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Abstract

Large Language Models (LLMs) frequently
memorize long sequences verbatim, often with
serious legal and privacy implications. Much
prior work has studied such verbatim memo-
rization using observational data. To comple-
ment such work, we develop a framework to
study verbatim memorization in a controlled
setting by continuing pre-training from Pythia
checkpoints with injected sequences. We find
that (1) non-trivial amounts of repetition are
necessary for verbatim memorization to hap-
pen; (2) later (and presumably better) check-
points are more likely to verbatim memo-
rize sequences, even for out-of-distribution se-
quences; (3) the generation of memorized se-
quences is triggered by distributed model states
that encode high-level features and makes im-
portant use of general language modeling capa-
bilities. Guided by these insights, we develop
stress tests to evaluate unlearning methods and
find they often fail to remove the verbatim
memorized information, while also degrading
the LM. Overall, these findings challenge the
hypothesis that verbatim memorization stems
from specific model weights or mechanisms.
Rather, verbatim memorization is intertwined
with the LM’s general capabilities and thus will
be very difficult to isolate and suppress without
degrading model quality.

1 Introduction

Verbatim memorization refers to LLMs outputting
long sequences of texts that are exact matches of
training examples (Carlini et al., 2021, 2023). Un-
like recalling factual knowledge or fixed expres-
sions, verbatim memorization can have serious
copyright and privacy implications (Karamolegkou
et al., 2023; Chen et al., 2024c; Lee et al., 2023;
Carlini et al., 2021; Shokri et al., 2017) and poten-
tially waste model capacity (Nasr et al., 2023). Re-
cent work has identified data frequency and model
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Figure 1: An overview of our sequence injection frame-
work, which creates a control model M(∅) and a treat-
ment model M(X) by continued pre-training from the
same checkpoint, with a set of sequences to memorize
X injected into M(X)’s training data. Our framework
explicitly creates a counterfactual state that allows us to
study, via causal interventions, what the model would
have been if it had not seen a particular sequence.

size as factors contributing to verbatim memoriza-
tion in LLMs (Carlini et al., 2023; Prashanth et al.,
2024; Karamolegkou et al., 2023). However, it
is still not well understood why and how LLMs
verbatim memorize certain texts in training data.

One hypothesis is that there are specialized
model weights or mechanisms dedicated to recall-
ing the verbatim memorized texts (Nasr et al., 2023;
Chang et al., 2024b; Stoehr et al., 2024). Under this
view, preventing verbatim memorization should
be straightforward. For example, localizing and
intervening on these dedicated components (e.g.,
a few neurons; Chang et al. 2024b; Maini et al.
2023 or a particular attention head; Stoehr et al.
2024) should remove verbatim memorized texts
while preserving model quality. However, recent
work indicates that removing verbatim memorized
information is challenging. Preventing verbatim
memorization during decoding does not stop vari-
ants of the memorized texts from being generated
(Ippolito et al., 2023), and memorized texts can be
retrieved in contexts different from the ones seen in
training (Karamolegkou et al., 2023; Ippolito et al.,
2023; Kassem et al., 2024). In addition, unlearning
via fine-tuning and pruning degrades model quality
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(Stoehr et al., 2024; Chang et al., 2024b; Maini
et al., 2024; Lynch et al., 2024; Chen and Yang,
2023). These findings suggest an alternative view:
rather than having specialized weights or mecha-
nisms dedicated to verbatim memorization, models
might be reconstructing memorized sequences us-
ing features learned from general language mod-
eling. This would explain why we are unable to
localize memorized texts and why mitigating mem-
orization can fundamentally alter model behaviors.

In this paper, we seek to answer these questions.
We develop a framework for studying memoriza-
tion in controlled settings: given an LM checkpoint
M, we continue pre-training M on the original
training data but with specific novel sequences in-
serted at controlled frequencies. This framework
complements existing observational methods, and
allows us to decouple factors that potentially af-
fect memorization, including model size, data fre-
quency, and model quality. We use this frame-
work in experiments with the Pythia family of mod-
els (Biderman et al., 2023b). Our core findings are
as follows: (1) Sequences need to be repeated a
non-trivial number of times to be memorized. The
perception that a model verbatim memorizes a se-
quence that occurs once in pre-training is likely an
illusion. (2) Later (and presumably better) check-
points are more likely to verbatim memorize se-
quences, and even out-of-domain sequences are
memorized at non-trivial rates by the best mod-
els. (3) Only some tokens in verbatim memorized
sequences causally depend on a set of distributed
triggering states that encode high-level semantic
features, with the rest produced by regular LM de-
coding. Based on these findings, we develop stress
tests to evaluate unlearning methods and find they
often fail to remove verbatim memorized informa-
tion while also degrading model quality.

Overall, these results challenge the view that
verbatim memorization stems from specific model
weights or mechanisms. Instead, they suggest that
verbatim memorization is the result of many inter-
acting factors related to data and language model-
ing. Thus, removing verbatim memorized informa-
tion without degrading model quality will be very
difficult, especially for our best models.

2 Related Work

Verbatim memorization LLMs can generate long
sequences that are exact matches of their training
data (Carlini et al., 2021, 2023). Data repetitions,

model size, and context length have been identified
as contributing factors, mostly through observa-
tional studies (Carlini et al., 2023; Karamolegkou
et al., 2023; Chen et al., 2024b; Prashanth et al.,
2024). However, the mechanisms behind these fac-
tors are still not well understood. Prevention mea-
sures like fine-tuning, pruning, or string matching
often degrade model quality or fail to cover varia-
tions of memorized sequences (Stoehr et al., 2024;
Chang et al., 2024b; Ippolito et al., 2023). This has
motivated attempts to predict memorization before
training (Biderman et al., 2023a). We revisit these
findings and show that the challenges in prevention
are caused by the entanglement between verbatim
memorization and general language modeling.

Memorization and generalization Memorizing
individual examples is linked to generalization in
deep neural models (Arpit et al., 2017; Zhang et al.,
2017). Studies on image classifiers show memoriz-
ing noisy labels helps long-tail generalization (Feld-
man and Zhang, 2020; Feldman, 2020). However,
verbatim memorization in LLMs differs from these
settings, as texts memorized by LLMs are neither
long-tail nor noisy. Recent work shows LLMs can
memorize data without overfitting (Tirumala et al.,
2022); memorization is a gradual process (Dankers
et al., 2023; Dankers and Titov, 2024) and is neces-
sary for accuracy (Brown et al., 2021). We investi-
gate the memorization–generalization relationship
from the other direction, namely, how generaliz-
able features learned from language modeling play
a role in verbatim memorization.

Interpreting memory structures in Transform-
ers MLP layers have been identified as key–value
stores for structured knowledge and n-grams (Geva
et al., 2021; Dai et al., 2022; Meng et al., 2022;
Geva et al., 2023; Voita et al., 2023; Haviv et al.,
2023), while Allen-Zhu and Li (2024) shows that
attention heads can also store factual knowledge.
Yet, how the Transformer stores free-form texts has
not been well studied, with mixed results that local-
ize memorized texts to MLP layers (Chang et al.,
2024b) or attention heads (Stoehr et al., 2024).
In this work, we use causal intervention meth-
ods (Pearl, 2001, 2009; Beckers and Halpern, 2019;
Vig et al., 2020; Geiger et al., 2021) to provide an
approximate answer to the crucial counterfactual
question of what would have happened if the model
had not seen the memorized string (van den Burg
and Williams, 2021; Zhang et al., 2023; Feldman
and Zhang, 2020; Lesci et al., 2024).
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3 A Framework for Studying Verbatim
Memorization

We first introduce a framework to study the effects
of language modeling quality on verbatim memo-
rization in a tightly controlled setting. This frame-
work adapts the data injection methods of Jagielski
et al. (2023) and Carlini et al. (2019), and aims to
create minimally different models with and without
specific sequences injected into their training data.

