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Abstract
The impressive capabilities of recent language
models can be largely attributed to the multi-
trillion token pretraining datasets that they are
trained on. However, model developers fail to
disclose their construction methodology which
has lead to a lack of open information on how
to develop effective pretraining sets. To address
this issue, we perform the first systematic study
across the entire pipeline of pretraining set con-
struction. First, we run ablations on existing
techniques for pretraining set development to
identify which methods translate to the largest
gains in model accuracy on downstream eval-
uations. Then, we categorize the most widely
used data source, web crawl snapshots, across
the attributes of toxicity, quality, type of speech,
and domain. Finally, we show how such at-
tribute information can be used to further refine
and improve the quality of a pretraining set.
These findings constitute an actionable set of
steps that practitioners can use to develop high
quality pretraining sets.

1 Introduction

Recent language models (LMs) (OpenAI, 2024;
Team, 2024b,a; Anthropic, 2024; Team et al., 2024)
have shown very strong capabilities on a number
of evaluation areas. In comparison to previously
developed LMs (Brown et al., 2020; Radford et al.,
2019; Smith et al., 2022a; Rae et al., 2022; Big-
Science, 2023), these newly released models gen-
erally follow the same architectural details, based
on the transformer (Vaswani et al., 2017). Rather,
with emphasis being placed on the size and quality
of the pretraining dataset (Hoffmann et al., 2022;
Longpre et al., 2023), the improved capabilities of
LMs are largely due to self-supervised pretraining
on ever larger, higher quality datasets. It is clear
that the pretraining set is crucial to model success,
but the question on how to effectively create one
has yet to be openly answered.

*Correspondence to: jupinderp@nvidia.com

Most leading models (OpenAI, 2024; Team,
2024b; Anthropic, 2024; Jiang et al., 2023) do not
divulge what methods were used to go from raw
data sources to a final pre-training set. Other mod-
els document only small sections of their process
(Touvron et al., 2023b; Parmar et al., 2024; Bai
et al., 2023; Team et al., 2024) and lack information
on why or how the chosen decisions were made.
The scarcity of open knowledge in this area hinders
the general community from contributing to the
advancement of model capabilities (Rogers, 2021).

The steps in pretraining set construction are
shown in Figure 1: the pipeline starts with a collec-
tion of text data sources, removes ill-formed and
duplicate documents during data curation, further
filters out low-quality documents via data selection,
and finally assigns sampling weights to determine
the prevalence of each data source during training.
Recent works (Longpre et al., 2023; Penedo et al.,
2023; Soldaini et al., 2024; Penedo et al., 2024)
have started to elucidate strategies for effective pre-
training set development. However, they all focus
solely on the step of data curation and analyze only
a small number of mostly English sources.

In this paper, we provide insights across all steps
of pretraining set development for a set of over
2T tokens composed of English, multilingual, and
source code documents. We compare existing meth-
ods through a series of ablations at each step of the
development pipeline in Figure 1 to quantify which
techniques do and do not realize improvements in
downstream evaluations. For the best identified
method, we highlight various design decisions that
impact performance.

Additionally, previous studies on web crawl are
conducted across a small number of snapshots and
are limited to the characteristics of toxicity and
quality (Longpre et al., 2023). Despite web crawl
documents constituting the majority of examples
in pretraining sets (Almazrouei et al., 2023; Smith
et al., 2022a; Gemma Team, 2024), we still do
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Figure 1: Each step in the development process to go from a collection of data sources into a final pretraining set
that produces a highly capable LM.

not thoroughly understand their composition. We
close this gap by conducting a large-scale analysis
on over 90 Common Crawl web snapshots for the
attributes of domain, quality, toxicity, and type of
speech. We then show how such data attributes
can aid in pretraining set construction to further
improve model capabilities.

By sharing this information, we provide an ac-
tionable series of steps that can be used to construct
highly performant pretraining sets. Concretely, our
contributions are as follows:

• Suggest a set of techniques to use for the data
curation, selection, and sampling steps of pre-
training set development for English, multilin-
gual, and code data.

• Perform the first large-scale analysis of web
crawled data across the attributes of quality,
toxicity, type of speech, and domain.

• Demonstrate that attribute information can be
used to enhance the performance of data sam-
pling and data selection methods.

2 Experimental Setup

We ablate a singular part of the development
pipeline and train a LM on the resulting pretrain-
ing set to understand how various methods affect
performance on downstream benchmarks. Our ex-
perimental setup is detailed below.

2.1 Data Sources

With current language models being trained on a
wide range of data sources, an appropriate study
on pretraining set construction must use a large,
diverse set of data. Table 1 highlights the sources,
along with the amount of tokens coming from each,
included in the English, multilingual, and code data
that we use in our experiments.

Experimenting on this broad set of data ensures
our findings will be applicable in the development
of large-scale pretraining sets. As current language

Data type Data source Tokens (B)

English

Web crawl 889
Misc 109
News 94
Conversational 59
Books 35
Scientific 33

Multilingual
Web crawl 540
Parallel corpora 56

Source Code The Stack v1.2 212

Table 1: The data sources that are used in our ablation
studies. Table 11, Table 12, Table 13, and Table 14
provide a more detailed breakdown of the English, mul-
tilingual, and source code datasets.

models do not just pretrain on English-only data,
we highlight the importance of including multi-
lingual and code data within our study. However,
while we run ablations for these domains, the ma-
jority of our experiments focus on the English set.

2.2 Evaluation
In experiments on English datasets, we use the
LM-Evaluation Harness (Gao, 2021) to evaluate
zero-shot accuracy on PIQA (Bisk et al., 2020),
ARC-easy (Clark et al., 2018), Winogrande (Sak-
aguchi et al., 2020), Hellaswag (Zellers et al.,
2019), LAMBADA (Paperno et al., 2016), and
Race-H (Lai et al., 2017). We also evaluate on
MMLU (Hendrycks et al., 2020) when the experi-
mental setting allows for a non-random score. For
our source code experiments, we evaluate on Hu-
manEval and MultiPL-E (Chen et al., 2021; Cas-
sano et al., 2023). In our multilingual experiments,
we evaluate on XCOPA (Ponti et al., 2020) and
TyDiQA-GoldP (Clark et al., 2020).

2.3 Model Specifications
To ensure that our results hold at various model
scales, in our experiments we use either 2B or 8B
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decoder only transformer LMs trained with autore-
gressive language modeling at token horizons from
150B to 450B tokens. The configuration used for
a given experiment is specified ahead of each re-
ported result. Specifics on model architecture and
hyperparameters are shared in Appendix C.

