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Abstract

Embeddings from Large Language Models
(LLMs) have emerged as critical components
in various applications, particularly for in-
formation retrieval. While high-dimensional
embeddings generally demonstrate superior
performance as they contain more salient
information, their practical application is
frequently hindered by elevated computa-
tional latency and the associated higher
cost. To address these challenges, we pro-
pose Matryoshka-Adaptor, a novel tuning
framework designed for the customization of
LLM embeddings. Matryoshka-Adaptor fa-
cilitates substantial dimensionality reduction
while maintaining comparable performance
levels, thereby achieving a significant enhance-
ment in computational efficiency and cost-
effectiveness. Our framework directly mod-
ifies the embeddings from pre-trained LLMs
which is designed to be seamlessly integrated
with any LLM architecture, encompassing
those accessible exclusively through black-
box APIs. Also, it exhibits efficacy in both
unsupervised and supervised learning settings.
A rigorous evaluation conducted across a di-
verse corpus of English, multilingual, and
multimodal datasets consistently reveals sub-
stantial gains with Matryoshka-Adaptor. No-
tably, with Google and OpenAI Embedding
APIs, Matryoshka-Adaptor achieves a reduc-
tion in dimensionality ranging from two-
to twelve-fold without compromising perfor-
mance across multiple BEIR datasets.

1 Introduction

Large language models (LLMs) have showcased
remarkable proficiency in handling various text
processing tasks, encompassing question answer-
ing, summarization, and mathematical reasoning
(Brown et al., 2020; Chowdhery et al., 2022; Zhang
et al., 2022a). This success can be partially at-
tributed to their ability to transform raw text into se-
mantically enriched representations, with the qual-

12x dimension reduction

53.9% performance gains

2x dimension reduction

16.2% performance gains

Figure 1: The effectiveness of the Matryoshka Adap-
tor in dimensionality reduction. In both unsupervised
(red line) and supervised (black line) settings, the Ma-
tryoshka Adaptor showcases the capability to consider-
ably decrease embedding dimensions while maintain-
ing a negligible impact on nDCG@10 retrieval perfor-
mance with BEIR SciFact dataset. Notably, at the same
embedding dimensionality, the utilization of our ap-
proach results in significantly improved performance.

ity of these text-to-embedding mappings being of
paramount importance (Ouyang et al., 2022).

Embeddings find extensive utilization in a wide
array of downstream tasks, with information re-
trieval (IR) serving as a prominent one (Wang et al.,
2023; Muennighoff et al., 2024; Li et al., 2023). IR
involves the process of searching for relevant in-
formation within a corpus database using queries,
and language modeling plays a pivotal role as both
queries and corpus data are frequently textual in
nature. In IR systems, text embeddings are com-
monly employed to rank relevant corpora based on
their similarity to queries.

Numerous LLMs have been developed specifi-
cally for extracting embeddings from raw text, in-
cluding Sentence T5 (Ni et al., 2021), OpenAI Em-
bedding APIs (ope), and Google Embedding APIs
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(gcp). However, generation of high-dimensional
embeddings often entail high latency and computa-
tional costs, thereby limiting their practical appli-
cation in latency-sensitive scenarios such as large-
scale recommendation systems.

Matryoshka representation learning (MRL)
(Kusupati et al., 2022; Cai et al., 2024) addresses
this limitation at pretraining stage, by generating
embeddings that retain similar characteristics even
when utilizing only a subset of their dimensions
(i.e., Matryoshka properties). This enables efficient
similarity comparisons with lower-dimensional em-
beddings and is leveraged by many state-of-the-art
models, including those from Google and OpenAI
(Lee et al., 2024; ope).

In this study, we present Matryoshka-Adaptor, a
novel framework designed to transform arbitrary
embeddings into embeddings with Matryoshka
properties in both unsupervised and supervised
learning setups. In an unsupervised learning setting,
the adaptor learns to transform input embeddings
into Matryoshka embeddings using only corpus
embeddings. We introduced pairwise and top-k
similarity loss functions to facilitate this process.
In supervised learning setup, the adaptor can be
further refined by incorporating relevant (query,
corpus) pairs as labeled tuning data. Note that
we customize embeddings to better suit specific
datasets, using both unsupervised and supervised
approaches. This refinement results in improved
Matryoshka properties, surpassing even those of
embeddings derived from MRL-trained models.