Sequence injection We begin with a model check-
point Mi. Let Oi be the state of the optimizer at
checkpoint i, and let Di be the final datapoint from
the dataset D that Mi was trained on. Using the
state (Mi, Oi, Di), we create two models. The
control model M(∅) continues training Mi for s
steps using the data D[i:i+s], with Oi as the opti-
mizer. For the treatment model M(X), we mini-
mally alter D[i:i+s] to include a set of sequences X
that does not otherwise occur anywhere in D. Each
sequence in this set is repeated uniformly every m
steps from a random offset, replacing the sequence
at that point in D, until training step i+ s.

The framework allows us to independently con-
trol three factors: the language model quality of
M, the sequences X to be memorized, and the fre-
quency of the target sequence in the training data.
Moreover, it creates approximate counterfactuals
that allow us to observe what the model would be
like if the model had not seen a particular sequence.

Optimizer state Oi To simulate pre-training, we
want an optimizer state that reflects the pre-training
process prior to step i. Resetting the optimizer
would lead to the first few batches having an un-
duly large impact on the model loss. To achieve
this, we first continue training the model Mi−t
from the pre-training checkpoint at i− t over exam-
ples correspond to the next t steps, using a freshly
initialized optimizer. We then use the optimizer
state of Mi−t as the optimizer state Oi.

Measuring verbatim memorization We adopt
the kl-extractable definition (Carlini et al., 2023)
and define the verbatim memorization length of
an injected sequence x as the number of tokens in
the longest memorized substring. We prompt the
model with all substrings in x of k = 8, 16, 32, 64
tokens, where the first 8 tokens of the continua-
tion in x is not a substring in the prompt. For each
prompt, we greedy decode the next 64 tokens as the
prediction. Among all the predictions, we compute
the longest prefix match between the prediction

and the actual continuation in x as the verbatim
memorization length l.

4 Experiments

We now report on a sequence of experiments aimed
at helping to characterize the nature of verbatim
memorization via the following four analyses.1

4.1 General Experimental Setup

Models We use checkpoints from the Pythia 160m,
2.8b, and 6.9b models (Biderman et al., 2023b)
trained on the Pile (Gao et al., 2020) deduped data.

Injection sequences We curate a set of 100 se-
quences, each with 256 tokens, sampled from in-
ternet content published after the Pile cutoff date.
We verify that the overlap between each sequence
and the Pile is less than 50 characters (see Ap-
pendix B.2). Additionally, we create a set of 100
shuffled sequences by randomly shuffling tokens in
each original sequence. The shuffled set preserves
the overall vocabulary distribution but with little or
no predictable structure.

Realistic injection frequencies To determine re-
alistic frequencies, we study the frequency range
that triggers memorization using 5K sequence sam-
ples. A sequence is considered memorized if it
has a verbatim memorization length of 32 given a
prefix of at most 32 tokens. We then hand-select a
frequency where the 160m model produces a mix
of the memorized and non-memorized sequences,
which is about every 10K to 100K examples. We
detail the sampling and counting procedure in Ap-
pendix A. Additionally, we observe that at the 6.9B
scale, 94% of memorized sequences occur at least
1 in 5M examples, which raises the question of
whether a model could memorize a sequence it has
seen only once. We address this question in §4.2,
finding that purported instances are likely illusory.

Optimizer state In §4.2, we use a freshly initial-
ized AdamW optimizer (Loshchilov and Hutter,
2019). In §4.3 and §4.4, we initialize the optimizer
by pre-training on 1M examples.

Additional setup details are in Appendix B.

4.2 The Illusion of Single-shot Verbatim
Memorization

Do LLMs verbatim memorize a sequence in pre-
training after only seeing the sequence once?

1Data and code available at https://github.com/
explanare/verbatim-memorization
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Type Percentage Description

Template 54 Templated texts, where the variable content is usually provided in the prompt
Variation 21 Spacing, punctuation, and textual variants of texts
Induction 17 Texts with inductive patterns, e.g., ordered number sequences or repeating sequences

Composition 8 Texts composed of frequent patterns, with composition rules specified by the prompt

Table 1: Four types of sequences that create the illusion of single-shot verbatim memorization.

Figure 2: Single-shot verbatim memorization length of
the 2.8b and 6.9b models after 200 training steps.

We first manually annotate the 6% low-
frequency sequences verbatim memorized by the
6.9b model in §4.1 and identify four patterns that
create the illusion of single-shot verbatim memo-
rization in Table 1, with examples shown in Ap-
pendix A.2. These seemingly low-frequency se-
quences are either under-counted due to limitations
of string-based matching or simply not verbatim
memorized, i.e., a checkpoint produced before the
sequence occurs can already generate the sequence
verbatim. Prashanth et al. (2024) has also identified
similar sequences as “Reconstruction” and “Rec-
ollection”. These patterns suggest not all tokens
in the verbatim memorized sequences are actually
memorized; some might be completed by the LM.

One may argue that a memorized sequence that
only occurs once in the training data is inherently
hard to discover. To complement counting, we di-
rectly measure a model’s ability to verbatim mem-
orize a sequence after one occurrence.

Setup We train the 2.8b and 6.9b 80K check-
points for 200 steps, where a sequence to mem-
orize is injected into the first batch. We measure
the verbatim memorization length every 10 steps.

Results Results are shown in Figure 2, averaged
over 16 injection sequences and their shuffled ver-
sions. The verbatim memorization length decreases
significantly as the batch size increases. Moreover,
the verbatim memorization length peaks around 25–
100 steps after seeing the injected sequence, likely
due to momentum terms in the optimizer (Chang
et al., 2024a). Even at the peak, the 6.9b model
only verbatim memorizes 12±3.7 tokens from the

Figure 3: Pythia checkpoint vs. verbatim memorization
length of the original and shuffled sequences.

original sequences at batch size 128. Shuffled se-
quences are memorized 5±1 tokens regardless of
batch size or model size. With a batch size of 1024
in pre-training, it is extremely unlikely that mod-
els with a size smaller than 6.9B can just verbatim
memorize an arbitrary sequence in a single-shot.

4.3 Better LMs Memorize Longer Sequences

Are better LMs more likely to memorize se-
quences? Intuitively, better LMs are those that
achieve lower perplexity on novel sequences drawn
from their training distribution. From this perspec-
tive, we might expect them to be better at memo-
rizing such sequences as well, since they simply
require fewer bytes on average to encode such se-
quences (Deletang et al., 2024).
Setup To decouple model quality from model size,
we experiment with three checkpoints at 1K, 10K,
and 80K steps from the 160m and 2.8b models. We
use two injection frequencies for both models: ev-
ery 50K and 10K examples. For each model run,
we pack a set of 4–10 sequences, so that the total
number of injected sequences is less than 0.04%
of the training data. We measure the verbatim
memorization after 40 and 20 occurrences for the
two models respectively, as with 20 occurrences
the 2.8b model can already memorize longer se-
quences than the 160m one.
Results Figure 3 (solid blue lines) shows the re-
sults for 1 in 50K frequency; results for 10K fre-
quency are in Appendix C.1. The findings are clear:
later checkpoints memorize more, and the larger
model is able to memorize more, even when seeing

10714



the sequences fewer times. Overall, checkpoints
corresponding to higher quality models are more
likely to memorize the injected sequences.