3 Data Curation

3.1 Methodology
As dataset curation has been widely investigated,
we do not run ablations to identify which specific
techniques are beneficial, but rather compare the
benefit when using these studied techniques versus
not. We consider three phases of data curation: raw
text, post deduplication, and post quality filtering.
Our deduplication process is comprised of both ex-
act deduplication where we compute a 128-bit hash
for each document, group the documents by their
hashes, and select one document per group in addi-
tion to fuzzy deduplication as described in (Smith
et al., 2022b). In quality filtering, the deduplicated
documents are filtered based on the perplexity of a
KenLM model (Heafield, 2011) that was trained on
a collection of high quality sources alongside a set
of heuristic filters as described in (Rae et al., 2021;
Raffel et al., 2020). Full details on the quality filter-
ing steps are shared in Table 15. When curating the
source code datasets we formed repository-level
contexts and filtered out low-quality documents by
following the approach of (Li et al., 2023), which
is outlined in Table 16.

3.2 Ablations
Findings

• Compared to raw text, deduplicated
and quality filtered data improve
model accuracy.

• In deduplication, it is better to priortize
keeping samples from older sources
than more recent ones.

All our data curation experiments use a 2B pa-
rameter model trained for 300B tokens. Table 2
shows that model accuracy improves after both
deduplication and quality filtering, indicating the
utility of effective data curation. The impact of
data curation for code is shared in Appendix D.

In fuzzy deduplication, it is possible to prior-
tize retaining documents from certain sources. As
document age has been shown to impact model
accuracies (Longpre et al., 2023), we run ablations

Experiment LM-Eval

Raw text 57.18
Post deduplication 58.93
Post quality filtering 59.50

Table 2: Impact of data curation steps on model accu-
racy. Per-task accuracies are shared in Table 18.

with the following priortization of data sources:
most recent to oldest, oldest to most recent, or at
random. Table 3 indicates that prioritizing older
documents leads to significantly better results.

Experiment LM-Eval

Random 59.96
Recent-to-Old 58.93
Old-to-Recent 60.47

Table 3: The priortization of data sources in dedupli-
cation affects model accuracy. Per-task accuracies are
shared in Table 19.

4 Data Selection

4.1 Methodology
In addition to filtering done during data curation,
specialized methods have been developed for data
selection (Albalak et al., 2024) to ensure that only
the highest quality documents make it into pretrain-
ing corpora. Amongst the potential methods, we
specifically investigate and run ablations with Do-
main Selection via Importance Resampling (DSIR)
(Xie et al., 2023b) as it requires minimal com-
pute overhead and is part of the set of techniques
that stem from Moore-Lewis selection (Moore and
Lewis, 2010), which accounts for most data selec-
tion methods. DSIR takes as input a raw dataset,
along with a target dataset of known high quality
examples, and then uses importance resampling to
select examples from the raw dataset that are dis-
tributed like the target by utilizing a bag of hashed
n-gram models to match the n-gram frequencies of
the selected data and the target.

4.2 Ablations
Findings

• DSIR improves the quality of web
crawl snapshots.

• DSIR functions best when applied
across each data source individually.
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• DSIR is fairly sensitive to the compo-
sition of the target distribution.

We assess whether DSIR provides gains when
used on data that has passed through a data cura-
tion pipeline. Through our ablations, we seek to
answer: 1) how does naive application with the rec-
ommended settings of DSIR perform and 2) can we
identify better settings for DSIR. In tackling ques-
tion 2, we ablate whether selection should be done
at the level of individual data sources instead of the
entire pretraining corpus and altering the suggested
percentage of data that should be selected. All our
DSIR experiments train a 2B parameter model for
165B tokens on a training set of two CC snapshots.

Question Experiment LM-Eval

Q1
Original CC 54.30
DSIR 54.44

Q2.1
Corpus DSIR 54.44
Source DSIR 54.71

Q2.2
DSIR (80%) 54.55
DSIR (87.5%) 54.25
DSIR (95%) 54.71

Table 4: DSIR improves the quality of web crawl data.
() refers to the percentage of examples that are selected
by DSIR. Per-task accuracies are shared in Table 20.

As shown in Table 4, the naive application of
DSIR, using a target set of Wikipedia and Books,
leads to a slight improvement in accuracy com-
pared to post curation CC data, 54.48 vs 54.30.
We find that selecting at the level of individual
sources improves upon the paper-recommended
setting of selection across the entire corpus. The
recommended 95% selection rate is optimal.

We ran an additional ablation to understand the
sensitivity in performance of DSIR when the target
set is altered. Table 5 illustrates that even small
alterations to the target set, such as the addition of
a high quality source like arXiv, causes fluctuations
in model accuracy – indicating that the target set
should be defined carefully.

5 Data Sampling

5.1 Methodology

During the construction of pretraining corpora, data
weights {ak}Nk=1 such that

∑N
k=1 ak = 1 are as-

signed to each of the N data sources to determine

Target Set LM-Eval

Wikipedia, Books 54.71
Wikipedia, Books, arXiv, NIH 54.02
arXiv, NIH 53.71

Table 5: DSIR is impacted by target set composition.
Per-task accuracies are shared in Table 21.

the sampling frequency of each source during pre-
training. The value of data weights can greatly
impact downstream accuracy as increasing the pro-
portion of data from a given source decreases the
cumulative weight on the others, potentially caus-
ing degradation on the domains that are now less
represented. Specialized methods have been devel-
oped to identify appropriate sampling weights that
endow the trained model with strong capabilities
across a wide range of domains.

In our ablations, we consider two data sampling
methods that use heuristics based on characteristics
of the data sources to define weight distributions:
alpha sampling (Arivazhagan et al., 2019; Shli-
azhko et al., 2022) and UniMax sampling (Chung
et al., 2023), in addition to DoReMi (Xie et al.,
2023a) which uses a learned model to identify the
sampling weights. Both alpha and UniMax sam-
pling use the number of tokens in each data source
to define data weights. Alpha sampling propor-
tionally weights data sources to a scaled factor, α,
of their token counts while UniMax fits a uniform
weight distribution subject to the constraint that no
data sources sees more than a certain number of
epochs at the given training token budget. Compar-
atively, DoReMi defines data weights by formulat-
ing the problem via group distributionally robust
optimization (Sagawa et al., 2020) and minimizing
the excess loss between a small proxy model and a
pretrained reference model.

5.2 Ablations
Findings

• UniMax provides the best sampling
weights for the English and multilin-
gual domains.

• Alpha sampling, with a value of
α = 1.3 , provides the best sampling
weights for the code domain.

• DoReMi is unable to produce competi-
tive sampling weights for any domain
as it often gives the majority of the
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weight to a single source.

In our data sampling ablations, we study the
domains of English, multilingual, and code individ-
ually as the inherent characteristics of each domain
would likely change which data sampling method
would be best suited for it. We use an 8B parameter
model for the ablations and train on 150B tokens
for the code domain and 300B tokens for the En-
glish and multilingual domains.

5.2.1 English
In our English ablations, we replace alpha sam-
pling with preference based weighting, where the
weights are hand tuned according to intuitive per-
ceptions of quality, as it has been the most widely
used sampling technique for English data (Tou-
vron et al., 2023a; Gao et al., 2020a). With the
weights returned by Unimax being dependent upon
the number of epochs allowed for each data source,
we additionally ablate across across varying val-
ues of this hyperparameter. The returned sampling
weights and further details on each method can be
found in Appendix E.

