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Abstract
Recent studies show the growing significance
of document retrieval in the generation of
LLMs, i.e., RAG, within the scientific domain
by bridging their knowledge gap. However,
dense retrievers often struggle with domain-
specific retrieval and complex query-document
relationships, particularly when query seg-
ments correspond to various parts of a docu-
ment. To alleviate such prevalent challenges,
this paper introduces MixGR, which improves
dense retrievers’ awareness of query-document
matching across various levels of granularity
in queries and documents using a zero-shot ap-
proach. MixGR fuses various metrics based
on these granularities to a united score that re-
flects a comprehensive query-document similar-
ity. Our experiments demonstrate that MixGR
outperforms previous document retrieval by
24.7%, 9.8%, and 6.9% on nDCG@5 with
unsupervised, supervised, and LLM-based re-
trievers, respectively, averaged on queries con-
taining multiple subqueries from five scientific
retrieval datasets. Moreover, the efficacy of
two downstream scientific question-answering
tasks highlights the advantage of MixGR to
boost the application of LLMs in the scientific
domain. The code and experimental datasets
are available. 1

1 Introduction

Recent advances in Large Language Models
(LLMs) have significantly impacted various sci-
entific domains (Zhang et al., 2022; Touvron et al.,
2023; Birhane et al., 2023; Grossmann et al., 2023).
However, LLMs are notorious for their tendency
to produce hallucinations, generating unreliable
outputs (Ji et al., 2023). To address this, Retrieval-
Augmented Generation (RAG; Lewis et al. 2020)
has been developed to address this issue by incor-
porating external knowledge during the generation.

Though notable for accessing external and rel-
evant knowledge, dense retrievers face specific

1https://github.com/TRUMANCFY/MixGR
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(a) Subquery distribution of general and scientific queries:
scientific queries, e.g., NFCorpus (Boteva et al. 2016, Right),
demonstrate a more diverse range of subqueries per query
than general queries, e.g., Natural Questions (Kwiatkowski
et al. 2019, Left).

(b) Comparison between general and scientific query-doc re-
trieval: compared with the general query-doc retrieval exem-
plified by NQ (Kwiatkowski et al. 2019, Left), the scientific
query-doc retrieval exemplified by SciFact (Wadden et al.
2020, Right) demonstrates that one query can be decomposed
to multiple subqueries, which can be mapped to different parts
of documents.

Figure 1: Scientific document retrieval is shown to be
more complicated than general domains.

challenges in the scientific domain: (1) Domain-
specific nature: dense retrievers are typically
trained on the general corpus such as Natural Ques-
tions (NQ; Kwiatkowski et al. 2019). However, sci-
entific domains differ notably, e.g., the terminology
and the pattern of queries as shown in Figure 1a. (2)
Complexity of scientific documents: they are long,
structured (Erera et al., 2019) and contain com-
plex relationships between arguments (Kirschner
et al., 2015). Figure 1a demonstrates that scientific
queries tend to contain more subqueries than those
in general domains. This indicates that subqueries
within a single query may align with different parts
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Figure 2: The illustration of MixGR: Both queries and documents (e.g., the query-doc pair from SciFact in Figure
1b) are decomposed into subqueries and propositions, respectively, each containing distinct semantic components.
Starting from the original queries and documents along with their decomposed elements, metrics from various
granularity combinations are fused into a single integrated score.

of a document (doc), resulting in complex interac-
tions between queries and documents (Figure 1b).
Such complexity poses significant challenges for
dense retrievers (Lupart et al., 2023). Addressing
these challenges requires specific training on the
scientific corpus. However, this is often hindered
by the necessity of extensive annotations (Wadden
et al., 2020) and extra computation (Wang et al.,
2021a).

In this study, we introduce a novel zero-shot ap-
proach that effectively adapts dense retrievers to sci-
entific domains. This method specifically addresses
the complexities arising from the composition of
scientific queries and their consequent intricate re-
lationships with documents. Inspired by Chen et al.
(2023), showing that finer units improve retrievers’
generalization to rare entities, we incorporate more
granular retrieval units, specifically propositions
(prop), to address domain-specific challenges as
shown in Figure 2. Given the complexity between
scientific queries and documents (Figure 1b), we
also consider finer units within queries–subqueries–
to measure query-doc similarity at a finer granular-
ity. This metric captures the similarity between sub-
queries and propositions, moving beyond simple
point similarity between query-doc vectors. Given
a query, the distribution of corresponding infor-
mation within a document is unknown. Addition-
ally, our empirical analysis reveals that similari-
ties at various granularities provide complementary
insights. Therefore, for each query-doc pair, we
fuse the metrics from these granularities to a uni-
fied score, termed Mixed-Granularity Retrieval as

MixGR, as depicted in Figure 2.
We conducted document retrieval experiments

on five scientific datasets using eight retrievers,
comprising two unsupervised and four supervised,
and two LLM-based models. Our results demon-
strate that MixGR markedly surpasses previous
query-doc retrieval methods. Notably, we recorded
an average improvement of 24.7% for unsupervised
retrievers, 9.8% for supervised ones, and 6.9% for
LLM-based ones in terms of nDCG@5 for queries
involving multiple subqueries. Furthermore, docu-
ments retrieved via MixGR substantially enhance
the performance of downstream scientific QA tasks,
underscoring their potential utility for RAG within
scientific domains.

Our contributions are three-fold:

• We identify the challenges within scientific docu-
ment retrieval, i.e., domain shift and query-doc
complexity. We initiate retrieval with mixed gran-
ularity within queries and documents to address
these issues;

• We propose MixGR, which further incorporates
finer granularities within queries and documents,
computes query-doc similarity over various gran-
ularity combinations and fuses them as a united
score. Our experiments across five datasets and
eight retrievers empirically reveal that MixGR
significantly enhances existing retrievers on the
scientific document retrieval and downstream QA
tasks;

• Further analysis demonstrates the complementar-
ity of metrics based on different granularities and
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the generalization of MixGR in retrieving units
finer than documents.

2 Preliminary and Related works

Generalization of Dense Retrievers Dense re-
trievers generally employ a dual-encoder frame-
work (Yih et al., 2011; Reimers and Gurevych,
2019) to separately encode queries and documents
into compact vectors and measure relevance using a
non-parametric similarity function (Mussmann and
Ermon, 2016). However, the simplicity of the simi-
larity function (e.g., cosine similarity) can restrict
expressiveness, leading to suboptimal generaliza-
tion in new domains such as scientific fields that
differ from original training data (Thakur et al.,
2021). To improve dense retrievers’ adaptability
across tasks, researchers have used data augmen-
tation (Wang et al., 2022; Lin et al., 2023; Dai
et al., 2023), continual learning (Chang et al., 2020;
Sachan et al., 2021; Oguz et al., 2022), and task-
aware training (Xin et al., 2022; Cheng et al., 2023).
However, these methods still require training on
domain-specific data, incurring additional compu-
tational costs. This work focuses on zero-shot gen-
eralization of dense retrievers to scientific fields by
incorporating multi-granularity similarities within
queries and documents.

Granularity in Retrieval For dense retrieval, the
selection of the retrieval unit needs to balance the
trade-off between completeness and compactness.
Coarser units, like documents or fixed-length pas-
sages, theoretically encompass more context but
may introduce extraneous information, adversely
affecting retrievers and downstream tasks (Shi
et al., 2023; Wang et al., 2023). Conversely, finer
units like sentences are not always self-contained
and may lose context, thereby hindering retrieval
(Akkalyoncu Yilmaz et al., 2019; Yang et al., 2020).
Additionally, some studies extend beyond com-
plete sentences; for example, Lee et al. (2021a) use
phrases as learning units to develop corresponding
representations. Meanwhile, ColBERT (Khattab
and Zaharia, 2020) addresses token-level query-doc
interaction but is hampered by low efficiency.

Chen et al. (2023) propose using propositions
as retrieval units, defined as atomic expressions
of meaning (Min et al., 2023). These units are
contextualized and self-contained, including nec-
essary context through decontextualization, e.g.,
coreference resolution (Zhang et al., 2021). Propo-
sition retrieval improves retrieval of documents

with long-tail information, potentially benefiting
domain-specific tasks. This motivates the use of
propositions as retrieval units for scientific docu-
ment retrieval. Furthermore, we extend fine granu-
larity to queries and enhance the query-doc similar-
ity measurement, moving from a point-wise assess-
ment between two vectors to integrating multiple
query-doc granularity combinations.

