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Abstract

The ever-growing biomedical publications mag-
nify the challenge of extracting structured data
from unstructured texts. This task involves two
components: biomedical entity identification
(Named Entity Recognition, NER) and their
interrelation determination (Relation Extrac-
tion, RE). However, existing methods often
neglect unique features of the biomedical litera-
ture, such as ambiguous entities, nested proper
nouns, and overlapping relation triplets, and
underutilize prior knowledge, leading to an in-
tolerable performance decline in the biomed-
ical domain, especially with limited anno-
tated training data. In this paper, we propose
the Biomedical Relation-First eXtraction (Bio-
RFX) model by leveraging sentence-level re-
lation classification before entity extraction to
tackle entity ambiguity. Moreover, we exploit
structural constraints between entities and re-
lations to guide the model’s hypothesis space,
enhancing extraction performance across differ-
ent training scenarios. Comprehensive experi-
mental results on biomedical datasets show that
Bio-RFX achieves significant improvements on
both NER and RE tasks. Even under the low-
resource training scenarios, it outperforms all
baselines in NER and has highly competitive
performance compared to the state-of-the-art
fine-tuned baselines in RE 1.

1 Introduction

Biomedical literature is a vital resource for re-
search, but the surge in publications makes man-
ual tracking of advances difficult. Consequently,
there’s growing interest in methods for automatic
extraction of structured information from these
texts. This involves identifying biomedical entities
and their relations from plain texts, namely Named

∗Corresponding authors.
1The source code of this paper can be obtained from

https://github.com/Tschal-rsa/bio-rfx.

Entity Recognition (NER) and Relation Extraction
(RE), as illustrated in Figure 1. These structured
data can be applied to several downstream tasks and
real-world circumstances in academia and industry.

The keystone of entity and relation extraction
hinges on proficiently modeling textual data, which
includes deriving meaningful biomedical text repre-
sentations and developing methods to utilize them.
The adaptation of BERT (Devlin et al., 2019) ar-
chitectures to the biomedical field, including pre-
training and additional training, has seen significant
success in recent years. However, two substantial
challenges remain in this domain.

Firstly, learning effective representations is chal-
lenging in low-resource scenarios. Neural network-
based strategies depend on substantial quantities of
labeled training data, a prerequisite often elusive in
the biomedical domain. This is mainly due to the
labor-intensive, time-consuming, and error-prone
nature of manually annotating biomedical text data.
Detailed reading and interpretation are required for
annotation, and reliable annotations often necessi-
tate domain experts or multiple annotation rounds.

Some studies focus on incorporating biomedical
knowledge graphs (KGs) like UMLS (Bodenreider,
2004) into training data to improve cross-domain
adaptability (Zhang et al., 2021). Nonetheless, this
approach is subject to several limitations. Biomed-
ical KGs like UMLS, can be sizeable (27.1 GB),
leading to large storage space and heavy compu-
tational costs. Besides, while most biomedical
information extraction tasks focus on extracting
fine-grained relations between coarse-grained en-
tities, KGs often struggle to differentiate between
relation types. For instance, all relation types in
DrugProt (Miranda et al., 2021) and DrugVar (Peng
et al., 2017) datasets are classified as the same type
(interact-with) in UMLS. This classification sig-
nificantly diminishes the instructive value of prior
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Notably, M364-beta is sequence
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(155 Ang 2).
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The antibacterial activity of synthetic

aliphatic was studied against two human

pathogens: Staphylococcus aureus and

Escherichia coli.

Example A

Golden Triplet:

(beta: PROTEIN, binding, delta: PROTEIN)

Common Errors:

(beta: DRUG, binding, delta: PROTEIN)

(beta: CELL, binding, delta: PROTEIN)

Example B

Golden Triplet:

(human pathogens: PHENOTYPE, exhibit,

Escherichia coli: MICROORGANISM)

(human pathogens: PHENOTYPE, exhibit,

Staphylococcus aureus: MICROORGANISM)

Common Errors:

(human: PHENOTYPE, exhibit, Escherichia

coli: MICROORGANISM)

Figure 1: Automatic entity and relation extraction from biomedical publications. Example A illustrates ambiguous
entities and Example B shows perplexing nested biomedical proper nouns.

knowledge in KGs, especially when using triplets
from KGs in extraction tasks (Han et al., 2016;
Bastos et al., 2021).

Secondly, biomedical literature’s unique features
necessitate domain-specific model design, an area
less explored than text representations. The per-
formance of general-domain models drops dramat-
ically when adapting to biomedical contexts due
to the stylized writing and domain-specific termi-
nology. Moreover, biomedical entities can be am-
biguous, with the same phrases recognized as dif-
ferent entities depending on context and relation-
ships with other entities. For instance, in Figure 1
Example A, beta and delta could refer to various
entities, but their binding relation suggests they’re
proteins. Furthermore, overlapping proper nouns
can perplex models, making entity detection chal-
lenging. In Figure 1 Example B, both human and
human pathogens are valid entities, but only the
latter should be extracted under the exhibit rela-
tion type. These factors make it hard for general-
domain models to effectively handle biomedical
literature’s distinctive features.

To address these issues, we proposed Biomedical
Relation-First eXtraction (Bio-RFX) model,
wherein hypothesis space is constrained by prior
knowledge. This architecture, inspired by the
strong structural knowledge implications among
relational triplets, first predicts the relation types
that appeared in the sentence. It then extracts rel-
evant entities satisfying such structure through a
question-answering approach. A question is gen-
erated based on the relation type, with the original
sentence as context, and related entities form a
multi-span answer. We then predict the sentence’s
valid entity count and remove false entities using

the text-NMS algorithm (Hu et al., 2019). Finally,
relations between entities are generated according
to structural constraints.

This approach is capable of tackling specific is-
sues in biomedical texts. For ambiguous entities,
the predicted relation information guides entity
type identification. For perplexing entities, over-
lapping terms are eliminated by the text-NMS al-
gorithm, enhancing specificity.

We evaluate our method on four biomedical
datasets: DrugProt (Miranda et al., 2021), Drug-
Var (Peng et al., 2017), BC5CDR (Li et al., 2016)
and CRAFT (Cohen et al., 2017). Experimental
results show that our model achieves the best av-
erage rank among all the models. Our model also
surpasses the previous state-of-the-art, improving
NER and RE F1 scores by up to 2.91% and 1.86%
respectively.

