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Abstract
Despite the longstanding adage “an image is
worth a thousand words,” generating accurate
hyper-detailed image descriptions remains un-
solved. Trained on short web-scraped image-
text, vision-language models often generate in-
complete descriptions with visual inconsisten-
cies. We address this via a novel data-centric
approach with ImageInWords (IIW), a care-
fully designed human-in-the-loop framework
for curating hyper-detailed image descriptions.
Human evaluations on IIW data show ma-
jor gains compared to recent datasets (+66%)
and GPT-4V (+48%) across comprehensive-
ness, specificity, hallucinations, and more. We
also show that fine-tuning with IIW data im-
proves these metrics by +31% against mod-
els trained with prior work, even with only 9k
samples. Lastly, we evaluate IIW models with
text-to-image generation and vision-language
reasoning tasks. Our generated descriptions re-
sult in the highest fidelity images, and boost
compositional reasoning by up to 6% on ARO,
SVO-Probes, and Winoground datasets. We
release the IIW-Eval benchmark with human
judgement labels, object and image-level anno-
tations from our framework, and existing im-
age caption datasets enriched via IIW-model.

1 Introduction

Today’s state-of-the-art Vision-Language Models
(VLMs) are trained using large, noisy web datasets.
WebImageText (Radford et al., 2021), ALIGN (Jia
et al., 2021), Conceptual Captions (Sharma et al.,
2018) and LAION (Schuhmann et al., 2022) rely
on alt-text scraped from the internet as an imperfect
image caption. Yet alt-text may only mention the
photo location (e.g. “Europe”), the camera model
used (e.g. “Canon EOS R6 Mark II”), or is SEO-
specific (e.g., “keep calm and carry on”). While
data filtering and post-processing can remove noisy
text, alt-text ambiguously captures image content
or intent (Wikipedia contributors, 2023a). There-
fore, only using image descriptions from the web

is fundamentally flawed and limits model capabili-
ties (Thrush et al., 2022; Shekhar et al., 2017; Ma
et al., 2023; Ray et al., 2023; Hsieh et al., 2024).

To curate better image-text data, recent work has
released dense human written (DOCCI (Onoe et al.,
2024), DCI (Urbanek et al., 2023)) or model gen-
erated caption datasets (PixLore (Bonilla, 2023),
DAC (Doveh et al., 2023)). Both have limitations,
as using annotators without comprehensive guide-
lines results in outputs that vary by human atten-
tion, bias, and effort (Burghardt et al., 2019; Mar-
shall and Shipman, 2013; Pandey et al., 2022; Ye
et al., 2023). In contrast, model-generated captions
are cheaper but incomplete and rife with hallucina-
tions (Rohrbach et al., 2019; Dai et al., 2023b).

In this work, we describe ImageInWords (IIW),
a human-in-the-loop framework for curating hyper-
detailed image descriptions, and its resulting anno-
tations. IIW combines the irreplaceable quality of
human annotators with seeded metadata from ma-
chine generations. First, a VLM generates granular
captions for each object in the image to seed our
human annotation process, where crowd workers
augment and fix the object-level captions to make
them richer and hallucination free.

Next, at the image-level, a VLM generates a
global caption to seed the final image description.
Crowd workers consume the image-level seed cap-
tion and object-level human annotations to fill in
contextual gaps. We design guidelines to attend to
concepts beyond objects, such as visual perspective,
spatial arrangement, and human object interactions.
To ensure quality, multiple annotators iterate on a
sample sequentially and we also incorporate active
learning to produce better VLM seeds (Fig. 1).

With this process, we construct the IIW dataset
of 9018 hyper-detailed image descriptions. We find
IIW has richer statistics than prior dense descrip-
tion datasets, with an average of 217.2 tokens, 52.5
nouns, 28 adjectives, 5 adverbs, and 19.1 verbs
(Tab. 1). We assess quality with human side-by-
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Figure 1: ImageInWords Seeded Annotation Framework. Humans enrich and refine outputs sequentially, building
on prior human or machine inputs. Human annotation starts with fine-grained object captions in Task 1, which are
used to compose image-level descriptions in Task 2. VLMs are updated in an active learning loop to produce better
object and image-level seeds as annotated data becomes available. UI screenshots are in Appendix B.4.

side (SxS) comparisons to human-written datasets
(DCI, DOCCI) and GPT-4V. Our descriptions are
rated as more comprehensive, specific, human-like,
with fewer hallucinations and better leading sen-
tences at an average of +66% (DCI, DOCCI) and
+48% (GPT-4V). We then fine-tune with IIW data
and evaluate generated descriptions with the same
SxS rubric: IIW model outputs are better by +31%
compared to models fine-tuned on prior work.

To better understand IIW models, we also per-
form text-to-image generation and vision-language
reasoning experiments. Images generated with our
model’s descriptions are considered a closer re-
construction to the original image than when us-
ing other models. For vision-language composi-
tionality, we replace images from ARO (Yuksek-
gonul et al., 2023), SVO-Probes (Hendricks and
Nematzadeh, 2021) and Winoground (Thrush et al.,
2022) datasets with generated descriptions. IIW
model descriptions help to better reason over at-
tributes, relations, and word order compared to
LLaVA-v1.5 and InstructBLIP descriptions.

