of GPT4 and minimum change. ntrain = 1000.

large-scale instruction-tuning datasets when high-
quality human annotations are limited (Kieser et al.,
2023; Taori et al., 2023; Peng et al., 2023; Xu et al.,
2024). In contrast, our work argues that for tasks re-
quiring chain-of-thought reasoning, given the same
question-answer pairs from the training dataset, the
equivalent answers generated by LLMs are theoret-
ically more effective than human-written ground
truth due to familiarity.

Previous works discuss factors that improve
training outcomes in reasoning, including adding
complexity (Xu et al., 2023), increasing diversity
(Luo et al., 2023), incorporating step-by-step rea-
soning (Hsieh et al., 2023; Ho et al., 2022; Magister
et al., 2023; Fu et al., 2023; Ranaldi and Freitas,
2024), adding details (Zhang et al., 2024; Kang
et al., 2023; Li et al., 2022), and ensuring correct-
ness (Trinh et al., 2024; Ranaldi and Freitas, 2024).
We argue that familiarity is another important factor
that improves training outcomes, which has been
overlooked by previous works.

Several previous works share similarities with
aspects of our research. For example, self-training
methods like STAR (Zelikman et al., 2022), REST
(Gulcehre et al., 2023), and RESTem (Singh et al.,
2023) generate datasets by producing samples from
LLMs, filtering out mispredicted samples, and
subsequently enhancing the models through fur-
ther training on these filtered samples. The self-
distillation method (Yang et al., 2024) uses the
target language model to rewrite the ground truth
labels in its own words. While their rewriting pro-
cesses are similar to the methods in Section 4.2,
they do not explore using models other than the
target model. Our hypothesis suggests that data
generated by any LLM is inherently familiar to the
target LLM, indicating that more powerful models,
such as GPT-4, could be used to generate rewritten
labels instead of relying solely on the smaller target
model being fine-tuned. Furthermore, these works
do not identify the impact of the familiarity.

Similar to our minimum-change approach, the
works on learning from mistakes (Singh et al.,

2023) and process supervision (Lightman et al.,
2023; Luo et al., 2024) also involve steps of cor-
recting a target LLM generated data. However,
their overall process is different from our minimum-
change. Moreover, they do not recognize the poten-
tial contribution of the familiarity in our approach
and our work is complimentary to their discoveries.
While they focus on learning from mistakes, our
approach centers on maximizing familiarity.

Perplexity has been used in previous studies pri-
marily for data selection and filtering. (Gonen et al.,
2022) use perplexity to select prompts, demonstrat-
ing that lower perplexity prompts lead to better
zero-shot QA performance on frozen models. Oth-
ers have used perplexity to select pre-training data
(De la Rosa et al., 2022), detect AI-generated code
(Xu and Sheng, 2024), and predict the synthetic
generalization of language models (Hu et al., 2020).
Perplexity has also been employed to detect lan-
guage model attacks (Alon and Kamfonas, 2023)
and to select instruction tuning data (Li et al., 2024;
Mekala et al., 2024), where it reflects data difficulty.
In contrast, we use perplexity to measure familiar-
ity. Our focus is on how different outputs y, given
the same input x, can affect training effectiveness
due to variations in perplexity. We use perplexity
to guide the construction of target responses that
are more familiar to the model.

7 Conclusion

We conducted a series of experiments involving the
rewriting of target responses to validate our two
proposed hypotheses: 1) LLMs are more familiar
with responses generated by themselves or other
LLMs when given the same question; 2) LLMs ex-
hibit improved performance when trained on data
with which they are already familiar. These hy-
potheses help explain why data annotated by LLMs
leads to superior training outcomes compared to
human-annotated data on reasoning tasks, from a
familiarity perspective. These findings suggest new
directions for optimizing data annotation processes
to enhance model performance.
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8 Limitations