The main contributions of this paper include:

• We unveil an efficient biomedical relation-first
extraction framework, meticulously crafted
for extracting entities and relations from
biomedical literature in low-resource settings.

• We construct a relation-first model to adapt to
the features of biomedical texts and innova-
tively utilize prior knowledge to constrain the
hypothesis space of the model.

• Comprehensive experimental results show
that our model significantly outperforms base-
line models on biomedical datasets under dif-
ferent settings.

• To the best of our knowledge, our work marks
the inaugural endeavor in extracting both en-
tities and relations from biomedical literature
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under the scenarios characterized by limited
training data.

2 Related Work

Researchers have proposed a multitude of methods
for extracting entities and relations, the majority of
which fall under either pipeline or joint methods.

2.1 Pipeline Method

The pipeline method is categorized into three ap-
proaches based on the order of data extraction.

The first approach starts with NER to identify
entities in a sentence, and then classifies each ex-
tracted entity pair into different types of relations.
To attain representations for entities and relations
at various levels, FCM (Gormley et al., 2015) uses
a compositional embedding with hand-crafted and
learned features. PURE (Zhong and Chen, 2021)
inserts predicted entity label marks into the input
sentence before RE to integrate semantic informa-
tion provided by entity types. PL-Marker (Ye et al.,
2022) uses a neighborhood-oriented packing strat-
egy and a subject-oriented packing strategy, and
Fabregat et al. (2023) first trains a NER model and
then transfers the model’s weights to the RE model.
These methods, while easy to implement, often ig-
nore either the overlapping relation triplets or the
important inner structure behind the text.

To tackle these challenges, the second approach
is proposed. The model first detects all potential
subject entities in a sentence and then recognizes
object entities in relation to each relation. Cas-
Rel (Wei et al., 2020) regards relations as functions
that map subjects to objects and identifies subjects
and objects in a sequence-tagging manner. Multi-
turn QA (Li et al., 2019) formulates entity and
relation extraction as a question-answering task,
sequentially generating questions on subject enti-
ties, relations, and object entities. ETL-Span (Yu
et al., 2020) designs a subject extractor and an
object-relation extractor and decodes the entity
spans by token classification and heuristic match-
ing algorithm. The sparsity of relations in real-life
sentences can lead to redundancy when using the
above methods. This is because these methods
predict relations for entity pairs that don’t actually
have any, or they enumerate all relation types, even
when many of them are not present.

The third approach addresses this problem by
running relation detection at a sentence level be-
fore entity extraction. RERE (Xie et al., 2021)

predicts potential relations and performs a relation-
specific sequence-tagging task to extract entities.
PRGC (Zheng et al., 2021) adds a global correspon-
dence for triplet decoding. Our method, Bio-RFX,
differs in the following aspects. We use indepen-
dent encoders for entity and relation extraction,
aiding in learning task-specific contextual represen-
tations. Besides, instead of directly applying rela-
tion representations, we generate a query related
to the relation type and targeted entity types. This
approach naturally models the connection between
entity and relation, allowing us to leverage fully-
fledged machine reading comprehension models.
Furthermore, focusing on domain-specific issues,
such as nested or overlapping proper nouns and
biomedical terms, we implemented a text-NMS
algorithm to improve extraction specificity.

2.2 Joint Method

Another task formulation is building joint models
that simultaneously extract entities and relations.
Recent research has focused on neural network-
based models and has yielded promising results.
For instance, a joint extraction task can be con-
verted to a sequence tagging problem by design-
ing token labels that encapsulate information on
entities and the relation they hold (Zheng et al.,
2017). However, these methods failed to extract
overlapping entities and relation triplets, which are
ubiquitous in the biomedical domain.

To tackle the aforementioned challenge, sub-
sequent works introduced various enhancement
mechanisms via modeling input texts in a spa-
tial rather than traditional sequential manner.
TPLinker (Wang et al., 2020) regards extraction
as matrix tagging instead of sequence tagging, and
links token pairs with a handshake tagging scheme.
OneRel (Shang et al., 2022) enumerates all the to-
ken pairs and relations and predicts whether they
belong to any factual triplets. SPN (Sui et al., 2023)
formulates joint extraction as a direct set predic-
tion problem. REBEL (Huguet Cabot and Navigli,
2021) takes a seq2seq approach, translating the
triplets as a sequence of tokens to be decoded by
the model. DeepStruct (Wang et al., 2022) pre-
trains language models to generate triplets from
texts and performs joint extraction in a zero-shot
manner. Graph structures are also widely applied.
KECI (Lai et al., 2021) first constructs an initial
span graph from the text, then uses an entity linker
to form a biomedical knowledge graph. It uses an
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attention mechanism to refine the initial span graph
and the knowledge graph into a refined graph for
final predictions. SpanBioER (Fei et al., 2020) is
also a span-graph neural model that formulates the
task as relation triplets prediction and builds the
entity graph by enumerating candidate entity spans.

However, joint models have several drawbacks.
These spatial approaches suffer from a high com-
putational complexity. Besides, NER and RE
are distinct tasks, thus sharing representations be-
tween entities and relations undermines perfor-
mance (Zhong and Chen, 2021). In comparison, it
is much easier to divide joint extraction into several
submodules and conquer each of them separately.

3 Method

In this section, we detail the proposed Bio-RFX,
as illustrated in Figure 2. The framework contains
four key components: (1) Relation Classifier pre-
dicts all the relation types that the input sentence
expresses by performing a multi-label classification
task. (2) Entity Span Detector extracts subject and
object entities for each relation in a sentence using
a relation-specific question. (3) Entity Number
Predictor predicts the number of entities with a
regression task in a question-answering manner. (4)
Pruning Algorithm filters the candidate entities
by the predicted entity number.