4.4 Sequences without Structure Are Harder
to Memorize

The previous section shows that better models are
more capable of memorizing sequences in their
training distributions. What about sequences from
a different distribution? One hypothesis is that out-
of-domain sequences are more likely to be memo-
rized, as they contain rare sequences of tokens that
can be used as identifiers to recall the memorized
content (Tirumala et al., 2022). The other hypothe-
sis is that in-domain sequences are more likely to
be memorized, because they have lower perplexity
before training, as in the single-shot case in §4.2.
Setup To investigate which hypothesis holds, we
use the set of shuffled sequences, which naturally
have a higher perplexity than the original sequences
when measured using the model M , i.e., before
training on the sequences. We follow the training
and evaluation protocol from §4.3.
Results Results are shown in Figure 3 (dashed
orange lines). On average, the original sequences
drawn from the training distribution are more likely
to be verbatim memorized than shuffled sequences,
except for the 2.8b-10K checkpoint. Even though
the shuffled sequences are not memorized as well,
we do still see the trend in which later checkpoints
memorize longer sequences. In terms of perplexity
changes, the perplexity of memorized shuffled se-
quences does decrease faster during training than
the perplexity of original sequences.

These findings suggest that the verbatim mem-
orization observed in pre-trained LLMs is more
complex than recalling a sequence based on some
unique identifiers, as otherwise we would see the
models memorize more shuffled sequences. Multi-
ple factors might contribute to the process: general
mechanisms to efficiently store free-form texts, as
well as structures that favor in-domain sequences.
The former might be learned from modeling ran-
dom sequences such as URLs, UUID, or even dig-
its of π, while the later might emerge for model-
ing structures in natural languages. We investigate
these mechanisms in the following sections.

4.5 Memorization is Triggered by Abstract
Model States Distributed Across Tokens

A core question for verbatim memorization is how
models encode memorized sequences. We consider

two aspects of the question: (1) Which tokens en-
code the information of the verbatim memorized
sequences? (2) Do models encode token-level infor-
mation (low-level representations) or more abstract
states of the model (high-level representations)?

To answer these questions, we seek to identify
the causal connections between the sequence that
triggers memorization and the tokens in the verba-
tim memorized sequence. In more detail, consider a
treatment model M(X) that takes as input a trigger
prefix p = x1, . . . xn and outputs a verbatim mem-
orized sequence s = xn+1, . . . xn+k. From this it
follows that the trigger prefix p creates an internal
state S in M(X) that is sufficient for generating s.
If verbatim memorized information is localized to
the trigger p, then every token in s should have a
causal connection to the internal state S.
Interventions To test whether every token in s in
fact depends on S, we use interchange interven-
tions (also known as activation patching; Geiger
et al. 2021; Vig et al. 2020), which is calculated
as follows. First, let GetVal(M(x), l) be the rep-
resentation v that model M computes at location
l when it processes input x. Second, let Ml←w(x)
be the model that is just like M(x) except that the
representations computed at location l have been
replaced by the values w. An interchange interven-
tion is one in which the value used in this interven-
tion is one created when the model processes a dif-
ferent input x′. This results in a nesting of GetVal
inside the intervention: Ml←GetVal(M(x′),l)(x). In
other words, the interchange intervention replaces
the values computed at l with those obtained from
processing a different example.

Our interchange intervention focuses on the
decoding process given a trigger prefix. Sup-
pose M(X) has run a forward pass on x =
x1, . . . , xn+1, . . . , xn+t−1, i.e., the trigger p and
the subsequent t− 1 tokens, and so is going to pre-
dict token xn+t. Our interchange intervention re-
places the residual stream representations in layer k
of a token xj (for j ≤ n) in p with residual stream
representations extracted at the same layer and to-
ken position where the model input is a random
sequence r sampled from the Pile:

M(X)
(j,k)←v(x)

where v = GetVal(M(X)(r), (j, k)) (1)

If the next token prediction is causally dependent
on the trigger representation, we expect the pre-
dicted token to change after this intervention, since
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Prompt: Mr and Mrs Dursley, of number four, Privet Drive, 
were proud to say that they were perfectly normal,
Next token: thank

(a)

Prompt: Mr and Mrs Dursley, of number four, Privet Drive, 
were proud to say that they were perfectly normal, thank
Next token: you

(b)

(c)

(d)
Figure 4: Causal dependencies between the trigger and verbatim memorized tokens. (a) An example of a memorized
token that depends on the trigger (the yellow box). A darker color indicates that the output has a stronger causal
dependency on the residual stream at the location. (b) An example of a memorized token that does not depend on the
same trigger. (c) The percentage of memorized tokens that causally depend on the trigger decreases by step. (d) For
memorized tokens that depend on the trigger, there is on average one causal dependency even at the middle layers.

the chance of a random sampled token having a
similar representation as the intervened token is
extremely low. Alternatively, if the representation
has no causal effect, we expect the output to be the
same. Interventions on model representations allow
us to measure which tokens have causal effects (our
question 1 above), and at which layers the token
information was used by the model to decode the
next memorized token (our question 2).
Metrics Let l be an intervention location, i.e., a
residual stream at the token position i and layer
ℓ, and L be the total number of layers. Let pl
represent the percentage of interventions that lead
the model to output the verbatim memorized token
when intervened on at l. We estimate the causal
effect of the trigger on the verbatim memorized
token xn+t as a causal dependency score:

dt = 1− max
l∈{(i,ℓ)|1≤i≤n,1≤ℓ≤L}

{pl} (2)

The score is between 0 and 1, where 1 means strong
causal dependency on the trigger and 0 means no
causal dependency. By definition, d1 = 1, since the
last layer residual stream at the last token always
has causal effects on the first predicted token.

We define the number of dependencies a memo-
rized token xn+t has in a given layer ℓ as Nt,ℓ:

Nt,ℓ =
∑

l∈{(i,ℓ)|1≤i≤n}
1[pl > T ] (3)

where T is a threshold that we set to 0.1 to filter
dependencies with weak causal effects.
Setup We analyze the models in §4.3 trained from
the 160m-80K checkpoint with an injection fre-
quency of 1 in 10M examples. We sample 50
injected sequences (original and shuffled) and com-
pute pl over 100 random sequences from the Pile.

Results Figure 4 summarizes our results: (1) Not
all tokens in the verbatim memorized sequence are
causally dependent on the trigger representations,
e.g., Figure 4b measured by 1− pl and Figure 4c
measured by dt. Instead, these tokens often exhibit
dependencies that resemble syntactic structures,
e.g., the direct object depends on the preceding verb
and the closing parenthesis depend on the opening
parenthesis. For sequences with no clear structure,
memorized tokens depend on more trigger tokens
that are relatively rare, a pattern observed in previ-
ous work (Tirumala et al., 2022; Stoehr et al., 2024).
(2) Most memorized tokens depend on higher-level
representations produced by middle layers. In Fig-
ure 4d, at layer 4, there still exists on average one
dependency. We observe similar patterns in the
6.9b model (see Appendix C.2).

Overall, these results show that information
about the verbatim memorized sequence is (1) dis-
tributed across tokens and (2) encoded in abstract
states as opposed to token-level features. There
is simply no representation of the trigger p that
causally encodes the entire memorized sequence.