The effectiveness of the ground truth transforma-
tion method and the minimum change method can
be limited by their accuracy. When an LLM is not
powerful enough, it may not be able to success-
fully rewrite the ground truth in its own style while
maintaining the correctness of the ground truth.
Additionally, when performing minimal changes to
a model’s initial prediction, we notice that GPT-4
often fails to correct the initial prediction accu-
rately. Although GPT-4 may correct some errors,
the minimally changed response can still be incor-
rect. Furthermore, minimal change is a challeng-
ing task. Achieving such a process requires an
advanced LLM, as the LLM needs to fully under-
stand the solution and follows the “minimal change”
principal.
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A Comparing varients of GPT-4/Claude
3.5 created training datasets

We instruct GPT-4/Claude 3.5 to generate target
responses in various ways, and use these labels for
training. The training results are summarized in
Table 6 and Table 7, and we describe the differ-
ent methods used to instruct GPT-4/Claude 3.5 to
generate target responses.

GPT-4/Claude 3.5 Answer Directly: For math-
ematics and coding problems, we directly present
the problems from the training dataset to GPT-
4/Claude 3.5 for answers. For classification tasks,
we provide GPT-4/Claude 3.5 with the gold-label
(which does not include human-annotated ratio-
nales) and the input questions, and then use its
responses. We combine these answers with the
original questions to create the GPT-4/Claude 3.5
Answer Training Dataset. We purposefully do not
supply GPT-4/Claude 3.5 with the solutions or
rationales for the math, coding, or classification
problems to prevent it from merely replicating the
ground truth’s problem-solving and analytical pro-
cesses. If these processes were included, it could
lead to a portion of GPT-4’s predictions not being
generated in its own style, thus rendering our per-
plexity measurements—which assess how well an
LLM handles predictions from other LLMs—less
accurate.

The following prompt instructs GPT-4/Claude
3.5 to create the GPT-4/Claude 3.5 Response (No
GT) response.

"""We have the {question}

1. We wish you to answer the question.
2. You must answer the question (with

inference process) directly without
say anything else. Please not saying
anything 'like sure I can help you

with ' or 'sure , i will not mention
the gold label '

3. You will inference first then put the
Final Answer (NUMBER_HERE) at the

end of the prediction like this

INFERENCE HERE
Final Answer: NUMBER_HERE """

Rewrite Ground Truth: For this method, we
present GPT-4/Claude 3.5 with the ground truth
data, including human-annotated rationales and
problem-solving steps. The objective is to have
GPT-4/Claude 3.5 rewrite the ground truth using
its own language style.

The following prompt instructs GPT-4/Claude
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3.5 to create the GPT-4/Claude 3.5 Response
(Rewrite GT) response.

""" Given the question: {question}
and the groundtruth: {groundtruth}

Please states the prediction in your own
words. The groundtruth is 100%

correct. You should not change the
problem solving logic of the
groundtruth. just restates it in
your own words.

1. You will pretend as you do not know
the groundtruth , because we will use
your prediction as target labels to
train our model.

2. (important format) You must generate
the groundtruth directly. Please not
saying anything like 'sure I can

help you with ' or 'sure , i will not
mention the gold label '

3. (important format) Please make sure
the Final Answer: {gold_label} is
placed at the end of the modified
prediction ."""

Step-by-step: We specificly tell GPT-4/Claude
3.5 to solve the problem step by step. For mathe-
matics and coding problems, we directly present
the problems from the training dataset to GPT-
4/Claude 3.5 for answers. For classification tasks,
we provide GPT-4/Claude 3.5 with the gold-label
(which does not include human-annotated ratio-
nales) and the input questions, and then use its step
by step responses. We combine these answers with
the original questions to create the GPT-4/Claude
3.5 Step-by-Step Response (No GT) Dataset. We
purposefully do not supply GPT-4/Claude 3.5 with
the solutions or rationales for the math, coding, or
classification problems to prevent it from replicat-
ing the ground truth’s problem-solving and analyti-
cal processes. If these processes were included, it
could lead to a portion of GPT-4/Claude 3.5’s pre-
dictions not being generated in its own style, thus
rendering our perplexity measurements—which as-
sess how well an LLM handles predictions from
other LLMs—less accurate.