3.1 Relation Classification

For relation extraction, we detect relations at the
sentence level. This helps to avoid the predic-
tion of relations that are not actually present. As
shown in Figure 2, for each relation type in the
dataset, we will detect if the relation is expressed
in the sentence respectively, which is a multi-label
classification task. Our model first constructs a
contextualized representation for each input token
xi ∈ x = {x1, x2, ..., xn} using SciBERT (Beltagy
et al., 2019). To be more specific, we construct an
input sequence [[CLS], x, [SEP]], feed it into the
encoder and obtain the output token representation
matrix H = [h0,h1, . . . ,hn,hn+1] ∈ Rd×(n+2),
where d indicates the hidden dimension. We then
use h0 ∈ Rd to represent the semantic information
of the sentence. Next, the sentence representation
is fed into |Tr| classifiers independently to deter-
mine whether the sentence expresses relation τr,
where τr ∈ Tr and Tr is the set of relation types
in the dataset D. For relation τr, the output of the
classifier p̂r can be defined by p̂r = σ(Wrh0+br),

where Wr, br are trainable model parameters. σ is
the sigmoid activation function. For each relation
τr, we employ the cross-entropy loss to optimize
the training process. Let pr denote the ground truth
from annotation; pr = 1 is used to represent that
relation τr has appeared in the sentence and vice
versa. Therefore, the loss function for the relation
classifier can be defined as:

Lrel = −
∑

x∈D

|Tr|∑

r=1

pr log p̂r. (1)

3.2 Entity Extraction
3.2.1 Entity Detection
We formulate entity detection as span extraction
from the sentence. This approach is inspired by
machine reading comprehension models that ex-
tract answer spans from the context. For the first
step, we design a question for entity detection. For
NER, we generate a question q using predefined
templates with all the entity types in Te. For exam-
ple, if Te = {null, chemical, gene, variant}, then
q = What are the chemicals, genes, and variants
in the sentence? RE is more complicated since the
strong structural constraints between entity types
and relation types should not be ignored. For RE,
the question is specific to each relation type τr that
appeared in the sentence. Given a relation type
τr, let Tre ⊆ Te × Te denote the set of allowed
subject and object entity type pairs. We obtain
Tre by enumerating all the possible triplets in the
dataset as prior knowledge, which is undemand-
ing since the relation types are fine-grained while
the entity types are coarse-grained, resulting in a
limited size of Tre. Suppose τr = activator, then
Tre = {⟨chemical, gene⟩}. The question is gener-
ated with Tre, i.e. qr = What gene does the chem-
ical activate? We also explored other prompting
techniques in Appendix A. Based on the question,
we regard the sentence x as context and build the
input sequence [[CLS], qr, [SEP], x, [SEP]]. Next,
we compute the representation of each span s ∈ S
in sentence x. Let FFNN be a feed-forward neural
network, and H = [h1,h2, . . . ,hN ] be the token
representation matrix for the input sequence, where
N denotes the number of tokens in the sequence.
We obtain the representation s for s using an atten-
tion mechanism over tokens (Lee et al., 2017):

at =
exp

(
FFNNα(s

∗
t )
)

lE∑
k=lS

exp
(
FFNNα(s∗k)

) , (2)
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Figure 2: The overall framework of Bio-RFX. (1) The relation classifier predicts that there are two relations in the
sentence, Activator and Inhibitor. (2–4) Relation-specific entity extraction is performed for each of the predicted
relation types. To be more specific, (2) the entity detector extracts all the entities that satisfy the structural constraints
via a question-answering manner, and (3) the number predictor outputs the number of spans similarly. (4) The
relation triplets are generated by excluding the overlapping perplexing entities.

s = [hlS ,

lE∑

t=lS

atht,hlE ,Φ(w)], (3)

where s∗ denotes the concatenation of all the to-
kens in the span s; weight at denotes the normal-
ized attention score; lS , lE denote the start and
end position for span s respectively; and Φ(w) is
a learnable width embedding for the span width
w = lE− lS . Then, for NER, we compute the prob-
ability p̂e that span s is an entity of type τe using
a FFNN with GELU activation function, namely
p̂e = FFNNe(s). The loss function is defined in
the following equation:

Lent = −
∑

x∈D

∑

s∈S

|Te|∑

e=0

wepe log p̂e. (4)

For RE, the input sequence is relation-specific. We
compute the probability p̂re that span s is a subject
or object entity of type τe allowed by the relation
type τr, thus the loss function is:

Lent = −
∑

x∈D

∑

s∈S

|Te|∑

e=0

|Tr|∑

r=1
τr∈Rx

wepre log p̂re. (5)

In both cases, we is a hyperparameter used to han-
dle the overwhelming negative entity labels, i.e. for
null entity, we set we = 0.1, and we = 1 for all
other entities.

3.2.2 Number Prediction
To exclude perplexing entities from the output,
we implement textual Non-Maximum Suppression
(text-NMS) algorithm (Hu et al., 2019), which re-
quires us to predict the number of potential entities
in a sentence x. We formulate the regression task in
a question-answering manner. In the above exam-
ple, for NER, we have q = How many chemicals,
genes, and variants are there in the sentence? For
RE, for each subject-object pair in Tre, a unique
question is generated. For instance, τr = activator,
Tre = {⟨chemical, gene⟩}, then qr = How many
chemicals and genes are there in the sentence with
relation activation? The question and the sentence
are concatenated together using [CLS] and [SEP]
to form the input sequence. Similar to Section 3.1,
we obtain the representation vector h0 for the input
sequence and then acquire the predicted number k̂
of potential entities with k̂ = FFNNn(h0).

We use k to denote the number of ground truth
entities in a sentence. The loss function for number
prediction in NER is the mean squared loss, which
can be defined as:

Lnum =
∑

x∈D
(k − k̂)2. (6)

For RE, it is slightly different concerning relations.
We define kr as the number of subjects and objects
with relation τr, and entities presented in multiple
triplets are only counted once. The loss is defined
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as:

Lnum =
∑

x∈D

|Tr|∑

r=1
τr∈Rx

(kr − k̂r)
2. (7)

3.2.3 Pruning Algorithm
After extracting spans, we adopt the text-NMS al-
gorithm to heuristically prune redundant and per-
plexing entities. First, for each span s, we obtain
the confidence score λ(s) = 1− p̂e=0, namely the
probability of not being a null entity. Next, spans
in S are sorted by descending confidence scores. A
new set Ŝ is initialized as the final span prediction.
We select the span si with the highest confidence
score, add si to Ŝ, remove any remaining span
sj ∈ S that overlaps with si from S, and remove
si from S as well. The text-level F1 score indicates
the degree of overlapping. This process repeats
until either |Ŝ| reaches k, i.e. the number of en-
tities, or S is empty. The algorithm is detailed in
Algorithm 1 in Appendix B.