Fusion within Retrieval Each type of retriever,
sparse or dense, has its own strength and can be
complementary with each other. Based on this in-
sight, previous studies have explored the fusion
of searches conducted by different retrievers as a
zero-shot solution for domain adaptation (Thakur
et al., 2021). A common method involves the con-
vex combination, which linearly combines simi-
larity scores (Karpukhin et al., 2020; Wang et al.,
2021b; Ma et al., 2021). However, this approach is
sensitive to the weighting of different metrics and
score normalization, which complicates configura-
tion across different setups (Chen et al., 2022).

In this work, we enhance retrieval by integrating
searches across various query and document granu-
larity levels for a given retriever. To avoid the limi-
tations of convex combination on parameter search-
ing, we use Reciprocal Rank Fusion (RRF; Cor-
mack et al. 2009), a robust, non-parametric method
(Chen et al., 2022), to aggregate these searches.

3 MixGR: Mix-Granularity Retrieval

3.1 Finer Units in Queries and Documents

We first decompose queries and documents into
atomic units, i.e., subqueries and propositions, re-
spectively. A proposition (or subquery) should
meet the following three principal criteria (Min
et al., 2023):

• Each proposition conveys a distinct semantic unit,
collectively expressing the complete meaning.

• Propositions should be atomic and indivisible.

• According to Choi et al. (2021), propositions
should be contextualized and self-contained, in-
cluding all necessary text information such as
resolved coreferences for clear interpretation.

Here, we employ an off-the-shelf model, propo-
sitioner,2 for decomposing queries and documents
(Chen et al., 2023). This model is developed by

2https://huggingface.co/chentong00/
propositionizer-wiki-flan-t5-large
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Query Document

Accuracy (%) 96.3 94.7
IAA (%) 92.0 89.0

Table 1: Human-evaluated accuracy of query/document
decomposition by propositioner (Chen et al., 2023).

distilling the decomposition capacities of GPT-4
(Achiam et al., 2023) to a Flan-T5-Large model
(Chung et al., 2024) using Wikipedia as the corpus.
We sample decomposition results from 100 queries
and 100 documents from the datasets in §4.1 and
manually label the correctness of decomposition
as shown in Table 1. This model is shown to ef-
fectively decompose queries and documents into
atomic units within scientific domains. Please see
Appendix B for further details.

3.2 Multi-Granularity Similarity Calculation
Given these various granularities including queries,
subqueries, documents, and propositions, we ex-
tend the query-doc similarity metrics to include
measurements across different combinations of
granularities as depicted in Figure 2.

Notations The sets of queries and documents are
denoted as Q and D, respectively. Given a retriever
s, the similarity between a query q ∈ Q and a
document d ∈ D is denoted as s(q,d). A docu-
ment d can be decomposed to N propositions, i.e.,
d = [d1, ..., dN ]. And a query q can be decom-
posed to M subqueries, i.e., q = [q1, ..., qM ].

Query-doc sq-d: The direct and original similar-
ity between q and d is sq-d(q, d) ≡ s(q,d).

Query-prop sq-p: Recent works (Chen et al.,
2023) determine query-doc similarity by calculat-
ing the maximum similarity between the query and
individual propositions within the document (Lee
et al., 2021b; Chen et al., 2023). The computation
of this metric, denoted as sq-p, is as follows:

sq-p(q,d) = max
i=1,...,N

{s(q, di)}. (1)

Subquery-prop ss-p: Considering that different
parts of a query may be captured by various propo-
sitions within a document shown in Figure 1b, we
further assess query-doc similarity by analyzing
the relationships between subqueries and individ-
ual propositions. The similarity between a query
and a document can be defined as the average simi-
larity across subqueries, calculated by identifying
the maximum similarity between one subquery and

each proposition, in analogy to MaxSim in Col-
BERT (Khattab and Zaharia, 2020). This metric,
represented by ss-p, is calculated as:

ss-p(q,d) =
1

M

M∑

i=1

max
j=1,...,N

{s(qi, dj)}. (2)

3.3 Reciprocal Rank Fusion

We then use RRF to fuse these metrics across dif-
ferent query and document granularities:

sf (q,d) =
1

1 + rq-d(q,d)
+

1

1 + rq-p(q,d)

+
1

1 + rs-p(q, d)
, (3)

where rq-d, rq-p, rs-p ∈ R≥0 signify the rank of
the retrieve results by sq-d, sq-p, and ss-p, respec-
tively. Technically, we retrieve the top-k results
Rk

q-d, Rk
q-p, and Rk

s-p by sq-d, sq-p, and ss-p, respec-
tively, where k is set 200 empirically. When a
query-doc pair (q′, d′) in one retrieval result does
not exist in the other sets (e.g., (q′,d′) ∈ Rk

q-d

but (q′,d′) /∈ Rk
q-p), we will calculate the missing

similarity (e.g., sq-p(q
′,d′)) before aggregation.

4 Experimental Setting

4.1 Scientific Retrieval Datasets

We evaluate our approach on five different scien-
tific retrieval tasks, including BioASQ (Tsatsaronis
et al., 2015), NFCorpus (Boteva et al., 2016), Sci-
Docs (Cohan et al., 2020), SciFact (Wadden et al.,
2020), and SciQ (Welbl et al., 2017), as shown in
Table 4 in Appendix A. We employ the proposi-
tioner released by Chen et al. (2023) mentioned in
§3.1 to break down both queries and documents
into atomic units. As we focus with priority on
query-doc complexity in scientific domains, we
report the experiments and analysis on the sub-
set of the queries that contain multiple subqueries.
For queries containing only a single subquery, we
also assess the methodology of MixGR by omit-
ting ss-p. The detailed results are shown in Table
9 in Appendix G.4. The results encompassing all
queries, ones containing both single and multiple
subqueries, are detailed in Table 9 located in Ap-
pendix G.4.

4.2 Dense Retrievers

We evaluate the performance of eight off-the-shelf
dense retrievers, both supervised and unsupervised
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Retriever Setup BioASQ NFCorpus SciDocs SciFact SciQ Avg.
ND@5 ND@20 ND@5 ND@20 ND@5 ND@20 ND@5 ND@20 ND@5 ND@20 ND@5 ND@20

Unsupervised Dense Retrievers

SimCSE

sq-d 17.0 17.0 16.2 13.3 7.6 9.7 27.1 31.2 62.3 67.3 26.0 27.7
sq-p 28.4 28.2 20.0 16.4 8.2 11.1 32.8 37.2 75.6 78.5 33.0 34.3
ss-p 31.1 30.6 22.8 18.3 7.3 10.5 32.7 36.9 80.9 83.2 35.0 35.9

MixGR 30.7 31.3 22.3 18.1 9.1 12.2 34.8 39.8 84.0 85.5 36.2+39.2% 37.4 +35.0%

Contriever

sq-d 64.8 68.3 42.2 34.9 13.5 18.5 64.5 68.5 67.2 70.0 50.5 52.0
sq-p 64.1 68.2 43.0 35.5 14.5 19.4 64.0 68.9 79.7 81.0 53.1 54.6
ss-p 63.7 68.0 41.4 34.9 13.5 18.3 63.2 67.5 83.6 84.6 53.1 54.6

MixGR 67.0 71.7 44.0 37.1 15.5 20.7 66.4 71.0 85.2 86.7 55.6+10.1% 57.5 (+10.6%)

Supervised Dense Retrievers

DPR

sq-d 39.1 39.1 25.1 20.7 7.3 10.4 31.8 37.7 60.6 64.1 32.8 34.4
sq-p 43.1 43.8 25.2 20.6 7.8 10.6 36.1 40.5 63.6 67.9 35.2 36.7
ss-p 41.1 41.7 26.5 21.4 6.4 10.0 37.1 41.3 67.7 70.7 35.8 37.0

MixGR 44.6 45.8 27.7 22.9 8.2 11.5 39.4 43.6 73.6 76.1 38.7+18.0% 40.0 +14.3%

ANCE

sq-d 48.8 48.2 29.9 24.4 9.3 13.1 41.5 45.3 66.4 69.1 39.2 40.0
sq-p 53.0 53.7 29.4 24.0 9.2 12.9 43.3 46.4 62.3 66.4 39.4 40.7
ss-p 49.0 49.8 30.3 24.5 7.5 11.9 43.5 47.3 66.1 69.1 39.3 40.5