Moreover, the fact that not all verbatim memo-
rized tokens are causally dependent on the trigger
suggests models might only memorize information
about a subset of tokens, filling in the gaps with gen-
eral language modeling. The verbatim memorized
sequence might be reconstructed token-by-token,
where each token is predicted using different mech-
anisms depending on the structures involved. This
might explain why in-domain sequences are more
likely to be memorized. In fact, the two mecha-
nisms we observed – attending to syntactic struc-
tures and rare tokens – are identified in Transform-
ers that have not seen or memorized a particular
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sequence (Tian et al., 2023; Chen et al., 2024a).
Lastly, models encode abstract states as opposed to
token-level information, which might explain why
memorized sequences can be triggered in contexts
that are different from those seen in training. We
further test this hypothesis in §4.6.

4.6 Verbatim Memorization Leverages
General Language Modeling Capabilities

The results of §4.3 and §4.4 provide behavioral
evidence that memorization depends on general
language capabilities. In this section, we extend
the intervention-based methods of §4.5 in an effort
to characterize this relationship in terms of the un-
derlying computation they share. The core analytic
technique is an interchange intervention that seeks
to get a control model M(∅) to produce memorized
strings by intervening with internal states from a
minimally different treatment model M(X).

Our core finding is that, while such interventions
do not lead M(∅) to produce entire memorized
sequences, we can get it to produce the first few
tokens of such sequences. Moreover, among the
interventions at a layer that do produce memorized
tokens, more than 50% can still produce the same
memorized tokens using model components at the
corresponding layer from M(∅), which are weights
learned only from general language modeling.
Cross-model interchange interventions We pro-
pose a novel intervention that replaces representa-
tions in M(∅) with corresponding ones in M(X):

M(∅)
l←v(p) where v = GetVal(M(X),p, l) (4)

Suppose p is a trigger for memorized sequence s. If
this intervention leads M(∅)

l←v(p) to generate parts
of s, then we have evidence that the memorization
behavior was guided in part by the representation
at l and in part by the general structure of M(∅).

It may seem surprising to transfer representa-
tions between two models. However, the models
begin from the same checkpoint and are trained
on almost identical sequences. This weakly sug-
gests that their representations will be compatible.
In addition, prior work has shown that even rep-
resentations from different families of models are
interchangeable with some affine transformations
(Csiszárik et al., 2021; Ghandeharioun et al., 2024).
We also experimentally verify the coherence of
these interventions in our results section below.

As in §4.5, we explore intervention sites across
all layers, since we do not know a priori where

MLPAttn

loutlinlnone

MLPAttnMLPAttn

Figure 5: Three sets of cross-model interchange inter-
ventions that allow us to measure to what extent models
reuse components learned from general language mod-
eling in verbatim memorization.

the relevant information might be stored. For
each layer, we target both attention and MLP com-
ponents, which have been identified as related
to memorization behaviors in Transformer-based
LMs (Geva et al., 2021; Dai et al., 2022; Geva
et al., 2023; Stoehr et al., 2024; Allen-Zhu and
Li, 2024). We aim to understand to what extent
these components reuse computations learned from
general language modeling.
Metrics For an intervention at location l, let pl,n be
the percentage of examples where the first n tokens
predicted by M(∅) match the verbatim memorized
tokens generated by M(X). We consider small
values of n ∈ [1, 2, 4]; as we will see, by n = 4,
success rates have gone to effectively 0.

For each layer, we want to measure whether ver-
batim memorization reuses computations learned
from general modeling, i.e, computations defined
by components in M(∅). We compute pl,n at three
sets of intervention locations across all trigger to-
kens. We use MLP as an example in Figure 5.

• lnone,i: Attention output at layer i + Residuals
at layer i− 1

• lin,i: lnone,i + MLP input at layer i

• lout,i: lnone,i + MLP output at layer i (i.e.,
Residuals at layer i)

In lnone,i, the residual from the treatment model
M(X) is not propagated into the MLP layer of
the control model M(∅). The MLP output is still
computed using the MLP input from M(∅). The lo-
cations for attention can be defined symmetrically.

Let Ri,n be the percentage of interventions that
lead to M(∅) producing a memorized short prefix
of n tokens using only MLP input from the treat-
ment model M(X), but not the MLP layer weights
from the treatment model M(X):

Ri,n =
plin,i,n − plnone,i,n

plout,i,n − plnone,i,n
(5)

Ri,n is only meaningful when the denominator is
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Figure 6: Results of cross-model interventions. Dotted
lines: There are interventions that can control M(∅) to
produce the next 1–2 memorized tokens, but not any
longer. Solid lines: Among interventions that produce
the next memorized token, more than 50% can still
produce the same token using components of M(∅).

sufficiently large, i.e., the layer has causal effects
on the next n verbatim memorized tokes. A higher
Ri,n value suggests that the MLP (or attention)
component in M(∅) plays a similar causal role on
the next n memorized tokens as the corresponding
component in M(X). In other words, a sign of
leveraging general language modeling capabilities.

Setup We use the 160m models in §4.3 trained
from the step 80K checkpoint, with treatment
model data injected at a frequency of every 10K
examples. We analyze 2,000 tokens predicted as
part of 120 verbatim memorized sequences (includ-
ing shuffled sequences), which covers about 1000
distinct tokens. About 25% of these verbatim mem-
orized tokens can be correctly predicted by the
control model as well. We exclude these from fur-
ther analysis. However, these tokens suggest that
a quarter of the verbatim memorized tokens result
from general language modeling. For the remain-
ing tokens, we compute plout,i,n and Ri,n.

Results Results are shown in Figure 6. We first
look at the dotted lines: (1) When intervening on
the last layer residuals, plout,11,n = 85%, which
validates our intervention setup – representations
from the two models are indeed interchangeable for
the majority of the inputs. (2) As n increases, plout,i
drops to almost zero, which means interventions
on individual model components have little to no
causal effect on producing the memorized prefixes.
This aligns with our findings in §4.5: Memorized
information is distributed across tokens.

For the solid lines, which are Ri,1 (a setting
where a significant percentage of interventions can
produce memorized tokens), we find that (1) the
majority of attention and MLP layers have Ri,1

values above 50%, suggesting the M(X) model is

performing similar computations as M(∅), which
are computations learned from general language
modeling. In fact, verbatim memorization can still
happen with frozen attention heads, i.e., only using
attention patterns learned from general language
modeling (Appendix C.3). (2) There are a few
layers where Ri,1 is around 30%, i.e., MLP com-
ponents in layer 1 and 3 and attention in layer 1
and 4, suggesting these components are largely dif-
ferent between M(∅) and M(X) and likely store
memorized information. Indeed, previous work
that uses gradient-based approaches also indicates
that lower layers play an important role in verbatim
memorization (Stoehr et al., 2024). However, an
Ri,1 around 30% means it is still challenging to
fully isolate the memorized information, even just
for predicting a single token.
Analysis The ability to leverage computations
learned from general language modeling provides
an explanation of why higher quality models verba-
tim memorize more sequences. This also suggests
that verbatim memorization is fundamentally inter-
twined with language modeling capabilities, as the
control and treatment models largely share both at-
tention and MLP structures across multiple layers.

5 Stress Testing on Unlearning Verbatim
Memorized Texts

Given the nature of the verbatim memorization dis-
cussed in §4.5 and §4.6, we propose a suite of au-
tomated stress tests to evaluate whether unlearning
methods truly remove verbatim memorized infor-
mation without systematically altering the LM.

5.1 A Stress Testing Dataset

Our stress tests are built on two observations:

• Memorized information is distributed across
tokens, hence evaluation should include
prompts that cover different spans of a memo-
rized sequence (“Position Perturbations”).

• Verbatim memorization is triggered by ab-
stract model states, hence evaluations should
cover semantically similar variations of the
prompt trained on (“Semantic Perturbations”).