We then generate relation triplets with the spans
in Ŝ. Instead of adopting a nearest-matching
method (Xie et al., 2021), we match all the possi-
ble subjects and objects to address the overlapping
triplets in biomedical texts. To be more specific,
for relation τr, each ⟨τes, τeo⟩ ∈ Tre is converted
to a relation triplet ⟨τes, τr, τeo⟩ as the final result.

4 Experiments and Analysis

In this section, we validate our model’s effective-
ness through extensive sentence-level NER and
RE experiments. We begin with the experimen-
tal setup, followed by performance evaluation and
analysis. We then explore our method’s efficacy in
a low-resource setting and conclude with an abla-
tion study to highlight the impact of each submod-
ule in our framework.

4.1 Experimental Settings
4.1.1 Datasets
We empirically evaluate related methods on four
datasets: DrugProt (Miranda et al., 2021), Drug-
Var (Peng et al., 2017), BC5CDR (Li et al., 2016)
and CRAFT (Cohen et al., 2017). More details
and preprocessing methods are presented in Ap-
pendix C.

4.1.2 Baselines
We evaluate our model by comparing with sev-
eral models that are capable of both entity and
relation extraction on the same datasets, which

are strong models designed for general domain
(PURE (Zhong and Chen, 2021), TPLinker-
plus (Wang et al., 2020) and PL-Marker (Ye et al.,
2022)) and biomedical domain (KECI (Lai et al.,
2021) and SpanBioER (Fei et al., 2020)). Some
of the competitive relation-first approaches, such
as PRGC (Zheng et al., 2021), use ground truth
entities as input, while the other methods use the
raw text as input, therefore making them unsuitable
for baseline models.

Recent studies demonstrate generative methods’
effectiveness in extractive tasks. Thus, we include
REBEL (Huguet Cabot and Navigli, 2021) and
GPT-4 (OpenAI, 2023) in our set of baselines.
REBEL is unable to identify entities that are not
part of any relation triplets, so we only report the
metrics for RE. Please refer to Appendix D for
implementation details. We also detail the experi-
mental settings of GPT-4 in Appendix E.

4.1.3 Evaluation Metrics
We use micro F1 score and average rank for both
NER and RE evaluation. When computing the
micro F1 score, an entity is considered matched if
the whole span and entity type match the ground
truth, and a relation triplet is regarded as correct if
the relation type, subject entity, and object entity
are all correct. Following Demšar (2006) and Wang
et al. (2024), we also obtain the average rank of
each model for comparison across all datasets.

4.2 Main Results

Table 1 shows the micro F1 scores of all models on
the four datasets. The results demonstrate that our
model achieves the best result in NER and RE in av-
erage rank. Our model obtains an absolute F1 gain
of up to 1.34% compared with previous state-of-the-
art in NER, and 1.86% in RE. It significantly out-
performs most of the other baselines in both tasks
(see Appendix G for significance analysis). On
DrugProt, KECI achieves competitive performance
in RE but performs poorly in NER. KECI’s graphi-
cal structure enables it to generate more accurate
relation triplets compared to our simple generat-
ing method. However, its training process depends
heavily on a large amount of annotated relations,
leading to unsatisfactory results on other datasets.
Conversely, on a more practical biomedical dataset
with insufficient annotated training data, Bio-RFX
performs better.

We can draw several conclusions from the ob-
servations. Firstly, Bio-RFX achieves superior per-
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Table 1: The average micro F1 scores (%) and ranks of models calculated over 5 runs on biomedical datasets. The
best results are in bold, and the second-best results are in italic with an underline.

Model DrugProt DrugVar BC5CDR CRAFT Avg. Rank
NER RE NER RE NER RE NER NER RE

TPLinker-Plus 90.96 70.03 79.87 62.97 89.47 72.23 93.53 4.50 5.00
KECI 87.73 80.39 74.55 62.96 85.76 68.44 93.62 5.75 4.67
PURE 90.63 70.00 80.59 65.26 91.78 75.78 94.17 3.25 3.33

SpanBioER 88.56 65.38 81.82 68.21 91.39 73.76 94.30 3.50 4.00
REBEL - 45.71 - 59.70 - 72.62 - - 6.33

PL-Marker 90.62 70.05 80.77 65.63 91.56 74.68 94.44 3.00 2.67
GPT-4 66.62 27.73 66.05 14.87 77.67 59.74 54.97 7.00 8.00

Bio-RFX 91.75 70.16 83.16 70.07 91.96 74.49 94.90 1.00 2.00

formance compared to baselines for biomedical
datasets, indicating that individual encoders can ef-
fectively learn precise representations for biomedi-
cal texts. Besides, in datasets that have annotation
discrepancies with knowledge bases, strong struc-
tural constraints in the biomedical domain can in-
deed help outperform traditional methods that fuse
KGs into the model. Moreover, despite the numer-
ous emergent abilities of large language models, de-
signing task-specific architectures and fine-tuning
remain essential for biomedical RE.

4.3 Low-Resource Setting

We conducted experiments to explore our method’s
effectiveness in a low-resource scenario. We ran-
domly selected 10% and 4% samples from Drug-
Prot, and 50% and 20% samples from DrugVar
to construct new datasets. The results are shown
in Table 2. Compared to previous methods, Bio-
RFX improves the NER and RE F1 by up to 2.91%
and 1.75% absolute across all datasets. RE in the
biomedical domain under low-resource settings
is challenging, and performance varies with the
datasets. Bio-RFX secures an average rank of 1.00
in NER and 2.00 in RE, outperforming all models.