MixGR 53.4 54.7 31.9 25.9 9.6 14.1 46.8 49.9 74.4 76.8 43.2+10.2% 44.3 +10.4%

TAS-B

sq-d 68.8 70.1 42.3 34.1 13.8 19.3 60.1 65.6 84.8 86.3 54.0 55.1
sq-p 70.9 72.3 42.5 34.4 14.3 18.1 60.7 64.4 85.6 86.3 54.8 55.1
ss-p 67.0 69.4 40.9 33.1 12.6 17.2 61.7 65.0 85.3 86.6 53.5 54.3

MixGR 71.7 74.0 43.6 35.2 14.0 19.6 62.7 66.9 90.5 91.0 56.5 +4.6% 57.3 +4.0%

GTR

sq-d 63.5 63.1 42.1 34.1 13.6 18.9 58.3 62.2 83.3 84.4 52.2 52.5
sq-p 65.9 67.8 42.3 34.4 13.2 18.0 60.6 63.3 85.8 86.5 53.6 54.0
ss-p 61.2 63.5 41.5 33.6 11.6 16.2 58.4 62.0 88.5 89.0 52.3 52.9

MixGR 66.8 68.6 43.3 35.6 13.6 19.2 60.9 64.5 92.9 93.0 55.5 +6.3% 56.2 +7.0%

LLM-based Retrievers

GTE-Qwen

sq-d 54.8 56.2 40.2 32.9 12.2 16.9 62.9 67.5 73.0 75.1 48.6 49.7
sq-p 69.5 73.1 45.5 37.6 17.7 24.9 69.9 73.9 81.6 83.1 56.9 58.5
ss-p 61.5 66.0 43.7 35.8 15.1 21.9 67.5 71.2 82.1 83.6 54.0 55.7

MixGR 66.5 70.1 44.9 37.5 17.2 23.5 70.3 74.3 86.7 87.5 57.1+11.5% 58.6 +17.7%

E5-Mistral

sq-d 73.2 76.4 50.3 41.7 19.1 25.5 74.6 77.4 87.5 88.4 60.9 61.9
sq-p 76.8 80.3 49.7 41.4 17.5 23.7 76.0 78.6 82.0 84.1 60.4 61.6
ss-p 70.9 75.6 47.3 39.1 15.8 21.2 73.2 76.4 84.3 85.5 58.3 59.6

MixGR 75.9 79.8 50.4 42.0 18.1 24.9 76.5 79.2 90.7 91.2 62.3 +2.3% 63.4 +2.4%

Table 2: Document Retrieval Performance (nDCG@k = 5, 20 in percentage, abbreviated as ND@k): We evaluated
five distinct scientific retrieval datasets using two unsupervised, four supervised, and two LLM-based retrievers. The
retrieval results were compared among various metrics: sq-d (previous query-doc similarity), sq-p (Chen et al., 2023),
ss-p, and MixGR, as detailed in §3.2. Bold presents the best performance across the metrics, while underline denotes
the second-best performance. MixGR outperforms all three other metrics, where the percentage in parentheses
indicates the relative improvement compared with sq-d.

ones together with LLM-based models. 3 Super-
vised retrievers are trained using human-labeled
query-doc pairs in general domains,4 while unsu-
pervised models do not require labeled data. LLM-
based retrievers utilize a decoder-only LLM as the
core model, encoding both queries and documents
using a specially designed token. These retrievers
encode the queries and index the corpus at both
document and proposition levels:

• SimCSE (Gao et al., 2021) employs a BERT-base
(Devlin et al., 2019) encoder trained on randomly
selected unlabeled Wikipedia sentences.

3Though LLM-based retrievers are also trained using
query-doc pairs, their significantly large model sizes set them
apart as a distinct category.

4The supervised retrievers used in our experiment have not
been trained on these five datasets.

• Contriever (Izacard et al., 2022) is an unsuper-
vised retriever evolved from a BERT-base en-
coder, contrastively trained on segments from
unlabelled web and Wikipedia documents.

• DPR (Karpukhin et al., 2020) is built with a dual-
encoder BERT-base architecture, finetuned on a
suite of open-domain datasets with labels, such
as SQuAD (Rajpurkar et al., 2016).

• ANCE (Xiong et al., 2021) mirrors the configu-
ration of DPR but incorporates a training scheme
of Approximate Nearest Neighbor Negative Con-
trastive Estimation (ANCE).

• TAS-B (Hofstätter et al., 2021) is a dual-encoder
BERT-base model distilled from ColBERT on
MS MARCO (Bajaj et al., 2016).

• GTR (Ni et al., 2022) is a T5-base encoder, focus-
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ing on generalization, pre-trained on unlabeled
QA pairs, and fine-tuned on labeled data includ-
ing MS MARCO.

• GTE-Qwen2-1.5B-instruct (GTE-Qwen, Li et al.
2023b) is built on Qwen2-1.5B (Yang et al.,
2024) and trained with multi-stage contrastive
learning over a diverse mixture of datasets.

• E5-Mistral-7b-instruct 5 (E5-Mistral, Wang et al.
2024) is initialized from Mistral-7B-v0.1 (Jiang
et al., 2023) and finetuned on a set of multi-
lingual datasets. [EOS] is appended to both the
query and document before being fed into a pre-
trained LLM to obtain embeddings from the last
vector, and the model is trained using standard In-
foNCE loss (Radford et al., 2021) with in-batch
and hard negatives.

More details on retrievers and experimental se-
tups are presented in Appendices C and D.

4.3 Document Retrieval Evaluation

We assess the performance of MixGR in the task of
document retrieval. Due to input length limitations
for retrievers (Karpukhin et al., 2020), we divide
each document into fixed-length chunks of up to
128 words. In practice, for MixGR and baselines,
we identify the retrieved chunks, map them back
to their original documents, and return the top-k
documents. We use Normalised Cumulative Dis-
count Gain (nDCG@k) as the evaluation metrics
for document retrieval. Unlike Recall@k, which
only indicates the presence of golden documents in
the retrieved list, nDCG@k also accounts for both
the ranking of retrievals and the relevance judg-
ment of golden documents (Thakur et al., 2021).
The baselines will be the metrics containing the ho-
mogeneous granularity introduced in the previous
section, i.e., sq-d, sq-p and ss-p.

4.4 Downstream QA Evaluation

As previously mentioned, scientific documents are
vital for LLMs due to the rapid advancements in
science and the limited availability of such con-
tent in training datasets. To better understand how
MixGR enhances downstream QA tasks, we im-
plement the retrieval-then-read approach on two
datasets SciQ and SciFact. We retrieve and rank the
top-k documents based on scores, sq-d and MixGR,
then concatenate them to form the context. During

5Considering the computational time, we set the threshold
k in §3.3 as 50 on BioASQ with E5-Mistral-7B-instruct.

our evaluations, we limit the number of document
chunks retrieved to 1 and 3—thus, only the top
k documents are injected into the reader model.
We assess the performance by measuring the Ex-
act Match (EM) rate—the proportion of responses
where the predicted answer perfectly aligns with
the reference answer (Kamalloo et al., 2023), de-
noted as EM@k. Specifically, we utilize LLama-3-
8B-Instruct 6 (Touvron et al., 2023) as the reader
model. We take the original query-doc retrieval
setup, i.e., retrieval based on sq-d, as the baseline.
Please refer to Appendix F for more details.

5 Results

This section analyzes the impact of mixed-
granularity retrieval on document retrieval and
downstream applications. We highlight the effec-
tiveness of our proposed fine-grained and mixed-
granularity approaches in enhancing performance
across various metrics.

5.1 Document Retrieval
Table 2 reports the results of document retrieval.
We observe that retrieval by MixGR outperforms
all single-granularity retrieval with both unsuper-
vised and supervised dense retrievers in most cases.

With unsupervised retrievers, MixGR signifi-
cantly outperforms the query-doc similarity, sq-d,
across all five datasets. There is an aver-
age nDCG@5 improvement of +10.2 and +5.1
(39.2% and 10.1% relatively) for SimCSE and Con-
triever, respectively.

With supervised and LLM-based retrievers, im-
provements associated with MixGR are also ob-
served, although they are not as significant as with
unsupervised retrievers. This indicates that MixGR
effectively narrows the distributional gap between
dense retrievers and scientific domains.