Consider a trigger prompt of n tokens x1 . . . xn
with memorized continuation xn+1 . . . xn+k in the
original training set (which is also the evaluation
set in the unlearning setup). For “Position Perturba-
tions”, we generate two sets of perturbed prompts:

{x1 . . . xn+i | i ∈ [0, t]}∪{xn−i . . . xn | i ∈ [t, n)}
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Method Original Position Semantic

Gradient Ascent 19±18 35±15 31±21
Sparse Fine-tune 23±20 36±16 34±21
Neuron Pruning 4±4 14±8 11±10

Table 2: The exact match length of model outputs with
the original and stress testing prompts. On average,
stress testing prompts can extract 10–15 more tokens.

For “Semantic Perturbations”, we replace each
word or a consecutive sequence of digits (or char-
acters) in the prompt with a similar word.

{x1 . . . si . . . xn | i ∈ [1, n], si ∈ S(xi)}

where S(xi) is a set of words similar to xi. Exam-
ple stress tests are in Appendix C.4.

5.2 Evaluation

We evaluate the gradient ascent, sparse fine-tuning,
and pruning methods of Stoehr et al. (2024) and
Chang et al. (2024b). These methods have been
shown to prevent models from generating verbatim
memorized texts on the fine-tuned prompts, at the
cost of increasing perplexity on other texts (Chang
et al., 2024b; Stoehr et al., 2024).
Setup We follow the setup in Stoehr et al. (2024)
(see Appendix B.6). Given a 50-token trigger
prompt and a 50-token continuation memorized by
the GPT-Neo 125M model, the goal is to unlearn
the continuation while retaining model quality on
other prompts. For each sequence, we generate
≈1K perturbed prompts with t = 20 for Position
Perturbations and use ChatGPT to generate around
10 similar word substitutions per word for Seman-
tic Perturbations. For both original and stress test
prompts, we report the longest continuation that
matches the memorized sequence. For stress test
prompts, the length is max-pooled over all prompts.
Results Table 2 shows the results, with full length
distributions shown in Appendix C.4. On average,
the perturbed prompts increase the exact match
length by 10–15 tokens. For gradient ascent and
sparse fine-tuning, the stress tests increase the fully
extractable sequences (i.e., exact match of 50 to-
kens) from 22% to 56%. The neuron pruning
method is more robust to the stress tests. How-
ever, it often leads to degeneration on the perturbed
prefixes, e.g., outputting repetitive texts. Overall,
while these unlearning methods largely prevent
models from generating the verbatim memorized
sequence given a particular prefix, they do not com-

pletely remove the verbatim memorized informa-
tion – the model can still generate the memorized
texts when prompted with variants of the prefix.

6 Discussion and Conclusion

Verbatim memorization is a pressing issue for LM
research, as it has ramifications for privacy, copy-
right, and other legal issues. Thus, one might hope
that we will find ways to identify and control mem-
orization. The present paper suggests that such con-
trol may be extremely difficult to achieve because
verbatim memorization is thoroughly intertwined
with general language modeling quality. For exam-
ple, given current training procedures, LMs will
memorize more strings as their quality improves.
Strings that resemble those from the LM’s training
data are more likely to be memorized (§4.3), but
even OOD strings (which may include private iden-
tifiers, usual metadata patterns, etc.) are memorized
at non-trivial rates by our best models (§4.4).

In light of these findings, one might simply ac-
cept that LMs will memorize strings and try to
mitigate memorization by blocking specific trigger-
ing strings. Unfortunately, this method is bound to
have very low recall. As we showed in §4.5, the
notion of a trigger is extremely complex. Overall,
the trigger is actually a set of distributed model-
internal states that encode generalizable high-level
features that numerous inputs can lead to. In §4.6,
we deepened this result by showing that even a con-
trol model that has never seen a specific memorized
input x can be made to produce parts of x via an
intervention from a model that has memorized x.
In §5, we show the practical implications of these
distributed, abstract triggering states on unlearning
methods, which lead to failures in removing verba-
tim memorized information or degrading general
model quality. These results all point to the idea
that generating memorized strings is in part simply
language model decoding as usual.

More broadly, these findings suggest that “ver-
batim memorization” is something of a misnomer,
as the phenomenon involves memorization of more
abstract model states as opposed to only memoriza-
tion of token-level information. Thus, to be suc-
cessful, future attempts to control memorization
will likely require new techniques for character-
izing and controlling these abstract model states.
Such techniques are likely to greatly improve our
understanding of LLMs in general.
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Limitations

Our work contributes to understanding verbatim
memorization behaviors in LLMs, an important
problem that has practical implications and applies
to almost all LLMs trained on large-scale web cor-
pora. However, constrained by the availability of
fully open sourced LLMs (i.e., LLMs with training
dataset, checkpoints, and training hyperparameters
fully available), we only conducted experiments
on the Pythia family of models, focusing on model
sizes up to 2.8b. As more fully open source mod-
els come out, such as OLMo,2 we would like to see
if our findings on Pythia models generalize to other
model families.

One important finding of our paper is that ver-
batim memorization actually involves memoriza-
tion of abstract model states as opposed to just
token-level information. This raises the concern
of whether focusing on verbatim memorization re-
veals the full scale of what models actually mem-
orize. LLMs could memorize long sequences of
abstract states as well, which might remain un-
detected if we only focus on verbatim memoriza-
tion. For example, models memorize syntactic tem-
plates (Shaib et al., 2024). We discuss these find-
ings in §6.

For verbatim memorization treatments, our dis-
cussion is focused on post-training treatments, in-
cluding unlearning (§5) and string-based match-
ing (§6). If we consider the broader LLM devel-
opment cycle, there are alternative approaches to
the verbatim memorization problem, such as dedu-
plication of training data (Lee et al., 2022), inter-
ventions during training, e.g., modifying the loss
function (Hans et al., 2024), or even building an
ecosystem that properly attributes the value of train-
ing data to its creators. We hope the findings from
our work will help motivate this community to ex-
plore more solutions in these spaces.
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A Sequence Frequency vs. Verbatim Memorization

A.1 Choice of Sequence Injection Frequencies

To estimate a realistic frequency for sequence injection, we need to know roughly what percentage of
sequences in the Pile are memorized at each frequency range. The deduped version of Pile contains about
98M sequences, each of length 2048 tokens. Ideally, one would build an index of the entire corpus to count
substrings, as is done in Carlini et al. (2023); Liu et al. (2024). However, the storage and computation
required to build an index is costly. We employ a sampling-based approach instead.

Sampling We first describe how to sample a relatively small set of sequences to estimate memorization
rates at each frequency range. We start with random sampling 1M sequences of length 128 from the Pile
and compute verbatim memorization length using the pythia-6.9b-deduped model. For a sequence to
be considered memorized, the sequence must have a verbatim memorization length of at least 32, (i.e.,
there must exist a substring of length ≤ 32 tokens, such that when prompted with this substring, the model
outputs a continuation that matches the next 32 tokens or more). Among the 1M sequences, there are
about 9K memorized sequences and 991K non-memorized sequences. Next, we randomly sample 2.5K
memorized and 2.5K non-memorized sequences, which means that we downsample the non-memorized
sequences 110 times relative to memorized ones. For each sequence, we further sample a substring of
16 tokens. For memorized sequences, the 16 tokens are sampled from the memorized substring, i.e., the
model outputs instead of the prompts. We refer to these 5K 16-token sequences as probes.

(a) pythia-160m-deduped (b) pythia-2.8b-deduped (c) pythia-6.9b-deduped

Figure 7: Sequence frequency distribution (on a logarithmic scale) of 2.5K memorized and 2.5K non-memorized
sequences, randomly sampled from the 98M Pythia deduped training data. The non-memorized sequences (blue
bars) are downsampled 110 times relative to memorized sequences (orange bars).

