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Abstract

The increasing availability of multimodal data
from electronic health records (EHR) has paved
the way for deep learning methods to improve
diagnosis accuracy. However, deep learning
models are data-driven, requiring large-scale
datasets to achieve high generalizability. In-
spired by how human experts leverage reason-
ing for medical diagnosis, we propose CARER,
a novel health risk prediction framework that
enhances deep learning models with clinical
rationales derived from medically proficient
Large Language Models (LLMs). In addition,
we provide a cross-view alignment loss which
aligns the “local” view from the patient’s health
status with the “global” view from the exter-
nal LLM’s clinical reasoning to boost the mu-
tual feature learning. Through extensive exper-
iments on two predictive tasks using two popu-
lar EHR datasets, our CARER’s significantly ex-
ceeds the performance of state-of-the-art mod-
els by up to 11.2 %, especially in improving
data efficiency and generalizability 1.

1 Introduction

Electronic Health Records (EHRs) are valuable
sources, widely adopted by clinicians globally
to predict future health events, such as diagno-
sis (Choi et al., 2016b; Luo et al., 2020), mortal-
ity (Abedi et al., 2021), and readmission (Wang
et al., 2023; Yang and Wu, 2021). EHR infor-
mation can be divided into two categories: (1)
structured data, encompassing ICD codes, labora-
tory measurements, and demographic details, and
(2) unstructured, free-form clinical notes. Current

1Code is available at https://github.com/
tuandung2812/CARER-EMNLP-2024.

§Corresponding author

methods in health risk prediction aggregates mul-
timodal data by designing encoders to extract ro-
bust modality-specific features (Choi et al., 2016b),
modeling temporal relationships across patient vis-
its (Luo et al., 2020; Gao et al., 2020), or develop-
ing effective cross-modal fusion mechanisms (Luo
et al., 2020; Xu et al., 2023, 2021).

Although these deep learning models set impres-
sive benchmarks for health risk detection tasks,
their data-driven nature results in several limita-
tions. Firstly, these models exhibit low data effi-
ciency, necessitating a diverse and extensive dataset
to effectively capture medical patterns and relation-
ships. In scenarios with limited data, their gener-
alizability significantly diminishes. Second, they
lack interpretability, which is pivotal for trustwor-
thy clinical applications. This raises a crucial ques-
tion: is relying solely on EHR information adequate
for accurate health risk prediction?
Our motivation and challenges. Let’s consider a
common procedure physicians follow for disease
diagnosis. Initially, they examine the EHRs, trans-
late ICD codes to corresponding diseases, cate-
gorize lab values as normal or abnormal. Then
they incorporate external knowledge from clini-
cal experience and medical literature to synthesize
the data, interpret the patient’s condition, and di-
agnose health risks. The second step is referred
to as clinical reasoning, a crucial process in for-
mulating final health risk assessments. Contrary
to the data-driven deep models, the ability to rea-
son and integrate knowledge from various clinical
sources enables generalizablity and alleviates the
data scarcity problem in low-data domains. As
such, how to integrate such a human-like clinical
reasoning into a machine learning system remains
an open question.

10392

https://github.com/tuandung2812/CARER-EMNLP-2024
https://github.com/tuandung2812/CARER-EMNLP-2024


In recent years, state-of-the-art Large Language
Models (LLMs) (Achiam, 2023; Jiang et al., 2023)
have demonstrated substantial reasoning capabili-
ties and efficacy across various tasks (Cabral et al.,
2024; Lee et al., 2023; Liévin et al., 2024). There-
fore, leveraging LLMs to provide reasoning capa-
bilities, thereby advancing health risk prediction,
presents a compelling approach. However, the im-
plementation of this approach poses the following
challenges:

• C1. LLMs are predominantly trained on gen-
eral datasets and may not perform optimally
in specialized domains such as medicine.

• C2. Despite their proficiency in textual infer-
ence, LLMs are less effective with numeric
data. This limitation is significant considering
the prevalence of numeric data such as ICD
codes and lab values in EHRs.

• C3. Naively fusing features of EHRs and ex-
ternal LLM’s knowledge is challenging. EHR
data is a local view of the individual patient’s
conditions. In contrast, clinical reasoning pro-
vides a global view by integrating external
knowledge and LLM’s rationales. Semantic
gap between the two creates challenges for
feature fusions.

Our solution. To overcome the issues mentioned
above, we propose CARER - ClinicAl Reasoning-
Enhanced Representation for Temporal Health
Risk Prediction (Fig. 1) - which leverages Chain-
of-Thought (CoT) prompting to query clinical rea-
soning steps from multimodal EHR sources. To
address C1, we employ Retrieval Augmented Gen-
eration (RAG) via external medical knowledge base
to enrich the context of the reasoning process. Ad-
ditionally, we utilize the CoT prompting technique
to guide the reasoning process of the LLM. Regard-
ing C2, we propose a verbalization mechanism to
convert numerical data into text format, enriched
with comprehensive semantics. To address C3, we
introduce a cross-view alignment objective to en-
hance consistency between the local multimodal
features and the global clinical rationale features.

Our contributions are three-fold as follows.

• We propose an LLM-assisted clinical rea-
soning mechanism that leverages RAG and
CoT techniques to temporally reason patients’
conditions from aggregated multimodal data.
This clinical reasoning serves as an unified

Figure 1: CARER - ClinicAl Reasoning-Enhanced
Representation for temporal health prediction. We
use CoT-based reasoning instructions and retrieval-
augmented generation (RAG) via external medical
knowledge base to prompt the LLM and extract rea-
soning about patients’ disease progression.

auxiliary modality which, enriches the avail-
able information and enhances the generaliz-
ability of health risk prediction. To the best
of our knowledge, this is the first attempt to
employ LLM-assisted reasoning in addressing
the health risk prediction problem.

• We design a cross-view alignment loss, which
aligns representations of EHR data and clin-
ical reasoning to enhance cross-view consis-
tency. As such, our technique mutually boosts
the feature learning of the local view of raw
patient’s data and the global view of the exter-
nal LLM’s reasoning knowledge.