In summary, our contributions include:

• A human-in-the-loop annotation framework with
extensive guidelines, iterative refinement, and
VLM active learning that results in state-of-the-
art hyper-detailed image descriptions.

• Human SxS on comprehensiveness, specificity,

hallucinations, human-likeness, and tldr-quality.
Across these metrics, IIW data is better than
recent DCI and DOCCI datasets by +66% and
+48% better than GPT-4v, and +31% better when
used for fine-tuning than DCI and DOCCI.

• IIW model evaluations with text-to-image gener-
ation and vision-language compositional reason-
ing tasks to complement human SxS. IIW model
descriptions generate images most similar to the
original image (ranked 1st) and improve distin-
guishing true image-text pairs given attribute, re-
lation, or word order differences by up to 6%.

• An open source IIW-Eval benchmark of human
and model annotations over 2.6k images and their
image descriptions, and 1.9k object descriptions.
We also release human SxS labels between IIW,
DCI, and DOCCI for comparison in future work.

2 Related Work

Image captioning has been studied for years, start-
ing with CNN and LSTM encoder-decoder frame-
works for generic captions (Vinyals et al., 2015; An-
derson et al., 2018), to the more recent Transformer-
based VLMs for more difficult captions (Chen
et al., 2023b; Li et al., 2023) (e.g., VizWiz (Gu-
rari et al., 2020), NoCaps (Agrawal et al., 2019),
TextCaps (Sidorov et al., 2020)). These datasets
and many others contain captions with 15 words or
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Dataset Sample Tokens Tokens Sentences NN ADJ ADV VB
Count / Sentence / Description

SVP (Krause et al., 2017) 19,561 11.9 68.5 5.7 17.1 6.7 1.1 5.0
LocNar (Pont-Tuset et al., 2020) 873,107 15.7 41.0 2.6 10.7 1.6 0.4 3.5
DCIextra

1 (Urbanek et al., 2023) 7,805 15.8 148.0 9.3 35.3 16.3 3.6 10.5
DOCCI (Onoe et al., 2024) 14,647 19.2 135.7 7.1 34.0 16.6 2.7 9.6
IIW (ours) 9,018 22.1 217.2 9.8 52.5 28.0 5.0 19.1

Table 1: Dataset Statistics Comparing ImageInWords (IIW) to Prior Work. We include the number of descriptions
and the average number of tokens, sentences, nouns (NN), adjectives (ADJ), adverbs (ADV), and verbs (VB).

fewer (Desai et al., 2021; Young et al., 2014; Lin
et al., 2015; Mao et al., 2016; Plummer et al., 2015;
Kazemzadeh et al., 2014; Krishna et al., 2016;
Plummer et al., 2015) and may differ by caption
grounding level (e.g. whole image or region-level
captions) or image domain (e.g. images taken by
people who are blind or images capturing text).

However, few dense image description datasets
exist. PixLore (Bonilla, 2023) used multiple vision-
language datasets to generate verbose captions with
BLIP-2 (Li et al., 2023). DAC (Doveh et al., 2023)
uses a machine-generated approach: pretrained
LLMs expand the original image caption and pre-
trained VLMs generate captions over smaller im-
age regions. The resulting descriptions are used to
fine-tune a VLM model for better compositional
reasoning. While model-only approaches are cost
effective and avoid the challenges of designing an-
notation instructions, they risk introducing halluci-
nations and systematic biases.

DOCCI (Onoe et al., 2024) collects image de-
scriptions with only crowd workers, which we later
show can be considerably improved. Closest to IIW
is DCI (Urbanek et al., 2023), which uses human
annotators to reach denser descriptions. DCI uses
the SAM (Kirillov et al., 2023) object detector to
generate smaller regions to be described and then
composes them into an overall description.

DCI’s available annotations and metadata can
be concatenated with additional text to reach 1k+
length. However, filler text and image labels are
used to reach this length, and repeated or highly
overlapping sentences are often present. As a result,
we use their “extra_caption” field for fair compari-
son as it is the only coherent description available.
In contrast to DCI, we also allow crowd workers to
update or correct every component of the seeded
information. IIW output is then sequentially re-
fined over multiple annotation rounds to produce a
single coherent annotation. In comparison to DCI’s
“extra_caption” annotation, we collect significantly

better descriptions, as reflected in Tab. 1 statistics.

3 ImageInWords Dataset Collection

The IIW dataset is composed of 9018 (Train: 8573,
Test: 445) images that are sampled from a We-
bLI (Chen et al., 2023b) like dataset and human
annotated. Details on the human annotator pool are
provided in Appendix B.1. In 3.1, we briefly review
our foundational guidelines for crowd workers. An-
notation methodology and the types of image-text
annotations we collect are described in 3.2 and 3.3.