Method LM-Eval MMLU

Preference 65.85 27.20
UniMax (1e) 67.14 28.30
UniMax (2e) 66.50 28.00
UniMax (4e) 66.61 26.60
DoReMi 65.63 26.90

Table 6: UniMax sampling weights provide the best
performance on English data. Ne means that UniMax
can use a maximum of N epochs per dataset. Per-task
accuracies are shared in in Table 22.

Table 6 shows that UniMax achieves substan-
tially better accuracies on LM-Eval and MMLU
compared to the next best method. We note that
DoReMi attains the worst performance, which we
believe to be a factor of its weight distribution be-
ing heavily skewed towards web crawl snapshots
as detailed in Appendix E. Additionally, despite
still outperforming both other methods, the perfor-
mance of UniMax degrades as the maximum epoch
hyperparameter increases. We hypothesize that as
we have far more data tokens than the amount of
training tokens, repeated epochs of data provide
less utility than novel information. We suggest that
practitioners choose the minimal value of the epoch
hyperparameter that makes sense for their datasets

and training budget.

5.2.2 Multilingual
It has been shown that models trained on a subset
of multilingual languages from a given language
family are able to transfer knowledge and capabili-
ties to other languages in the family (K et al., 2020;
Hu et al., 2020; Ye et al., 2023). This indicates
that a sampling method which more evenly spreads
weight so that all language families are well rep-
resented, like UniMax, should achieve better ac-
curacy than one which places most of the weight
on high resource languages, like alpha sampling.
Table 7 confirms this intuition as UniMax slightly
outperforms alpha sampling. As with the English
ablations, DoReMi’s returned weight distribution
is heavily skewed, causing it to underperform both
other methods. The sampling weights identified by
each method are detailed in Appendix E.

Method XCOPA TyDiQA-GoldP

Alpha (α = 1.3) 58.11 17.86
UniMax (1e) 58.24 18.11
DoReMi 57.65 15.8

Table 7: UniMax slightly outperforms alpha sampling
on multilingual data.

5.2.3 Code
We do not use the returned DoReMi sampling dis-
tribution in our code ablations as it placed over 80%
of the weight on a single programming language,
which does not allocate enough tokens to facilitate
model learning during training for the remaining
42 languages. As shown in Table 8, we find that
alpha sampling achieves better accuracies than Uni-
Max. In our study, we did not find there to be a
strong transfer ability between programming lan-
guages as has been seen for multilingual languages.
Given that we mainly evaluate on high resource
languages, we find it natural that alpha sampling,
which places high weight on high resource lan-
guages without dramatically undersampling low
resource languages, performs best. Further details
on this ablation can be found in Appendix E.

6 Data Attributes

6.1 Methodology

We investigate attributes along the axes of toxicity,
quality, domain, and type of speech for each docu-
ment that comes from CC snapshots. Information
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Method MultiPL-E HumanEval

Alpha (α = 1.3) 19.72 20.73
UniMax (1e) 19.33 20.12

Table 8: Alpha sampling outperforms UniMax on code
data. Per-language accuracies for MultiPL-E are shared
in Table 23.

from quality and toxicity labels can be used to cat-
egorize the potential utility of a given document
while domain and type of speech labels charac-
terize the types of documents that compose our
pretraining set. We obtain these attribute labels by
training a DeBERTaV3 (Liu et al., 2019) classifier
on a small set of ground-truth labeled web crawled
documents before obtaining predictions from each
across our entire pretraining corpus. A full break-
down of the labels that each classifier outputs along
with a more detailed description of the classifier
training procedure can be found in Appendix B.

6.2 Attribute Analysis

Findings

• Website homepages, news articles, and
blogs constitute the majority of web
crawl documents. Conversational texts
are sparsely contained.

• Technical domains like finance, law,
and science are among the least repre-
sented in web crawl.

• Explanatory or news articles on sci-
ence and health are the most likely to
be high quality documents.

• Domains or types of speech that are
generally of high quality may also ex-
hibit high toxicity (i.e news articles on
sensitive topics), explaining why previ-
ous toxicity based filtering has harmed
model accuracy.

We perform the first large-scale study of web
crawl snapshots by using our aforementioned at-
tribute classifiers to analyze all available CC snap-
shots until August 2023, over 90 in total. This anal-
ysis provides new insights into the composition of
web crawl documents and identifies areas of data
shortage, both of which can be used to improve
the quality of pretraining sets. We detail our key
findings below and further analysis can be found in
Appendix F.

Figure 2: Distribution of document types in web crawl.

Figure 2 quantifies the proportion of documents
belonging to various types of speech. Three ma-
jor document types constitute over 65% of all web
crawl examples: websites (homepages for organi-
zations, products, and individuals), news articles,
and blogs. This potentially explains the vastly im-
proved world knowledge of recent LMs (Touvron
et al., 2023b; Jiang et al., 2023) as news and blogs
contain information on a wide range of topics while
homepages provide factual information on people,
places, and items. The lack of conversational texts
highlights why alignment is needed to greatly im-
prove the chat ability of pretrained models.

Figure 3: Distribution of content domains in web crawl.

Figure 3 illustrates the composition of content
domains. The domains which are present in lower
quantities are often technical in nature: finance,
law, and science. To ensure that the model attains
strong capabilities in these areas, it is pertinent to
augment pretraining sets with data sources such
as SEC filings (Wu et al., 2023), Court Listener
(Henderson et al., 2022), and academic papers (Gao
et al., 2020a; Touvron et al., 2023b).

We now examine how multiple data attributes
vary with each other. Figure 4 shows the quality
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Figure 4: Domains sorted by descending order of per-
centage of high quality documents.

composition of each domain. As expected, techni-
cal domains like science, health and law contain
the largest proportion of high quality content while
adult and online communities are primarily of low
quality. Surprisingly, sensitive subjects contains
the third highest percentage of high quality exam-
ples. Looking at the distribution of domain by type
of speech, which is detailed in Appendix F, the
majority of sensitive subjects documents are news
articles – indicating that these are well-written re-
ports on topics such as war and protests.

Figure 5 shows the relationship between domain
and toxicity. Sensitive subjects, likely due to the
contained topics, is flagged for having high toxic-
ity. This illustrates how toxicity based filtering can
remove high quality documents and degrade LM
quality as shown previously (Xu et al., 2021).

Figure 5: Heatmap of domains by probability of toxic
content. Adult and online communities contain the high-
est percentage of toxic content.

6.3 Attributes in Sampling and Selection

Findings

• Buckets defined by data attributes sub-
stantially improve the performance of
data sampling methods.

• Attributes compose more useful target
sets for data selection.

Data attributes can refine pretraining set develop-
ment as more exact target sets can be used in data
selection and more informative buckets of data can
be defined for which to assign weight distributions
over during data sampling. We quantify the benefit
of incorporating data attributes within both of these
steps.