The following prompt instructs GPT-4/Claude
3.5 to create the GPT-4/Claude 3.5 Step-by-Step
Response (No GT) response.

"""
We have the question and the groundtruth

. Please reformat the groundtruth in
step by step manner with details.

Question: {question}
Groundtruth: {groundtruth}

1. We wish you to regenerate a new
groundtruth. The new groundtruth

solve the problem step by step. If
you believe the groundtruth is not
detail enough , you could add details
.

2. You will pretend as you do not know
the groundtruth , because we will use
your prediction as target labels to
train our model.

3. (important format) You must generate
the groundtruth with the step by
step inference process directly.
Please not saying anything like '
sure I can help you with ' or 'sure ,
i will not mention the gold label '

4. (important format) You will inference
first then put the Final Answer: {

gold_label}

at the end like this

INFERENCE HERE
Final Answer: {gold_label}
"""

Step-by-Step Transformation of GT: For clas-
sification tasks, we provide GPT-4/Claude 3.5 with
both the questions and the ground truth target labels
along with human-annotated rationales. For mathe-
matical problems, we present the problems along
with their answers, including the solutions process.
We instruct GPT-4/Claude 3.5 to rewrite the human-
annotated solutions or rationales in a step-by-step
format, adding details where necessary to fill any
gaps. If the existing content is already detailed
enough, no additional details are added. We also
instruct GPT-4/Claude 3.5 to preserve the original
linguistic style as closely as possible by frequently
incorporating language from the original ground
truth.

The following prompt instructs GPT-4/Claude
3.5 to create the GPT-4/Claude 3.5 Step-by-Step
Response (Rewrite GT) response.

"""We have the question and the
groundtruth. Please reformat the
groundtruth in step by step manner.
You must try your best to keep the
original words and logic unchange.
You are reformating the groundtruth
into step by step solution. you
could add new words , but you are
trying to keep original words from
groundtruth unchanged.

Question: {question}
Groundtruth: {groundtruth}

1. We wish you to reformat a new
groundtruth. The new groundtruth are
reformated a new groundtruth which

solve the problem step by step. you
could add new words , but you are
trying to not change the original
words.
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2. You will pretend as you do not know
the groundtruth , because we will use
your prediction as target labels to
train our model.

3. When adding step by step inference
process , you should imitate the
language styles of the original
groundtruth.

4. (important format) You must generate
the groundtruth with the step by
step inference process directly.
Please not saying anything like '
sure I can help you with ' or 'sure ,
i will not mention the gold label '

5. (important format) You will inference
first then put the Final Answer: {

gold_label}

at the end like this

INFERENCE HERE
Final Answer: {gold_label}"""

Detailed Step-by-Step Transformation of GT:
This data construction method is very similar to
the Step by Step method. The only difference is
that we specifically instruct GPT-4/Claude 3.5 to
add details when the original ground truth lacks
sufficient information.

The following prompt instructs GPT-4/Claude
3.5 to create the GPT-4/Claude 3.5 Step-by-Step
Detailed Response (Rewrite GT) response.

"""We have the question and the
groundtruth. Please reformat the
groundtruth in step by step manner
with details for each step. When
adding detail , you must try your
best to keep the original words and
logic unchange. You are reformating
the groundtruth with more details on
each step instead of rewrite the

groundtruth , but you are trying to
keep original words from groundtruth
unchanged.

Question: {question}
Groundtruth: {groundtruth}

1. We wish you to reformat a new
groundtruth. The new groundtruth are
reformated a new groundtruth which

solve the problem step by step with
detail on each step.

2. You will pretend as you do not know
the groundtruth , because we will use
your prediction as target labels to
train our model.