Unsupervised retrievers benefit more from
MixGR than supervised ones. Remarkably, with
MixGR, the unsupervised retriever Contriever out-
performs supervised models, as evidenced by its
superior average results across five datasets on
nCCG@20. This result is particularly significant
given that Contriever typically underperforms com-
pared to TAS-B and GTR when evaluated using tra-
ditional query-document similarity measures. Ad-
ditionally, the study (Thakur et al., 2021) reveals
that sparse retrievers like BM25 often excel over

6https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct
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Figure 3: Comparison between BM25 and Contriever
(w/ and w/o MixGR) on nDCG@20: Contriever w/
MixGR outperforms BM25 in three out of five datasets.

dense retrievers in domain-specific retrieval tasks.
As shown in Figure 3, Contriever outperforms
BM25 in three out of five datasets when applied
with MixGR. These findings emphasize the sub-
stantial enhancements that MixGR contributes to
unsupervised retrievers within scientific domains.

Finer granularity helps retrieval more. Among
three metrics within MixGR, the query-proposition
measurement sq-p and the subquery-proposition
measurement ss-p show a general advantage over
the original query-doc similarity, as highlighted
by the underlined results in Table 2. The original
query-doc metric, sq-d, outperforms the subquery-
proposition measurement only when using the re-
triever TAS-B and E5-Mistral. These findings cor-
roborate and expand upon Chen et al. (2023), sug-
gesting that finer query-doc similarity measurement
significantly improves document retrieval perfor-
mance.

5.2 Downstream QA Tasks
Table 3 reports the results of scientific question an-
swering when the documents retrieved by MixGR
are fed into LLMs, i.e. the readers. It is observed
that EM scores achieved with MixGR generally
surpass those of the baseline across two datasets,
eight dense retrievers, and multiple numbers of
input documents. This underscores the effective-
ness of MixGR in enhancing the performance of
downstream QA tasks.

6 Analysis

In this section, we explore the complementary ad-
vantages of various similarity metrics across multi-
ple granularities within MixGR through an ablation
study. Although the finer-granularity metric, ss-p,
generally enhances performance as previously dis-
cussed, it can occasionally result in degradation
when compared to original query-document simi-
larity sq-d. We identify specific conditions under

Setup SciFact SciQ
EM@1 EM@3 EM@1 EM@3

Unsupervised Dense Retrievers

SimCSE sq-d 50.0±1.9 60.5±2.1 55.2±0.7 57.9±0.2

MixGR 48.7±1.8 64.7±1.7 61.7±0.9 66.8±0.6

Contriever sq-d 60.5±2.9 71.9±2.0 54.4±0.5 63.2±0.7

MixGR 61.8±2.8 70.5±2.4 61.7±0.7 66.1±0.2

Supervised Dense Retrievers

DPR sq-d 50.2±1.9 58.9±2.3 51.7±0.2 57.3±0.2

MixGR 51.1±1.2 65.1±2.5 57.5±0.4 62.5±0.7

ANCE sq-d 50.8±2.0 63.4±2.6 53.0±0.2 59.1±0.4

MixGR 56.8±2.6 70.4±2.1 55.4±0.2 63.3±0.3

TAS-B sq-d 60.3±4.6 73.3±1.4 60.8±0.5 66.3±0.4

MixGR 59.5±3.4 69.9±2.7 64.8±0.6 67.9±0.4

GTR sq-d 58.4±3.4 70.0±2.5 60.0±0.5 65.1±0.5

MixGR 60.6±2.8 73.3±2.1 64.5±0.6 66.7±0.2

LLM-based Retrievers

GTE-Qwen sq-d 61.8±6.0 59.9±4.7 56.2±0.3 64.1±0.3

MixGR 63.7±3.4 68.2±4.0 62.6±0.8 68.0±0.0

E5-Mistral sq-d 64.0±2.2 78.1±1.5 59.8±0.6 64.6±0.3

MixGR 63.7±3.4 68.2±4.0 62.6±0.8 68.0±0.0

Table 3: Scientific Question Answering on SciFact and
SciQ using Llama-3-8B-Instruct (Touvron et al., 2023):
the top-1 and 3 document chunks retrieved by retrievers,
following the metrics sq-d and MixGR, were fed into the
reader. Bold indicates the better performance. Numbers
following ± present standard deviations of EM, gener-
ated with a temperature of 0.1 and a top_p value of 0.7
across three seeds.

which the finer-granularity metric offers greater
benefits. Previous works (Chen et al., 2023) primar-
ily explored multiple granularities in documents.
We conduct a controlled experiment to highlight
the significance of incorporating multiple granular-
ities in queries in the MixGR framework, which
also validate the generalization of MixGR on the
retrieval units finer than documents.

6.1 Ablation Study

In our ablation study, we conducted a systematic
evaluation of the impact of various granularity
measures—sq-d (query-doc similarity), sq-p (query-
prop similarity), and ss-p (subquery-prop similar-
ity)—on the performance of eight retrievers. By
individually omitting each of these measures from
the calculation of MixGR as defined in Equation
3, we assessed the significance of each granular-
ity level. Specifically, the extent of performance
degradation upon removal of a measure indicates
its importance; greater degradation suggests higher
importance of that particular granularity metric.

As illustrated in Figure 4, the nDCG@20 per-
formance declined across all three setups and five
datasets, demonstrating that the metrics are comple-
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Figure 4: Ablation study of MixGR on the nDCG@20
metrics averaged on eight retrievers: MixGR achieves
optimal performance when combining these three met-
rics, indicating their complementary nature.

2 4 6 8 10 12 14
#prop in one doc

0.00

0.05

0.10

0.15

0.20

0.25 rq d rs p

rq d rs p

Figure 5: Distribution of proposition number within
documents in two sets. There are more propositions
within document when rq-d ≺ rs-p than rq-d ≻ rs-p.

mentary to each other. The degree of performance
degradation varied across different configurations,
highlighting the importance of each granularity
measure. Please refer to Table 7 in Appendix G.1
for detailed results.

6.2 When is finer granularity beneficial?
Therefore, to more effectively compare the impacts
of sq-d and ss-p, we categorized the correctly re-
trieved pairs (complex query, 7 doc) by MixGR in
SciFact, using SimCSE, into two distinct groups:

• rq-d ≻ rs-p: The query-doc rank of sq-d is
higher than the subquery-prop rank of ss-p;

• rq-d ≺ rs-p: The query-doc rank of sq-d is
lower than the subquery-prop rank of ss-p.

Upon analyzing the number of propositions in
documents, a significant pattern emerges: based on
the distributions present in Figure 5, the number of
propositions in rq-d ≺ rs-p is generally higher than

7We refer complex query as the query containing no fewer
than three subqueries.

SciFact SciQ
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EM@50
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EM@50
EM@200
query-prop
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Figure 6: Proposition retrieval with MixGR: We eval-
uate Exact Match of LLama-3-8B-Instruct on SciFact
and SciQ with the first 50 and 200 words of proposi-
tions, i.e., EM@50 and EM@200, retrieved by SimCSE
as the context. The model generated results using a
temperature of 0.1 and a top_p value of 0.7 across three
different seeds. Please refer to Table 8 for other retriev-
ers in Appendix G.2.

in rq-d ≻ rs-p. This underscores the importance of
incorporating finer units within documents, espe-
cially for those containing more propositions, and
suggests potential degradation in dense retrievers
when handling such documents. For other retriev-
ers’ results, please refer to Appendix G.3.

6.3 MixGR on Proposition Retrieval

Previous sections present the effectiveness of
MixGR on scientific document retrieval. While pre-
vious works (Chen et al., 2023) focus on finer docu-
ment granularity, we specifically assess MixGR on
the proposition as the retrieval units. This con-
trolled study highlights the benefits of MixGR,
which incorporates different granularities within
queries and documents, in general text retrieval
beyond document-level granularity.

For a given query q and a proposition p, the con-
ventional similarity is denoted by spq-p ≡ s(q, p).
When the query is further broken down into mul-
tiple sub-queries, we introduce a finer granularity
measure, sps-p, which is defined as the maximum
similarity between these sub-queries and the propo-
sition. sps-p is mathematically defined as follows:

sps-p(q,p) = max
i=1,...,M

{s(qi,p)}. (4)

Therefore, the merged score by RRF, spf (q,p),
is calculated as:

spf (q,p) =
1

1 + rpq-p(q, p)
+

1

1 + rps-p(q,p)
, (5)

where rpq-p and rps-p signify the rank of the re-
trieve results by spq-p and sps-p, respectively.