To use attribute information within data sam-
pling, we define new buckets of examples based
on the attributes. In one setting, which we term
fine-grained, each existing data source is parti-
tioned based on the attribute. A given CC snapshot
CC-1 will now become {CC-1-Xi}ni=1 where each
Xi is one of the n classes for the attribute. This

means
n⋃

i=1
CC-1-Xi = CC-1. An alternative set-

ting, termed grouped, is to create attribute buckets

across the entire corpus, C, such that
n⋃

i=1
Xi = C,

as each Xi consists of samples among all data
sources with that given attribute label.

Experiment LM-Eval

Baseline 56.81

Quality fine-grained 57.88
Quality grouped 57.19

Toxicity fine-grained 53.62
Toxicity grouped 54.99

Domain fine-grained 57.34
Domain grouped 57.45

Type of Speech fine-grained 56.69
Type of Speech grouped 57.31

Table 9: Sampling weights based on buckets of data at-
tribute labels significantly improve upon baseline results.
Italics indicate results that outperform the baseline. Per-
task accuracies are shared in Table 24.

To assess the utility of attribute based data sam-
pling, we train a 2B model for 165B tokens on a
training set of 5 CC snapshots. Our baseline re-
sult is when attribute information is not included
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in data sampling. Further experimental details are
shared in Appendix G. Table 9 highlights that all
attributes aside from toxicity realize improved ac-
curacy when used within data sampling. We note
attributes which define broad classes of documents,
like domain and type of speech, are more perfor-
mant in the grouped setting while attributes that
assess a characteristic of a document, like quality,
are better suited to the fine-grained setting.

Experiment Target Set LM-Eval

Original CC N/A 54.90
DSIR Wikipedia, Books 55.35
DSIR Low Tox, High Qual 55.63

Table 10: Attribute information defines better target sets
for data selection. Tox is Toxicity, Qual is Quality.

With data attributes, more precise target sets for
data selection can be defined. For instance, one
with examples that are of both low toxicity and high
quality. Table 10 shows that using such a target set
with DSIR outperforms the paper-recommended
target set and enables toxicity based selection with-
out accuracy degradation.

Additional angles where data attributes can re-
fine pretraining sets would be through better selec-
tion of documents with information amenable for
rephrasing (Maini et al., 2024) or seeding synthetic
generation pipelines (Abdin et al., 2024).

7 Related Work

Data curation, which is the identification, organi-
zation, storage and cleaning of datasets (McLure
et al., 2014; Freitas and Curry, 2016; Thirumu-
ruganathan et al., 2020), has been the most well-
studied aspect in pretraining set development.
Early models, like BERT (Devlin et al., 2019) and
XLNet (Yang et al., 2020), focused their data cura-
tion efforts on obtaining examples from high qual-
ity sources. In conjunction with the creation of
larger collections of datasets such as C4 (Raffel
et al., 2020), the Pile (Gao et al., 2020a), and Big-
Science ROOTS (Lachaux et al., 2020), heuristic
and classifier based filters were used in data cura-
tion to remove ill-formed and useless documents
(Rae et al., 2021; Chowdhery et al., 2022; Raffel
et al., 2020). Additional studies within data cura-
tion found that data deduplication (Broder, 1997;
Kandpal et al., 2022; Abbas et al., 2023) further
improved model capabilities by preventing over-
training on a small set of similar examples.

Data selection and data sampling play major
roles in pretraining set construction. Data selec-
tion methods (Moore and Lewis, 2010; Axelrod,
2017; Xie et al., 2023b; Engstrom et al., 2024) re-
move low quality documents to retain examples
that more closely align with a predetermined high
quality source. Moore-Lewis selection (Moore and
Lewis, 2010) proposed the initial approach, with
recent extensions by cynical data selection (Axel-
rod, 2017) and DSIR (Xie et al., 2023b) which both
better estimate the probability that a given example
belongs to a high quality domain. Data sampling
techniques either use a learned model (Xie et al.,
2023a; Albalak et al., 2023; Fan et al., 2024) or a
heuristic function (Arivazhagan et al., 2019; Raffel
et al., 2020; Chung et al., 2023) to define sampling
weights for each data source. Learned techniques,
such as DoReMi (Xie et al., 2023a), use the loss of
a model across the data sources to define sampling
weights while heuristic functions often use the size
of a data source to explicitly define weights (Ari-
vazhagan et al., 2019; Raffel et al., 2020) or fit a
probability distribution (Chung et al., 2023).

The data attributes of toxicity and quality have
been used to further refine pretraining sets (Guru-
rangan et al., 2022; Meade et al., 2022). Toxicity
classifiers (Welbl et al., 2021) that remove highly
toxic examples reduce the number of toxic gener-
ations from LMs, but also negatively impact the
model’s other capabilities (Xu et al., 2021). Qual-
ity classifiers (Devlin et al., 2019; Raffel et al.,
2020; Chowdhery et al., 2022) which remove doc-
uments such as machine generated texts (Dodge
et al., 2021) or hate speech and sexually explicit
content (Luccioni and Viviano, 2021) greatly im-
prove model capabilities. (Longpre et al., 2023) ex-
tensively investigate the impact that toxicity, qual-
ity, and age of data have on model accuracy.

8 Conclusion

We present the first comprehensive study on pre-
training set development conducted at the scale
of modern day LMs and pretraining set sizes.
Through a series of ablations, we identify help-
ful methods to use at each step of the pretraining
development pipeline. We then analyze most cur-
rently available web crawl snapshots across the
attribute labels of toxicity, quality, domain, and
type of speech to better understand the composi-
tion of the most widely used data source in current
pretraining corpora. These attribute labels are then
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shown to provide significant improvement in model
abilities when incorporated within data selection
and data sampling methods. We hope that the open
transmission of this knowledge spurns more rapid
advancements in the capabilities of LMs.

Limitations

While we designed our experimental setting to be
as generally applicable as possible, we acknowl-
edge that our findings are limited to the distribu-
tion of data sources, learning algorithm, and model
configuration that we consider. Thus, when extrap-
olating our findings on pretraining set development
to a setting with markedly different data sources or
for usage in an alternate type of model, it may be
that our results do not hold as strongly. In addition,
we do not evaluate all possible techniques for each
step of the pretreating pipeline so our results can
not be thought of as the definitive rankings amongst
all potential methods but rather as a set of strate-
gies with which to create an effective, high-quality
pretraining set. Lastly, although the use of syn-
thetic data has recently garnered lots of attention,
we did not include any such source of data within
our studies and aspects relating to quality selection
and sampling of synthetic data may be different
than what our findings suggest.
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A Data Sources

A.1 English Data Sources

Table 11 shares the datasets which compose our
English corpus. We share further detail on how we
gathered the datasets from each category.