Extensive experiments conducted across 13
BEIR datasets (Thakur et al., 2021), 17 MIR-
ACL datasets (Zhang et al., 2022b), and 5 mul-
timodal Fashion-200K datasets (Han et al., 2017)
validate the effectiveness of Matryoshka-Adaptor.
We demonstrate significant performance improve-
ments over the latest Google (for English only,
multilingual, and multimodal data) (Lee et al.,
2024) and OpenAI text embedding models (ope).
Matryoshka-Adaptor exhibits broad applicability to
diverse embedding types, encompassing text, mul-
timodal, multilingual, and use case-specific embed-
dings. The contributions of this paper are threefold:

• We propose a novel tuning framework,
Matryoshka-Adaptor that achieves substantial
dimensionality reduction in embeddings without
sacrificing performance achieved by tailoring
embeddings to better fit specific datasets.

• Matryoshka-Adaptor is applicable in both un-

supervised and supervised settings, consistently
improving retrieval performance across various
datasets. Also, Matryoshka-Adaptor demon-
strates a roughly two-fold (unsupervised) and
six-fold (supervised) reduction in dimensionality,
with no loss in performance.

• The benefits of Matryoshka-Adaptor extend to
multimodal learning and multilingual scenarios.

2 Related Work

Matryoshka embeddings. (Kusupati et al., 2022)
pioneered the development of embedding models
whose representations could be substantially re-
duced in dimensionality without incurring a sig-
nificant degradation in performance. These Ma-
tryoshka embedding models are specifically trained
to ensure the utility of such truncated embeddings.
The Matryoshka properties inherent in these mod-
els enable fine-grained control over the trade-off
between latency and accuracy in downstream tasks
utilizing the embeddings. Given this advantage,
recent embedding models, including those from
OpenAI and Google (Lee et al., 2024), have inte-
grated Matryoshka properties by employing Ma-
tryoshka Representation Learning (MRL) during
pre-training. Our proposed work further enhances
the Matryoshka properties through tuning. We in-
troduce modifications to embeddings that are tai-
lored to target datasets in both an unsupervised
and supervised tuning setups. The proposed tun-
ing yields enhanced Matryoshka properties com-
pared to the original embeddings, even those de-
rived from MRL-trained models.

Dimensionality reduction. Dimensionality re-
duction is a well-established framework for reduc-
ing the dimensionality of vectors while preserv-
ing their inherent properties. Principal Component
Analysis (PCA) (Jolliffe and Cadima, 2016), In-
dependent Component Analysis (ICA) (Hyvärinen
and Oja, 2000), and Non-negative Matrix Factoriza-
tion (NMF) (Lee and Seung, 2000) are widely used
unsupervised dimensionality reduction techniques.
Linear Discriminant Analysis (LDA) (McLachlan,
2005) is a supervised method that leverages labeled
data for dimensionality reduction. While ICA is
possible, its limitations in this context arise due
to the equal importance of all components, requir-
ing separate model training for each reduced di-
mension. NMF, on the other hand, is not suitable
for this application as it is only applicable to non-
negative embeddings. Also, PCA’s orthogonality
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properties may limit its reliability for dimension-
ality reduction for vectors with highly non-linear
relationships, especially at high dimensionality.

Embedding customization. In lieu of em-
ploying a single unified model for zero-shot re-
trieval, embedding customization tailored to indi-
vidual datasets presents a viable alternative. TART
(Asai et al., 2022) constructs a retrieval system that
adapts retrieval based on instructions, incorporating
different tasks (e.g. for code, question, or answer)
to enhance dense embedding retrieval. Instruc-
tOR (Su et al., 2022) integrates task and domain
descriptions for retrieval while tuning embedding
models. Promptagator (Dai et al., 2022) leverages
in-context learning to generate synthetic query-
corpus pairs using a limited number of original
pairs, subsequently fine-tuning pre-trained LLMs
with these synthetic pairs. Search-Adaptor (Yoon
et al., 2023) customizes embeddings for informa-
tion retrieval using a small number of query-corpus
pairs in supervised learning setup. Unlike these
approaches, Matryoshka-Adaptor is applicable to
both supervised and unsupervised settings, elimi-
nating the need for labeled query-corpus pairs. Ad-
ditionally, Matryoshka-Adaptor aims not only to
enhance full-dimensional embedding performance
but also to improve performance across all reduced-
dimensionality embeddings.

3 Unsupervised Matryoshka-Adaptor

3.1 Problem formulation

To facilitate a clear understanding, the proposed
framework is formulated within the context of
information retrieval. However, it is crucial to
emphasize that it can be readily generalized to
any application involving embeddings. In unsu-
pervised settings, we assume the availability of a
corpus set, denoted as C = {c1, c2, ..., cN} and
a pre-trained embedding model (E). The embed-
dings extracted from the corpus are represented as
CE = {ce1, ce2, ..., ceN}, where each embedding
vector cei = E(ci) ∈ Rd. Notably, our framework
permits the embedding model, E, to be treated as a
black-box model, and Matryoshka-Adaptor can be
directly applied to the extracted embeddings, CE .