3. When adding step by step inference
process , you should imitate the
languaguage styles of the original
groundtruth.

4. (important format) You must generate
the groundtruth with the detailed
step by step inference process

directly. Please not saying anything
like 'sure I can help you with ' or

'sure , i will not mention the gold
label '

5. (important format) You will inference
first then put the Final Answer: {

gold_label}

at the end like this

INFERENCE HERE
Final Answer: {gold_label}"""

GPT-4/Claude 3.5 Answer with Higher Per-
plexity: In this method, we first create a ‘para-
phrased GPT-4/Claude 3.5 answer’ dataset. Specif-
ically, we provide GPT-4 with the questions and
the target responses from the ‘GPT-4/Claude 3.5
Response (No GT)’, instructing it to paraphrase
only the target responses. We include the ques-
tions in the paraphrasing instruction prompt to en-
sure that the keywords in the paraphrased answers
match those in the questions. This approach helps
maintain content relevance. We then measure the
perplexity of the ‘paraphrased GPT-4/Claude 3.5 re-
sponse’ on the model that will be trained. We com-
pare the perplexity of the target responses from the
‘GPT-4/Claude 3.5 Response (No GT)’ to the target
responses from the ‘paraphrased GPT-4 response’.
We select the one with the higher perplexity and
collect them paired with the original question to
form a new dataset, named ‘GPT-4/Claude 3.5 An-
swer with Higher Perplexity’.

The following prompt instructs GPT-4/Claude
3.5 to create the paraphrased response.

""" Given the question: {question}

and the prediction: {gpt4_ prediction}

1. Please paraphrase the prediction. The
prediction might be wrong sometimes

, but you do not need to correct it.
just paraphrase it.

2. (important format) You must create
the paraphrased prediction directly
without say anything else. Please
not saying anything like 'sure I can
help you with ' or 'sure , i will not
mention the gold label '

4. (important format) Please make sure
the Final Answer: {gold_label_type}
is placed at the end , which means
you will not paraphrase the phrase '
Final Answer '."""

Training Data Construction for Coding
Tasks

When constructing training datasets for coding
tasks (such as HumanEval and MBPP), we follow a
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specialized pipeline. To build training datasets gen-
erated by models like GPT-4,Claude 3.5, Llama2,
or Mistral, we first feed the problem to an LLM to
generate an initial prediction. Next, we use GPT-4
to extract the corresponding code. These extracted
codes are then assembled into target responses. The
specific code extraction prompt is detailed below.

f"""You need to extract the code from
the previous prediction. The
prediction answer the QUESTION.

QUESTION: {modified_question}
Previous prediction: {previous_

prediction}

Explaination of extract code:
1. You have to extract code from the

previous prediction. Your answer
will be evaluated to see if it will
pass the test , thus of course you
need to extract the code and
comments without including any other
words.

2. You only need to extract the final
code for the fuction for the test
case{item['test_list '][0]}. You do
not care about the test cases.

3. Please directly show me the extracted
code with no other words. We will

run the code to test if it is
correct , thus do not extract other
words.

4. you suppose to extract the code from
the previous prediction. You should
never correct the code on your own
even if it is wrong.

"""

B Minimum Change Vs GPT4 answer

Table 8 summarizes the performance differences
between GPT-4 and Minimum Change. According
to the table, models trained on Minimum Change
predictions perform comparably to those trained on
GPT-4 generated predictions. The average length
of the Minimum Change predictions is noticeably
shorter than that of GPT-4 generated predictions
for most tasks. Please note that Minimum Change
is designed to maximize familiarity for the target
model. For example, when testing on the Hu-
manEval dataset, the cross-domain and in-domain
performance of Llama’s Minimum Change data is
noticeably higher than Mistral’s Minimum Change
data when the target model is Llama. This is be-
cause Llama’s Minimum Change data focuses pri-
marily on maximizing familiarity specifically for
the Llama model.

C Minimum Change Prompt and Method

The minimum change pipeline is illustrated in Fig-
ure 3. The prompt used to instruct GPT-4 for creat-
ing the minimum change response is illustrated in
Figure 4.

Its construction process is as follows: For a
given question, we first ask the target LLM, such
as Llama2 or Mistral, to produce a response. If
the response is correct, we include it in the syn-
thetic dataset. If not, we instruct GPT-4 to revise
it, making minimal changes to the original answer
to correct it 1. Note that this construction process
ensures that the target LLM is “familiar” with the
response as the response is largely generated from
itself. The “minimal change” principal, on the other
hand, minimizes the influence from the GPT-4.