Following spq-p(q, p) and spf (q, p), we input the
first 50 and 200 words in propositions retrieved
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with SimCSE on SciFact and SciQ into the reader
LLama-3-8B-Instruct. This process adheres to the
same setups outlined in §4.4. As shown in Figure
6, the performance advance observed with mixed-
granularity retrieval on propositions, compared to
the original query-prop similarity, demonstrates
the effectiveness of using mixed-granularity in re-
trieval. This substantiates the generalizability of
MixGR beyond document-level granularity. Please
refer to Appendix G.2 for details.

6.4 Prospect: Adaptive MixGR

Here, we outline potential future research direc-
tions. In §6.1, we observed the complementary
nature of retrieval results achieved using different
granularities. Additionally, as discussed in §6.2,
we noted a distinct pattern where retrieval guided
by a specific granularity outperforms others. These
findings indicate that metrics based on different
granularities each have relatively distinct strengths
in specific contexts, presenting opportunities for
further exploration. Unlike the non-parametric
method of fusion by RRF, which overlooks the
relative importance of components, an adaptive ap-
proach could enhance fusion and, consequently, im-
prove retrieval performance with dense retrievers–a
prospect we aim to explore in future research.

6.5 Efficiency Analysis

As one query may contain multiple subqueries,
searching more queries will introduce an extra com-
putational cost. For a query comprising M sub-
queries and a document containing N propositions,
we denote the original query-document searching
time as T . The experimental results in Table 6 in
Appendix E demonstrate that the searching time
for subquery-proposition retrieval will be approxi-
mately increased to MT . We expect that MixGR
can be further optimized with more efficient search-
ing algorithms, e.g., Tree-based index (Li et al.,
2023a).

7 Conclusion

In this work, we identify key challenges for
dense retrievers in scientific document retrieval,
namely domain shift and query-document complex-
ity. In response, we propose a zero-shot approach,
MixGR, that utilizes atomic components in queries
and documents to calculate their similarity with
greater nuance. We then use Reciprocal Rank Fu-
sion (RRF) to integrate these metrics, modeling

query-doc similarity at different granularities into
a unified score that enhances document retrieval.

Our experiments demonstrate that MixGR sig-
nificantly enhances variant types of existing dense
retrievers on document retrieval within the scien-
tific domain. Moreover, MixGR has proven benefi-
cial for downstream applications such as scientific
QA. The analysis reveals a synergistic relationship
among the components of MixGR, and suggests
evolving our non-parametric fusion framework into
a more general method as a future research direc-
tion.

Limitations

Our work explores retrieval guided by an integral
metric that incorporates various levels of granular-
ity. We identify several limitations in our approach:
(1) Coverage of Retrievers: Our study categorizes
dense retrievers into supervised, unsupervised, and
LLM-based models, yet all utilize a dual-encoder
structure. Future studies could include a more di-
verse array of retriever architectures. (2) Coverage
of Domains: While our main focus is on the sci-
entific domain, and we extend to three additional
domains in Appendix H, there are still many do-
mains we have not explored. (3) Languages: Our
research is limited to an English corpus. The ap-
plicability of MixGR in multilingual contexts also
deserves further validation and exploration. (4)
Based on our error analysis in Appendix B.2, there
is potential for improving the tool used for query
and corpus decomposition.

Ethical Statements

We foresee no ethical concerns and potential risks
in our work. All of the retrieval models and datasets
are open-sourced, as shown in Table 12 in Ap-
pendix I. The LLMs we applied in the experiments
are also publicly available. Given our context, the
outputs of LLMs are unlikely to contain harmful
and dangerous information.
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Appendix
A Datasets

A.1 General Setups

Different from the setup of the original dataset, we split one document into several chunks with a maximum
of 128 words. This is because some dense retrievers such as DPR (Karpukhin et al., 2020) have the
requirement of maximum input. Too long inputs will be overflow, leading to the loss of information.
The chunk selected can be used to locate the document in the original dataset during the evaluation.
Specifically, for SciQ, we reformulate the dataset from a QA task to a retrieval task. Originally, this task
aims to answer scientific questions given the context. We collect the contexts in training, validation and
test sets as the corpus.

Also, we will explain our motivation of focusing the queries containing subqueries:

• Chen et al. (2023) have studied the advantage of using propositions, i.e., the atomic units within
documents, as the retrieval units for a complete query. And MixGR will not affect the retrieval results
of single-subquery queries.

• In this work, we highlight the advantages of mixed-granularity retrieval that incorporates finer units in
both queries and documents. Queries containing multiple subqueries are particularly well-suited to our
research problem, as they will have different combinations with the documents.

A.2 Specific Setups

Here, we would specify the experimental setups for each dataset:

• BioASQ: In order to decrease the computational cost, we randomly sample the abstracts from the
original corpus covered by BEIR (Thakur et al., 2021), which contains 14 914 603 abstracts.

• NFCorpus: The query that we apply here is the description version including training, validation, and
test sets, instead of the keyword. These queries are not covered by BEIR (Thakur et al., 2021). Please
refer to the original datasets of NFCorpus (Boteva et al., 2016).

• SciFact: We apply the dataset covered by BEIR (Thakur et al., 2021), using both training and test splits.

• SciDocs: We use the dataset covered by BEIR (Thakur et al., 2021), using the test split.

• SciQ: We use the queries in the test sets, and collect the contexts in training, validation, and test sets as
the corpus.

For the documents (or propositions) of all the datasets, the format of the text is the concatenation of the
title and the content.

Statistic BioASQ (Tsatsaronis et al., 2015) NFCorpus (Boteva et al., 2016) SciDocs (Cohan et al., 2020) SciFact (Wadden et al., 2020) SciQ (Welbl et al., 2017)

#Query 3 743 1 016 1 000 1 109 884
#Multi-subquery queries 387 641 205 283 252
#Subqueries 821 3 337 522 614 874

#Documents 225 362 3 633 25 657 5 183 12 241
#Propositions 3 551 816 67 110 351 802 87 190 91 635

Table 4: Statistics for the BioASQ, NFCorpus, SciDocs, SciFact, and SciQ datasets. Please note that these statistics
have been adjusted to exclude any obvious decomposition errors.

B Query and Document Decomposition

Here, we will complement the necessary information regarding the query and document decomposition.
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B.1 Subquery and Proposition Examples

Here, we present examples of subqueries and propositions decomposed from the documents. The example
is the decomposition of the example in Figure 1.

Query: Citrullinated proteins externalized in neutrophil extracellular traps act indirectly to perpetu-
ate the inflammatory cycle via induction of autoantibodies.

• Subquery-0: Citrullinated proteins are externalized in neutrophil extracellular traps.

• Subquery-1: Citrullinated proteins act indirectly to perpetuate the inflammatory cycle.

• Subquery-2: The inflammatory cycle is perpetuated via induction of autoantibodies.

Document: RA sera and immunoglobulin fractions from RA patients with high levels of ACPA
and/or rheumatoid factor significantly enhanced NETosis, and the NETs induced by these au-
toantibodies displayed distinct protein content. Indeed, during NETosis, neutrophils externalized
the citrullinated autoantigens implicated in RA pathogenesis, and anti-citrullinated vimentin anti-
bodies potently induced NET formation. Moreover, the inflammatory cytokines interleukin-17A
(IL-17A) and tumor necrosis factor-α (TNF-α) induced NETosis in RA neutrophils. In turn, NETs
significantly augmented inflammatory responses in RA and OA synovial fibroblasts, including
induction of IL-6, IL-8, chemokines, and adhesion molecules. These observations implicate
accelerated NETosis in RA pathogenesis, through externalization of citrullinated autoantigens and
immunostimulatory molecules that may promote aberrant adaptive and innate immune responses
in the joint and in the periphery, and perpetuate pathogenic mechanisms in this disease.

• Proposition-0: RA sera and immunoglobulin fractions from RA patients with high levels of
ACPA and/or rheumatoid factor significantly enhanced NETosis.

• Proposition-1: NETs induced by these autoantibodies displayed distinct protein content.

• Proposition-2: During NETosis, neutrophils externalized the citrullinated autoantigens impli-
cated in RA pathogenesis.

• Proposition-3: Anti-citrullinated vimentin antibodies potently induced NET formation.

• Proposition-4: Interleukin-17A (IL-17A) and tumor necrosis factor- (TNF-) induced NETosis
in RA neutrophils.

• Proposition-5: NETs significantly augmented inflammatory responses in RA and OA synovial
fibroblasts.

• Proposition-6: NETs inducing IL-6, IL-8, chemokines, and adhesion molecules occurred in
RA and OA synovial fibroblasts.