• Through comprehensive experiments, our
CARER model surpasses state-of-the-art mod-
els by up to 11.2% on two diagnostic tasks
across the MIMIC-III (Johnson et al., 2016)
and MIMIC-IV (Johnson et al., 2023) public
benchmarks.

2 Related Work

Many studies have applied deep learning models
to predict diagnoses and health outcomes from
temporal EHRs. We categorize the following
methods into three primary approaches based
on the information sources used for prediction:
structured data, unstructured data or multimodal
inputs, and the use of external knowledge.

Structured Data. Initial efforts focused on mining
structured data like ICD codes for prediction.
RETAIN (Choi et al., 2016b) uses a double RNN to
process ICD sequences bi-directionally, followed
by a two-level attention mechanism. Other meth-
ods, such as Dipole (Ma et al., 2017), Timeline
(Bai et al., 2018), and T-LSTM (Baytas et al.,
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2017), combine RNNs with attention. Time-aware
models like T-LSTM (Baytas et al., 2017) and
HiTANet (Luo et al., 2020) capture temporal
patterns using time-decay and self-attention
mechanisms. Later approaches use graph-learning
mechanisms from visit-level or patient-level graphs
to understand relationships between medical codes
(Lu et al., 2022, 2021a; Yang et al., 2023; Choi
et al., 2016a).

Table 1: Comparison of CARER and existing ap-
proaches.

Method

EHR data
External

knowledge
Clinical

reasoningICD
Lab

value
Demographic

Clinical
note

(Luo et al., 2020) ✓
(Choi et al., 2016b) ✓
(Lu et al., 2022) ✓ ✓
(Grundmann et al., 2022) ✓ ✓
(Xu et al., 2023) ✓ ✓
(Wang et al., 2023) ✓ ✓ ✓ ✓
(Xu et al., 2021) ✓ ✓ ✓ ✓
(Ye et al., 2021) ✓ ✓
(Yang and Wu, 2021) ✓ ✓ ✓
(Zhang et al., 2023) ✓ ✓
(Gao et al., 2020) ✓
(Zhu et al., 2024) ✓ ✓ ✓
CARER (Ours) ✓ ✓ ✓ ✓ ✓ ✓

Unstructured Data and Multimodality. Recent
works incorporate unstructured data, mainly clini-
cal notes, for prediction. CGL (Lu et al., 2021a)
uses attention mechanisms to emphasize important
words in medical text. VecoCare (Xu et al., 2023)
integrates medical codes and text representations
using two Transformer architectures and pretrain-
ing tasks for semantic alignment. Other recent
studies combine multiple structured features (ICD
codes, lab values, demographics, drug codes) with
unstructured clinical notes. MUFASA (Xu et al.,
2021) employs Neural Architecture Search for
optimal multimodal network architecture, while
MedHMP (Wang et al., 2023) uses a multimodal
pretraining paradigm with tasks like reconstruction
and contrastive learning for better representation.

External Knowledge. Multiple graph-based meth-
ods have exploited medical ontologies/knowledge
graphs, like G-BERT (Shang et al., 2019), CGL (Lu
et al., 2021a), Sherbert (Lu et al., 2021b) MetaCare
(Tan et al., 2022) GRAM (Choi et al., 2016a) uti-
lizing ICD-9 diseases hierarchy, or KerPrint utiliz-
ing medical knowledge graph containing multiple
entities like diseases, lab tests, medications from
SNOMED CT (Donnelly, 2006). Others utilize
unstructured medical documents as auxiliary infor-
mation, such as MedRetriever (Ye et al., 2021) and
(Zhu et al., 2024). Tab. 1 compares our method

with other state-of-the-art baselines. To the extent
of our knowledge, we are the first to incorporate
clinical reasoning for EHR’s predictive modeling.

3 CARER

3.1 EHR Structure

Each patient’s historical health record includes a se-
quence of hospital admissions A = [A1, . . . , An],
with each admission At (t = 1, ..., n) contains
multiple EHR modalities: categorical diagnosis
codes It, lab values V t, demographic features
Dt, and clinical notes N t. Diagnosis codes
It = [It1, . . . , I

t
d] include ICD-9 codes diagnosed

by healthcare professionals. Lab values V t =
[V t

1 , . . . , V
t
m] represent continuous numerical data,

e.g., blood glucose levels and blood pressure. Clin-
ical notes N t = [N t

1, . . . , N
t
k] are written by med-

ical professionals, and demographic features Dt

include race, gender, and age. For simplicity, we
omit patient-level and visit-level indices in the re-
maining sections.

3.2 Overview of CARER

Inspired by how human experts diagnose, we pro-
pose to extract clinical rationales by prompting
LLMs using multimodal EHR data, relevant exter-
nal medical documents, and CoT reasoning instruc-
tions. This clinical reasoning serves as an auxiliary
modality that, when integrated with original EHR
data, enhances contextual understanding and pre-
dictive accuracy.

Fig. 2 shows our CARER’s framework, com-
prising three components. First, the multimodal
encoding component utilizes standard encoders for
extracting features from temporal EHRs between
visits. Second, our proposed clinical reasoning
module uses verbalized EHR data and medical texts
from a knowledge database, employing CoT-based
prompting techniques to generate clinical reasoning
with LLMs (GPT-3.5). Third, the multiview align-
ment and fusion component leverages the proposed
cross-view alignment loss to maximize consistency
between two views (i.e., local multimodal features
and global clinical reasoning) and fuses them to
create predictive representation.

3.3 LLM-assisted Clinical Reasoning

This section describes our pipeline for constructing
clinical reasoning with three steps: (1) verbalizing
the EHR data, (2) retrieving pertinent medical doc-
uments, and (3) generating clinical reasoning.
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Figure 2: Overview of CARER. The clinical reasoning module constructs RAG and Chain of Thought (CoT)
prompts using verbalized queries of multi-modal data (Subsection 2-a) to generate clinical reasoning using LLM
(Subsection 2-b). Multi-view Alignment and Fusion component (Subsection 3) uses cross-view alignment loss to
align the global view from the clinical reasoning and the local view of raw multimodal EHR data modalities and
subsequently fuses them to generate final predictions.