A Matryoshka embedding, characterized by m
dimensions, is defined as the initial m dimensions
of the original d-dimensional embedding, where
m < d. This can be expressed as CE [: m] =
{ce1[: m], ce2[: m], ..., ceN [: m]} where each re-
duced embedding vector cei[: m] ∈ Rm. A funda-

Reduced 
dimension 
similarity

Similarity 
Loss

Reduced dimensions Original dimensions

Original  
dimension 
similarity

Figure 2: Similarity loss is a measure of the discrep-
ancy between the similarity of two embeddings in their
original dimensional space and their similarity in a re-
duced dimensional space. If the orange and blue em-
beddings are chosen randomly, this loss is referred to
as pairwise similarity loss. If the orange and blue em-
beddings are selected based on similarity in their origi-
nal dimensional space (top-k nearest embeddings), this
loss is referred to as top-k similarity loss. Note that top-
k similarity loss focuses on preserving local similarity
relationships among neighboring embeddings.

mental characteristic of Matryoshka embeddings is
their capacity to preserve the essential properties
of the original embeddings, even within a reduced-
dimensional space.

3.2 Tuning objective functions
The proposed Matryoshka-Adaptor, represented
by the function f : Rd → Rd, is designed to
modify the original embeddings in order to en-
hance their inherent Matryoshka properties. We
define the set of customized corpus embeddings
as ĈE = {ĉe1, ĉe2, ..., ĉeN} and their correspond-
ing Matryoshka embeddings as ĈE [: m] = {ĉe1[:
m], ĉe2[: m], ..., ĉeN [: m]} where ĉei = f(cei).
The primary objective of the function f is to maxi-
mize the Matryoshka properties through this cus-
tomization process. This means ensuring the simi-
larity between any two embeddings remains as con-
sistent as possible, whether they are represented in
the original high-dimensional space or the reduced
low-dimensional space.

To achieve this objective, we introduce two loss
functions. The first loss function, denoted as Lpair,
is designed to preserve the pairwise similarity be-
tween the original embeddings in their reduced-
dimension Matryoshka form, expressed as:

Lpair =
∑

i

∑

j

∑

m

|Sim(cei, cej)− (1)

Sim(f(cei)[: m], f(cej)[: m])|,
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Figure 3: Block diagrams illustrating both the unsupervised and supervised Matryoshka-Adaptor frameworks.
Unsupervised Matryoshka-Adaptor: This variant exclusively utilizes corpus embeddings as input. The training
of the adaptor is achieved through a combination of top-k similarity loss and pairwise loss, which are calculated
across multiple Matryoshka embeddings with various reduced dimensions. Supervised Matryoshka-Adaptor: In
this variant, query embeddings and query-corpus pairs are provided as supplementary inputs. A ranking loss
is incorporated alongside the top-k and pairwise losses to facilitate the training of the adaptor. Similar to the
unsupervised setting, all losses are computed across Matryoshka embeddings with various reduced dimensions.

where Sim represents an arbitrary similarity func-
tion, which is chosen to be the cosine similarity.

The second loss function, denoted as Ltopk, fo-
cuses on preserving local similarity relationships
among neighboring embeddings:

Ltopk =
∑

i

∑

j∈NNk(i)

∑

m

|Sim(cei, cej)− (2)

Sim(f(cei)[: m], f(cej)[: m])|,

where NNk(i) denotes the set of the top k most
similar embeddings to cei. A visual representation
of these two loss functions, illustrating their appli-
cation across multiple Matryoshka embeddings of
varying dimensions, is provided in Fig. 2.

In order to mitigate any substantial deviation
from the original embeddings, we have integrated
regularizations into our methodology. Primarily, a
skip connection is implemented within the architec-
ture of the learnable function, f , ensuring that this
function learns solely the difference from the origi-
nal embedding, represented as ĉei = cei + f(cei).
Furthermore, a reconstruction loss, denoted asLrec,
is introduced as an additional regularizer:

Lrec =
∑

i

|cei − f(cei)|. (3)

The overall objective function, designed to mini-
mize the aggregate loss, is given as:

min
f
Ltopk(f) + αLpair(f) + βLrec(f), (4)

with α, β > 0 being hyperparameters. Within the
context of the unsupervised tuning setting, we fix
their values as α = 1.0, β = 1.0.