Data source Dataset name Tokens (B)

Web Crawl

CC 2022-40 284.3
Re-crawled C4 174.8
CC 2019-35 165.1
CC 2020-50 141.9
CC 2021-04 68.2
Pile-CC 41.2
OpenWebText2 14.0

News CC NEWS 94.2

Misc
ROOTS 104.5
Wikipedia 4.3

Conv. Reddit + others 59.1

Books

Books3 25.1
Stories 5.3
Gutenberg 2.5
BookCorpus2 1.5

Scientific

ArXiv 18.7
StackExchange 9.8
PubMed Abstracts 4.2
NIH ExPorter 0.3

Table 11: Summary of each of the datasets that make
up our English corpus

Web Crawl To acquire a significant amount
of web-crawl data, we downloaded all Com-
mon Crawl web archive (WARC) files originat-
ing from the CC-2020-50, CC-2019-35, CC-2021-
04 and CC-2022-40 snapshots. Additionally, we
re-crawled all URLs provided by the documents
within the C4 corpus (Raffel et al., 2019). While
many of these URLs were no longer active, we
were able to re-crawl approximately 1.7 TB of web
pages contained within the C4 dataset. To add to
our collected web-crawl corpus, we also used the
pre-preprocessed documents available within Pile-
CC (Gao et al., 2020b).
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News To curate our news dataset, we downloaded
all Common Crawl News WARC files between
2016 and October 2022.

Conversational Our conversational dataset was
constructed primarily from the Pushshift Reddit
dataset (Baumgartner et al., 2020), with small
amounts of other public datasets such as CaSiNo
(Chawla et al., 2021), Wikipedia Talk Pages (Fer-
schke et al., 2012), Persuasion for good (Wang
et al., 2019), Friends (Zhou and Choi, 2018),
Chromium, (Meyers et al., 2018) and Ubuntu dia-
logue conversational datasets (Lowe et al., 2015).

The Reddit dataset was pre-processed to ensure
that only the longest conversation thread is sam-
pled per post to avoid duplicate text that can arise
from sampling many or all possible conversation
subtrees (Zhang et al., 2022). Reddit usernames
are anonymized with random alphanumeric strings
while preserving speaker information within the
conversation. Given the prevalence of toxic and
harmful content on Reddit, we filter out conversa-
tions that have a toxicity score >= 0.5 according
to Perspective API1.

Books Our books dataset consisted of documents
originating from the Books3, Gutenberg (PG-19),
BookCorpus2 (all provided by the Pile), as well as
documents from the CC-Stories dataset (Trinh and
Le, 2018).

Scientific We curated all scientific documents
from sub-datasets contained within the Pile. Specif-
ically, we used the StackExchange, PubMed Ab-
stracts, NIH Exporter and ArXiv datasets.

Misc As a miscellaneous category, we lump to-
gether the Wikipedia and ROOTS (Laurençon et al.,
2022) datasets.

A.2 Multilingual Data Sources

Our multilingual dataset consists of 52 languages,
50 of which were curated from the CC-2022-
40 Common Crawl snapshot. For Chinese and
Japanese, we used documents from the mC4 cor-
pus (Xue et al., 2020). This was a consequence of
the inability of our text extraction library to parse
languages without spacing. Table 12 provides a
summary of the multilingual web crawl data that
made up our multingual corpus.

Additionally, we used an English-centric
sentence-level parallel corpus of 32 languages (De-

1https://perspectiveapi.com/

tails in Table.13). This was collected largely from
data sources such as CC-Matrix (Schwenk et al.,
2019), CC-Aligned (El-Kishky et al., 2019) and
Paracrawl (Esplà-Gomis et al., 2019). Multiple
examples are formatted into a document using few-
shot templates with the number of in-context exam-
ples from 0-10 following an exponentially decaying
probability of selection.

A.3 Code Data Sources
Our source code dataset was mainly constructed
from a subset of the Stack v1.2 dataset (Kocetkov
et al., 2022). Table 14 list the selected languages
and their token counts. While the dataset is dis-
tributed with each file as a single document, we
pre-process the data further to concatenate all files
of a particular language from a repository into a
single long document to allow the model to attend
across files.

B Data Attribute Classifiers

We detail the training methodology, output labels,
and public release plan for each of our data attribute
classifiers.

B.1 Toxicity Classifier
Solutions, like Perspective API, exist for quantify-
ing the toxicity of a given piece of text. However,
due to low rate limits it would be intractable to
scale across the billions of documents that exist
across all CC snapshots. In developing our own
toxicity classifier, we aim to recapitulate the perfor-
mance of Perspective API and reliably mark text
which contain obscene language, threats, insults,
and identity-based hate speech as having high tox-
icity. As a training set, we use 320K examples
sourced from the Jigsaw2 and Jigsaw Unintended3

datasets. We obtain our final toxicity classifier by
fine-tuning a DeBERTaV3 base model for 1 epoch
on this data. The output for our toxicity classifier is
a probability from 0 to 1 on whether or not a given
piece of text contains toxic content.

We evaluate our toxicity classifier by measuring
its correlation with Perspective API scores on a set
of 50k documents from CC. We find that the clas-
sifier obtains a Pearson correlation of 0.8 which
indicates high agreement between the models. Ad-
ditionally, we ask a set of human annotators to

2https://www.kaggle.com/c/jigsaw-toxic-comment-
classification-challenge/overview

3https://www.kaggle.com/competitions/jigsaw-
unintended-bias-in-toxicity-classification
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ISO Tokens (B) ISO Tokens (B) ISO Tokens (B) ISO Tokens (B)

RU 94.52 FA 6.59 HI 2.60 IS 0.38
JA 70.52 RO 6.58 SK 2.58 UR 0.37
DE 48.98 TR 6.46 HR 2.45 AZ 0.37
ES 46.50 EL 6.43 CA 2.12 MR 0.33
FR 44.30 SV 6.39 LT 1.69 KA 0.32
ZH 43.41 HU 5.89 HE 1.47 MK 0.32
IT 26.40 AR 5.74 SL 1.33 NE 0.31
NL 15.64 NO 5.61 SR 1.24 KK 0.30
VI 15.16 FI 4.11 ET 1.24 HY 0.29
PL 14.50 DA 3.79 BN 0.90 GL 0.29
PT 11.99 UK 3.63 LV 0.84 ML 0.25
ID 10.90 BG 3.37 TA 0.82 TE 0.24
CS 7.23 KO 3.05 SQ 0.49 KN 0.18

Table 12: Summary of our multilingual web crawl data consisting of 52 languages. All languages except for JA and
ZH were curated from the 2022-40 CC snapshot. The JA and ZH data were curated from the mC4 corpus.

Language Percentage Language Percentage Language Percentage Language Percentage
(%) (%) (%) (%)

Spanish 12.84 Indonesian 3.12 Japanese 2.30 Lithuanian 1.39
French 10.52 Portuguese 2.90 Norwegian 2.19 Bulgarian 1.30
German 9.78 Polish 2.88 Hungarian 2.13 Hindi 1.17
Italian 5.48 Czech 2.74 Ukrainian 1.90 Slovak 0.99

Russian 5.25 Turkish 2.60 Finnish 1.84 Slovenian 0.91
Dutch 4.81 Vietnamese 2.54 Swedish 1.73 Estonian 0.81

Chinese 3.61 Greek 2.39 Korean 1.54 Latvian 0.76
Arabic 3.20 Romanian 2.32 Danish 1.53 Croatian 0.55

Table 13: The language composition of our parallel machine translation corpus.