EHR Data Verbalization. The details of this pro-
cess is illustrated in Block 2-a in Fig. 2. For de-
mographic variables D, we simply concatenate the
variable descriptor (e.g., age, race, gender) and its
value to obtain the verbalized input QD (i.e., "race:
caucasian", "age: 80", "gender: male"). For the cat-
egorical ICD code I , we use the name from the ICD
lookup table as the verbalized query QI . For the
lab value V , we generate the verbalized input QV

using a rule set frule, and determine three markers:
“low”, “normal”, and “high”, based on statistical
analysis of their value ranges. The verbalized query
for a lab value v is then created by concatenating
its indicator name (e.g., “blood glucose”), the nu-
merical value (e.g., “115”), the measurement unit
(e.g., “d/mL”), and the label (e.g., “high”). For
instance, a lab value “blood glucose: 115 d/mL” is
verbalized as “high blood glucose, 115 d/mL”.

Medical Corpus. We derive the medical corpus
from the medical knowledge base PrimeKG (Chan-
dak et al., 2022). This knowledge base contains dif-
ferent types of medical entities like diseases, drugs,
proteins, etc However, we only utilize 17,080 dis-
ease nodes in the knowledge graph. Each of these
disease nodes contains descriptive textual features,
including such as definition, symptoms, causes. In
total, there are 14,252 textual node features, all of
which we use to construct our final medical corpus.

Medical Document Semantic Retrieval. We de-

velop a retrieval mechanism to obtain relevant docu-
ments for supplying contextual medical knowledge
to LLMs, reducing hallucinations. This mechanism
retrieves documents P̂ semantically similar to the
patient’s verbalized conditions Q. Using a Trans-
former pretrained with medical knowledge (Jin
et al., 2023), we embed the documents and verbal-
ized queries into a semantic space and compute
cosine similarities between them. Pertinent docu-
ments P̂ that surpass similarity threshold β = 0.95
are retrieved.

Clinical Reasoning Generation. We create a
Chain-of-Thought prompt based on temporal multi-
modal patients’ data A and the retrieved medical
knowledge P̂ to generate clinical reasoning R us-
ing LLM. Figure 3 provides a brief overview of
our instructions, which guides the LLM to reason
about individual visits, and cross-visit disease pro-
gressions. The details are as below.

Visit-level Reasoning: The LLM analyzes patients’
health status visit-by-visit, using verbalized multi-
modal data. It provides a summary of current condi-
tions, augmented by relevant retrieved documents
to enhance accuracy and reduce hallucination. The
instruction for this reasoning is denoted as T v.

Progression Reasoning: The progression reason-
ing instruction T p directs the LLM to summarize
health progression across visits, identifying per-
sistent and improving conditions, emerging issues,
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and changes in lab values or vital signs.

� Analyze patients' diagnosed diseases 
and summarize the main conditions they 
are suffering from during each visit.

� Focus on abnormal or fluctuating lab 
values.

� Summarize critical indications of the 
patient's health from the results.

� Summarize the temporal progression of 
the patient’s conditions between visits.

� Focus on persistent conditions, 
conditions being cured, emerging 
conditions, and the progress of lab 
values.

� Conclude the patient’s health trajectory.

Visit-level Reasoning (�� ) Progression Reasoning (�� )

Figure 3: Visit-level and cross-visit progression reason-
ing.

We combine the instructions T v and T p with
a description of the desired answer format T f to
form the full instruction template T , i.e., T =[
T v, T p, T f

]
.

Patient Information Construction. We combine all
the verbalized EHR data (i.e., QI , QV , and QD)
with the clinical notes N to provide LLMs with pa-
tient’s information, denoted as S. This verbalized
EHR data S is combined with the instruction tem-
plate T and the retrieved documents P̂ to prompt
LLMs (GPT-3.5). As such, we obtain clinical rea-
soning R based as follows:

R = GPT
(
T ,S, P̂

)
.

The clinical reasoning R is fed into Clinical Long-
Former (Li et al., 2022), denoted as fC , to derive
the reasoning representation zR:

zR = [zcls, zr1 , zr2 , . . . , zrn ] = fC(R).

3.4 Multimodal Encoding and Fusion
The multimodal encoder consists of m encoders,
each embeds temporal information of a modality
M ∈ {I, V,D,N} into a representation space zM .
We use interval-aware Transformer (Li et al., 2022)
for ICD code modality I , an LSTM (Baytas et al.,
2017) for lab values V , an MLP for demographic
data, and Clinical Longformer (Li et al., 2022) for
clinical notes N . Finally, multi-modal features are
obtained by summing features from m modalities:
zE =

∑
M∈{I,V,D,N} zM .

Cross-view Alignment Loss. While the multi-
modal features zE captures the local patterns and
relationships presented in the patient’s local data,
the clinical reasoning zR provides a more “global”
view obtained from external documents and LLM’s
rationales. Thus, aligning these two views mutually
boosts feature learning of the two encoders, and
minimizes the semantic gap between them. To this
end, we propose a cross-view alignment loss Lalign
to facilitate the fusion of the local multimodal fea-
tures zE and the global reasoning features zR.

Given a mini-batch of size b, we have the batch-
wise multimodal features ZE ∈ Rb×dzE and the
corresponding batch-wise clinical reasoning fea-
tures ZR ∈ Rb×dzR . We compute matrices QE

and QR (∈ Rb×b), which represent the in-batch
samples’ similarities of multimodal features and
clinical reasoning features, respectively:

QE =
ZE · Z⊤

E

∥ZE∥
; QR =

ZR · Z⊤
R

∥ZR∥
.

We define the alignment loss as the Frobenius
norms between two similarity matrices QR and
QE :

Lalign =
1

b2
∥QE −QR∥2. (1)

Multi-view Feature Fusion. After aligning the
“global” reasoning features and “local” multimodal
features, we fuse them to generate the final diag-
nosis representation. To emphasize important rea-
soning tokens, an attention-pooling mechanism is
applied to aggregate feature of the clinical reason-
ing token. Specifically, the multimodal features zE
are used as a query to query relevant and important
reasoning tokens zR:

z̃R = softmax
(
zEWQ(zRWK)⊤√

dk

)
(zRWV ),

where WQ, WK , and WV are projection layers for
the Query, Key, and Value, respectively. Multi-
modal features zE and attention-pooled reasoning
features z̃R are concatenated and fed into a Multi-
layer Perceptron (MLP) to obtain a final represen-
tation of the patient’s health history:

z = MLP([zE , z̃R]).