Counting We uniformly sample about 10M sequences from the Pile deduped dataset to estimate the
frequency of each probe. The 10M sequences are sampled at every 10K training step starting at step 0,
with a total of 10×1000×1024 sequences of length 2048 tokens. We count the number of occurrences
of each probe in the 10M sequences. These probes indeed cover a wide range of frequencies from 0 to
5× 10−3. The full distribution is shown in Figure 7.

Evaluating models For each model, we measure the verbatim memorization length on the 5K set of
probes. The distribution of memorization length is shown in Figure 7. Aligned with findings from Carlini
et al. (2023) and Prashanth et al. (2024), we observe that, as model size increases, the median frequency
of memorized sequences decreases from 4 × 10−5, 1 × 10−5, to 9 × 10−6. As we mainly experiment
with the 160m model, we choose two frequencies where there is a mix of memorized and non-memorized
sequences: 2× 10−5 (which is at about the bottom 25th percentile, where sequences are more likely to be
non-memorized) and 1× 10−4 (which is around the top 25th percentile, where sequences are very likely
memorized).
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Template
PROMPT: imGroupExternalMembershipManager getExternal
OUTPUT: MembershipManager() {\n return externalMembershipManager;\n }\n\n public
void setExternalMembershipManager
PROMPT: madesimple.statoil\n\ncmsmadesimple.lips
OUTPUT: y\n\ncmsmadesimple.next\n\ncmsmadesimple.nextdirect\n\ncmsmadesimple.ubs
\n\ncmsmadesimple.war

Variation
PROMPT: the testimony.\n\n Rule 702 which
OUTPUT: governs the admissibility of expert testimony provides:\n\n\n If
scientific, technical, or other specialized knowledge will assist the trier of
fact\n to understand the
PROMPT: 13: Thou shalt tread upon the lion and adder: the young
OUTPUT: lion and the dragon shalt thou trample under feet. 14: Because he hath
set his love upon me, therefore will I deliver him: I will set

Induction
PROMPT: 01 3600\n265 3586 3587 3602 3601\n266 35
OUTPUT: 87 3588 3603 3602\n267 3588 3589 3604 3603\n268 3589 3590 3605 3604\n269
3590 3591 3606 3605
PROMPT: ang12.bdf batang12b.bdf \\\n\t\tbatang14.bdf batang14b.bdf batang16.
OUTPUT: bdf batang16b.bdf \\\n\t\tbatang18.bdf batang18b.bdf batang20.bdf batang

Composition
PROMPT: normal; AST: aspartate aminotransferase (i.e. SGOT:
OUTPUT: serum glutamic oxaloacetic transaminase); ALT: alanine aminotransferase
(i.e. SGPT: serum glutamic pyruvic transaminase
PROMPT: G), tenofovir alafenamide/emtricitabine/bic
OUTPUT: tegravir (TAF/FTC/BIC), and tenofovir alafenamide/emtricitabine/
rilpivirine (TAF

Figure 8: Examples of the single-shot verbatim memorization illusion. Each example is a sequence that occurs once
or twice in the pythia-6.9b-deduped training data and can be generated by the model verbatim. However, these
sequences are likely not learned from a single instance or simply not verbatim memorized – even with a model
checkpoint produced before the training step where the memorized sequence occurs, the model can already output
the “memorized” sequence or a close variant.

A.2 Examples of the Single-shot Verbatim Memorization Illusion

Figure 8 shows examples of sequences that only occur in the Pile once or twice according to the infini-gram
tool5 and would be considered as verbatim memorized based on the most commonly used extractability
definition (Carlini et al., 2021, 2023; Prashanth et al., 2024), i.e., a memorized sequence of 32 tokens can
be extracted with a prefix length of 32 tokens. In reality, these sequences are either under-counted due to
limitations of string-based matching or simply not verbatim memorized – a checkpoint produced before
the step where the sequence occurs can already generate a close variant of the sequence.

These findings suggest that a model generates a sequence that only occurs once in the training data
does not necessarily mean that the model verbatim memorized a sequence after one exposure. As shown
in §4.5 and §4.6, these sequences may well be “reconstructed” by the general language model.

5https://huggingface.co/spaces/liujch1998/infini-gram
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B Details of Experiment Setup

B.1 Pre-training Data

We use the Pile deduped version released here,6 which contains training data in the exact order they were
seen by the Pythia deduped models. For our training runs, we use the data from step 80K to 82K, which
contain 2M training examples that has not been seen by any of the checkpoints that we experimented with
(except for individual examples with duplicates).

B.2 Injection Sequences

Data sources We sampled 100 documents from the Internet that are published after Dec 31th 2020, i.e.,
the Pile corpus cutoff date. These documents are from five sources that have clear publication timestamps:
Wikipedia,7 BBC News,8 GitHub,9 open-access academic papers on ArXiv10 and Nature,11 and quotes
from novels.12 All these sources are covered in the original training corpus. For Wikipedia, we sample
articles from 2023 categories curated by Wikipedia, for example, the new product category.13 For BBC
news, we use the preprocessed corpus on Huggingface.14 For GitHub, we use code samples from three
new programming languages released after 2020: Mojo,15 Gleam,16 and Carbon.17

Verify a sequence is not in the Pile In our study, an important criterion for injected sequences is that they
do not have significant overlap with the pre-training corpus. This is partially ensured by the document
publication date. However, we conduct additional verification.

We use two recently open sourced tools that create a searchable index of the Pile. We primarily rely on
Data portraits,18 which directly checks for overlap between a query text and the Pile corpus using Bloom
filters computed from 50-character hashes (Marone and Van Durme, 2023). Bloom filters guarantee no
false negatives, however, there will be false positives, i.e., 50-char texts that are not in the Pile but are
marked as overlaps. We further confirm these false positives using infini-gram. With both tools, we verify
that none of the documents have an overlap with the Pile of more than 50 characters.

B.3 Model Checkpoints

For the sequence injection and the causal dependency experiments, we use the 1K, 10K, 40K, 80K, and the
final checkpoints from pythia-160m-deduped19, pythia-2.8b-deduped20, and pythia-6.9b-deduped
models.21 For the unlearning stress test evaluation, we follow the setup in Stoehr et al. (2024) and use
gpt-neo-125m,22 which is also pre-trained on the Pile.

B.4 Setup for the Single-shot Verbatim Memorization Experiment in §4.2

We randomly sample 16 sequences from the 100 injection sequences curated in Appendix B.2. For each
injection sequence, we use the first 224 tokens instead of the full 256 tokens, i.e., a window size of 224,
so that we can fit a batch of 32 sequences on a single GPU. In general, with a fixed batch size, a smaller
window size makes verbatim memorization more likely to happen, since there are fewer tokens in the
batch. Given the actual window size in pre-training is 2048, the verbatim memorization length after a

6https://huggingface.co/datasets/EleutherAI/pile-deduped-pythia-preshuffled
7https://www.wikipedia.org/
8https://www.bbc.com/news
9https://github.com/

10https://arxiv.org/
11https://www.nature.com/
12https://www.goodreads.com/
13https://en.wikipedia.org/wiki/Category:Products_introduced_in_2023
14https://huggingface.co/datasets/RealTimeData/bbc_news_alltime
15https://github.com/modularml/mojo
16https://github.com/gleam-lang/gleam
17https://github.com/carbon-language/carbon-lang
18https://pile.dataportraits.org/
19https://huggingface.co/EleutherAI/pythia-160m-deduped
20https://huggingface.co/EleutherAI/pythia-2.8b-deduped
21https://huggingface.co/EleutherAI/pythia-6.9b-deduped
22https://huggingface.co/EleutherAI/gpt-neo-125
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single-shot is likely even smaller than what we observe in our experiment. We experiment with a batch
size of 8, 32, and 128.