Specifically, minimal change is implemented via
the following steps:

• Initial Prediction the model generates an ini-
tial prediction.

• Minimal Modification uses GPT-4 to adjusts
the initial prediction with the fewest possi-
ble changes to correct errors, deliberately pre-
serving the original distribution by keeping
as many words unchanged as possible. An
illustration of such a modification is provided
in Figure 3. We have detailed the prompt
used to guide GPT-4 in the ‘Minimum Change
Prompt’ section of the Appendix.

• Training with Modified Predictions the min-
imum changed predictions are subsequently
used as target responses for model training.

This method involves minimal intervention by
GPT-4 in the initial predictions to ensure that the
original language style is largely retained. To ef-
fectively guide GPT-4 in producing these mini-
mally changed training datasets, we used a spe-
cific prompt, outlined in the ‘Minimum Change
Prompt’ section of the Appendix, which includes
two to three examples of minimal changes along
with explanations for each modification.

D Llama2 groundtruth style transfer
failure example

The Llama2-13b-chat model often fails to follow
our in-context examples, leading to incorrect out-

1Please note that achieving such a process requires an
advanced LLM, as the LLM needs to fully understand the
solution and follows the “minimal change” principal
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puts when it is tasked with modifying ground truth
data. An example is illustrated in Figure 5.

E Groundtruth Tranformation Prompt

One of the example prompt is shown in Figure 6.

F Detailed Evaluation Script

Evaluation Script Details: To facilitate automatic
evaluation across all models and datasets, we devel-
oped a specialized prompt format requiring models
to conclude their predictions with ‘Final Answer:
answer.’ For instance, the output should read ‘Final
Answer: 100’ for an answer of 100. Our evalu-
ation script extracts the text following the ‘Final
Answer:’ substring. For the ECQA task, it veri-
fies if the first text after ‘Final Answer:’ correctly
matches one of the answer options. For mathemat-
ical problems including the GSM8K and MATH
datasets, the script checks if the number after the
substring ‘Final Answer:’ aligns with the ground
truth number. We utilize the built-in testing script
for the HumanEval dataset to ensure result accu-
racy and employ our custom scripts for all other
tasks. By adapting the training data’s question
and answer formats to this style, our models main-
tain consistent response formatting across different
tasks. The evaluation scripts for HumanEval (Chen
et al., 2021) and MBPP (Austin et al., 2021) re-
quire answers in a specific format. Models that
have not been trained on this format struggle to
follow it correctly, even when provided with in-
context examples. Consequently, we do not con-
duct cross-domain evaluations on the MBPP and
HumanEval.

G More Setting Up Details

We set the input token length to 512 and the out-
put token length to 1024 for the GSM8K, MATH
Algebra, and ECQA datasets. The reason for the
extended output token length is that models trained
on some of the GPT-4/Claud 3.5 response variants,
such as ‘detailed step-by-step transformation of
GT’ (as introduced in Appendix A), tend to gen-
erate lengthy predictions. We aim to ensure the
output token length is sufficiently long. For in-
stance, according to Table 6, the average token
length for ‘detailed step-by-step transformation of
GT’ in the Math Algebra dataset is 484. Clearly,
a standard maximum output token length of 512
is not adequate for models trained on the ‘detailed
step-by-step transformation of GT’ dataset.

All of our code runs on a single A100 GPU.

H Explanation of the Higher Perplexity of
ECQA Human Responses

The high-quality target responses are derived from
the explanations in column "taskB" of the ECQA
dataset (available at Hugging Face). The perplexity
of the ECQA dataset is higher than that of math
and coding datasets because textual reasoning tasks
like ECQA involve more diverse response styles,
leading to greater perplexity. Additionally, LLMs
are extensively trained on math and coding tasks,
making them more familiar with various response
formats in those domains.