Language Tokens (B) Language Tokens (B) Language Tokens (B)

Javascript 21.12 Rust 2.81 Pascal 0.68
Markdown 20.27 Jupyter 2.58 Assembly 0.67
Java 19.84 Ruby 2.29 Fortran 0.65
Python 19.49 Swift 2.02 Makefile 0.54
PHP 18.87 JSON 1.78 Julia 0.52
C 18.26 TEX 1.76 Mathematica 0.51
C++ 15.79 Scala 1.29 Visual Basic 0.42
C# 12.05 YAML 1.28 VHDL 0.42
Go 9.03 Shell 1.18 Common Lisp 0.24
HTML 8.97 Dart 1.08 Cuda 0.21
Typescript 8.16 Lua 1.00 System Verilog 0.16
SQL 5.31 reStructuredText 0.96 Docker 0.16
CSS 4.96 Perl 0.83 Omniverse 0.03
XML 2.97 Haskell 0.72

Table 14: Summary of our source code corpus consisting of 41 different programming languages all of which,
except for omniverse, were curated from the Stack v1.2 dataset.
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Heuristic Threshold English Only

N-gram LM Perplexity 5000 Yes

Fraction of non-alpha-numeric characters 0.25 Yes
Fraction of words without alphabets 0.20 Yes
Fraction of numbers (in characters) 0.15
Fraction of URLs (in characters) 0.20
Fraction of lines starting with bullets 0.90
Fraction of whitespaces (in characters) 0.25
Fraction of parentheses (in characters) 0.10
The ratio of symbols to words 0.10

Contains a word >1000 characters 1.0 (Hard Constraint)
Contains <50 or >100k words 1.0 (Hard Constraint)
Contains less than 2 common English words 1.0 (Hard Constraint) Yes
Mean word length <3 or >10 characters 1.0 (Hard Constraint)

Fraction of boilerplate content (in characters) 0.40

Duplicate line fraction 0.30
Duplicate paragraph fraction 0.30
Duplicate lines (by character fraction) 0.20
Duplicate paragraph (by character fraction) 0.10

Repeating top n-gram fraction 0.20
Repeating duplicate n-gram fraction 0.20
Fraction of lines that do not end with punctuation 0.85
Fraction of lines that end with ellipsis 0.30

Documents containing Pornographic content in URLs 1.00

Table 15: A list of document-level data filtering heuristics and thresholds. Heuristics are borrowed or derived from
Rae et al. (2021) and C4’s cleaning heuristics (Raffel et al., 2020)

Heuristic Min. Threshold Max Threshold

Fraction of comments (in characters) 0.001 0.85
Number of lines of code 5 20,000
Ratio of characters to tokens 2 -

Table 16: A list of file-level data filtering heuristics and thresholds applied to the source code data. Heuristics follow
those described in (Allal et al., 2023).

label 500 documents with toxicity scores. On this
held-out test set, we find that our toxicity classifier
achieves an AUC-ROC of 0.83 while Perspective
API attains an AUC-ROC of 0.85. We plan to pub-
licly release our toxicity classifier shortly.

B.2 Domain Classifier

We train a domain classifier to label the content do-
main of a given piece of text into one of 27 potential
classes: Adult, Arts and Entertainment, Autos and
Vehicles, Beauty and Fitness, Books and Litera-
ture, Business and Industrial, Computers and Elec-
tronics, Finance, Food and Drink, Games, Health,

Hobbies and Leisure, Home and Garden, Internet
and Telecom, Jobs and Education, Law and Gov-
ernment, News, Online Communities, People and
Society, Pets and Animals, Real Estate, Reference,
Science, Sensitive Subjects, Shopping, Sports, and
Travel and Transportation. The training data con-
sists of 1 million CC documents which are labeled
using Google Cloud’s Natural Language API4 and
500k Wikipedia articles that are curated using the
Wikipedia-API 5. We train a DeBERTaV3 on two

4https://cloud.google.com/natural-
language/docs/classifying-text

5https://pypi.org/project/Wikipedia-API/
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epochs of this training set. We ask a set of human
annotators to label 500 held-out CC documents
and evaluate both the Google API and our domain
classifier on this test set. We find that our trained
domain classifier matches the performance of the
Google API as it achieves an accuracy of 77.9%
while the Google API achieves 77.5%. Addition-
ally, we publicly release our domain classifier on
HuggingFace 6.

B.3 Quality Classifier

We train a quality classifier to label a given piece
of text as either high, medium, or low quality. The
training data consists of 25k CC examples that
are labeled by 3 Surge AI7 annotators. We en-
sure that all of these annotated documents had at
least greater than 2 annotators in agreement on the
quality label. In these annotations we provide the
following definitions of each quality class to the
annotators:

High Text which is grammatically correct, well-
written, coherent between sentences and para-
graphs, and without any missing punctuations or
without any incomplete sentences. It also does not
include any boilerplate text and has useful content.

Medium This text is mostly grammatically cor-
rect with minor errors. It may not be coherent
throughout and can jump from topic to topic. It
should not have many missing punctuations or in-
complete sentences. It should not include a lot
of boilerplate text and more than 50% of the text
should be useful.

Low This category includes text which is not
grammatical, not coherent at all, or contains a
lot of missing punctuations, poor capitalization of
words and incomplete sentences or abrupt para-
graph breaks. If the text contains pornographic
content, lewd or profane language or toxic content
of any kind then it is de facto low quality. Text
which has a lot of boilerplate content making more
than 50% of the text useless should also be marked
as “Low”.

We train a DeBERTaV3 model on this training
set and find that on a held-out test set of 23k addi-
tionally labeled examples, it achieves an accuracy
of 83%. We plan to publicly release our quality
classifier shortly.

6https://huggingface.co/nvidia/domain-classifier
7https://www.surgehq.ai/

B.4 Type of Speech Classifier
We train a type of speech classifier to label a given
document into one of the following 11 document
types: conversational, news, online comments,
books and literature, blogs, analytical exposition
(persuasive text), explanatory articles, reviews, pro-
duct/company/organization/personal websites, boil-
erplate content, and miscellaneous. The training
data consists of the same 25k CC examples labeled
by 3 Surge AI annotators as the quality classifier
training set. We ensure that all of these annotated
documents had at least greater than 2 annotators
in agreement on the type of speech label. In these
annotations we provide the following definitions of
each type of speech label to the annotators:

Conversational Is this text a conversation be-
tween two or more people? Does this piece of text
sound like a response to something which is not
mentioned in the document? If the answer to either
of the questions is “Yes” then mark the document
as belonging to this category. Conversations in-
clude podcast transcripts, talk show transcripts or
if there is an exchange of thoughts, feelings, ideas
or information between two or more people.

News News is a form of communication that
informs the public of current events, issues, and
trends in society.

Online Comments Comments are messages
posted by users in reaction to social media or blog
posts. They can take the shape of feedback, ques-
tions, praise, or even disagreements. Comment is
a short-form type of content or message that gets
published on social media platforms or other on-
line communities. You may have to check the URL
of the document to get a sense of the context of
the text. This category encompasses social media
comments, comments in online communities, and
comments on an article or a blog.