• Proposition-7: These observations implicate accelerated NETosis in RA pathogenesis.

• Proposition-8: NETosis externalizes citrullinated autoantigens and immunostimulatory
molecules.

• Proposition-9: NETosis may promote aberrant adaptive and innate immune responses in the
joint and in the periphery.

• Proposition-10: NETosis may perpetuate pathogenic mechanisms in RA.
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B.2 Remarks on Propositioner

During our manual check on the decomposition results of propositioner (Chen et al., 2023), we find the
following potential flaws.

(1) Wrong logic during decomposition:

Query: Identification of Design Elements for a Maturity Model for Interorganizational Integration:
A Comparative Analysis
→ Subqueries: [’Identification of Design Elements for a Maturity Model for Interorganizational
Integration.’, ’A Comparative Analysis is used for identifying design elements.’]

(2) Hallucination:

Query: Bigger ocean waves and waves that carry more sediment cause a greater extent of what?
→ Subqueries: [’Bigger ocean waves cause a greater extent of erosion.’, ’Waves that carry more
sediment cause a greater extent of erosion.’]

(3) Information loss:

Query: The reduction was 1.6 ± 1.6 in controls. ...
→ Subqueries: [’The reduction in migraine headache was 1.6 1.6 in controls.’, ...]

We find that the proposition will convert the questions to declarative sentences during decomposition.
This may stem from the fact that its training corpus is Wikipedia, where a small portion of sentences are
questions. Still, we find that propositioner can still decompose question-style queries, as shown in the
following example:

Query: What is the purpose of bright colors on a flower’s petals?
→ Subqueries: ["The purpose of bright colors on a flower’s petals is unknown."]

What is more, the propositioner may decompose the query to a sequence of single characters, but it is
very rare: there are only four cases out of 4009 queries, i.e., around 0.1 % rate for this type of error.

B.3 Human Evaluation on Query and Document Decomposition

As mentioned in §3.1, we evaluate the decomposition outputs by propositioner (Chen et al., 2023), 100
samples for both query and document decomposition. Concretely, we ask three students at the post-
graduate levels to evaluate the results, who are paid above the local minimum hourly wage. The instruction
is shown below:

Propositions in documents (or subqueries in queries) are defined as follows:

• Each proposition conveys a distinct semantic unit, collectively expressing the complete meaning.

• Propositions should be atomic and indivisible.

• According to Choi et al. (2021), propositions should be contextualized and self-contained,
including all necessary text information such as coreferences for clear interpretation.

Given the document (query) and the corresponding propositions (subqueries) generated by the
model, please check whether the document (query) has been correctly decomposed.
Please write 1 as correct, and 0 as incorrect.
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Model HuggingFace Checkpoint

SimCSE (Gao et al., 2021) princeton-nlp/unsup-simcse-bert-base-uncased
Contriever (Izacard et al., 2022) facebook/contriever
DPR (Karpukhin et al., 2020) facebook/dpr-ctx_encoder-multiset-base

facebook/dpr-question_encoder-multiset-base
ANCE (Xiong et al., 2021) castorini/ance-dpr-context-multi

castorini/ance-dpr-question-multi
TAS-B (Hofstätter et al., 2021) sentence-transformers/msmarco-distilbert-base-tas-b
GTR (Ni et al., 2022) sentence-transformers/gtr-t5-base
GTE-Qwen2-1.5B-instruct (Li et al., 2023b) Alibaba-NLP/gte-Qwen2-1.5B-instruct
E5-Mistral-7b-instruct (Wang et al., 2024) intfloat/e5-mistral-7b-instruct

Table 5: Model checkpoints released on HuggingFace. For DPR and ANCE, two different models encode the
context and query.

C Retrievers Models

Table 5 presents the dense retrievers applied in the experimental section, i.e., §4.

D Offline Indexing

The pyserini and faiss libraries were employed to convert retrieval units into embeddings. We
leveraged GPUs for encoding these text units in batches with a batch size of 64 and a floating precision of
f16. Following the preprocessing of these embeddings, all experiments conducted involved the utilization
of an exact search method for inner products using faiss.IndexFlatIP,

E Searching Efficiency

Our search experiments utilized pyserini and were conducted on CPUs. Table 6 displays the time
costs associated with six retrievers across five datasets for both query-document and subquery-proposition
retrieval. We omitted two LLM-based retrievers from this analysis due to the challenges of executing
search experiments without GPUs. Our findings indicate that the time ratio between subquery-proposition
and query-chunk searches is approximately equal to the ratio of their respective sizes, subqueries versus
queriess.

F Downstream Tasks

The templates of LLama for downstream QA tasks, i.e., SciFact and SciQ, are listed as follows. For SciQ,
we convert it from multiple choice question answering to open question answering.

Given the knowledge source: context \\n Question: query \\n Reply with one phrase. \\n Answer:

As SciFact is a fact-checking task, we here check whether LLMs can predict the relationship between
the context and the claim. The template of SciFact is shown as follows:

Context: {context} \\n Claim: {query} \\n For the claim, the context is supportive, contradictory,
or not related? \\n Options: (A) Supportive (B) Contradictory (C) Not related \\n Answer:")

G Detailed Results

G.1 Ablation Study
As discussed in §6.1, we remove the component, i.e., query-doc similarity, query-prop similarity, or
subquery-prop similarity, and assess the corresponding performance compared with MixGR. In Table 7, it
is observed that MixGR outperforms all its components.
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Dataset Retriever query-doc subquery-prop Ratio

BioASQ

SimCSE 0:44:33 1:55:41 2.60
Contriever 0:44:17 1:49:24 2.47
DPR 0:43:42 1:55:20 2.64
ANCE 0:44:06 1:52:18 2.55
TASB 0:25:04 0:59:17 2.37
GTR 0:44:58 1:48:34 2.41

Average 0:40:10 1:40:12 2.51
#subquery / #query 2.12

NFCorpus

SimCSE 1:15:38 6:33:46 5.21
Contriever 1:15:54 6:31:13 5.16
DPR 1:17:12 6:49:53 5.31
ANCE 1:17:25 6:35:25 5.11
TASB 0:38:28 3:21:24 5.24
GTR 1:13:16 6:17:00 5.15

Average 1:01:06 5:34:54 5.20
#subquery / #query 5.21

SciDocs

SimCSE 0:22:17 0:58:27 2.62
Contriever 0:21:04 0:56:49 2.70
DPR 0:20:42 0:55:43 2.69
ANCE 0:20:52 0:57:42 2.77
TASB 0:10:54 0:28:34 2.62
GTR 0:22:26 0:54:37 2.43

Average 0:19:59 0:51:55 2.64
#subquery / #query 2.55

SciFact

SimCSE 0:32:24 1:11:04 2.19
Contriever 0:32:00 1:08:48 2.15
DPR 0:33:46 1:08:48 2.04
ANCE 0:30:48 1:13:00 2.37
TASB 0:17:01 0:38:09 2.24
GTR 0:30:56 1:10:29 2.28

Average 0:29:19 1:05:46 2.21
#subquery / #query 2.17

SciQ

SimCSE 0:27:31 1:37:11 3.53
Contriever 0:29:27 1:46:54 3.63
DPR 0:27:06 1:36:49 3.57
ANCE 0:28:02 1:38:13 3.50
TASB 0:15:02 0:50:50 3.38
GTR 0:27:49 1:31:52 3.30

Average 0:25:50 1:30:18 3.49
#subquery / #query 3.47

Table 6: Time cost for searching query-doc pairs and subquery-prop pairs with six retrievers on five datasets.
The experiments run on 8 CPUs and 64 GB memory. The average time across the retrievers for each task is also
highlighted. The ratio of searching time is quite close to the ratio of query size, subqueries versus queries.