4 Supervised Matryoshka-Adaptor

4.1 Problem formulation

For many information retrieval applications, the
availability of pairwise data, which indicates the
relevance between specific queries and corpora, can
considerably improve retrieval performance (Yoon
et al., 2023). In this section, we introduce a method
to further refine the Matryoshka-Adaptor by utiliz-
ing (a limited number of) such paired samples.

Let Q = {q1, q2, ..., qM} denote the set of
queries, and letR = {(qi, cj , yij)}i=1:M,j=1:N rep-
resent the set of query-corpus relevance triplets,
where yij > 0 signifies the relevance score be-
tween query qi and corpus cj . The query embed-
dings extracted from the model (E) are denoted
as QE = {qe1, qe2, ..., qeN} with each query em-
bedding vector qei = E(qi) ∈ Rd. Further-
more, we define Matryoshka query embeddings
as QE [: m] = {qe1[: m], qe2[: m], ..., qeN [: m]},
where qei[: m] ∈ Rm. Note that m can be any in-
teger less than the original embedding dimension.

4.2 Tuning objective functions

In the supervised setting, the Matryoshka-Adaptor
(f ) undergoes optimization to enhance both its Ma-
tryoshka properties and the retrieval performance
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Figure 4: Experimental results of the unsupervised Matryoshka-Adaptor applied to three different embedding
models: OpenAI text-embedding-3-large (with 3072 dimensions), OpenAI text-embedding-3-small (with 1536
dimensions), and Google multimodal (with 1408 dimensions). Text embedding results were obtained using 8
BEIR datasets, while multimodal embedding results were obtained using 5 Fashion-200K datasets.

of the Matryoshka embeddings. This is accom-
plished through the utilization of paired query-
corpus samples, in conjunction with the original
query and corpus embeddings. Matryoshka rank-
ing loss, denoted as Lrank, is introduced to align
the ranking between query and corpus considering
different Matryoshka embedding dimensions:

Lrank =
∑

i

∑

j

∑

k

∑

m

I(yij > yik) (5)

(yij − yik) log(1 + exp(sik[: m]− sij [: m])),

where sij [: m] represents the cosine similarity
between the adapted query embedding q̂ei[: m]
(where q̂ei = qei+ f(qei)) and the adapted corpus
embedding ĉej [: m]. We use the same adaptor (f )
for both query and corpus embeddings. This rank-
ing loss is crucial for effective learning of lower
dimensional representations with their information
content for the ranking objective being considered.

The supervised Matryoshka-Adaptor is trained
using a joint objective function that encompasses
the ranking loss as well as the unsupervised Ma-
tryoshka losses (Ltopk , Lpair, and Lrec). This joint
training approach aims to improve the quality of
the embeddings while preserving their Matryoshka
representations. Query-corpus pairs are employed
for the ranking loss, while query and corpus embed-
dings are utilized for the Matryoshka representation
learning. The overall objective function is:

min
f
Ltopk(f) + αLpair(f)+ (6)

βLrec(f) + γLrank(f),

with α, β, γ ≥ 0 being hyper-parameters with fixed
values as α = 1.0, β = 1.0 and γ = 1.0.

To improve convergence, two-stage training
strategy is employed. Initially, the Matryoshka-
Adaptor is trained in an unsupervised way using
Eq. 4. Subsequently, further tuning is conducted in
a supervised way, utilizing Eq. 6.

5 Experiments

5.1 Experimental settings

The Matryoshka-Adaptor is extensively evaluated
across a diverse set of 13 BEIR datasets (bei),
17 MIRACL datasets (mir), and 5 Fashion-200K
datasets (Han et al., 2017). Such a comprehensive
evaluation highlights the data-agnostic nature of
the Matryoshka-Adaptor. Query and corpus embed-
dings are generated using state-of-the-art models,
including Google Gecko text embeddings (English
and multilingual) (gcp), Google multimodal em-
beddings, and OpenAI text embeddings (ope). This
further highlights the model-agnostic nature of the
proposed Matryoshka-Adaptor.