10240

https://huggingface.co/datasets/yangdong/ecqa?row=0


Method Training Dataset and Model Type GSM8K Math Algebra ECQA Perplexity token length
Zeroshot Mistral 0.413 0.185 0.504
Zeroshot Llama2 0.35 0.125 0.597
Ground truth GSM8K, Mistral 0.434 0.162 0.594 4.54 128.88
GPT-4 Answer Directly 0.597 0.246 0.597 2.35 179.94
GPT-4 Rewrite Ground Truth 0.471 0.192 0.6 4.77 156.696
GPT-4 Step-by-step 0.574 0.224 0.591 2.27 282.9
GPT-4 Step-by-Step Transformation of GT 0.499 0.190 0.6 2.67 235.892
GPT-4 Detailed Step-by-Step Transformation of GT 0.506 0.196 0.602 2.59 315.028
Groundtruth GSM8K, Llama 0.364 0.141 0.565 3.27 128.88
GPT-4 Answer Directly 0.428 0.128 0.575 2.30 179.941
GPT-4 Rewrite Ground Truth 0.394 0.127 0.58 3.65 156.696
GPT-4 Step-by-step 0.402 0.134 0.553 2.19 290.92
GPT-4 Step-by-Step Transformation of GT 0.394 0.146 0.573 2.43 242.22
GPT-4 Detailed Step-by-Step Transformation of GT 0.396 0.114 0.553 2.37 315.028
Groundtruth Math algebra, Mistral 0.264 0.206 0.554 5.83 163.36
GPT-4 Answer Directly 0.553 0.302 0.608 2.20 328.76
GPT-4 Rewrite Ground Truth 0.545 0.310 0.57 3.51 267.11
GPT-4 Step-by-step 0.533 0.239 0.583 2.250 451.99
GPT-4 Step-by-Step Transformation of GT 0.444 0.210 0.577 2.65 370.35
GPT-4 Detailed Step-by-Step Transformation of GT 0.468 0.223 0.582 2.62 484.368
Groundtruth Math algebra, Llama 0.36 0.126 0.575 5.15 163.36
GPT-4 Answer Directly 0.35 0.150 0.561 2.59 328.76
GPT-4 Rewrite Ground Truth 0.337 0.134 0.579 3.59 264.85
GPT-4 Step-by-step 0.344 0.145 0.593 2.55 450.08
GPT-4 Step-by-Step Transformation of GT 0.376 0.141 0.565 2.81 369.06
GPT-4 Detailed Step-by-Step Transformation of GT 0.299 0.110 0.545 2.816 484.368
Groundtruth ECQA, Mistral 0.258 0.134 0.68 51.3 73.51
GPT-4 Answer Directly 0.462 0.223 0.722 6.35 176.54
GPT-4 Rewrite Ground Truth 0.384 0.194 0.721 9.269 134.338
GPT-4 Step-by-step 0.481 0.203 0.71 4.66 325.15
GPT-4 Step-by-Step Transformation of GT 0.462 0.194 0.681 6.89 218.748
GPT-4 Detailed Step-by-Step Transformation of GT 0.487 0.186 0.68 5.61 322.855
Groundtruth ECQA, Llama 0.132 0.0798 0.631 11.96 73.51
GPT-4 Answer Directly 0.379 0.156 0.656 5.33 176.54
GPT-4 Rewrite Ground Truth 0.282 0.116 0.664 6.84 134.338
GPT-4 Step-by-step 0.363 0.140 0.648 4.46 337.30
GPT-4 Step-by-Step Transformation of GT 0.312 0.108 0.628 5.55 226.99
GPT-4 Detailed Step-by-Step Transformation of GT 0.135 0.106 0.66 5.08 322.855