A fully connected layer is applied on z to produce
the prediction y′i for each patient i. The cross-
entropy loss is computed as below:

Lcls = −1

b

b∑

i=1

(
y⊤i log(y′i) + (1− yi)

⊤ log(1− y′i)
)
,

where y′i and yi depict the predicted probabil-
ity, and the ground truth, respectively. The final
loss function is a combination of the classification
loss Lcls and the cross-view alignment loss Lalign
weighted by γ:

L = Lcls + γLalign.
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4 Performance Evaluation

In this section, we compare the performance of
CARES with other diagnosis baselines on two
EHR benchmarks to validate their predictive perfor-
mance. Afterward, we conduct an in-depth analy-
sis on our algorithm’s generalizability and ablation
studies on different components that made up our
work.

4.1 Experimental Settings

Datasets. We conduct our experiments on two
widely used Electronic Health Records datasets:
MIMIC-III (Johnson et al., 2016) and MIMIC-IV
(Johnson et al., 2023) to validate the capabilities of
our proposal. For each dataset, we only consider
patients with more than one visit in their healthcare
history, resulting in 7,493 patients for MIMIC-III
and 85,155 patients for MIMIC-IV. As multimodal
EHRs datasets, they contains four different types
of input modalities: ICD Diagnosis codes (I), Con-
tinuous Lab values (C), Demographic information
(D), and Clinical notes (N) (Xu et al., 2021). For
MIMIC-III, we utilize all four data modalities. For
MIMIC-IV, we exclude the clinical notes (N) be-
cause they are all “Discharge summaries” which
typically contain direct indications of the diagnoses
(Lu et al., 2021a).
Evaluation Scenarios. Following (Lu et al., 2022),
we evaluate the predictive performance of the mod-
els over two following tasks: Heart Failure Predic-
tion and Full Diagnosis Prediction. The former task
is a binary classification, while the latter task is a
multi-label classification. For each task, the final
visit of each patient is used to construct the ground
truth for predictive tasks, while all previous visits
are utilized as the input to the model.

The datasets are split into Train/Validation/Test
partitions, with a ratio of 70/10/20. We adopt
standard evaluation metrics, including precision
(P), Recall (R), weighted F1-score (F1), and AUC
scores to evaluate the heart failure predictions.
For full diagnosis predictions, employ top k recall
(R@k), and weighted F1 score.
Baselines. We compare the performance of our pro-
posed technique CARER against 8 recent methods:
RETAIN (Choi et al., 2016b), T-LSTM (Baytas et al.,
2017), HiTANET (Luo et al., 2020), Chet (Lu et al.,
2022), CGL (Lu et al., 2021a), and VecoCare (Xu
et al., 2023), MUFASA (Xu et al., 2021), MedHMP
(Wang et al., 2023). MUFASA and MedHMP are
the two recent methods that use all 4 modalities,

like our model CARER. VecoCare and CGL can
only integrate the ICD sequences (I) and the clin-
ical notes (N), while the rest can only handle the
ICD sequences.
Implementation Details. The output latent dimen-
sion of the ICD Sequence Encoder, Lab Values
Encoder, and Demographic Information Encoder
is set to be Rd = 64. For the Clinical Notes En-
coder and Clinical Reasoning Encoder, we utilizes
ClinicalLongformer (Li et al., 2022), a Transformer
Encoder pretrained on a massive medical corpus
and has the capability of processing long input text,
up to 4096 tokens. The core LLM used in our
framework is GPT-3.5 (gpt-3.5-turbo).

4.2 End-to-end Comparison

We report the performance of our proposed method,
CARER, compared to other baselines on MIMIC-
III and MIMIC-IV in the two tasks: Full Diagnosis
Prediction and Heart Failure Prediction. The re-
sult is shown in Table 2. Overall, our proposed
method outperforms other baselines in every met-
ric for both tasks, demonstrating its effectiveness
in incorporating and aligning clinical reasoning.

More specifically, CARER achieves a perfor-
mance gain of around 4-11.2% against the best
baseline MedMHP for the report metrics for Full
Diagnosis Task, while those margins for Heart Fail-
ure Prediction Tasks tend to be less significant
(0.96-5%). This might be because the Full Diag-
nosis Prediction Task requires more diverse and
complex knowledge from multiple types of dis-
eases and conditions; where our method thrives
thanks to the retrieval and reasoning capabilities of
the LLM core. On the other hand, our technique
can achieve constantly the F1 score of nearly 0.8
in Heart Failure prediction for the both datasets,
which are 3% better than the top baselines like
MedMHP and MUFASA.

Among the baselines, MedMHP and MUFASA
perform the best overall, as they can integrate
all possible data modalities, similar to our pro-
posed technique, CARER. VevoCare performs very
well on the MIMIC-III dataset and achieves re-
sults nearly on par with CARER, but it is unable to
generate results for MIMIC-IV, since VevoCare’s
pretraining task critically depends on the presence
of medical notes (N). The four techniques RETAIN,
HiTANET, Chet, and T-LSTM, which use only the
ICD sequences, achieve results around 20% worse
than MedMHP and even CGL, which justifies the
importance of leveraging multi-modal EHR data,
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Table 2: End-to-end performance comparison of the techniques.