Compared with pipeline and joint methods, our
model excels in the following aspects: (1) Dividing
complicated tasks into several submodules signif-
icantly decreases the difficulty and improves the
stability of training. Joint methods with intricate
tagging schemes struggle with scarce training data.
For instance, TPLinker-plus combines information
from the whole triplet and the whole span to con-
struct labels for span pair, resulting in 4 variants per
relation type. Hence, the 4|Tr|-class classification
task contributes to great learning difficulty and sig-

nificant performance drop in low-resource settings.
Moreover, methods that utilize span extraction and
special tokens (such as PURE and PL-Marker) ex-
hibit poor training stability. As the size of the train-
ing set decreases from 500 to 200, the standard
deviation of the RE score for PL-Marker increases
to 184%, while that of Bio-RFX rises to an average
of 99%. On the contrary, our divide-and-conquer
philosophy is more effective because task-specific
representation helps to achieve better performance
and stabilize the training process. (2) KG-enhanced
joint methods are affected by noisy prior knowl-
edge from KGs when training data is limited. In
biomedical datasets, the definition for a null entity
varies greatly, as specific entities (e.g., qualitative
concepts such as revealed or active) are likely to
be considered as a null entity if they are not the
primary focus of the dataset. Comprehensive KGs
incorrectly recognize these entities when training
samples are small. To support this argument, we
find that KECI has lower precision and higher re-
call across the experiments, while our model shows
the opposite. Using an extensive knowledge base
as prior knowledge in low-resource scenarios leads
to overfitting to KGs, and constraining the hypoth-
esis space of the model is a much more preferable
alternative. (3) Generative models linearize triplets
into a sequential order, posing challenges for over-
lapping triplets in biomedical literature. Although
in NER, GPT-4 can achieve comparable perfor-
mance with models fine-tuned on specific datasets,
the performance gap in RE is intolerable. Relation
extraction, which aims to identify interactions be-
tween entities, might not be suitable to be directly
formulated as a sequence generation task. A classi-
fication approach like Bio-RFX is more effective.
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Table 2: The average micro F1 scores (%) and ranks of models calculated over 5 runs on biomedical datasets under
a low-resource setting. The best results are in bold, and the second-best results are in italic with an underline. The
number in the bracket indicates the approximate size of the training set.

Model
DrugVar (500) DrugVar (200) DrugProt (500) DrugProt (200) Avg. Rank

NER RE NER RE NER RE NER RE NER RE

TPLinker-Plus 76.99 59.38 69.35 13.42 83.88 48.39 81.64 28.17 4.50 6.00
KECI 73.12 59.23 65.37 50.88 75.06 41.87 71.62 39.07 6.00 5.00
PURE 76.69 58.34 72.63 48.77 89.86 59.60 83.96 54.58 3.50 3.25

SpanBioER 78.16 60.42 73.15 48.49 87.43 51.02 82.14 41.59 3.25 4.25
REBEL - 55.78 - 47.11 - 53.30 - 51.91 - 5.25

PL-Marker 76.79 56.66 73.58 51.44 89.46 58.41 86.10 56.67 2.75 2.50
GPT-4 61.86 12.62 61.97 6.94 67.29 26.25 69.80 32.26 7.00 7.75

Bio-RFX 80.64 62.17 73.80 51.23 89.90 54.37 89.01 56.20 1.00 2.00

We observe that Bio-RFX performs better on
DrugProt (200) than DrugProt (500), likely due to
their statistical differences. The average relation
triplets per sentence for DrugProt, DrugProt (500),
and DrugProt (200) are 2.7, 1.2, and 2.3, respec-
tively. The sparsity of relation triplets hampers the
relation classifier’s performance, creating a bottle-
neck in overall extraction.

4.4 Ablation Study
This subsection examines the impact of structural
constraints and the number predictor in our frame-
work. Table 3 presents the micro F1 scores of the
ablated and full models.

Bio-RFX (- SC / Structural Constraints) removes
the structural constraints for relation triplet genera-
tion. Instead of enumerating each ⟨τes, τeo⟩ ∈ Tre

for relation τr to produce relation triplets, we re-
gard each entity pair in Tev×Tev as a subject-object
pair for relation τr, where Tev is the set of valid
and not-null entities. Structural constraints only af-
fect relation triplet generation, leaving NER results
unchanged.

Bio-RFX (- NP / Number Predictor) removes
the number predictor and uses the average number
of entities in a sentence as the threshold for the
text-NMS algorithm during inference.

Bio-RFX (- PA, NP / Pruning Algorithm, Num-
ber Predictor) removes the text-NMS pruning al-
gorithm, and uses the output of the entity detector
as the final results. In this case, the prediction of
the number predictor is not utilized.

The results suggest that structural constraints,
number prediction, and the pruning algorithm are
crucial for enhancing the model’s performance. Of

these, the strong structural constraints between en-
tity types and relation types are the most beneficial.
This highlights the model’s ability to handle com-
plex entities while leveraging the structural con-
straints of relation triplets in biomedical literature.

To assess the model’s comprehension of ambigu-
ous biomedical entities, we study several typical
cases. The results are presented in Appendix H.

5 Conclusion

This paper introduces Bio-RFX, a novel biomedical
entity and relation extraction method, using struc-
tural constraints for relation triplets to constrain the
hypothesis space. The model tackles ambiguous
entities and redundant relation prediction using a
relation-first extraction approach, and uses a heuris-
tic pruning algorithm for precise recognition of
complex overlapping entity spans. Experimental
results on real-world biomedical datasets with abun-
dant and limited training data show that Bio-RFX
outperforms the state-of-the-art methods in NER,
and has highly competitive performance in RE.

6 Limitations

Despite the significant advancements in biomedical
entity and relation extraction, several challenges
persist. Our work has certain limitations that pro-
vide avenues for future exploration:

1. The current capability of Bio-RFX is limited
to using structural constraints obtained by sta-
tistical features. Future work could expand
this by incorporating other knowledge repre-
sentation methods.
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Table 3: Ablation study on biomedical datasets. Results with blue backgrounds indicate inferior performance.