10387



Retriever Setup BioASQ NFCorpus SciDocs SciFact SciQ Avg.
ND@5 ND@20 ND@5 ND@20 ND@5 ND@20 ND@5 ND@20 ND@5 ND@20 ND@5 ND@20

Unsupervised Dense Retrievers

SimCSE

w/o ss-p 25.0 26.1 19.6 16.0 8.7 11.5 32.3 37.0 76.1 78.0 32.3 33.7
w/o sq-p 27.6 28.6 21.4 17.4 8.5 11.6 33.1 37.4 77.9 79.6 33.7 34.9
w/o sq-d 32.4 32.4 22.8 18.6 8.5 11.9 33.9 39.0 80.7 82.2 35.7 36.8
MixGR 30.7 31.3 22.3 18.1 9.1 12.2 34.8 39.8 84.0 85.5 36.2 37.4

Contriever

w/o ss-p 66.5 70.5 43.6 36.2 14.8 20.0 65.6 69.9 78.0 80.1 53.7 55.3
w/o sq-p 66.9 71.2 43.0 36.6 14.6 20.1 66.3 70.8 81.6 83.3 54.5 56.4
w/o sq-d 66.1 70.4 43.2 36.3 14.7 20.0 65.0 69.5 83.3 84.8 54.5 56.2
MixGR 67.0 71.7 44.0 37.1 15.5 20.7 66.4 71.0 85.2 86.7 55.6 57.5

Supervised Dense Retrievers

DPR

w/o ss-p 43.0 44.3 26.5 21.9 8.2 11.2 35.0 40.8 66.6 69.9 35.9 37.6
w/o sq-p 42.9 44.5 27.5 22.8 7.5 11.2 38.3 42.4 71.0 73.1 37.5 38.8
w/o sq-d 44.0 45.0 26.6 22.2 8.0 11.2 38.0 42.1 69.5 72.2 37.2 38.5
MixGR 44.6 45.8 27.7 22.9 8.2 11.5 39.4 43.6 73.6 76.1 38.7 40.0

ANCE

w/o ss-p 52.7 52.9 30.7 25.2 10.0 13.7 45.8 48.9 69.0 72.0 41.7 42.6
w/o sq-p 51.4 52.8 32.0 26.2 9.0 13.4 46.8 50.4 71.3 73.9 42.1 43.3
w/o sq-d 52.9 54.1 30.8 25.1 8.8 13.4 44.9 48.6 67.8 70.1 41.0 42.3
MixGR 53.4 54.7 31.9 25.9 9.6 14.1 46.8 49.9 74.4 76.8 43.2 44.3

TAS-B

w/o ss-p 71.3 73.2 42.9 34.7 13.8 19.2 61.4 66.7 86.7 87.0 55.2 56.2
w/o sq-p 70.1 72.6 42.9 34.9 13.8 19.6 63.2 67.3 88.3 88.8 55.7 56.7
w/o sq-d 70.0 72.6 42.7 34.5 13.6 18.8 62.1 65.3 85.2 85.9 54.8 55.4
MixGR 71.7 74.0 43.6 35.2 14.0 19.6 62.7 66.9 90.5 91.0 56.5 57.3

GTR

w/o ss-p 66.5 67.8 43.2 35.2 13.4 18.9 60.9 64.5 87.2 87.5 54.2 54.8
w/o sq-p 65.4 67.0 43.0 35.5 13.8 19.5 60.6 64.7 88.4 88.5 54.2 55.0
w/o sq-d 66.2 68.0 42.4 34.9 12.6 18.0 61.5 64.4 89.0 89.3 54.3 54.9
MixGR 66.8 68.6 43.3 35.6 13.6 19.2 60.9 64.5 92.9 93.0 55.5 56.2

LLM-based Retrievers

GTE-Qwen

w/o ss-p 64.1 67.8 44.0 36.4 16.2 22.5 68.4 72.6 81.4 82.2 54.8 56.3
w/o sq-p 61.0 64.9 43.0 36.0 15.4 21.0 66.7 71.4 82.6 83.2 53.7 55.3
w/o sq-d 67.5 71.4 45.5 37.4 17.5 24.7 70.0 73.5 83.3 84.3 56.7 58.3
MixGR 66.5 70.1 44.9 37.5 17.2 23.5 70.3 74.3 86.7 87.5 57.1 58.6

E5-Mistral

sq-d 75.7 79.6 50.6 42.2 18.1 25.0 76.0 78.6 88.4 88.6 61.8 62.8
sq-p 73.9 78.4 49.9 41.6 17.9 24.5 75.6 78.4 89.7 90.1 61.4 62.6
ss-p 74.9 79.2 48.8 40.8 17.1 23.4 74.7 77.4 85.5 86.8 60.2 61.5

MixGR 75.9 79.8 50.4 42.0 18.1 24.9 76.5 79.2 90.7 91.2 62.3 63.4

Table 7: Ablation study (nDCG@k = 5, 20 in percentage, abbreviated as ND@k): We evaluated five distinct
scientific retrieval datasets using two unsupervised, four supervised, and two LLM-based retrievers. The retrieval
results were compared using various metrics: MixGR w/o ss-q , MixGR w/o sq-p, MixGR w/o ss-p, and MixGR, as
detailed in §3.2.

G.2 MixGR for Propositional Retrieval

Here, we evaluate MixGR on the retrieval units beyond documents, e.g., propositions, which Table 8
present. We observe that MixGR can outperform the previous document retrieval based on the similarity
between query and proposition, on proposition retrieval, as discussed in §6.3.

G.3 Advantageous pattern for finer granularity measurement

In Table 10, we can notice the average number of propositions in rq-d ≺ rs-p is more than rq-d ≻ rs-p.
This shows that the finer granularity can better deal with the documents with more propositions than the
original query-document similarity.

G.4 Document retrieval for queries containing only a single subquery

In this experiment, we demonstrate the impact of MixGR on queries that contain only a single subquery.
Unlike queries with multiple subqueries, MixGR omits the similarity measurement from the perspectives
of subqueries and propositions, ss-p, during RRF. The result, presented in Table 9, includes the result of
document retrieval for the queries including either one single or multiple subqueries and illustrates the
effectiveness of MixGR across a general query format.
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Setup SciFact SciQ
EM@50 EM@200 EM@50 EM@200

Unsupervised Dense Retrievers

SimCSE
sq-d 42.4±3.8 59.9±3.3 56.5±0.2 61.4±0.5

MixGR 44.5±3.8 61.8±1.5 58.5±0.4 63.0±0.2

Contriever
sq-d 46.7±4.1 62.8±3.8 56.9±0.5 63.7±0.6

MixGR 45.2±4.6 67.8±5.1 57.7±0.5 63.2±0.5

Supervised Dense Retrievers

DPR
sq-d 46.7±2.4 56.6±2.7 55.1±0.3 60.1±0.5

MixGR 48.6±2.4 62.0±1.8 58.6±0.3 60.9±0.0

ANCE
sq-d 47.3±1.9 61.3±2.0 53.9±0.3 60.5±0.3

MixGR 43.4±2.6 64.3±2.2 54.7±0.3 59.9±0.4

TAS-B
sq-d 45.5±4.8 66.3±4.1 56.2±0.3 60.8±0.2

MixGR 47.1±4.1 65.9±3.6 58.1±0.2 62.8±0.2

GTR
sq-d 39.5±3.1 66.7±3.4 59.8±0.3 64.5±0.0

MixGR 43.6±4.1 62.4±4.0 60.5±0.0 65.1±0.2

LLM-based Retrievers

GTE-Qwen
sq-d 47.8±5.8 64.9±2.6 59.7±0.2 65.1±0.4

MixGR 42.8±5.2 69.8±3.3 58.2±0.0 63.4±0.2

E5-Mistral
sq-d 44.6±4.4 63.0±3.5 55.4±0.4 62.9±0.0

MixGR 42.8±3.4 63.6±2.2 58.5±0.2 63.3±0.3

Table 8: Scientific Question Answering (Exact Match) was conducted using LLama-3 (Touvron et al., 2023) with
propositions retrieved by eight retrievers. Here, EM@50 and EM@200 have been reported, where the first 50 and
200 words are fed into the reader models. Bold indicates superior performance, and it is observed that retrieval using
MixGR on proposition units generally outperforms the baseline. Numbers following ± present standard deviations
of EM, generated with temperature 0.1 and top_p 0.7 on three seeds.

H MixGR for Other Domains

Our work provides a comprehensive analysis of the impact of MixGR on scientific text retrieval, con-
sidering both the variety of datasets and the use of dense retrievers. The applicability of MixGR to
other domains remains an open question. We explore this by conducting document retrieval experiments
on three distinct datasets: ConditionalQA (Sun et al., 2022), FiQA (Maia et al., 2018), and Arguana
(Wachsmuth et al., 2018), which belong to the domains of law, finance, and argumentation, respectively.
The results are detailed in Table 11. We observe that MixGR’s benefits are considerably more limited, or
even negative, outside the scientific context. This disparity may be attributed to the varying degrees of
alignment between the domain-specific characteristics of each field and the training corpus of the dense
retrievers. Or, propositioner can not perform well in these domains. Such findings further underscore the
potentially distinct domain-specific nature of scientific document retrieval.