Model
MIMIC-III MIMIC-IV

Diagnosis Heart Failure Diagnosis Heart Failure
R@10 R@20 F1 AUC F1 P R R@10 R@20 F1 AUC F1 P R

RETAIN 26.60 34.35 20.13 82.71 72.20 70.96 73.44 28.40 34.46 24.89 83.17 72.71 72.03 72.94
T-LSTM 25.49 33.24 19.58 82.14 72.36 71.80 73.07 24.32 35.43 24.02 83.41 73.20 70.17 74.40
HiTANET 27.33 35.68 23.62 84.95 74.13 75.23 73.62 29.35 37.47 26.32 85.54 75.29 74.40 76.02
Chet 28.13 37.04 22.37 83.49 75.24 72.88 77.01 29.89 38.19 24.35 86.72 76.18 78.30 75.09
CGL 29.54 38.77 22.98 86.19 75.35 75.94 74.66 28.93 37.97 23.52 85.48 75.64 76.98 73.62
VecoCare 32.33 39.13 23.47 87.63 76.58 75.20 77.07 - - - - - - -
MUFASA 30.65 38.71 22.28 83.29 74.74 73.40 76.18 29.13 37.24 25.13 85.44 74.95 75.81 73.40
MedHMP 31.58 39.14 23.74 84.69 75.87 74.67 77.19 29.68 38.64 26.35 86.14 75.53 76.37 75.12
CARER 32.90 42.34 26.40 87.92 78.61 77.38 79.60 31.46 40.50 28.41 88.60 77.80 77.32 78.65

especially the informative but noisy clinical notes.

4.3 Data Efficiency

In the medical domain, labeled EHR data is often
scarce due to low availability, strict ethical rules,
privacy concerns, and the need for domain experts
to label the data. We here investigate the data effi-
ciency of the techniques against low-data regimes,
reported in Figure 4. Specifically, we used only
a portion of the MIMIC-IV training set ranging
from 100%, 50%, 25%, to 10% for training the
Heart Failure Prediction task. As shown, CARER
outperforms all other methods for every level of
training data. Additionally, we observe that the ac-
curacy of other methods declines more rapidly than
CARER as the amount of training data decreases.
Our technique can still achieve the F1-score of 70%
with only 10% of training data. This highlights the
generalization capability of our technique, which
incorporates clinical knowledge and reasoning in-
stead of relying solely on data-driven deep learning
methods.

6
4

6
6

6
8

7
0

7
2

7
4

7
6

7
8

Size of Training set (%)

F
1

 S
c
o

re

100 50 25 10

CARER

MedHMP

Chet

HiTANet

Figure 4: Performance
comparison of CARER
and some baselines with
different portions of train-
ing data on MIMIC-III’s
Heart Failure Prediction.
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Figure 5: Cross-dataset
generalization perfor-
mance of CARER and
baselines from MIMIC-IV
to MIMIC-III for Heart
Failure Prediction.

4.4 Generalizability Study

We here compare how well CARER and other
methods generalize using a cross-dataset scenario.
Specifically, we first pretrain predictive models
on the MIMIC-III dataset (patients admitted from
2001 to 2012), with the Heart Failure Prediction
task. Then, we take the pretrained model to contin-
ually finetune on MIMIC-IV dataset (patients ad-
mitted from 2013 to 2019) with different finetuning
data proportions. We also test the generalization
capabilities under zero-shot settings, where the pre-
dictive models are not given any training samples
from the MIMIC-IV dataset. As shown in Fig. 5,
CARER has better generalization capabilities com-
pared with other methods with different amounts
of MIMIC-IV finetuning data. Significantly, un-
der the zero-shot settings, our method achieved an
F1-score of 70.21, significantly outperforming the
second-best baseline, MedHMP (68.04).

4.5 Ablation Study

We evaluated the design choices in our model by
comparing it with other variants as follows:

• w/o Alignment: This variant removes the
alignment loss Lalign between multimodal
data and clinical reasoning described in §3.4.

• w/o Clinical Reasoning: This variant removes
all components related to clinical reasoning,
essentially only using a Multimodal Encoder.

• w/o Multimodal Encoder: We remove the
Multimodal Encoder described in §3.4 and
use a MLP instead to achieve the classifica-
tion.

Figure 6 shows the results of predictive modeling
tasks on MIMIC-IV after removing specific compo-
nents. First, we observe that removing the auxiliary
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CARER w/o Alignment

w/o LLM-based Reasoning w/o Multimodal Encoders

MedHMP

Figure 6: Diagnosis prediction and heart failure
prediction for proposal variants on the MIMIC-IV
dataset.
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Figure 7: Full Diagnosis Prediction and Heart Failure Pre-
diction results for different clinical reasoning instruction
input on MIMIC-IV.

Table 3: Case Study: A diagnose of CARER with important sentences in the clinical reasoning (sentences with
highest tokens’ average attention weights). We highlight the words with the highest average token attention weights
within the sentence in red.

Predictions Atrial fibrillation (427.31), Malignant essential hypertension (401.0), and Chronic kidney disease,
stage I (585.1)

Key sentences in
the clinical reason-
ing (high attention
weights W)

1. Atrial fibrillation remains a consistent diagnosis, indicating the patient continues to suffer from
this chronic heart rhythm disorder. (W: 0.000524)
2. Acute kidney failure is another new and concerning diagnosis, suggesting a decline in kidney
function, which may be associated with the infection or other acute stressors on the body. (W:
0.000460)
3. Acute on chronic diastolic heart failure and congestive heart failure suggest a worsening of
cardiac function, potentially due to new heart attack or progression of underlying heart disease. (W:
0.000442)
4. The rise in blood creatinine from 1.0 mg/dL to 1.4 mg/dL is significant, as it suggests a decline in
kidney function. (W: 0.000428)

alignment term reduces the performance of our pro-
posed method, highlighting the necessity of prop-
erly aligning the local representation learned by
the Multimodal Encoder with the clinical knowl-
edge obtained from Retrieval and LLMs. Addi-
tionally, removing Clinical Reasoning altogether
further worsens the predictive power, demonstrat-
ing that clinical reasoning is an essential source of
information for our model.

However, the textual Clinical Reasoning alone
is not sufficient for prediction, as shown by the
significantly worse performance of the model w/o
Multimodal Encoder on both tasks (significantly
worse than the MedHMP baseline). This demon-
strates that Clinical Reasoning should be used as
an auxiliary source of information for conventional
ML-based predictive models, not as a complete
replacement.

We further examine the importance of the pro-
posed Clinical Reasoning with Chain-of-Thought
combined with RAG (CoT + RAG) proposed in
CARER. We compare our proposal with two sim-
pler variants:

• Simple Reasoning: uses a short instruction for
LLM without detailed CoT instructions and

additional information.
• Simple Reasoning + RAG: uses a short instruc-

tion for LLM without detailed instructions
CoT instructions, but additional information
from RAG is included.