Dataset Bio-RFX Bio-RFX (- SC) Bio-RFX (- NP) Bio-RFX (- PA, NP)

DrugVar
NER 83.16 83.16 83.72 81.94
RE 70.07 37.10 71.61 71.12

DrugVar (500)
NER 80.64 80.64 79.81 79.79
RE 62.17 29.25 60.13 58.48

DrugVar (200)
NER 73.80 73.80 73.03 73.56
RE 51.23 25.56 49.07 52.57

DrugProt
NER 91.75 91.75 90.62 82.88
RE 70.16 26.91 64.45 53.71

DrugProt (500)
NER 89.90 89.90 89.66 75.58
RE 54.37 19.62 53.73 51.58

DrugProt (200)
NER 89.01 89.01 90.93 80.41
RE 56.20 26.36 47.41 54.44

2. The method’s effectiveness in generating ques-
tions or hints for relation-specific tasks could
be improved. This would allow for better uti-
lization of the rich semantic information pro-
vided by pre-trained encoders.

3. The pipeline training approach used by Bio-
RFX may lead to error propagation, causing
a discrepancy between training and testing.
This issue will be addressed in future work.
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A Prompt Techniques

We have explored the following prompt techniques.
However, incorporating these prompt modules has
negatively impacted the model’s performance. In
contrast, our designed question template turned out
to be more effective.

A.1 Term Definitions

We enrich the question with definitions of types
of entities and relations to provide the model with
semantic information in the biomedical domain.
For instance, the relation-specific question What
gene does the chemical activate? is followed by
the definition of activator obtained from the Free
Medical Dictionary2, i.e., An activator is a sub-
stance that makes another substance active or re-
active, induces a chemical reaction, or combines
with an enzyme to increase its catalytic activity.
The results are shown in Table 4, i.e. Bio-RFX
(+Definition). It can be observed that the micro
F1 scores for NER and RE decreased. We believe
the contextualized knowledge representation dur-
ing the pre-training process is sufficient, and the
rigid definitions merely introduce noise to data dis-
tribution.

A.2 UMLS Markers

External biomedical knowledge is also considered
when designing prompts. We use UMLS Metamap,
a handy toolkit based on a biomedical knowledge
graph, to match the biomedical terms in the text
and insert unique markers both before and after the
terms. Take the following sentence as an example.

Some clinical evidences suggested that
pindolol can be effective at producing a
shortened time to onset of antidepressant
activity.

In this sentence, pindolol is recognized by
Metamap as a pharmacologic substance. When
type-specific markers are used, the result is:

2https://medical-dictionary.
thefreedictionary.com/
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Table 4: The absolute differences in micro F1 (%) after
adding term definitions in prompts.

Dataset
Bio-RFX

(+ Definition)

DrugVar
NER -0.26
RE 0.42

DrugVar(500)
NER -1.33
RE -0.68

DrugVar(200)
NER -3.71
RE -5.33

DrugProt
NER -1.08
RE -14.43

DrugProt(500)
NER -1.00
RE -5.08

DrugProt(200)
NER 1.92
RE 4.70

Some clinical evidences suggested that
<DRUG> pindolol </DRUG> can be ef-
fective at producing a shortened time to
onset of antidepressant activity.

On the DrugProt dataset, we observed a 3.02% and
6.45% decrease in micro F1 scores for NER and
RE, respectively. Several reasons may contribute
to this experience results. To begin with, the en-
tity types in Metamap and the entity types in the
datasets are quite different, posing a challenge for
entity linking. Another reason is that the match-
ing method is mainly based on the syntax tree and
searching, thus the matching accuracy is not sat-
isfactory. In the following example, the term of
is erroneously identified as a gene (OF (TAF1 wt
Allele)) due to its ambiguous nature, which subse-
quently hampers the overall performance. More-
over, Metamap extracts all the entities without be-
ing conscious of the relation type expressed in the
sentence, misleading our entity detector.

... <CHEMICAL> isoprenaline
</CHEMICAL> - induced maxi-
mal relaxation ( E ( max ) ) <GENE> of
</GENE> <CHEMICAL> methacholine
</CHEMICAL> - contracted prepa-
rations in a concentration dependent
fashion ...

B Textual NMS Algorithm

A detailed description of the algorithm is presented
in Algorithm 1.

Algorithm 1 Textual Non-Maximum Suppression

Require: spans S, span number threshold k;
Ensure: pruned spans Ŝ;

Sort S in descending order of span scores;
Ŝ = {};
while S ̸= {} and |Ŝ| < k do

for si in S do
Ŝ = Ŝ ∪ {si};
S = S − {si};
for sj in S do

if F1(si, sj) > 0 then
S = S − {sj};

end if
end for

end for
end while

C Datasets and Preprocessing

We will briefly review all the datasets below and
state the preprocessing methods we have applied.
All the datasets we use are publicly available and
designed to advance research in information ex-
traction. The statistics of the datasets are listed in
Table 5.

1. DrugVar is a subset of N-ARY datasets pro-
posed in Peng et al. (2017) and mainly fo-
cuses on extracting fine-grained interactions
between drugs and variants. The dataset
was constructed by first obtaining biomedi-
cal literature from PubMed Central3 and then
identifying entities and relations with dis-
tant supervision from Gene Drug Knowledge
Database (Dienstmann et al., 2015) and Clin-
ical Interpretations of Variants In Cancer4

knowledge bases. The original dataset is de-
signed for document-level information extrac-
tion, which is beyond the scope of this paper.
Thus we split the texts into sentences with
Punkt (Kiss and Strunk, 2006) sentence tok-
enizer and ignore all the cross-sentence rela-
tion triplets.

2. DrugProt is a track in BioCreative VII and
focuses on extracting a variety of important as-
sociations between drugs and genes/proteins
to understand gene regulatory and pharma-
cological mechanisms. The data is collected

3http://www.ncbi.nlm.nih.gov/pmc/
4http://civic.genome.wustl.edu/
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Table 5: Statistics of datasets.

Dataset #Ent Type #Rel Type #Ent #Rel #Train #Valid

DrugProt 3 6 40,185 20,800 6,273 1,377
DrugVar 3 4 2,760 1,583 929 267
BC5CDR 2 1 11,241 5,520 2,184 1,131

CRAFT (SO) 198 N/A 11,932 N/A 5,062 1,890

from PubMed abstracts and then manually la-
beled by domain experts. We also perform
sentence segmentation during preprocessing.
We merge some of the relation types so that
all the refined relation labels are at the same
level in the relation concept hierarchy.