Table 6: Performance comparison of models trained on data constructed by different methods across various tasks.
ntrain = 1000. Data points are labeled as low performance when their accuracy is more than 15% lower relative to
the highest accuracy achieved in the same dataset using the same model.
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Method Training Dataset and Model Type GSM8K Math Algebra ECQA Perplexity token length
Zeroshot Mistral 0.413 0.185 0.504
Zeroshot Llama2 0.35 0.125 0.597
Ground truth GSM8K, Mistral 0.434 0.162 0.594 4.54 128.88
Claude Answer Directly 0.586 0.230 0.595 2.355 156.089
Rewrite Ground Truth 0.614 0.213 0.536 2.900 159.561
Claude Step-by-step 0.587 0.215 0.574 2.042 228.607
Claude Step-by-Step Transformation of GT 0.49 0.205 0.59 2.309 208.132
Claude Detailed Step-by-Step Transformation of GT 0.523 0.195 0.596 2.014 255.536
Groundtruth GSM8K, Llama 0.364 0.141 0.565 3.27 128.88
Claude Answer Directly 0.433 0.110 0.548 2.037 159.291
Claude Rewrite Ground Truth 0.361 0.130 0.557 2.30 163.0
Claude Step-by-step 0.388 0.140 0.581 1.93 235.406
Claude Step-by-Step Transformation of GT 0.399 0.141 0.568 2.08 213.658
Claude Detailed Step-by-Step Transformation of GT 0.394 0.134 0.573 1.97 262.657
Groundtruth Math algebra, Mistral 0.264 0.206 0.554 5.83 163.36
Claude Answer Directly 0.554 0.277 0.606 2.236 245.346
Claude Rewrite Ground Truth 0.5 0.242 0.595 2.801 219.599
Claude Step-by-step 0.522 0.283 0.561 2.138 312.151
Claude Step-by-Step Transformation of GT 0.446 0.203 0.579 2.319 285.7
Claude Detailed Step-by-Step Transformation of GT 0.499 0.237 0.578 2.178 338.706
Groundtruth Math algebra, Llama 0.36 0.126 0.575 5.15 163.36
Claude Answer Directly 0.317 0.137 0.54 2.33 244.672
Claude Rewrite Ground Truth 0.272 0.120 0.554 2.70 218.456
Claude Step-by-step 0.309 0.124 0.538 2.30 311.251
Claude Step-by-Step Transformation of GT 0.235 0.105 0.51 2.424 284.719
Claude Detailed Step-by-Step Transformation of GT 0.356 0.136 0.555 2.36 337.521
Groundtruth ECQA, Mistral 0.258 0.134 0.68 51.3 73.51
Claude Answer Directly 0.457 0.213 0.714 4.02 198.55
Claude Rewrite Ground Truth 0.415 0.201 0.689 6.21 124.47
Claude Step-by-step 0.473 0.176 0.723 3.23 291.53
Claude Step-by-Step Transformation of GT 0.47 0.195 0.694 4.69 215.99
Claude Detailed Step-by-Step Transformation of GT 0.478 0.197 0.695 3.40 297.30
Groundtruth ECQA, Llama 0.132 0.0798 0.631 11.96 73.51
Claude Answer Directly 0.38 0.129 0.678 3.509 206.76
Claude Rewrite Ground Truth 0.189 0.117 0.691 4.90 130.09
Claude Step-by-step 0.334 0.126 0.644 3.36 302.60
Claude Step-by-Step Transformation of GT 0.307 0.116 0.64 3.76 223.53
Claude Detailed Step-by-Step Transformation of GT 0.168 0.096 0.637 3.33 308.76