We use a freshly initialized AdamW optimizer (Loshchilov and Hutter, 2019), wrapped with the
ZeroRedundancyOptimizer,23 which is used in Pythia training to reduce memory usage (Biderman et al.,
2023b). The learning rate is set to a constant value of 1× 10−4, with other optimizer parameters, e.g.,
learning rate decay, beta, set to the default values in PyTorch library.24 We choose a learning rate that
is about twice as large as the actual learning rate at step 80K in pre-training for both the 2.8b and 6.9b
models, with the consideration that a higher learning rate is more likely to produce a large enough gradient
update to memorize the injection sequence in a single step.

B.5 Setup for the Model Quality vs Verbatim Memorization Experiment in §4.3 and §4.4

Ideally, we want to match the exact pre-training setup that Pythia models used. However, we are
constrained by the computation resources available to us. Hence, we choose the closest hyperparameters
to the ones used in Pythia pre-training that allow us to fit the model training on a single GPU. Our
expectation is that the effects of hyperparameters will be minimized as long as the control and the
treatment models use the same set of hyperparameters.

Window size We use a window size of 256 tokens for all experiments reported in the paper except the
single-shot experiment, a window size that still allows some long range dependencies in the training data.
The original window size is 2048.

Batch size We use a batch size of 128 examples for the 160m models and a batch of size of 40 examples
for the 2.8b models. These batch size are chosen such that we can fit model training on a single GPU.
The original batch size used in pre-training is 1024.

Optimizer state As we do continued training from different model checkpoints, we experiment with
different initial optimizer states and initial learning rates based on the original Pythia learning rate
schedule. To initialize the optimizer state, we pre-train from either step 0K (i.e., 1K step before the earliest
checkpoint in our experiment) or step 79K (i.e., 1K step before the latest checkpoint in our experiment) for
1M examples. We observe that these two initial states do not affect which checkpoints verbatim memorize
more sequences. Thus, when comparing models trained from two different checkpoints, we use the same
optimizer state for both. For learning rate, we use the learning rate at the 80K checkpoint for each model
family, namely 2.79× 104 for 160m models and 7.46× 105 for 2.8b models. We observe the learning
rate affects all checkpoints equally, with larger learning rates leading to more memorization. We keep the
learning rate constant throughout the training, as the amount of data we trained on only corresponds to
1–2K steps in the original training process.

B.6 Unlearning Method Hyperparameters

For gradient ascent and sparse fine-tuning, we use the implementation from Stoehr et al. (2024).25 We
follow the hyperparameters here,26 namely, we run optimization for 10 steps using a learning rate of
1× 10−5 and a weight decay of 1.0. For sparse fine-tuning, we only fine-tune 0.1% of weights with the
highest gradient.

For neuron pruning, we use the implementation from Chang et al. (2024b).27 We prune 0.1% of the
neurons. The L1 penalty is set to 1000. We find that higher L1 penalty leads to degeneration. We run
optimization for 1000 steps using a learning rate of 1× 10−2. This set of hyperparameters leads to a ∆
self-accuracy of −0.248 and ∆ neg-accuracy of −0.094 on the 90 sequences to unlearn.

23https://pytorch.org/tutorials/recipes/zero_redundancy_optimizer.html
24https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
25https://github.com/googleinterns/localizing-paragraph-memorization
26https://github.com/googleinterns/localizing-paragraph-memorization/blob/main/notebooks/3%

20editing/fine-tuning.ipynb
27https://github.com/terarachang/MemPi

10727

https://pytorch.org/tutorials/recipes/zero_redundancy_optimizer.html
https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
https://github.com/googleinterns/localizing-paragraph-memorization
 https://github.com/googleinterns/localizing-paragraph-memorization/blob/main/notebooks/3%20editing/fine-tuning.ipynb
 https://github.com/googleinterns/localizing-paragraph-memorization/blob/main/notebooks/3%20editing/fine-tuning.ipynb
https://github.com/terarachang/MemPi


B.7 Computation Cost

All models are trained on NVIDIA A100 GPUs. For models in §4.2, the training is distributed across
multiple GPUs, with a local batch size of 32. For models in §4.3 and §4.4, the training is on a single GPU.
The training of 2.8b models over 1M examples takes about 16 hours, while the training of 160m models
takes about 3 hours.

C Additional Experiment Results

C.1 Additional Results on Checkpoint vs. Verbatim Memorization Length

Figure 9: Checkpoint vs. verbatim memorization length of original and shuffled sequences, with a sequence
frequency of every 10K examples.

In Figure 9, we show the results of verbatim memorization length when continue pre-training from
different checkpoints of the 160m model and the 2.8b model with a sequence injection frequency of
1 in 10K examples. This is a frequency that both models are expected to memorize most of the injection
sequences. We still see the consistent trend that we observed in §4.3 on in-domain sequences: later
checkpoints memorize longer sequences. The gap between shuffled sequences and original sequences is
narrowed, especially on the 160m models, possibly because the model is seeing the injection sequences
more frequently. For the 2.8b models, which see the injection sequences fewer times, shuffled sequences
are still harder to memorize than the original ones for all checkpoints except the 10K step.

C.2 Additional Results on Causal Dependencies

Behavioral evidence of verbatim memorization is triggered by abstract model states In Figure 10, we
show that when prompted with prefixes sharing similar high-level features, e.g., synonyms or proper nouns
belong to the same category, the 6.9b model can produce the memorized continuation. Semantically
similar prefixes do not always trigger verbatim memorization, nor does verbatim memorization strictly
require prefixes semantically similar to the one in training, however, semantically relevant substitutions
do have a higher probability to trigger the verbatim memorized continuation than random substitutions.

Overall, the trigger is a set of distributed abstract states and does not require a particular token to be
presented in the prefix, i.e., the verbatim memorization is not triggered by a single n-gram match. This
finding motivates the stress tests we developed in §5.
Results of the 6.9b model In Figure 11, we show the causal dependency results of the pre-trained
pythia-6.9b-deduped model on 50 memorized sequences sampled from the 5K sequences in §4.1. The
results are consistent with what we observed from the 160m models trained using our sequence injection
framework – namely, not all verbatim memorized tokens depend on the trigger sequences. Moreover, for
memorized tokens that depend on the trigger, the dependencies are also around middle layers, suggesting
high-level features are involved in the verbatim memorization.
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The Original Trigger Prefix
Mr and Mrs Dursley, of number four, Privet Drive, were proud to say that they
were perfectly normal, thank you very much

Trigger Prefixes with Similar High-level Features
Mrs and Mr Dursley, of number four, Privet Drive, were proud to say that they
were perfectly normal, thank you very much
The Dursley family, of number four, Privet Drive, were proud to say that they
were perfectly normal, thank you very much
Mr and Mrs Weasley, residing at four Privet Drive, were proud to say they were
perfectly normal, thank you very much
Mr and Mrs Slytherin, of number twenty-one, Privet Drive, were proud to say that
they were perfectly normal, thank you very much
Mr and Mrs Dursley, of #4, Privet Drive, were proud to say that they were
perfectly normal, thank you very much
Mr and Mrs Dursley, of number ten, Privet Drive, were proud to say that they were
perfectly normal, thank you very much
Mr and Mrs Dursley, of Privet Drive, were proud to say that they were perfectly
normal, thank you very much
Mr and Mrs Dursley, of number four, Oak Street, were proud to say that they were
perfectly normal, thank you very much
Mr and Mrs Dursley, residing at four Privet Drive, were delighted to assert they
were perfectly normal, thank you very much
The Dursley family, of number four, Privet Drive, were pleased to declare that
they were perfectly normal, thank you very much

Non-Trigger Prefixes with Similar or Different High-level Features
Mr and Mrs Kingsley, of number four, Privet Drive, were proud to say that they
were the proud parents of a bouncing baby boy.
Mr and Mrs Weasley, of number four, Privet Drive, were proud to say that they
were expecting their first child.
Mr and Mrs Dursley, of number four, Privet Drive, were glad to say that they were
only too delighted to have the young man staying with them.