3.1 Annotation Guidelines
We compile an extensive set of guidelines for hu-
man annotators and iterate over them with multiple
pilot rounds. Appendix A contains the complete set
of guidelines due to space. Annotators are asked to
only include details that can be deduced from vi-
sual cues, erring on the side of higher precision. To
compose coherent descriptions, unnecessary frag-
mentation of sentences and the use of filler phrases
like “in this image,” “we can see,” and “there is a,”
should be avoided since they add no visual detail.

While describing the overall image, we instruct
annotators to start with a newspaper style TLDR
(Too Long Didn’t Read; meant to serve as a suc-
cinct summary). Objects should be described in
the order of their saliency, noting objects and rela-
tionships in a well organized manner. Descriptions
should include the overall setting, background, and
style, considering the camera angle, overall compo-
sition, and rendered text. We also ask to pay spe-
cial attention to people, apparel, art pieces, locale-
specific, and unique attributes with the following as
example features: function, shape, size, color, de-
sign, pattern, texture, material, condition, opacity,
orientation, location, relationship to other compo-
nents/objects, and text written on objects.

3.2 Annotation Methodology
This section describes the seeded, sequential pro-
cess employed in annotating the IIW dataset. We
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Figure 2: Effects of Sequential Annotation: Over annotation rounds, (a) token count goes up as (b) time spent
goes down with (c) higher agreement, measured by Jaccard Similarity (Wikipedia contributors, 2024). (d) Over
time with a constant human annotator pool, each learns from the other via an implicit feedback loop and a high
agreement rate in round (1,2) can now be observed as was previously only seen in round (2,3) in (c).

highlight that IIW data is meant for supervised fine-
tuning rather than pretraining. As a result, our goal
was to annotate a small-scale, high quality dataset.
Still, we designed the human-in-the-loop process to
be as efficient and flexible as possible. The number
of sequential annotators and the presence of Task 1
can be adjusted as time and budget permit.
Seeded Annotation Describing images in detail is
highly subjective and complicated. To expedite hu-
man annotation, we use PaLI-3 5B outputs to seed
the annotation process instead of crowd workers
starting from scratch. While VLMs have improved
in their ability to capture image details, attempts
to generate a consistent rich output still fall prey
to hallucinations and recall issues. Our human an-
notation pipeline ensures that VLM hallucinations
can be corrected and missing details filled in.

An initial machine generated caption and high
precision, domain specific metadata (e.g., art style
or title of a painting) provide a minimal quality
and coverage guarantee. As data is collected, the
VLMs used for seeding are updated to produce
better quality descriptions in an active learning loop
(reflected with loops in Figure 1). After batches
of 1k samples are annotated, we retrain (i.e., re-
fine-tune) the PaLI-3 5B models with all available
annotations (for both Task 1 and Task 2).

We find that these updates significantly improve
the baseline model, with early batches shifting PaLI
captions from an average of 15 to 150+ words with
as few as 3k samples. We do not yet perform spe-
cialized sampling for active learning due to the
large performance gap between the ImageInWords
human annotations and ImageInWords model (as
later shown in Tab. 8). However, this could be
incorporated in the future if performance saturates.
Sequential Augmentation We further improve
framework efficiency with sequential description
augmentations. Humans augment a previous crowd
worker’s and/or VLM’s outputs instead of starting
from scratch. After the first augmentation, both the

machine-generated seed and prior human annota-
tion are provided. The following annotators do not
know which is model output versus human written,
which can mitigate preference to model outputs.

During the annotation process, it is far more ef-
fective in time and quality to read and augment
image descriptions: in Fig. 2 we see that if an-
notations were done in parallel, we would have
3 competing outputs per image, each with their
own style, perspective, and weaknesses, with each
containing ∼170 words and taking ∼800 seconds.
Whereas, in the sequential process, we get a sin-
gle all-inclusive description that has been verified
and augmented by three humans with +20% token
count in -30% time. Higher Jaccard similarity over
rounds suggests a higher inter-annotator agreement,
which also serves as a proxy for quality.

Finally, our framework has an implicit human-
to-human learning loop, as each human annotator
has the opportunity to read and learn from other
perspectives across the annotation rounds, leading
to improved individual quality. This is seen in the
∼2x improved inter-annotator agreement between
rounds (1, 2) when comparing (c) and (d) in Fig. 2.

3.3 Annotation Framework
Based on the above guidelines, we present the IIW
framework for annotating images across two tasks.
The tasks are seeded from VLMs or prior human
annotations (Fig. 3), where each can have multiple
annotation rounds. Examples are in Appendix B.4.

Task 1: Object-Level Descriptions Similar to Vi-
sual Genome (Krishna et al., 2016), we design this
annotation task to capture a (label, bounding box,
object description) triplet per salient image object.
An object’s label is open vocabulary with no ver-
bosity restrictions, and its description is focused on
the object but additionally takes the context of the
image into account. The bounding box localizes
where the object is in the image (Fig. 3 (left)). To
seed the data, we first used an internal object detec-
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Figure 3: IIW Annotation Tasks. Objects and their attributes are first individually annotated to note the salient
objects and focus on coverage of their attributes in Task 1. These outputs, along with a seed VLM caption, are
passed to humans to build the initial image-level description. The initial caption is then human augmented and
refined in N sequential rounds to attain the final hyper-detailed description in Task 2.

tion (OD) model to obtain a list of (label, bounding
box) pairs. Then, object captions are generated by
cropping the image to the object bounding box and
generating a caption via a periodically fine-tuned
PaLI-3 5B. Our methodology is agnostic to which
VLM, OD (or image-segmentation) model is used.