We compare these variants on the MIMIC-IV
datasets for both predictive tasks. The results are
displayed in Figure 7. It can be seen that the per-
formance dropped significantly when the clinical
reasoning instruction is not provided, proving the
necessity of a well-constructed and informative
clinical reasoning thought process.

Necessity of fusing LLms and Deep Learning
We investigate the effectiveness of fusing LLM’s
clinical reasoning representation with traditional
Deep learning representation in this experiment,
rather than relying solely on LLMs to make clin-
ical predictions. In detail, after obtaining clinical
reasoning text in Section 3.3, instead of fusing the
clinical reasoning representation with Deep learn-
ing model, we ask GPT-3.5 to generate the pre-
dictions directly with the input being the clinical
reasoning text.

The results for this experiment on MIMIC-IV
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Table 4: Performance comparison between CARER and GPT-3.5 only on Diagnosis and Heart Failure Prediction on
MIMIC-IV.

Method Diagnosis Heart Failure
R@10 R@20 F1 AUC F1 P R

GPT-3.5 only 5.21 5.74 4.09 - 0.533 0.676 0.590
CARER 29.88 39.64 25.70 87.71 0.794 0.776 0.812

is reported in Table 4. We observe that CARER
achieves superior performance for both tasks com-
pared with using GPT-3.5 for prediction. This
demonstrates that while LLMs possess good clini-
cal reasoning capabilities and knowledge, they still
lack the ability to forecast health outcomes of fine-
tuned Deep Learning models. Thus, this proves the
necessity to fuse the representation of LLMs and
Deep Learning models for more accurate predic-
tions.

4.6 Robustness with other LLMs

Our proposed model, CARER mainly utilizes ope-
nAI’s GPT-3.5 to generate the clinical reasoning
on a patient’s history. However, in real deployment
scenarios, utilizing proprietary models might not be
feasible in clinical settings, due to various reasons
such as budget constraints, privacy requirements.
We conduct experiments with open-source LLM
backbones: Qwen2-7B (Yang et al., 2024), Mixtral-
8x7B (Jiang et al., 2024) and Llama 3-8B (et al.,
2024) as the clinical reasoning generator to demon-
strate the robustness of our method to different
LLMs. The results are reported in Table 5.
We observe that with other LLM clinical reasoning
backbones, CARER still consistently achieve state-
of-the-art perfomance compared with MedHMP, a
strong baseline in previous experiments. This re-
sult demonstrated CARER’s robustness to different
LLMs, and does not rely on openAI’s GPT models
for good performance.

Table 5: MedHMP and CARER’s performance (in bold)
with different LLMs as clinical reasoning backbones on
MIMIC-IV

Method R@10 R@20 F1
MedHMP 31.58 39.14 23.74
GPT-3.5 32.90 42.34 26.40
Qwen2-7B 32.39 41.56 25.68
Mixtral-8x7B 33.42 41.27 26.89
Llama 3-8B 31.65 40.10 24.98

4.7 Interpretability Case Study.

We examine cross-attention weights of each token
in the clinical reasoning text, and compute the av-
erage sentence-level attention, demonstrated in Ta-
ble 3. The model predicts Chronic kidney disease
diagnosis by reasoning about the elevated blood
creatine. The transition from Acute kidney failure
in past visits to Chronic kidney disease is explained
by the elevated blood creatine, which is commonly
observed in medical literature (Taner et al., 2010).

5 Conclusion

This paper introduces CARER, a health risk pre-
diction framework that enhances multimodal deep
learning models with clinical reasoning from Large
Language Models (LLMs). Additionally, we in-
troduce a multi-view alignment objective that en-
hances the consistency between the local view of
patient-specific raw data and the global view of
external LLM’s reasoning. Extensive experiments
on two predictive tasks using popular EHR datasets
demonstrate that CARER significantly outperforms
recent models, by up to 11.2%, particularly in en-
hancing data efficiency and generalizability.

6 Limitations

Despite the state-of-the-art results achieved by
CARER, we acknowledge several limitations. First,
we conducted our experiments on two health risk
prediction tasks, however, our method can be ap-
plied to many other clinical prediction tasks: mor-
tality prediction, hospital readmission prediction,
medication recommendation. Second, we acknowl-
edge the extensive computational cost and process-
ing time of our method, due to utilizing large pre-
trained text encoders and Large Language Models.
This could pose challenges for healthcare facilities
with limited computing resources in implementing
our system, or in use cases where fast processing
time is critical.
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Appendix

A Multimodal Encoder

We elaborate in greater detail on our chosen Multi-
modal Encoder.
ICD Sequence Encoder. For the ICD Sequence
I = [I1, . . . , In] with n being the number of visits.
We encode the ICD Sequence using the time-aware
Transformer architecture dubbed HiTANET (Luo
et al., 2020). Besides taking the ICD sequence as
input, HiTANET also employs a time-aware em-
bedding mechanism, which takes in a sequence of
time interval vectors δ = [δ1, δ2, . . . , δn], with δt
represent the interval (in days) between the last
visit n and the t-th visit. HiTANET learns and
fuses the representation of the ICD sequence with
the time interval information through embedding
summation and an attention mechanism. To obtain
the ICD sequence representation zI with hidden
size, we pass the ICD sequence and the time inter-
val sequence through HiTANET (denoted as fH ):

zI = fH
([
I1, . . . In

]
,
[
δ1, . . . , δn

])
.

Continous values Encoder. Similar to ICD En-
coder, we employ a time-aware architecture to
learn the representation of the lab values sequence
V = [V 1, . . . V n], with n being the number of
time steps. Let ϕ = [ϕ1, . . . ϕn] be the elapsed
time (days) between each lab value vector. The ar-
chitecture we use is T-LSTM (Baytas et al., 2017),
which makes modifications to a standard LSTM
cell so that the network can decide to memorize
information based on the elapsed time with the pre-
vious time step. Denote the T-LSTM model as fH ,
we can compute the feature representation of the
lab value sequence as follows:

zV = fT
([
V 1, . . . V n

]
,
[
ϕ1, . . . , ϕn

])
.