During the evaluation phase, both query
and corpus embeddings are transformed using
the trained Matryoshka-Adaptor. Cosine sim-
ilarity is then computed between the trans-
formed query and corpus embeddings across
a spectrum of reduced dimensions (e.g., d =
{8, 16, 32, 64, 128, 256, 512, 768} for Gecko text
embeddings). Retrieval performance is evaluated
using the normalized discounted cumulative gain at
rank 10 (nDCG@10) metric (Järvelin and Kekäläi-
nen, 2002), facilitating a comprehensive assess-
ment of performance across various Matryoshka
embedding dimensions. All reported results rep-
resent the average value across the datasets. Data

10322



64 12
8

25
6

51
2

76
8

10
24

15
36

20
48

25
84

30
72

Embedding dimensions

0.40

0.45

0.50

0.55

0.60
ND

CG
@

10

OpenAI text embedding-3-large
Supervised Matryoshka-Adaptor
Search-Adaptor

(a) OpenAI text-embedding-3-large

64 12
8

25
6

51
2

76
8

Embedding dimensions

0.40

0.45

0.50

0.55

0.60

ND
CG

@
10

Google Gecko Multilingual Embedding
Supervised Matryoshka-Adaptor
Search-Adaptor

(b) Google gecko multilingual embeddings

64 12
8

25
6

51
2

76
8

10
24

14
08

Embedding dimensions

0.00

0.05

0.10

0.15

0.20

0.25

ND
CG

@
10

Google Multimodal Embedding
Supervised Matryoshka-Adaptor
Search-Adaptor

(c) Google multimodal embeddings

Figure 5: Experimental results of the supervised Matryoshka-Adaptor on retrieval tasks, utilizing three different
embedding models: OpenAI text-embedding-3-large (on 8 BEIR datasets), Google Gecko multilingual (on 17
MIRACL datasets), and Google multimodal (on 5 Fashion-200K datasets). Additional results are in Appendix. D.

statistics and hyper-parameters used in the experi-
ments can be found in Appendix. A and B. Detailed
results can be found in Appendix. E and F.

5.2 Unsupervised tuning

The Matryoshka-Adaptor can be applied exclu-
sively with corpus embeddings, referred to as the
unsupervised setting, enabling customization of
embeddings solely on the corpus side. In this sub-
section, we present the impact of the unsupervised
Matryoshka-Adaptor on two OpenAI text embed-
ding models and compare its performance with
the commonly-used unsupervised dimensionality
reduction method, Principal Component Analysis
(PCA) (Jolliffe and Cadima, 2016).

Fig. 4a and 4b illustrate that the Matryoshka-
Adaptor yields significant performance improve-
ments, particularly for lower dimensions, compared
to the embeddings of the same dimensionality with-
out it. Furthermore, lower dimensional embed-
dings processed with Matryoshka-Adaptor achieve
comparable performance to original embeddings
of high dimensionality. The adaptor achieves a
faster saturation in performance with embedding
dimensionality, towards the retrieval performance
of original embeddings, underscoring its substan-
tial impact in significantly reducing latency and
memory requirements for retrieval applications.

Notably, the latest OpenAI embeddings are
already trained with Matryoshka Representation
Learning (MRL) (ope). The additional perfor-
mance gains achieved by Matryoshka-Adaptor are
attributed to the tuning process. With PCA, some
improvements are observed for lower dimensions,
however, at higher dimensions, noticeable per-
formance degradation occurs, resulting in perfor-

mance inferior even to the original embedding.
This highlights the superiority of the Matryoshka-
Adaptor, designed with the goal of salient informa-
tion preservation for similarity within lower dimen-
sions compared to PCA, a generic unsupervised
dimensionality reduction approach.

5.3 Supervised tuning

The Matryoshka-Adaptor can be applied in super-
vised learning setup where a limited number of
query-corpus pairs are available. In this context,
the Supervised Matryoshka-Adaptor is trained uti-
lizing paired query-corpus data. The effectiveness
of the Supervised Matryoshka-Adaptor is evaluated
on 13 BEIR, 17 MIRACL, and 5 Fashion-200K
datasets, with query and corpus embeddings being
generated using the latest Google Gecko models,
including its multilingual and multimodal versions.

As illustrated in Fig. 5, the Supervised
Matryoshka-Adaptor consistently outperforms the
alternatives, such as Search-Adaptor (Yoon et al.,
2023), particularly for lower embedding dimen-
sions. Additionally, lower dimensional embed-
dings processed with the Supervised Matryoshka-
Adaptor perform comparably to high dimensional
embeddings, showcasing its potential to signifi-
cantly reduce latency and memory requirements
for applications like retrieval.

5.4 Tuning for Multimodal Embeddings

As previously established, the Matryoshka-Adaptor
framework is not confined to text embeddings
but can be generalized to multimodal embed-
dings as well. To illustrate this capability, we ap-
plied the Matryoshka-Adaptor to the latest gecko-
multimodal embeddings, utilizing the Fashion-
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Figure 6: Experimental results of the unsupervised Matryoshka-Adaptor with three different text embedding mod-
els: Google Gecko, Google Gecko multilingual, and Google Gecko-003 (which is not trained with the Matryoshka
Representation Learning technique).