Figure 10: Examples of trigger prefixes that lead to similar abstract states, i.e., similar high-level semantic features.
The gray texts are the prompts. The green texts are the memorized continuations. The red texts are the
non-memorized continuations.

Figure 11: Causal dependencies between memorized tokens and tokens in the trigger for the 6.9b model.
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Figure 12: Trainable components vs. verbatim memorization length of original and shuffled sequences. Models are
trained from the 160m model checkpoint at step 80K with two different data injection frequencies (every 50K and
10K examples).

C.3 Verbatim Memorization Can Still Happen with Frozen Attention Heads

Experiments in §4.6 show that both attention and MLP components are involved in verbatim memorization.
We now investigate which components are strictly necessary for verbatim memorization, taking the
capacity of these components into account.
Setup We conduct an ablation study by training three sets of models using the 160m model checkpoints:
(1) only MLP layer weights are trainable (2) only attention head weights are trainable (3) all weights
are trainable. For Pythia models, which use the GPTNeoX architecture, the MLP layers contain 35% of
model weights while attention heads contain 17% of model weights. We experiment with two sequence
frequency of 1 in 50K and 1 in 10K.
Results Results are shown in Figure 12. With a frequency of every 50K examples, neither MLP-only
nor attention-only models can verbatim memorize a sequence. However, at the frequency of every 10K
examples, the model with frozen attention heads surprisingly can verbatim memorize sequences of 40
tokens on average, which is about 80% of the tokens memorized by a model with all weights trainable.
These results suggest that MLP layers are strictly necessary for verbatim memorization, while attention
mechanisms learned from general language modeling can largely be reused assuming the sequence to
memorize occurs frequently enough in training.

C.4 Additional Results on Stress Testing Unlearning Methods

In Figure 13, we show examples of the original prompt and the perturbed stress testing prompts, along
with the model output before and after unlearning. In Figure 14, we show the verbatim memorization
length distribution shift when evaluate with the original prompts and the stress testing prompts.

D License

For artifacts used in this work, the Pythia models are licensed under Apache-2.0 License. The Pile dataset
is licensed under MIT License. Our use of the model and the dataset are permitted under the license.
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Unlearning with Gradient Ascent
Original Test
PROMPT: 0f86e5b48e01b996cadc001622fb5e363b421",\n "uncleHash" : "0x1dcc4de8
OUTPUT: dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347"\n },\n
UNLEARNED: 67b567b6ccd41ad312451b924af0a0af82a49f0d2c4934\n }\n }\n}\n2:{
Position Perturbations
PROMPT: 5b48e01b996cadc001622fb5e363b421",\n "uncleHash" : "0x1dcc4de8
OUTPUT: dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347"\n },\n
UNLEARNED: dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347"\n },\n
Semantic Perturbations
PROMPT: e105b48e01b996cadc001622fb105e363b421",\n "uncleHash" : "0x1dcc4de8
OUTPUT: dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347"\n },\n
UNLEARNED: dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347"\n },\n

Unlearning with Gradient Ascent
Original Test
PROMPT: NOT TO BE PUBLISHED IN OFFICIAL REPORTS\n California Rules of Court, rule
8.1115(a), prohibits courts and parties from citing or relying on opinions not
certified for\n publication
OUTPUT: or ordered published, except as specified by rule 8.1115(b). This opinion
has not been certified for publication\n or ordered published for purposes of
rule 8.1115.\n\n\n
UNLEARNED: or ordered published, except as specified by rule 8. coli. This Court
has not. All opinions are not treated as a whole, and hence opinions are not
certified for purposes of\n publication.\n
Position Perturbations
PROMPT: NOT TO BE PUBLISHED IN OFFICIAL REPORTS\n California Rules of Court, rule
8.1115(a), prohibits courts and parties from citing or relying on opinions not
certified for\n publication or ordered published, except as specified by rule
8.11
OUTPUT: 15(b). This opinion has not been certified for publication\n or ordered
published for purposes of rule 8.1115.\n\n\n
UNLEARNED: 15(b). This opinion has not been certified for publication\n or
ordered published for purposes of rule 8.1115.\n\n\n
Semantic Perturbations
PROMPT: stay PUBLISHED IN OFFICIAL REPORTS\n California Rules of Court, rule
8.1115(a), prohibits courts and parties from citing or relying on opinions not
certified for\n publication
OUTPUT: or ordered published, except as specified by rule 8.1115(b). This opinion
has not been certified for publication\n or ordered published for purposes of
rule 8.1115.\n\n\n
UNLEARNED: or ordered published, except as specified by rule 8.1115(b). This
opinion has not been certified for publication\n or ordered published for purposes
of rule 8.1115.\n\n\n

Figure 13: Examples of stress tests and failure cases of unlearning. Each example consists of the original prompts
and the perturbed prompts, along with the model outputs before and after unlearning. Overlaps between the
memorized output and the unlearned output are bolded. These examples show that while unlearning largely prevents
the model from outputting the memorized sequence given the original prompt, it does not fully remove the verbatim
memorized information.
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Unlearning with Neuron Pruning
Original Test
PROMPT: From fairest creatures we desire increase,\n That thereby beauty’s rose
might never die.\n But as the riper should by time decease
OUTPUT: ,\n His tender heir might bear his memory:\n But thou, contracted to thine
own bright eyes,\n Feed’st thy light’s flame with self-substantial fuel,\n Making
a famine where abundance lies,\n Thyself thy foe
UNLEARNED: ,\n So too our own, to our own selves, shall grow\n\n The world is a
book, and those who do not travel read only a page.\n\n The world is a book, and
those who do not travel read only
Position Perturbations
PROMPT: From fairest creatures we desire increase,\n That thereby beauty’s rose
might never die.\n But as the riper should by time decease,\n His tender heir
might bear his memory:\n But thou, contracted to thine own bright eyes,\n Feed’st
thy light’s
OUTPUT: flame with self-substantial fuel,\n Making a famine where abundance lies,\n
Thyself thy foe
UNLEARNED: flame with self-substantial fuel,\n Making a famine where abundance
lies,\n Thyself thy foe
Semantic Perturbations
PROMPT: From fairest creatures we desire increase,\n That thereThrough beauty’s
rose might never die.\n But as the riper should by time decease
OUTPUT: \n His tender heir might bear his memory:\n But thou, contracted to thine
own bright eyes,\n Feed’st thy light’ning fires with self-substantial fuel;\n
Making a famine where abundance lies,\n Thyself thy foe
UNLEARNED: ,\n His tender heir might bear his memory:\n But you, whose beauty is
for aye the same,\n O, you must not dearer be than you are!\n\n The poem is a
parody of the famous "Ode

Figure 13: Examples of stress tests and failure cases of unlearning methods (cont.).

Figure 14: Verbatim memorization length distribution on the original prompts and the stress testing prompts.
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