3. BC5CDR is the supporting corpus of the
BioCreative V Chemical Disease Relation
(CDR) task. It aims to extract chemical-
disease relations from PubMed articles. In
a similar manner, the articles are split into
sentences for sentence-level extraction tasks.

4. CRAFT is a manually annotated corpus con-
sisting of 97 full-text biomedical journal arti-
cles. Each article is a member of the PubMed
Central Open Access Subset5. The subtask
for Sequence Ontology (SO) is utilized in this
work. It’s important to note that this dataset
lacks relation annotations, hence, only Named
Entity Recognition (NER) is performed.

D Implementation Details

For a fair comparison, all the BERT-based mod-
els use scibert-scivocab-cased (Beltagy et al.,
2019) as the pre-trained Transformer encoder.
REBEL(Huguet Cabot and Navigli, 2021) uses
BioBART-base (Yuan et al., 2022) as the pre-trained
encoder.

We consider spans with up to L = 8 words, which
covers 97.89% of the entities on average in the
datasets. We train our models with Adam (Kingma
and Ba, 2017) optimizer of a linear scheduler with
a warmup ratio of 0.1. We train the relation classi-
fier, entity detector, and number predictor for 100
epochs, and a learning rate of 1e-5 and a batch size
of 8. We use gold relations and entity numbers to
train the entity detector and the predicted relations
and numbers during inference. To be more specific,
for each relation, if the probability obtained by

5http://www.ncbi.nlm.nih.gov/pmc/
tools/openftlist/

the relation classifier is above the relation-specific
threshold, then the sentence will be classified as
positive, which means the sentence is expressing
this relation. Otherwise, it will be classified as
negative. The relation-specific threshold can be op-
timized by maximizing the classification F1 score
on the validation set.

The training process of each component takes
12 hours at most on one NVIDIA GeForce RTX
3090. The model sizes of the relation classifier,
entity detector, and number predictor are 420MB,
423MB, and 434MB respectively.

E Experimental Settings of GPT-4

With the rapid development of Large Language
Models (LLMs), it is necessary to discuss the po-
tential of LLMs for our task. We choose GPT-
4 (OpenAI, 2023) to jointly conduct few-shot NER
and RE on biomedical texts.

To inform GPT-4 about its role and our task, we
first send a system message, i.e. You are stepping
into the role of an expert assistant specialized in
biomedicine. Your primary task is to accurately
extract entities and relations from biomedical texts
and respond to users’ queries with clear, concise,
and precise answers.

After the system message, we provide GPT-4
with 5 examples. Each example contains a question
section and an answer section. A question section
consists of four parts:

1. The biomedical text where we extract entities
and relations.

2. The entity and relation types specified by the
dataset.

3. The structural constraints between the entity
and relation types.

4. A question guiding GPT-4 to provide the an-
swer.

An answer section consists of two parts:
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1. The entities detected from the text. To fa-
cilitate entity extraction, we inform GPT-4
to generate highly structured answers, e.g.
<BCRP|GENE> represents an entity BCRP
of type GENE. In practice, we perform Chain
of Thought (Wei et al., 2022) prompting to
enhance accuracy.

2. The relation triplets extracted from the
text. Similar to entity detection, GPT-4 in-
tends to generate structured answers, e.g.
<Menthol|CHEMICAL|TRPM8|GENE|
activator> represents an activator rela-
tion, whose subject and object are Menthol
and TRPM8.

Finally, we form a question section based on the
biomedical text and send it to GPT-4. We perform
regular expression matching on the response mes-
sage to retrieve the answers. The evaluation metrics
are consistent with the previous sections, i.e. an
entity is considered matched if the whole span and
entity type match the ground truth, and a relation
triplet is regarded correct if the relation type and
both subject entity and object entity are all correct.
The source code is publicly available at https://
github.com/Tschal-rsa/bio-re-gpt.

F Error Analysis of GPT-4

Upon examining the predictions from GPT-4, we
identified two primary types of errors:

1. Misinterpretation of labels based on their lit-
eral meaning. For instance, in the field of bi-
ology, an ‘activator’ is a protein that enhances
the transcription of a gene or a set of genes.
However, GPT-4 tends to interpret it as a sub-
stance that activates or makes other substances
operative. If a text indicates that gene A facil-
itates gene B, the model incorrectly classifies
the triplet as (gene A, activator, gene B). Our
approach mitigates this issue by fine-tuning
the model to provide context for the label, and
by applying structural constraints, such as rec-
ognizing that activation only occurs between
a chemical and a gene.

2. Coreference issues leading to a low recall rate.
GPT-4 may merge triplets if the subjects (or
objects) in the triplets are actually different
names of the same biomedical entity. While
this approach is reasonable to some degree,

it introduces an additional challenge for rec-
ognizing coreference. Fine-tuning GPT-4 to
explicitly generate all the names in the predic-
tion might address this problem.

G Significance Tests

In this section, we detail the significance test be-
tween Bio-RFX and baselines. Note that we ex-
clude GPT-4 from our baselines here since it is not
feasible to fine-tune it on our datasets.

The details of the experiments are addressed as
follows. First, we choose 5 seeds randomly, train
Bio-RFX and all the baseline models with each
seed, and record the corresponding performances.
Then, we perform one-tailed paired t-tests between
Bio-RFX and each baseline model. Considering
that the sample size is small, we also perform one-
tailed Wilcoxon signed rank test, which is a non-
parametric counterpart of the paired samples t-test.
For each baseline model:

1. We compute the difference in performance
between Bio-RFX and the baseline model so
that we obtain 5 difference measures di (i =
1, 2, . . . , 5).

2. We compute the t statistic under the null hy-
pothesis that Bio-RFX and the compared base-
line have equal performance:

t =
d̄− 0

s/
√
5
=

√
5d̄√

1
4

∑5
i=1(di − d̄)2

,

where d̄ and s are the sample mean and stan-
dard deviation of the difference measures, re-
spectively.