200K dataset, which comprises 5 sub-datasets de-
signed for text-to-image retrieval tasks.

Fig. 4c and 5c demonstrate the effectiveness of
the Matryoshka-Adaptor in consistently improving
the performance of multimodal base embedding
models for text-to-image retrieval tasks. These
highlight that the Matryoshka-Adaptor significantly
outperforms alternative methods such as PCA, in
unsupervised learning setups and Search-Adaptor
in supervised learning setups, particularly when
lower embedding dimensions are considered.

5.5 Tuning for Multilingual Embeddings

Matryoshka-Adaptor is not only model-agnostic
but also data-agnostic. Its applicability even ex-
tends beyond a single language. To validate
this, we evaluate the performance of Matryoshka-
Adaptor on MIRACL datasets, which comprise 17
non-English languages.

Fig. 6b and 5b present the results of apply-
ing Matryoshka-Adaptor to multilingual retrieval
tasks. The findings demonstrate that the perfor-
mance gains achieved through the proposed tun-
ing method are not limited to English but also ex-
tend to non-English language datasets. Further-
more, the improvements are observed to be model-
agnostic, as evident from the successful application
of Matryoshka-Adaptor to the latest Gecko multi-
lingual embedding models.

6 Discussions

6.1 Models that are not pretrained with MRL

A significant advantage of the Matryoshka-Adaptor
framework lies in its broad applicability to a wide
array of embedding models. We demonstrate the

efficacy of Matryoshka-Adaptor when applied to
embedding models that have not been trained using
MRL. Specifically, we utilize earlier versions of
the Gecko embedding models (Google Gecko-003),
which do not utilize MRL in their pretraining, in
conjunction with BEIR datasets to illustrate the
impact of the Unsupervised Matryoshka-Adaptor.

Fig. 6c presents evidence of the consis-
tent performance improvements achieved by the
Matryoshka-Adaptor when applied to non-MRL
trained embedding models. This observation under-
scores that the performance gains of Matryoshka-
Adaptor originate from customizing the embedding
to the specific corpus, and this beneficial impact
can be extended to any embedding model, even
when they had been trained with MRL.

6.2 Ablation studies

To examine the individual contribution of each
loss component to the overall performance of
Matryoshka-Adaptor, we conduct ablation studies.
In the unsupervised setting, each of the top-k loss
(Ltopk), pairwise loss (Lpair), and reconstruction
loss (Lrec) is individually excluded from the origi-
nal loss summation in Eq. 4, and the corresponding
performance degradation is monitored. Specifi-
cally, the pairwise loss was excluded by setting
α = 0, and the reconstruction loss is excluded by
setting β = 0. In the supervised setting, we utilize
only the ranking loss (Lrank) to assess the impact
of three unsupervised losses in Eq. 6.

As evident in Table 1, each loss function con-
tributes uniquely to the overall performance of
Matryoshka-Adaptor in the unsupervised setting.
Notably, Ltopk is particularly beneficial for higher
dimensions. In the supervised setting, the incor-
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(c) nDCG@10 vs Top-k distance

Figure 7: Analysis of distance metrics in unsupervised settings. (a) Average pairwise and top-k distances across
varying embedding dimensions, compared to base embeddings. (b) Correlation between nDCG@10 and average
pairwise distance. (c) Correlation between nDCG@10 and average top-k distance.

Unsuperivsed Matryoshka-Adaptor (nDCG@10)

Reduced dims 64 128 256 512

Baseline 0.4332 0.5044 0.5461 0.5590
All three losses 0.4845 0.5380 0.5580 0.5652

w/o Ltopk 0.4798 0.5236 0.5463 0.5630
w/o Lpair 0.4745 0.5230 0.5423 0.5598
w/o Lrec 0.4824 0.5342 0.5477 0.5621

Supervised Matryoshka-Adaptor (nDCG@10)

Reduced dims 64 128 256 512

Baseline 0.4332 0.5044 0.5461 0.5590
All four losses 0.5047 0.5473 0.5714 0.5902

Only with Lrank 0.4767 0.5209 0.5607 0.5787

Table 1: Ablation studies on both supervised and unsu-
pervised Matryoshka-Adaptor across 8 BEIR datasets.
The best performance in each scenario is in bold.

poration of the additional unsupervised losses, in-
cluding Ltopk and Lpair, is critical for achieving
performance improvements. Without these unsu-
pervised losses, the performance gain diminishes
by approximately 50%.