Demographic variables. For static demographic
features D, we simply embed them with a Multi-
layer Perceptron network:

zD = MLP(D).

Structured Modalities Fusion. We first fuse the
representation of three structured modalities: ICD
sequence I , continuous values sequence V and de-
mographic variables D. We then take the sum of
the embedded representations of these three modal-
ities:

zS = zI + zV + zD.

Clinical Notes. Given a clinical note N =
[N1, N2 . . . Nk], with k being the number of to-
kens in the note, we embed this clinical note
with the clinically pretrained Clinical-Longformer
model (Li et al., 2022), denoted as function fC :

zN = [zclsN , z1N , . . . zkN ] = fC([N1, N2 . . . Nk]).

Multimodal Fusion. To fuse the representation
of structured modalities zS and the representation
of clinical notes zN , we first adopt an attention-
pooling layer to place more focus on important
segments within a long and noisy clinical note:

z̃N = softmax
(
zSWQ(zNWK)⊤√

dk

)
(zNWV ),

where WQ, WK , and WV are projection layers for
the Query, Key, and Value, respectively. Afterward,
we project the attention-weighted representation
of the clinical note z̃N to the same dimension as
the structured modalities’ features zS . We finally
sum the structured modalities’ feature vector with
the projected clinical note feature vector to achieve
multimodal fusion:

zE = zS + MLP(z̃N ).

B Detailed Input Prompt

We present the details of our clinical prompt tem-
plate in Figure 8, which consists of two compo-
nents: the instruction, and the input data.

C Output Samples

We include some clinical reasoning samples gener-
ated by LLMs in Figure 10.

D Data Preprocessing

ICD Code.
For the ICD diagnosis codes, while MIMIC-III
use the ICD-9 Code system for diagnosis annota-
tion, MIMIC-IV uses a combination of ICD-9 and
ICD-10, a newer diagnosis code system. These
two code systems contain a large number of over-
lapping diseases. For example, the disease “Type
2 diabetes mellitus without complications” is rep-
resented as the code 250.0 in the ICD-9 system,
and equivalently as E11.9 in ICD-10. In order to
have a consistent disease-code mapping across all
experiments, we convert all ICD-10 codes in the
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You are given a list of hospital admissions information of a patient, sorted by admissions time. The information includes the
patient’s demographic, diagnoses and lab values and some clinical note segments. You are required to summarize the health 
status and progression of that patient visit by visit in less than 2000 words. 

1. Visit -level reasoning : First, analyze the information from each visit separately. Look through their diagnosed diseases and 
summarize the main conditions they are suffering from. Next, take a look at some of the lab values, pay attention to abnormal 
or fluctuating lab values, generate knowledge on the typical range of those lab values, and what the patients' results indicate 
about their health. 

2. Progression Reasoning : Afterward, summarize and analyze the health progression of the patient’s in-between visits. Pay 
attention to which types of conditions are persistent, which types of conditions are cured, which types are emerging, and the
progression of lab values, especially abnormal ones, and generate reasoning on what those progressions mean to their health 
condition. Finally, draw the most important conclusions on the patients' health state.

Structure your answer in the following format
[Start Visit -level reasoning]
- Visit 1 (Reasoning on visit 1)
- Visit 2 (Reasoning on visit 2)

…
- Visit n (Reasoning on visit n)

[End Visit -level reasoning]

[Start Progression Reasoning]
Persistent Conditions (Reasoning on persistent conditions)
*** Emerging Conditions (Reasoning on emerging conditions)
*** Resolved Conditions (Reasoning on resolved conditions)
*** Lab values progression (Reasoning on lab values progression)
*** Conclusion (Final conclusion) ***
[End Progression Reasoning]

Clinical Reasoning Instruction

Figure 8: Clinical instruction template for LLM.

Demographic: Demographic: Patient is a white female. 
At the first visit, she was 83 years old

The following is this patient’s diagnosis and treatment history: 

Visit 1 
ICD Diagnoses: Patient was diagnosed with the following:

• coronary atherosclerosis of native coronary artery
• diabetes mellitus type 2 
• intermediate coronary syndrome
…

Lab values: The patients recorded the following lab values during their visit

• Blood Sodium is 139.0 mEq/L
• Blood Potassium is 4.1 mEq/L
• Blood Creatinine is 0.9 mg/dL
…

Some clinical notes available during this visit
The patient's blood sodium and potassium indicating proper  electrolyte balance. Creatinine levels suggesting adequate kidney
function … with potential complications affecting  the heart's rhythm and structure. 
…

Visit 2
…

The following are some retrieved relevant documents
• Low blood sodium : Hyperglycemia occurs when the concentration of sodium in your blood is abnormally low. Sodium is an 

electrolyte, and it helps regulate the amount of water that is in and around your cells …
• Diabetes mellitus : Type 2 diabetes is a condition that happens because of a problem in the way the body regulates and uses 

sugar as a fuel. That sugar also is called glucose. This long-term condition results in too much sugar circulating in the blood …

Patient’s Input 

Figure 9: An example of patient’s input multimodal data used for clinical reasoning generation. Demographic
variables are highlighted with the color orange, ICD Diagnosis Codes are highlighted in red, verbalized continuous
values are highlighted in blue, and retrieved documents in violet.
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[Start visit -level reasoning]
Visit 1
The patient, an 83-year-old white female, presented with several cardiovascular diagnoses:
Coronary atherosclerosis of native coronary artery: This condition involves the buildup of plaque within the walls of 
the coronary arteries that supply the heart with blood. This plaque buildup can restrict blood flow or lead to
…
The lab results from this visit showed normal sodium, potassium, and creatinine levels
Visit 2
Two years later, at age 85, the patient returned with more serious conditions:
- Unspecified septicemia and severe sepsis: These diagnoses indicate a systemic infection that has triggered a 
dangerous inflammatory …
[End visit -level reasoning]

[Start Progression reasoning ]
Persistent Conditions
- Atrial fibrillation remains a consistent diagnosis, indicating the patient continues to suffer from this chronic heart 
rhythm disorder.
…
Emerging Conditions
- Septicemia and severe sepsis are new diagnoses, indicating a recent serious systemic infection that can have a 

critical impact on overall health.
..
Cured or Unmentioned Conditions:
- There is no mention of coronary atherosclerosis or intermediate coronary syndrome in the second visit, which may 
indicate that these conditions were managed or stabilized, possibly through the aortocoronary bypass surgery and 
the placement of a cardiac pacemaker.