From the seed list of (label, bounding box, object
caption), the annotators are first asked to determine
the salient objects and fix the list of (label, bound-
ing box) by editing, removing, adding or merging
the object annotations based on their accuracy, im-
portance, and role in the overall image. By limiting
the scope to individual objects, annotators can bet-
ter focus and capture details comprehensively.

Task 2: Image-Level Descriptions Our second
annotation task is to form the final hyper-detailed
description. Task-1 outputs, optional domain spe-
cific metadata (e.g., art style of a painting), and a
VLM seed caption are used to hint and help the
annotators compose the overall image description.

The bulk of the annotation responsibility falls on
the first annotator; note that crowd worker anno-
tation order is randomly assigned per sample and
the same annotator is not re-employed for the same
sample. This output is then refined and augmented
in sequential rounds to mitigate subjectivity and
quality drops. Annotators are encouraged to focus
on augmentation and only remove things if they are
obvious errors, but are free to re-frame information
to add new details. We started with 3 annotation
rounds and monitored the n-gram Jaccard similarity

between the outputs. Once a 0.8 round-over-round
output similarity was achieved, we reduced the
numbers of rounds. Optionally, early stopping sup-
port could be added to the annotation framework
itself to make this instance specific. Over time, we
found our similarity threshold can be met between
the first two rounds, i.e., (1,2), (Fig. 2) suggesting
improved and high individual-annotator quality.

4 IIW Human-Authored Data Eval

To evaluate the IIW annotation framework and re-
sulting human annotations, we start with human
SxS evaluations to compare our human annotations
to prior work (e.g. DCI, DOCCI, GPT-4V). To run
a SxS experiment on human-authored description
quality, we first need a common pool of human an-
notated images. For this, we additionally annotate
the DCI test set (112) and a comparable number of
samples (100) from the DOCCI test set with our
IIW annotation framework. We thus have human-
authored IIW annotations for direct comparison on
images in the DCI and DOCCI datasets, which con-
tribute to our open-source IIW-Eval benchmark.

Our human SxS framework evaluates 5 met-
rics: Comprehensiveness, Specificity, Hallucina-
tions, quality of the first few line(s) as a TLDR
(Too Long Didn’t Read; meant to serve as a suc-
cinct summary), and Human-Likeness. Compre-
hensiveness concerns whether a description covers
all key information and objects present in an image.
Specificity is the degree of detail in which each of
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M
etric

DCI Test DOCCI Test
DCI IIW DOCCI IIW
++ + - + ++ ++ + - + ++

C 3 7 19 30 41 4 6 38 33 19
S 5 3 4 20 68 3 2 8 22 65
H 2 3 48 32 15 0 12 41 34 13
Tldr 3 0 3 20 74 1 4 11 30 54
HL 1 1 14 25 59 1 0 30 46 23

Table 2: Human SxS to Evaluate IIW Human-Authored
Data. We report percentages comparing data from prior
work with data annotated by the IIW framework on
Comprehensiveness (C), Specificity (S), Hallucinations
(H), TLDR-quality, and Human-Likeness (HL).

the key objects and details are described in.
We also include TLDR quality as one of our met-

rics as initial sentences set a precedence for what
details to expect, both for the reader and models
trained on this data. From a practical perspective,
we would like hyper-detailed descriptions to still
be useful in a setting that is constrained by input
text length; i.e., if we truncate an image descrip-
tion, it should contain the most salient information
for vision-language training. While IIW guidelines
instruct annotators to include a first sentence which
provides an overall summary of the image content,
prior work also designed their descriptions to start
with either a short caption that summarizes the full
image (Urbanek et al., 2023) or have important in-
formation covered in earlier sentences (Onoe et al.,
2024). As a result, we believe the TLDR metric is
reasonable and should be an established practice
for hyper-detailed descriptions moving forward.

The evaluation is done on a 5 point scale defined
using “substantially better” (+ +) or “marginally bet-
ter” (+) ratings on both sides of a “neutral” (-).
Higher numbers indicate higher quality across each
metric, and our tables report percentages for ease
of comparison. We emphasize that this is an ex-
tremely challenging human annotation task, where
per image, two text pieces of 100+ words need to
be evaluated across 5 metrics in a SxS setting. On
average, we observe each comparison takes 15-20
minutes. Details on the annotation setup and UI
are in Appendix B.4.