6.3 Relationship with distance metrics

In unsupervised learning setup, the absence of la-
beled data presents a challenge in evaluating the
impact of Matryoshka-Adaptor. Towards circum-
venting this issue and shedding light on the impact
of dimensionality reduction, we analyze the aver-
age pairwise distances and top-k distances within
the corpus embeddings on the disjoint validation
corpus. Subsequently, we examine the relationship
between these unsupervised metrics and the super-
vised retrieval metric nDCG@10, utilizing 8 BEIR
datasets with Google Gecko embedding models.

Fig. 7a reveals that the unsupervised
Matryoshka-Adaptor results in significantly lower

distance metrics compared to the original embed-
dings. This suggests that the proposed method
effectively preserves both pairwise and top-k dis-
tances among corpus embeddings when employing
a reduced subset of embedding dimensions. These
distance metrics can serve as viable unsupervised
proxies for assessing the efficacy of the unsuper-
vised Matryoshka-Adaptor. To further elucidate
this relationship, we also show the correlation be-
tween these distance metrics and nDCG@10 (Fig.
7b and 7c). A strong correlation is observed, in-
dicating that lower distance metrics are associated
with smaller performance drop in retrieval tasks,
even when using reduced embedding dimensions.
This suggests that the unsupervised distance met-
rics can be indicators of retrieval performance, even
in the absence of labeled data.

7 Conclusions

While high-dimensional embeddings often provide
a richer representation of the original data, their
practical deployment in real-world applications
is frequently hampered by computational costs
and latency issues. As a result, many applica-
tions opt for lower-dimensional embeddings, ac-
cepting a compromise in performance. The pre-
sented Matryoshka-Adaptor framework offers a
solution to this dilemma by enabling substantial
dimensionality reduction while minimizing perfor-
mance degradation, in both supervised and unsu-
pervised scenarios. Furthermore, due to its ver-
satile nature and applicability to any embedding
model, regardless of access to model parameters,
the Matryoshka-Adaptor constitutes a valuable tool
for improving the efficiency and practicality of
embedding-based applications.
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8 Limitations and Future Works

In the unsupervised setting, picking the optimal
hyperparameters for Matryoshka-Adaptor poses a
challenge due to the absence of validation data.
While alternative metrics, such as the proposed dis-
tance metrics illustrated in Fig. 7, can be employed,
these may exhibit higher levels of noise compared
to supervised validation metrics. One major risk
associated with Matryoshka-Adaptor lies in the po-
tential for overfitting to the tuning data, during the
tuning process. Future research endeavors might
include extending the proposed approach to encom-
pass multiple modalities in the tuning objective;
exploring semi-supervised variations; and investi-
gating simultaneous utilization of multiple datasets
during tuning.
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A Data Statistics

A.1 BEIR datasets

Datasets Number of Number of Number of
train pairs test pairs corpus

NFCorpus 110575 12334 3633
SciFact 919 339 5183
Arguana 703 703 8674
SciDocs 14972 14956 25657

FiQA 14166 1706 57638
Trec-Covid 35460 30876 171332

Touche 1077 1137 382545
Quora 7626 15675 522931

NQ 2097 2104 2681468
DBPedia 5673 43515 4635922

HotPotQA 170000 14810 5233329
Fever 140085 7937 5416568

Climate-fever 2299 2382 5416593

Table 2: The statistics of 13 BEIR datasets (sorted by the number of corpus).

A.2 MIRACL datasets

Datasets Number of Number of Number of
train pairs test pairs corpus

Yoruba (yo) 959 229 49043
Swahilli (sw) 9359 5092 131924
Bengali (bn) 16754 4206 297265

Hindi (hi) 11668 3494 506264
Telugu (te) 18608 1606 518079
Thai (th) 21293 7573 542166

Indonesian (id) 41358 9668 1446315
Korean (ko) 12767 3057 1486752
Finnish (fi) 20350 12008 1883509
Arabic (ar) 25382 29197 2061414
Persian (fa) 21844 6571 2207172
Chinese (zh) 13113 3928 4934368
Japanese (ja) 34387 8354 6953614
Russian (ru) 33921 13100 9543918
Spanish (es) 21531 6443 10373953
French (fr) 11426 3429 14636953

Germany (de) 2526 628 15866222

Table 3: The statistics of 17 MIRACL datasets (sorted by the number of corpus).

A.3 Fashion-200K datasets

Datasets Number of Number of Number of
train pairs test pairs corpus

Dresses 15127 1567 72376
Jackets 8105 1511 71118
Pants 9264 1758 74470
Skirts 6822 1247 47931
Tops 13809 2536 72444

Table 4: The statistics of 5 Fashion-200K datasets.
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B Hyper-parameters

We summarize the hyper-parameters used to train Matryoshka-Adaptor. In all experiments (in both unsu-
pervised and supervised settings), we utilize the fixed hyper-parameters that enable applying Matryoshka-
Adaptor without extensive hyper-parameter tuning.