Books and Literature Is the piece of text long
and seems to span multiple pages? Does it have
different chapters? If the response to either of the
questions is “Yes” then mark the document as be-
longing to this category. This category also in-
cludes short stories that may be published on an
online platform.

Blogs A blog (short for “weblog”) is an online
journal or informational website run by an individ-
ual, group, or corporation that offers regularly up-
dated content (blog post) about a topic. It presents
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information in reverse chronological order and it’s
written in an informal or conversational style. You
may have to look at the URL to check for this cate-
gory. A blog typically has a title and addresses one
topic throughout the text. Blogging has a highly
personal form of writing and authors demonstrate
a connection with their blog content.

Analytical Exposition The social function of An-
alytical Exposition text is: To persuade the reader
that there is an important and correct matter that,
certainly, needs to get attention. Analytical ex-
position typically uses emotive words and simple
present tense. This type of text contains ads for
products, properties, items, companies etc. It may
even be in the form of a blog persuading the reader
to either buy a certain product or avail certain ser-
vices. In such situations the text should be first
marked as a “Blog” and then as “Analytical Exposi-
tion”. This category includes persuasion, ads, and
propaganda (text which is trying to sell the reader
something or some idea).

Explanatory Article An explanatory article is a
type of academic paper in which the author presents
some point of view or opinion on a particular topic,
subject, event or situation. Importantly, most of
these articles provide references to the informa-
tion presented in the text. This category includes
Wikipedia articles, academic papers, abstracts of
papers, Wiki How To articles or any piece of text
plainly giving information for educational purposes.
Note that any text that gives information is not an
Explanatory Article. For example, in most cases
ads also give information about a product but these
should not be marked as Explanatory Articles. The
purpose of Explanatory Articles is not to give in-
formation for selling something. These articles are
also not written in conversation or informal format.
They are written in a professional style and their
sole purpose is to give information.

Reviews A review is a formal assessment or ex-
amination of something with the possibility or in-
tention of instituting change if necessary. It is a
critical article or report on a book, play, recital,
movie, or an e-commerce product. A review typ-
ically provides a summary of the thing it is as-
sessing, a reaction of the author and importantly a
critical assessment of the thing.

Product/Company/Organization/Personal Web-
sites Text that gives information about a prod-
uct, company or organization falls into this cate-

gory. The important thing is text in this category
is authored and published by the same entity about
which the information is given. For example a
product website gives information about that prod-
uct but a review website is written by someone
else and will provide more than just the informa-
tion about the product. Examples of this category
are articles such as government websites giving
information about their various programmes, orga-
nizations giving information about their services or
products, schools giving information about courses,
programmes, how to apply, jobs that are available
etc.

Boilerplate Content Any written text (copy) that
can be reused in new contexts or applications with-
out significant changes to the original. Text and
links in headers, footers, or sidebars are well-
known examples. It could also be statements like
“No search result” or email ids and addresses at
the end of a website. Common examples of boiler-
plate are things like GDPR info about “cookies”,
“Google analytics” for websites. Things like “about
info” at the bottom of websites etc. If there are any
HTML artifacts remaining in the article, this should
be marked as boilerplate. Examples of HTML ar-
tifacts are things like tables <br>, <tr>, <html>.
Oftentimes, javascript needed to render the web
page can be embedded into the text, this should
also be marked as boilerplate.

Miscellaneous Other categories not covered here
so far. If the text contains pornographic content, or
toxic / lewd / profane language then by default you
should mark it as “MISC”.

We train a DeBERTaV3 model on this training
set and find that on a held-out test set of 23k addi-
tionally labeled examples, it achieves an accuracy
of 79.5%. We plan to publicly release our type of
speech classifier shortly.

C Model Specifications

We detail the architecture and hyperparameters
used for both the 2B and 8B models.

2B Model The architectural specifications in-
clude: 24 transformer layers, a hidden size of 2048,
16 attention heads, Rotary Position Embeddings
(RoPE) (Su et al., 2023), SwiGLU (Shazeer, 2020)
activations in the MLP layers, a SentencePiece
(Kudo and Richardson, 2018) tokenizer with a vo-
cabulary size of 256k, a context length of 4096, no
bias terms, and untied input-output embeddings.
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We train with a batch size of 256 and use a cosine
learning rate schedule, with warmup over the first
one percent of training tokens, to decay from a
maximum learning rate of 2.0e-4 to 2.0e-5. We
used the AdamW (Loshchilov and Hutter, 2019)
optimizer with β1 = 0.9, β2 = 0.95, and a weight
decay of 0.1.

8B Model The architectural specifications in-
clude: 32 transformer layers, a hidden size of 4096,
32 attention heads, Rotary Position Embeddings
(RoPE) (Su et al., 2023), SwiGLU (Shazeer, 2020)
activations in the MLP layers, a SentencePiece
(Kudo and Richardson, 2018) tokenizer with a vo-
cabulary size of 256k, a context length of 4096, no
bias terms, and untied input-output embeddings.

We train with a batch size of 1024 and use a
cosine learning rate schedule, with warmup over
the first one percent of training tokens, to decay
from a maximum learning rate of 3.0e-4 to 3.0e-5.
We used the AdamW (Loshchilov and Hutter, 2019)
optimizer with β1 = 0.9, β2 = 0.95, and a weight
decay of 0.1.

D Data Curation Ablations

Table 17 illustrates that our specified steps of data
curation for source code significantly improves
evaluation performance, highlighting that data cu-
ration is a key component for all types of data.

Experiment HumanEval MultiPL-E

Raw source code 16.5 15.9
Post quality filtering 20.7 19.2

Table 17: Evaluation accuracies before and after data
curation for our source code dataset. We train an 8B
model for 150B tokens.

E Data Sampling Ablations

English We share the returned sampling weights
for our English dataset across the three methods in
Figure 6 and across the varying values of the Uni-
Max maximum epoch hyperparameter in Figure
7. We clearly see that the returned weight distribu-
tion by DoReMi places too high of a weight on a
single data source, which likely leads to its poor
performance. Additionally, as the maximum epoch
hyperparameter is increased in UniMax, the sam-
pling distribution tends to a uniform one which
likely begins to mitigate some of the utility gained
from using the method.

Multilingual In our multilingual ablations, we
first ran a series of experiments to identify the op-
timal α value to use in alpha sampling. We found
that α = 1.3 achieved the best downstream accura-
cies. We share the returned sampling distribution
from each method in Figure 8.

Code Like in our multilingual ablations, we
found that α = 1.3 achieved the best downstream
accuracies for alpha sampling in the code domain.
We share the returned sampling distribution from
each method in Figure 9. The DoReMi identified
sampling distribution is not useful as it places over
80% of the weight on markdown.

F Data Attribute Analysis

Figure 10 illustrates that the vast majority of web
crawl documents are of medium quality; however,
there does exist a significant chunk of low quality
documents which should be appropriately consid-
ered when creating pretraining sets. Additionally,
Figure 11 highlights that a large proportion of web
crawl documents are unlikely to contain toxic con-
tent (defined as having a toxicity score lower than
0.3). These two factors combined assure us that
web crawl snapshots provide positive utility during
langauge model pretraining.