4.1 Human SxS Results

Tab. 2 reports preference percentages for each
human-authored test set on our five metrics. Com-

1We use the extra_caption field of DCI annotations and dis-
cuss this in choice in Section 2. All following DCI references
refer to the extra_caption description.

paring IIW to DCI and DOCCI, Comprehensive-
ness is higher by +61% and +42%, Specificity by
+80% and +82%, Hallucinations are lower by 42%
and 35%, TLDR quality is higher by +91% and
+79%, and Human-Likeness improves by +82%
and +68%, respectively. This indicates that the
IIW human-authored image descriptions on images
from DCI and DOCCI are considerably better than
those originally published with prior work.

To further quantify the quality of IIW human an-
notations, we compare with GPT-4V outputs (Ope-
nAI, 2023) in Tab. 3 (right). We use GPT-4V
to generate image descriptions on 100 IIW-Eval
images. The descriptions are generated with the
prompt “Generate a detailed image description”
and no other specifications. The results from the
Model-Human section of Tab. 3 show that we reach
Comprehensiveness (+35%), Specificity (+53%),
Hallucination (+59%), TLDR (+70%), and Human-
Likeness (+21%) improvements over GPT-4V out-
puts. Although GPT-4V performs relatively better
than the human-authored DCI and DOCCI data
when compared to IIW annotations, we assess that
considerable future modeling efforts are needed for
VLMs to reach IIW human-authored data quality.

5 IIW Model Evaluation

After evaluating IIW human annotations, we turn
to quantifying the impact of fine-tuning with IIW
data versus fine-tuning with prior work. We fine-
tune separate PaLI-3 5B models on DCI, DOCCI
and IIW training splits, with their detailed human-
authored text as target. Each model is trained with
an identical setup (∼40 epochs, learning rate 3e-4,
batch size 32) and the generic input instruction:
“Generate a detailed image description.” More fine-
tuning details are provided in Appendix C and D.

As shown in prior work, existing text similar-
ity metrics like BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004) have been shown to poorly
correlate with human judgement as they are heavily
dependent on n-gram overlaps, and thus ill-suited
for long texts (Kryściński et al., 2019; Caglayan
et al., 2020). Prior works DAC, DCI, and DOCCI
also are limited by existing image caption met-
rics, and use LLM summaries of their descriptions
or human SxS for evaluation. We report BLEU,
ROUGE, CIDEr, BERTScore (Zhang et al., 2020),
and BLEURT (Pu et al., 2021) in Appendix D.5 but
look to human SxS for more accurate judgements.

We also quantify the richness of the IIW model
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Metric

Model Generated Model-Human
LocNar Eval IIW-Eval IIW-Eval

DCI IIW DOCCI IIW GPT-4V IIW GPT-4V IIW
++ + - + ++ ++ + - + ++ ++ + - + ++ ++ + - + ++

Comprehensive 7 10 24 32 27 5 22 42 26 5 21 29 36 10 4 3 10 39 29 19
Specificity 6 10 14 24 46 6 14 23 33 24 46 32 12 8 2 6 10 15 35 34
Hallucinations 12 21 43 11 13 9 25 39 21 6 22 29 23 20 6 0 6 29 34 31
TLDR 9 11 9 30 41 6 7 17 42 28 7 15 27 31 20 5 6 8 47 34
Human-Like 11 5 13 32 39 6 12 41 27 14 8 22 60 7 3 6 13 41 27 13

Table 3: Human SxS on Model Predictions. Model Generated compares PaLI-5B fine-tuned with IIW versus prior
work DCI and DOCCI and GPT-4V outputs. Model-Human compares GPT-4V model to IIW human-annotations.

outputs via two downstream evaluations which can
help us to evaluate IIW model generated descrip-
tions in the absence of better metrics. First, in 5.2,
we use generated descriptions from DCI, DOCCI,
and IIW fine-tuned models to prompt a Text-to-
Image (T2I) model for image reconstruction and
evaluate which descriptions result in higher fidelity
generated images. Then, in 5.3, we quantitatively
show how IIW models can generate descriptions to
aid in vision-language reasoning.

5.1 Human SxS Results

Our first evaluation uses the same human SxS setup
as in Section 4. We evaluate the IIW, DCI, and
DOCCI fine-tuned models on a random sample of
LocNar Eval images, which can serve as an un-
seen test set for each fine-tuning dataset. The re-
sults mirror Tab. 2’s human-authored statistics: IIW
has gains over (DCI, DOCCI) datasets on Compre-
hensiveness (+42, +4)%, Specificity (+54, +37)%,
TLDR (+51, +57)% and Human-Likeness (+55,
+23)% with a relatively small hallucination trade-
off (-9, -7)%, largely dominated by marginal rated
losses. Overall, compared to DCI and DOCCI, IIW
model-generated outputs show a higher average
preference from human judgement by +31%.

From Tab. 3 (middle), we see that the IIW PaLI-
5B fine-tuned model has clear room for improve-
ment compared to GPT-4V, as expected given its
5B size. It is worth noting that it competes well on
the Human-Likeness writing-style metric, and ac-
tually excels at learning the TLDR concept, which
we built as a distinct feature of our dataset.