Hyper-parameters Fixed values

Pairwise loss coefficient (α) 1.0
Recovery loss coefficient (β) 1.0
Ranking loss coefficient (γ) 1.0
Batch size for training 128
Batch size for corpus during training 50000
Maximum number of training iterations 5000
Patience for early stopping 500
Learning rates 0.001
Optimizer Adam

Table 5: Hyper-parameters used to train Matryoshka-Adaptor in all experiments.

C Computational complexity

All experimental procedures were conducted utilizing a single NVIDIA V100 GPU with 16GB of memory.
In the unsupervised Matryoshka-Adaptor training regime, processing time did not exceed 10 minutes for
datasets ranging from 3,000 to 10 million corpus samples. For supervised Matryoshka-Adaptor training,
datasets with fewer than 1 million corpus samples were processed in under 30 minutes, while datasets
with up to 10 million corpus samples were processed in less than one hour. It is important to note that the
adaptor architecture consists of a shallow multi-layer perceptron, rendering the computational complexity
of inference negligible.

D Additional results on supervised Matryoshka-Adaptor
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Figure 8: Experimental results of the supervised Matryoshka-Adaptor on retrieval tasks, utilizing two different em-
bedding models: Google Gecko (on 13 BEIR datasets), and OpenAI text-embedding-3-small (on 8 BEIR datasets).
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E Detailed Experimental Results on Unsupervised Settings

In this section, we present the experimental results per each dataset in unsupervised settings. In the main
manuscript, we report the average values among the entire datasets.

E.1 Unsupervised Matryoshka-Adaptor with OpenAI embedding models
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(f) Trec-Covid
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Figure 9: Experimental results of unsupervised Matryoshka-Adaptor with OpenAI-textembedding-3-large on 8
BEIR datasets.
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Figure 10: Experimental results of unsupervised Matryoshka-Adaptor with OpenAI-textembedding-3-small on 8
BEIR datasets.
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E.2 Unsupervised Matryoshka-Adaptor with Google multimodal embedding models
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(a) Dresses
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(b) Jackets
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(c) Pants
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(d) Skirts
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Figure 11: Experimental results of unsupervised Matryoshka-Adaptor with Google multimodal embedding models
on 5 Fashion-200K datasets.
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E.3 Unsupervised Matryoshka-Adaptor with Google Gecko multilingual embedding models
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(a) Yoruba (yo)
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(b) Swahilli (sw)
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(c) Bengali (bn)

12
8

25
6

51
2

76
8

Embedding dimensions

0.46

0.48

0.50

0.52

0.54

ND
CG

@
10

Google Gecko Multilingual embedding
Unsupervised Matryoshka-Adaptor

(d) Hindi (hi)

12
8

25
6

51
2

76
8

Embedding dimensions

0.68

0.69

0.70

0.71

0.72

0.73

0.74

ND
CG

@
10

Google Gecko Multilingual embedding
Unsupervised Matryoshka-Adaptor

(e) Telugu (te)
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(f) Thai (th)
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Figure 12: Experimental results of unsupervised Matryoshka-Adaptor with Google Gecko multilingual embedding
models on 17 MIRACL datasets.
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F Detailed Experimental Results on Supervised Settings

In this section, we present the experimental results per each dataset in supervised settings. In the main
manuscript, we report the average values among the entire datasets.

F.1 Supervised Matryoshka-Adaptor with Google Gecko embedding models
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Figure 13: Experimental results of supervised Matryoshka-Adaptor with Google latest Gecko embedding models
on 13 BEIR datasets.
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F.2 Supervised Matryoshka-Adaptor with OpenAI text-embedding-3-large models
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Figure 14: Experimental results of supervised Matryoshka-Adaptor with OpenAI text-embedding-3-large models
on 8 BEIR datasets.

F.3 Supervised Matryoshka-Adaptor with OpenAI text-embedding-3-small models
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Figure 15: Experimental results of supervised Matryoshka-Adaptor with OpenAI text-embedding-3-small models
on 8 BEIR datasets.
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F.4 Supervised Matryoshka-Adaptor with Google Gecko multilingual embedding models
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Figure 16: Experimental results of supervised Matryoshka-Adaptor with Google Gecko multilingual embedding
models on 17 MIRACL datasets.
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F.5 Supervised Matryoshka-Adaptor with Google multimodal embedding models
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Figure 17: Experimental results of supervised Matryoshka-Adaptor with Google multimodal embedding models
on 5 Fashion-200K datasets.
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