Lab values progression 
- Sodium and potassium levels remained within normal ranges for both visits, suggesting that electrolyte balance 

has been maintained.
….
- The rise in blood creatinine from 1.0 mg/dL to 1.4 mg/dL is significant, as it suggests a decline in kidney function. 
This is consistent with the diagnosis of acute kidney failure during the second visit.
[End Progression reasoning ]

Figure 10: An example of clinical reasoning output.

MIMIC-IV dataset into ICD-9, using the mapping
available in this git repository. We discard all the
ICD-10 codes that can’t be converted to ICD-9.
Lab Values.
Following (Xu et al., 2021), we choose 48 signifi-
cant continuous features from the electronic health
records dataset, displayed in Table 6. The rule set
to be used for verbalization is constructed by ref-
erencing medical documents and articles. A few
examples of this rule set are demonstrated in Table
7. Before passing the continuous features to the
Multimodal Encoder, we perform Min-Max nor-
malization on these values.
Demographic Variables.
The three demographic variables used are gender,
race (categorical values), and the age of the patient
in their earliest visit (continuous values). Cate-
gorical variables are one-hot encoded, while the
age is Min-Max normalized before going into the
Multimodal Encoder.
Clinical Notes.
We concatenate all available clinical notes of the

patient’s history [N1, N2, N3, ..., Ni] into a single
text N . As stated in Section 4, we discard the notes
of type “Discharge summary” as they contain infor-
mation indicative of the diagnosis. We follow the
minimal preprocessing steps similar to those pro-
posed in Clinical-Longformer (Li et al., 2022), the
pretrained language model we utilize. Specifically,
we removed all characters except for alphanumeric
and punctuation marks, converting all letters to
lowercase, and trimming any extra whitespace.

E Medical Corpus

We derive the medical corpus from the medical
knowledge base PrimeKG (Chandak et al., 2022).
This knowledge base contains different types of
medical entities like diseases, drugs, proteins, etc
However, we only utilize 17,080 disease nodes in
the knowledge graph. Each of these disease nodes
contains descriptive textual features, including such
as definition, symptoms, causes. In total, there are
14,252 textual node features, all of which we use
to construct our final medical corpus.
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Table 6: The chosen lab values and their unit of measurement.

Observation Name Units
Foley ml
Hemoglobin [Mass/volume] in Blood g/dl
Exhaled minute ventilation low l/min
Heart Rate bmp
Respiratory Rate bmp
Present Weight (kg) kg
Anion Gap meq/l
Eosinophils percent
PEEP SET cm h2o
Apnea Interval s
Urea Nitrogen mg/dl
Potassium meq/l
Temperature F deg f
Arterial BP Mean mmhg
SpO2 percent
Temperature C (calc) deg f
Creatinine mg/dl
Magnesium mg/dl
Oxygen [Partial pressure] in Blood mmhg
Phosphate mg/dl
Arterial BP [Diastolic] mmhg
Blood Flow ml/min
NBP Mean mmhg
Glucose mg/dl
Hematocrit percent
Phosphate mg/dl
Bicarbonate meq/l
Neutrophils urine percent
Wbc count k/ul
Calculated Total CO2 meq/l
O2 saturation pulseoxymetry percent
Chloride meq/l
Arterial BP [Systolic] mmhg
Previous Weight (kg) kg
Lymphocytes dif percent
Monocytes percent
PH u
Weight Change (gms) g
NBP [Diastolic] mmhg
Arterial BP [Systolic] mmhg
Cardiac output rate l/min
Calcium [Moles/volume] in Serum or Plasma mg/dl
Sodium meq/l
NBP [Systolic] mmhg
Tbili mg/dl
FIO2 percent
Platelet Count k/ul
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Table 7: Example rules for some lab values.

Observation Name Units Categories

Anion Gap meq/l
Low: < 3
Normal: 3 - 11
High: > 11

Apnea Interval s
Normal: < 10
Abnormal: >= 10

Glucose mg/dl

Low: < 70
Normal: 70 - 99
Prediabetic: 100 - 125
Diabetic: > 125

Heart Rate bmp
Bradycardia: < 60
Normal: 60 - 100
Tachycardia: > 100

Sodium meq/l
Low: < 135
Normal: 135 - 145
High: > 145

SpO2 percent
Low: < 95
Normal: 95 - 100

Creatinine mg/dl
Low: < 0.7
Normal: 0.7 - 1.3
High: > 1.3

Potassium meq/l
Low: < 3.5
Normal: 3.5 - 5.0
High: > 5.0

Magnesium mg/dl
Low: < 1.7
Normal: 1.7 - 2.2
High: > 2.2

Temperature F deg f
Low: < 96.8
Normal: 96.8 - 99.5
High: > 99.5

Wbc count k/ul
Low: < 4000
Normal: 4000 - 11000
High: > 11000

F Experimental Environment and
Settings

We conduct all of our experiments on a system with
a single RTX 3090 GPU, 2 Intel Xeon Gold CPUs,
and 120 GB Memory.
We use the PyTorch framework version 2.1.0 for
our implementations, HuggingFace version 4.11.2,
and the openAI version 1.25.1 library for LLMs.

The clinical reasoning texts generated by GPT-
3.5 were obtained within a single run and then
saved locally to be reused for later experiments.
We only report the numerical result of a single
run for every experiments, due to the extensive
computational and time cost of the ChatGPT API
and pretrained language models.

The input clinical notes and clinical reason-
ing texts are truncated and only the first 2048 to-
kens are chosen when passed through the Clinical-
Longformer model. To reduce the computational
cost, we freeze the 9 first encoder layers during
training. Our model is trained for 100 epochs and
the batch size is set to 8 for every experiment. the
AdamW (Loshchilov and Hutter, 2019) optimizer
is used for every experiment, with the learning rate
being 0.0001 for the Heart Failure Prediction task,
and 0.001 for Full Diagnosis Prediction.
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