5.2 Reconstructing Images with IIW

To complement our SxS analysis, we consider how
IIW generated descriptions can empower T2I mod-
els to produce more controlled and specific image
reconstructions. For this study, we use the PaLI-
5B (DCI, DOCCI and IIW) fine-tuned VLMs to

PaLI-ft Mean Rank ↓
1 1-2 1-3 1-4 1-5

DCI 2.05 2.06 1.95 2.00 1.88
DOCCI 1.74 1.79 1.83 1.84 1.86
IIW 1.63 1.69 1.62 1.66 1.66

PaLI-ft CLIP Image Similarity ↑
1 1-2 1-3 1-4

DCI 0.844 0.852 0.855 0.850
DOCCI 0.853 0.862 0.865 0.855
IIW 0.861 0.867 0.870 0.868

Table 4: T2I Reconstruction from Image Descriptions.
The original image is compared to images generated
from cumulative sentence inputs on relative (Mean
Rank) and absolute (CLIP image similarity) metrics.

generate descriptions on 240 images from the Loc-
Nar eval set. We then split each image description
into sentences as units which are fed as cumula-
tive inputs (i.e., sentence 1, sentence 1-2, sentence
1-3...) to an Imagen model variant (Saharia et al.,
2022). By breaking up the description into sentence
chunks, we aim to study IIW’s salient description
style and also debias our results from description
length. We evaluate ∼1k generated images across
the varied input sentence chunks (over 240 random
LocNar images) with a 3-way human ranking eval-
uation and CLIP similarity between the original
and reconstructed image (Radford et al., 2021).

The results in Tab. 4 indicate that IIW’s detailed
outputs consistently lead to better T2I reconstruc-
tion, with highest mean rank and CLIP similarity
regardless of the length of input units. These re-
sults confirm that IIW descriptions capture the most
visual content with the most detail, and that it is
not strictly due to description length, but rather
the saliency, comprehensiveness, and specificity in
each sentence that makes IIW impactful. As input
text length is still a limitation in popular VLMs like
CLIP, these results provide evidence that using only
the first sentence of IIW descriptions can still be
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Figure 4: Example T2I Outputs and Human Rankings. We show an example output when the first sentence of the
image description from DCI, DOCCI and IIW PaLI-5B fine-tuned models are fed as input to the same T2I model.

useful and performant. In Fig. 4 we show examples
of each model’s description’s resulting generated
image and associated rank. Additional plots and
examples are shared in Appendix D.7.

5.3 Compositional Reasoning with IIW

We look to a second downstream evaluation to
quantify the impact of our hyper-detailed image
descriptions. Specifically, we use IIW generated de-
scriptions to aid in vision-language compositional
reasoning. Probing datasets ARO (Yarom et al.,
2023), SVO-Probes (Hendricks and Nematzadeh,
2021), and Winoground (Thrush et al., 2022) mod-
ify image captions to no longer match the paired
image2: changing visual attributes or relationships,
swapping verbs, or shuffling image captions such
that they contain the same words but reflect differ-
ent semantics. This is done to evaluate different
types of vision-language reasoning, e.g., visual at-
tribute understanding or verb understanding.

In this experiment we evaluate if IIW descrip-
tions can be used to distinguish the real image cap-
tion from the incorrect negative caption in ARO,
SVO-Probes, and Winoground datasets using an
LLM-only setup. We prompt PaLM2-340B (Anil
et al., 2023) to select which of the caption options is
true given the image description (see Appendix D.8
for exact input prompts). This essentially replaces
the image in these datasets with a generated de-

2SVO-Probes has a negative image for each positive image-
caption pair. The negative images also have captions, so we
use those in our experiments.

Image Desc. ARO SVO- Wino-
Model VG-A VG-R Probes ground
None 56.50 59.94 50.71 49.88
InstructBLIP-7B 83.99 62.73 89.35 65.25
LLaVA-V1.5-7B 84.80 63.71 87.89 63.38
IIW PaLI-3 5B 90.37 66.19 88.66 69.38

Table 5: Vision-Language Compositional Reasoning
Accuracy with Image Descriptions. We see if richer
IIW descriptions can help distinguish the true match-
ing image caption in ARO (Yuksekgonul et al., 2023),
SVO-Probes (Hendricks and Nematzadeh, 2021), and
Winoground datasets (Thrush et al., 2022). COCO and
Flickr30k Order subsets of ARO are not reported due
to a very high language bias baseline of 98%.

scription; the amount the description is able to
boost accuracy on these compositional reasoning
tests should correlate to the description’s compre-
hensiveness and specificity. We compare IIW fine-
tuned models to two larger (7B) open source mod-
els: InstructBLIP-Vicuna-7B (Dai et al., 2023a)
and LLaVA-V1.5-7B (Liu et al., 2023) in Tab. 5,
with additional models in Appendix D.8.