Table 7: Performance comparison of models trained on data constructed by different methods across various tasks.
ntrain = 1000. Data points are labeled as low performance when their accuracy is more than 15% lower relative to
the highest accuracy achieved in the same dataset using the same model.
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Math Commensense Reasoning Code
Method Training Dataset and Model Type GSM8K Math Algebra ECQA HumanEval MBPP Perplexity Toekn Count
Groundtruth GSM8K, Mistral 0.434 0.162 0.594 4.53 128.88
GPT-4 Answer Directly 0.597 0.246 0.597 2.34 179.941
Mistral Minimum Change Data 0.562 0.234 0.597 1.67 177.156
llama minimum change data 0.547 0.242 0.621 3.19 166.152
Mistral Initial Prediction Length 198.99
Groundtruth GSM8K, Llama 0.371 0.143 0.566 3.27 130.856
GPT-4 Answer Directly 0.428 0.127 0.575 2.30 183.852
Llama Minimum Change Data 0.433 0.140 0.602 2.22 166.15
Mistral Minimum Change Data 0.402 0.141 0.576 2.250 177.156
Llama Initial Prediction Length 191.924
Groundtruth Math algebra, Mistral 0.264 0.206 0.554 5.83 163.355
GPT-4 Answer Directly 0.553 0.301 0.608 2.19 328.764
Mistral Minimum Change Data 0.536 0.313 0.622 1.85 297.609
llama minimum change data 0.546 0.296 0.63 2.47 269.688
Mistral Initial Prediction Length 380.204
Groundtruth Math algebra, Llama 0.36 0.126 0.575 5.14 162.417
GPT-4 Answer Directly 0.35 0.150 0.561 2.59 326.573
Llama Minimum Change Data 0.412 0.166 0.602 2.268 269.68
Mistral Minimum Change Data 0.32 0.160 0.568 2.53 297.609
Llama Initial Prediction Length 297.576
Groundtruth ECQA, Mistral 0.258 0.135 0.68 51.29 73.508
GPT-4 Answer Directly 0.462 0.223 0.722 6.35 176.53
Mistral Minimum Change Data 0.433 0.192 0.699 3.798 112.591
LLama Minimum Change Data 0.483 0.212 0.709 4.89 128.695
Mistral Initial Prediction Length 119.554
Groundtruth ECQA, Llama 0.132 0.079 0.631 11.95 76.118
GPT-4 Answer Directly 0.379 0.155 0.656 5.33 183.182
Llama Minimum Change Data 0.392 0.128 0.649 3.619 128.695
Mistral Minimum Change Data 0.28 0.126 0.647 5.58 112.591
LLama Initial Prediction Length 149.945
Groundtruth HumanEval, Mistral 0.362 0.191 0.583 0.323 5.69 71.60
GPT-4 Answer Directly 0.313 0.162 0.581 0.365 4.71 107.9
Mistral Minimum Change Data 0.406 0.202 0.592 0.408 2.21 109.07
Llama Minimum Change Data 0.412 0.179 0.584 0.426 2.451 122.0
Mistral Initial Prediction Length 118.80
Groundtruth HumanEval, Llama 0.0705 0.083 0.528 0.146 5.75 70.8
GPT-4 Answer Directly 0.125 0.105 0.553 0.158 4.33 107.14
Llama Minimum Change Data 0.2445 0.389 0.5705 0.213 2.21 122.0
Mistral Minimum Change Data 0.131 0.103 0.528 0.183 2.75 109.07
Llama Initial Prediction Length 146.88
Groundtruth MBPP, Mistral 0.392 0.175 0.527 0.276 7.78 71.60
GPT-4 Answer Directly 0.399 0.186 0.568 0.354 3.419 78.6
Mistral Minimum Change Data 0.405 0.179 0.601 0.354 2.817 63.86
Llama Minimum Change Data 0.332 0.179 0.56 0.364 4.55 54.96
Mistral Initial Prediction Length 66.22
Groundtruth MBPP, Llama 0.328 0.131 0.556 0.2 4.74 73.90
GPT-4 Answer Directly 0.351 0.139 0.574 0.202 3.33 69.78
Llama Minimum Change Data 0.34 0.130 0.569 0.204 3.44 54.96
Mistral Minimum Change Data 0.333 0.123 0.563 0.218 3.45 63.86
Llama Initial Prediction Length 42.64

Table 8: More results for Table 5. Comparing the experimental results of GPT4, groundtruth and minimum change.
ntrain = 1000. The average token lengths for initial predictions by Mistral and Llama are shown in the table for
GSM8K, Math Algebra, ECQA, MBPP(code only) and HumanEval(code only). Data points are labeled as low
performance when their accuracy is more than 15% lower relative to the highest accuracy achieved in the same
dataset using the same model.
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Figure 3: Minimum Change Data Correction Examples
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Figure 4: Minimum Change Prompt Example

Figure 5: Llama2 groundtruth style transfer failure example

Figure 6: Groundtruth Tranformation Prompt
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