Next, we examine the overlap between the out-
put of the developed quality classifier and the per-
plexity scores of the KenLM model which we used
to filter low quality documents during data cura-
tion. Figure 12 shows that the two models have
high agreement on documents which they classify
as high or low quality. This indicates that such
model based filtering during data curation is able
to reliably remove low quality texts.

In examining the quality composition of various
types of speech categories, as shown in Figure 13,
we find that explanatory and news articles are the
document types which tend to contain the high-
est proportion of high quality texts. Additionally,
we see that the boilerplate content and miscella-
neous categories by far have the largest proportion
of low quality documents, indicating that it likely
would be best to completely filter out web domains
which contain high proportions of documents of
these types. This analysis allows for the appropri-
ate prioritization of document types within web
crawl snapshots as we now understand which sorts
of texts are likely to be of the highest quality.

Lastly, Figure 14 highlights the distribution of
domain by type of speech. We find that a lot of the
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Experiment LAMBADA ARC-easy Race-H PIQA Winogrande Hellaswag

Raw text 55.6 57.2 39.9 73.9 57.6 58.9
Post deduplication 57.8 59.1 39.9 76.6 56.9 63.3
Post quality filtering 58.3 60.2 41.0 75.4 58.7 63.5

Table 18: Per-task evaluation accuracies of the experiments detailed in Table 2.

Experiment LAMBADA ARC-easy Race-H PIQA Winogrande Hellaswag

Random 59.8 59.4 41.9 75.6 59.9 63.1
Recent-to-Old 57.8 59.1 39.9 76.6 56.9 63.3
Old-to-Recent 59.4 60.8 41.3 76.0 61.7 63.5

Table 19: Per-task evaluation accuracies of the experiments detailed in Table 3.

Question Experiment LAMBADA ARC-easy Race-H PIQA Winogrande Hellaswag

Q1
Original CC 51.3 53.6 37.1 73.6 54.3 55.9
DSIR CC 53.1 55.0 37.2 73.2 54.4 53.8

Q2.1
Corpus DSIR 53.1 55.0 37.2 73.2 54.4 53.8
Source DSIR 51.5 54.0 37.5 73.5 56.7 55.9

Q2.2
DSIR (80%) 53.3 5.40 37.4 72.5 56.5 53.6
DSIR (87.5%) 53.5 53.1 37.9 72.0 55.0 54.0
DSIR (95%) 51.5 54.0 37.5 73.5 56.7 55.9

Table 20: Per-task evaluation accuracies of the experiments detailed in Table 4.

Target Set LAMBADA ARC-easy Race-H PIQA Winogrande Hellaswag

Wikipedia, Books 51.5 54.0 37.5 73.5 56.7 55.9
Wikipedia, Books, arXiv, NIH 46.9 53.6 38.2 74.3 55.6 55.6
arXiv, NIH 47.2 54.2 36.3 73.9 56.5 55.3

Table 21: Per-task evaluation accuracies of the experiments detailed in Table 5.

Method LAMBADA ARC-easy Race-H PIQA Winogrande Hellaswag MMLU

Preference 67.7 68.6 42.11 79.2 66.0 72.6 27.2
UniMax 1e 70.1 69.8 42.8 79.1 68.0 73.1 28.3
UniMax 2e 70.7 67.6 42.9 78.9 66.3 72.6 28
UniMax 4e 70.5 67.7 43.0 78.9 67.3 72.4 26.6
DoReMi 68.3 68.6 41.2 78.9 65.0 72.0 26.9

Table 22: Per-task evaluation accuracies of the experiments shared in 6.

Method HumanEval MP-Python MP-Java MP-JS MP-CPP MP-Lua

Alpha 20.72 20.5 23.4 20.5 19.3 14.5
UniMax 20.12 19.3 20.9 19.9 19.3 17.4

Table 23: Per-task evaluation accuracies for the experiments detailed in Table 8. MP stands for MultiPL-E.

technical domains, such as science, law, and health,
are primarily composed of high quality types of
speech, such as news and explanatory articles. This
highlights that when prioritizing certain websites in

future web crawls, it likely would be most fruitful
to focus on those surrounding such domains. Ad-
ditionally, the domain of sensitive subjects, which
we identified as being primarily composed of high
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Figure 6: Returned samplings weights for the English dataset.

Figure 7: Effect of increasing the maximum epoch hyperparamter in UniMax on the returned sampling weights.

quality documents, is in fact made up mostly by
news articles. This would indicate that this do-
main likely covers investigative reports on subjects
such as war and protests. We also note that the
categories which we expect to have high overlap,
like the domain and type of speech of news or the
adult domain and the miscellaneous type of speech
category, do in fact have a high degree of overlap.
This confirms the efficacy of both our classifiers in
providing accurate analysis.

G Data Attributes in Sampling and
Selection

In this set of experiments, our baseline data sam-
pling method is to proportionally weight each of
the 5 CC snapshots by their token counts. We found
that this sampling method performed better than
UniMax. As the CC snapshots are all of relatively
large token counts compared to our training token
budget, 165B, UniMax ends up assigning a uniform
distribution across each of the snapshots. As differ-
ent CC snapshots have different utility, as indicated

by (Penedo et al., 2024), a uniform distribution is
suboptimal to one which weights snapshots differ-
ently.

In defining the sampling weights over both the
Fine-Grained and Grouped settings of the at-
tribute based buckets, we use UniMax with the
maximum epoch hyperparameter set to 2.
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Figure 8: Returned samplings weights for the Multilingual dataset.

Figure 9: Returned samplings weights for the Code dataset.

Experiment LAMBADA ARC-easy Race-H PIQA Winogrande Hellaswag

Baseline 54.1 56.5 38.9 75.1 57.8 58.9

Quality Fine-Grained 57.3 57.7 39.7 75.0 57.6 60.0
Quality Grouped 56.2 56.6 38.7 74.2 56.8 58.3

Toxicity Fine-Grained 46.1 57.6 36.9 71.3 55.5 46.2
Toxicity Grouped 55.0 56.1 37.3 72.7 54.5 54.2

Domain Fine-Grained 57.0 60.7 39.5 73.3 56.5 57.0
Domain Grouped 54.6 59.7 40.2 73.9 59.2 57.1

Type of Speech Fine-Grained 53.4 59.2 37.5 74.3 56.2 59.5
Type of Speech Grouped 53.9 59.8 37.5 74.3 58.7 59.6

Table 24: Per-task evaluation accuracies of the experiments detailed in 9.
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Figure 10: Breakdown of document quality across web
crawl snapshots.

Figure 11: Breakdown of document toxicity across web
crawl snapshots.

Figure 12: There is high correlation between the quality
classifier and the perplexity of a KenLM model used for
quality filtering during data curation.

Figure 13: Types of speech sorted by descending order
of percentage of high quality documents.

Figure 14: Heatmap of domains by types of speech.
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