Our first baseline is the no-image condition
(None in the first row of Tab. 5), which simply
asks an LLM which image caption is more likely.
This serves an important language-bias baseline,
and quantifies whether the vision-language compo-
sitional reasoning task really requires vision at all.
Our results show that SVO-Probes and Winoground
have the lowest language bias (baseline performs
nearly at random). On the other hand, ARO vi-
sual genome attribution and relation subsets are not
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IIW-Eval IIW # Annotation Type
Subset Source Images Task-1 Task-2 SxS
IIW-400 Human 400 1,899 400 200

Model – 100 –
DCI Human 112 – 112 112
DOCCI Human 100 – 100 100
LocNar Model 1000 – 1000 –
XM3600 Model 1000 – 1000 –
Total 2,612 1,899 2,712 412

Table 6: IIW-Eval Data and Annotation Breakdown.

quite at random baseline; we also note that we do
not include the Flickr30k nor COCO order ARO
subsets, as the LLM can distinguish the true caption
at 98% accuracy without any image description.

When incorporating image descriptions, all mod-
els perform significantly better than the language-
bias baseline. The IIW model results in the best
task performance for ARO Visual Genome Attribu-
tion and Relation (VG-A, VG-R) and Winoground,
with accuracy gains of nearly 34%, 6%, and 20%,
respectively. Moreover, we can further boost perfor-
mance compared to the InstructBLIP and LLaVA
image captions: we improve reasoning accuracy by
about 6%, 2%, and 4% compared to the best image
description model-based baseline. This reflects the
richness of IIW across different parts of speech and
comprehensiveness, as more attributes and relation-
ships are captured and can be used to reason about
image content. For SVO-Probes, we find smaller
differences, with IIW, InstructBLIP, and LLaVA
models within ∼1 point of each other.

6 IIW-Eval Benchmark Release

We release the IIW-Eval benchmark (Tab. 6) of
human- and model-annotated image descriptions,
human SxS results on Human-Human and Model-
Human pairs of descriptions. IIW-400 is a new
eval set of 400 images randomly sampled from
DOCCI-AAR (Onoe et al., 2024). We re-annotate
DCI and DOCCI test samples and enrich two ex-
isting datasets with new IIW descriptions: Local-
ized Narratives (LocNar (Pont-Tuset et al., 2020))
and CrossModal-3600 (XM3600 (Thapliyal et al.,
2022)). We provide LocNar and XM3600 annota-
tions with significantly improved quality (see statis-
tics in Appendix E). The model generated descrip-
tions may have hallucinations, information recall
losses, or non-human like writing style artifacts.
By releasing this subset along with human SxS
judgements, we encourage the development of new

metrics and evaluation systems to detect them in an
automated, scalable manner. It also promotes fair
comparison across methods in future work. The
dataset is released under a CC BY 4.0 license.

7 Future Work

In future work, robust and effective automatic met-
rics are needed to evaluate the quality of detailed
image descriptions. Next steps may include train-
ing model-based metrics or preference models (i.e.,
autoraters) with human preference data to learn a
global quality metric. For additional analysis, we
could further break down our current SxS metrics.
For example, the human SxS hallucination met-
ric could be broken down to capture fine-grained
categories like how many hallucinations are with
respect to color, size, or spatial location.

We are working to extend the ImageInWords
framework to additional languages and geograph-
ically diverse images. In next steps, we note that
images need to be sampled globally (across both
geographic and cultural identity); this sampling
must also be done across different image topics
and categories, making equal coverage more com-
plicated. We are currently working on adapting
our proposed framework to accommodate locale
specific annotators, which are required for cultural
specificity. Our continued goal is to make the an-
notation guidelines holistic, reduce human effort
and dependency in the annotation process, and help
shift the narrative from captions to descriptions.

8 Conclusion

In this work, we proposed ImageInWords (IIW),
a new framework for hyper-detailed image de-
scriptions. Our annotation guidelines and seeded,
sequential annotation process lead to human au-
thored descriptions that are strongly preferred over
both prior work’s human annotations (+66%) and
prior work’s fine-tuned models (+31%). Images re-
constructed with IIW generated descriptions were
ranked 1st more often, regardless of how much of
the image description was used, reflecting higher
saliency earlier and better overall quality. Our com-
positional reasoning evaluation showed IIW gener-
ated descriptions to best contain fine-grained visual
detail needed to decipher true from false visual at-
tributes and semantics, with accuracy gains of up
to 6% over our most performant baselines. Our re-
sults collectively demonstrate the quality and utility
of IIW image descriptions as state-of-the-art.

101

https://creativecommons.org/licenses/by/4.0/


Limitations

Finally, we discuss the limitations of our annota-
tion framework and evaluations. In our annotation
framework, we define a seeded and sequential anno-
tation process, with both aspects having potential
limitations. The quality of the seeded data is of
high importance as it will ultimately affect the rest
of our human annotation pipeline. Additionally,
even with the best possible seeds, they may limit
the scope of what our crowd workers write by bi-
asing them towards certain objects or phrases. We
employed an active learning loop to iteratively im-
prove the seed generation quality but significant
room for improvement still remains. In terms of
limitations for the sequential augmentation used,
unnecessary time may be spent by annotators if the
first annotator output quality is low. By training
the annotators through guidelines and feedback and
monitoring the initially drafted descriptions, qual-
ity can be better ensured so that the framework is
as efficient as possible.