3. We compute the Wilcoxon signed-rank test
statistic W under the same null hypothesis:

R+ =

n∑

i=1

rank(di) for di > 0

R− =
n∑

i=1

rank(di) for di < 0

W = min

(
n∑

i=1

R+
i ,

n∑

i=1

R−
i

)

4. For t-test, we compute the p-value and com-
pare it to the significance level α = 0.05. If
the pt < 0.05 or t > 2.132, we reject the null
hypothesis.
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5. For Wilcoxon signed rank test, we compute
the p-value and compare it to the significance
level α = 0.1, because 0.1 is the minimum
p-value for 5 samples. If the pW < 0.1 or
W = 0, we reject the null hypothesis.

The statistics and p-values between Bio-RFX
and the baseline models are shown in Table 6 and 7.
We can observe that for t-test, most of the p-values
are below α = 0.05 (and the corresponding t statis-
tics are above 2.132), rejecting the null hypothesis
under both general and low-resource settings.

H Case Study

Here we present several cases to gain deeper in-
sights into the model’s ability to handle ambiguous
entities.

Case A

As a consequence, phenserine reduces beta-amyloid peptide

(Abeta) formation in vitro and in vivo.

Biomedical Perspective:

Abeta: PROTEIN / GENE, CHEMICAL / DRUG

Prediction: Abeta: PROTEIN / GENE

Case B

Torasemide inhibits angiotensin II-induced vasoconstriction

and intracellular calcium increase in the aorta of spontaneously

hypertensive rats.

Biomedical Perspective:

angiotensin II: PROTEIN / GENE, CHEMICAL / DRUG

Prediction: angiotensin II: PROTEIN / GENE

Figure 3: Case study for ambiguous biomedical entities.

Figure 3 illustrates cases of ambiguous entities
in the DrugProt dataset. In case A, Abeta is a chem-
ical in the form of a peptide, as well as processed
from the Amyloid precursor protein. In case B,
angiotensin II is both a medication used to increase
blood pressure and a type of protein. Since Drug-
Prot focuses on extracting drug-gene/protein inter-
actions, both of them are considered to be proteins
in the context. With the structural constraints, our
model can correctly predict the ground truth labels.
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Table 6: Significance tests on biomedical datasets. Results with blue backgrounds indicate that Bio-RFX signifi-
cantly outperforms the baseline model.

Model DrugProt DrugVar BC5CDR CRAFT

NER RE NER RE NER RE NER

TPLinker-Plus

t 9.31 0.64 5.40 5.52 16.58 10.74 9.00

pt 0.0004 0.2789 0.0028 0.0026 0.0000 0.0002 0.0004

W 0 5 0 0 0 0 0

pW 0.0625 0.6250 0.0625 0.0625 0.0625 0.0625 0.0625

KECI

t 5.32 -5.14 33.76 5.99 46.91 40.75 15.29

pt 0.0030 0.0034 0.0000 0.0020 0.0000 0.0000 0.0001

W 0 0 0 0 0 0 0

pW 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

PURE

t 17.54 0.51 8.13 8.78 4.03 -8.82 24.35

pt 0.0000 0.3177 0.0006 0.0005 0.0079 0.0005 0.000

W 0 7 0 0 0 0 0

pW 0.0625 0.8125 0.0625 0.0625 0.0625 0.0625 0.0625

SpanBioER

t 41.94 17.98 3.76 2.39 4.43 2.17 8.14

pt 0.0000 0.0000 0.0099 0.0375 0.0057 0.0481 0.0006

W 0 1 0 0 0 3 0

pW 0.0625 0.1250 0.0625 0.0625 0.0625 0.3125 0.0625

REBEL

t - 65.89 - 13.21 - 7.24 -

pt - 0.0000 - 0.0001 - 0.0010 -

W - 0 - 0 - 0 -

pW - 0.0625 - 0.0625 - 0.0625 -

PL-Marker

t 10.34 0.28 6.43 2.38 2.72 -0.61 6.71

pt 0.0002 0.3981 0.0015 0.0381 0.0264 0.2872 0.0013

W 0 6 0 0 0 6 0

pW 0.0625 0.8125 0.0625 0.0625 0.0625 0.8125 0.0625

Table 7: Significance tests on biomedical datasets under low-resource setting. Results with blue backgrounds
indicate that Bio-RFX significantly outperforms the baseline model.

Model DrugVar(500) DrugVar(200) DrugProt(500) DrugProt(200)

NER RE NER RE NER RE NER RE

TPLinker-Plus

t 8.34 3.92 3.26 9.97 3.67 4.42 7.37 18.62

pt 0.0006 0.0086 0.0155 0.0003 0.0106 0.0057 0.0009 0.0000

W 0 0 0 0 0 0 0 0

pW 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

KECI

t 10.57 2.85 7.10 0.26 16.16 4.54 16.61 17.61

p 0.0002 0.0232 0.0010 0.4035 0.0000 0.0052 0.0000 0.0000

W 0 0 0 7 0 0 0 0

pW 0.0625 0.0625 0.0625 1.0000 0.0625 0.0625 0.0625 0.0625

PURE t 23.44 2.95 1.96 1.72 0.20 -3.37 13.69 2.11

pt 0.0000 0.0210 0.0605 0.0804 0.4243 0.0140 0.0001 0.0512

W 0 0 1 1 5 1 0 1

pW 0.0625 0.0625 0.1250 0.1250 0.6250 0.1250 0.0625 0.1250

SpanBioER

t 12.25 3.30 1.37 5.03 18.10 3.71 19.22 26.16

pt 0.0001 0.0149 0.1209 0.0037 0.0000 0.0103 0.0000 0.0000

W 0 0 4 0 0 0 0 0

pW 0.0625 0.0625 0.4375 0.0625 0.0625 0.0625 0.0625 0.0625

REBEL

t - 5.23 - 2.42 - 0.87 - 3.13

pt - 0.0032 - 0.0364 - 0.2155 - 0.0176

W - 0 - 1 - 4 - 0

pW - 0.0625 - 0.1250 - 0.4375 - 0.0625

PL-Marker

t 10.41 9.88 0.39 -0.15 1.60 -6.75 6.48 -0.54

pt 0.0002 0.0003 0.3599 0.4439 0.0921 0.0013 0.0015 0.3099

W 0 0 6 7 2 0 0 6

pW 0.0625 0.0625 0.8125 1.000 0.1875 0.0625 0.0625 0.8125
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