I Licences of Scientific Artifacts
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Retriever Setup BioASQ NFCorpus SciDocs SciFact SciQ Avg.
ND@5 ND@20 ND@5 ND@20 ND@5 ND@20 ND@5 ND@20 ND@5 ND@20 ND@5 ND@20

Unsupervised Dense Retrievers

SimCSE sq-d 17.7 17.9 14.5 12.1 27.9 31.9 4.9 7.1 50.8 56.5 23.2 25.1
MixGR 26.2 27.1 19.8 16.2 34.8 39.1 6.7 9.5 70.1 73.0 31.5 33.0

Contriever sq-d 62.0 64.4 39.9 33.1 66.0 69.1 12.4 17.2 56.4 60.5 47.3 48.9
MixGR 64.5 67.7 41.4 34.7 67.0 70.7 13.2 18.5 75.3 77.7 52.3 53.9

Supervised Dense Retrievers

DPR sq-d 36.0 35.9 23.8 19.7 35.9 40.5 6.0 8.8 51.2 56.3 30.6 32.2
MixGR 41.0 41.6 26.1 21.5 40.0 44.1 6.9 9.9 63.2 67.0 35.4 36.8

ANCE sq-d 43.4 43.3 28.4 23.2 43.2 47.1 7.8 11.0 56.8 61.2 35.9 37.1
MixGR 48.4 48.9 30.5 �24.6 46.3 50.1 8.6 11.9 65.2 68.7 39.8 40.9

TAS-B sq-d 66.4 67.6 39.6 31.9 62.5 66.2 12.1 16.5 75.4 77.7 51.2 52.0
MixGR 69.2 71.1 40.8 32.9 64.1 67.7 12.5 16.8 81.2 82.7 53.6 54.2

GTR sq-d 61.6 61.9 39.9 32.3 58.8 62.3 12.0 16.2 72.6 75.6 49.0 49.7
MixGR 65.5 66.8 41.0 33.5 62.0 65.3 12.2 16.7 82.4 83.4 52.6 53.1

LLM-based Retrievers

GTE-Qwen sq-d 53.0 54.0 38.2 31.3 62.8 67.2 10.0 14.1 64.0 67.8 45.6 46.9
MixGR 63.5 66.6 42.3 35.2 69.5 73.2 13.6 19.1 76.6 78.7 53.1 54.6

E5-Mistral sq-d 73.3 75.4 47.2 39.0 74.7 77.8 16.5 22.6 79.7 81.7 58.3 59.3
MixGR 76.7 79.3 47.4 39.3 75.8 79.0 16.0 22.4 83.9 84.9 60.0 61.0

Table 9: Document Retrieval Performance (nDCG@k = 5, 20 in percentage, abbreviated as ND@k) on all the
queries, including the ones containing single and multiple subqueries. The setup is similar to Table 2. comparing
the retrieval results based on sq-d and MixGR. Bold presents the best performance across the metrics. We can notice
that MixGR outperform the previous query-document retrieval for each entry.

Model Avg. #prop in rq-d ≺ rs-p Avg. #prop in rq-d ≻ rs-p

SimCSE 9.06 6.32
Contriever 8.25 7.24
ANCE 8.12 8.15
DPR 8.54 7.88
GTR 8.45 6.79
TAS-B 8.00 7.52
GTE-Qwen 9.31 5.79
E5-Mistral 8.78 6.73

Table 10: Average number of propositions in two sets of document for different retrievers, i.e., rq-d ≺ rs-p and
rq-d ≻ rs-p. We can notice the average number of propositions in rq-d ≺ rs-p is more than rq-d ≻ rs-p. This shows
that the finer granularity can better deal with the documents with more propositions.
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Retriever Setup Arguana ConditionalQA FiQA Avg.
ND@5 ND@20 ND@5 ND@20 ND@5 ND@20 ND@5 ND@20

Unsupervised Dense Retrievers

SimCSE

sq-d 16.4 25.9 52.3 58.0 8.4 10.9 25.7 31.6
sq-p 12.5 20.9 53.7 59.5 7.6 9.7 24.6 30.0
ss-p 6.3 12.3 42.8 50.8 9.3 11.6 19.5 24.9

MixGR 12.7 22.4 57.7 63.3 10.6 13.8 27.0 33.2

Contriever

sq-d 25.9 36.0 82.5 83.9 25.0 29.9 44.5 49.9
sq-p 24.8 35.9 81.8 83.5 18.8 23.1 41.8 47.5
ss-p 24.1 34.5 63.3 67.2 18.6 22.9 35.3 41.5

MixGR 28.7 39.2 83.5 84.5 24.7 29.8 45.6 51.2

Supervised Dense Retrievers

DPR

sq-d 9.0 16.6 58.5 63.6 12.0 14.6 26.5 31.6
sq-p 8.4 16.9 60.1 64.7 8.4 10.9 25.6 30.8
ss-p 6.1 12.2 34.8 41.8 9.2 11.8 16.7 21.9

MixGR 8.2 16.3 59.9 65.4 11.2 14.9 26.4 32.2

ANCE

sq-d 12.0 20.5 64.2 68.0 14.6 18.2 30.3 35.6
sq-p 11.7 21.3 64.0 68.2 8.5 10.9 28.1 33.5
ss-p 10.1 18.6 41.4 48.1 8.4 11.3 20.0 26.0

MixGR 12.4 21.8 66.2 69.8 12.8 16.2 30.5 36.0

TAS-B

sq-d 27.9 37.8 75.3 77.9 26.7 31.5 43.3 49.0
sq-p 18.8 30.5 76.4 78.7 15.3 19.7 36.8 43.0
ss-p 12.9 20.8 60.8 65.2 13.9 17.8 29.2 34.6

MixGR 22.6 33.6 77.7 79.2 22.8 27.9 41.1 46.9

GTR

sq-d 31.4 40.7 79.8 82.3 34.4 39.6 48.5 54.2
sq-p 25.6 36.9 80.1 82.0 22.8 27.4 42.8 48.8
ss-p 20.4 30.0 62.9 67.7 19.6 24.2 34.3 40.6

MixGR 29.4 39.4 82.4 84.1 30.8 36.1 47.5 53.2

Table 11: Comparison between MixGR and its components on ConditionalQA, Arguana, and FiQA. We can find
that the similarity based on the finer granularity ss-p and MixGR won’t bring as many benefits as their performance
in the scientific domains, even the degradation.

Artifacts/Packages Citation Link License
Artifacts(datasets/benchmarks).

SciFact (Wadden et al., 2020) https://huggingface.co/datasets/BeIR/scifact cc-by-sa-4.0
SciDocs (Cohan et al., 2020) https://huggingface.co/datasets/BeIR/scidocs cc-by-sa-4.0
SciQ (Welbl et al., 2017) https://huggingface.co/datasets/bigbio/sciq cc-by-nc-3.9
NFCorpus (Boteva et al., 2016) https://huggingface.co/datasets/BeIR/nfcorpus cc-by-sa-4.0

Packages
PyTorch (Paszke et al., 2019) https://pytorch.org/ BSD-3 License
transformers (Wolf et al., 2019) https://huggingface.co/transformers/v2.11.0/index.html Apache License 2.0
numpy (Harris et al., 2020) https://numpy.org/ BSD License
matplotlib (Hunter, 2007) https://matplotlib.org/ BSD compatible License
vllm (Kwon et al., 2023) https://github.com/vllm-project/vllm Apache License 2.0

Models
LLaMA-3 (Touvron et al., 2023) https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct LICENSE
SimCSE (Gao et al., 2021) https://huggingface.co/princeton-nlp/unsup-simcse-bert-base-uncased MIT license
Contriever (Izacard et al., 2022) https://huggingface.co/facebook/contriever License
DPR (Karpukhin et al., 2020) https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base cc-by-nc-4.0
ANCE (Xiong et al., 2021) https://huggingface.co/castorini/ance-dpr-context-multi MIT license
TAS-B (Hofstätter et al., 2021) https://huggingface.co/sentence-transformers/msmarco-distilbert-base-tas-b Apache License 2.0
GTR (Ni et al., 2022) https://huggingface.co/sentence-transformers/gtr-t5-base Apache License 2.0

Table 12: Details of datasets, major packages, and existing models we use. The datasets we reconstructed or revised
and the code/software we provide are under the MIT License.
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