With respect to the evaluation of our human an-
notated data and model generated outputs, we do
only perform evaluations on hundreds of samples
(as opposed to thousands or more). This is largely
due to the cost and time associated with human SxS
evaluations for this task, but we note that IIW is
rated marginally and substantially better at a much
higher rate, which would likely scale to more sam-
ples. Our work is also inherently limited by the
lack of automated metrics available for long de-
scriptions. We still report standard text similarity
metrics in Appendix D.5 and complement them
with human SxS, but in future we hope metrics
are developed that address the current limitations,
as automated metrics can be applied at scale. We
note that metric limitations were also faced in prior
work, with others opting to use LLM summaries or
human SxS for evaluation purposes (Urbanek et al.,
2023; Onoe et al., 2024).

With respect to our trained IIW models, we
also note that all results are reported from a sin-
gle model/run for each evaluation included. In the
future, rerunning models with different seeds or
aggregating results over different model variants
would be beneficial.

While we currently do not plan to open source
our models or training set, we do release an eval-
uation set over images that can serve as a unified
benchmark for IIW, recent, and future related work.
We also open source the human SxS judgements

and model enriched samples from Localized Nar-
ratives and XM3600. We acknowledge that the
full annotation framework would take substantial
time and effort to rerun from scratch; this is in part
due to needing to reproduce the annotation UI and
infrastructure for seeding. The framework itself
is agnostic to which vision-language models are
used for seeding of initial object or image captions,
which we hope makes the setup more feasible to
reproduce with any open source model of choice.
This also becomes increasingly important as new
and improved models will continue to be devel-
oped, and we’d like our framework to be able to
incorporate newer models over time. The number
of annotation rounds, annotation volume, and par-
ticular set of images can be adjusted to specific
use-cases and budget and time constraints.

Lastly, our initial IIW dataset and resulting mod-
els are English-only. In the future, we plan to
expand our work to have multilingual and multi-
cultural coverage over images sampled globally.
We also aim to curate images descriptions which
are annotated by locale specific annotators to cap-
ture regional and cultural nuances, so that we do
not strictly have descriptions with a western lens.

Ethics Statement

Our model may have broader societal impact. It
may contain unknown biases or stereotypes, or
propagate inaccurate or otherwise distorted infor-
mation. We used a combination of algorithmic
methods, manual inspection, and other classifiers
for identifying and removing Sensitive Personally
Identifiable Information, pornographic, and vio-
lence depicting images. Specifically we checked
for the presence of: (1) any address, email, or
phone number; (2) images with high porn scores;
(3) images labeled as portraying abuse; (4) text
identified as having certain adult content references.
Additionally, we asked human annotators to use an
objective and respectful tone while composing the
image descriptions. While we made all of these
efforts, it is still possible the model may produce
some undesirable results.

Additionally, image to text VLMs inherently can
have negative impact if the generated image de-
scriptions are inaccurate and/or contain hallucina-
tions. However, our work specifically aims to cover
all visual content as comprehensively and accu-
rately as possible to improve data quality and the
resulting fine-tuned models.
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A Annotation Guidelines

We now present the full detailed annotation guide-
lines used for IIW annotations. Our guidelines
state that image descriptions should be composed
such that they paint a vivid mental picture of an
actual image in the mind of someone hearing the
description and has their eyes closed. In order to
reach this level of detail composed in an articulate
manner, we compile an extensive set of annotation
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guidelines. We iterated over these guidelines with
multiple pilot rounds.

The annotators are asked to operate as if they
are instructing a painter to paint with their words
and only include details that can be deduced from
visual cues, erring on the side of higher precision.
Unnecessary fragmentation of sentences should be
avoided to compose writing in a flowy, coherent
style, avoiding the use of filler phrases like: “In
this image,” “we can see,” “there is a,” “this is
a picture of,” since they add no visual detail and
come at a cost of verbosity.

Objects form the lego-blocks of an image. In-
teractions and spatial arrangements among them
help to form the context of the image. In complex
multi-object images with dense settings, noting
each and every object independently can become
cumbersome and highly dependent on the effort
the particular human annotator puts in. To define
this better and expect a consistent behavior from
the annotation outputs, we introduce the notion
of salient objects. Key objects without which the
image would lose its context and meaning are con-
sidered salient. This can include individual objects
or combinations of them depending on the role they
play in the image; consider the following 2 cases
as examples:

• Three people in the blurry background of an
image, with the scene set inside a coffee shop,
who play no concrete role individually can be
grouped as people in the background instead
of 3 individual people object annotations.

• Two people in the foreground and in-focus,
engaged in a conversation in the same scene.
The two individuals are likely the focus of the
image and hence worth noting individually in
detail as separate objects. This is likely what
the photographer was attempting to capture.

While annotating each of these salient objects in
an image, the annotators should consider the fol-
lowing axes as reference (but not limit themselves
to this list), paying special attention to features that
make them unique or salient:

• Function Purpose of the component or the
role it plays in the image

• Shape Specific geometric shape, organic, or
abstract

• Size Large, small, or relative size to other ob-
jects

• Color Specific color with nuances like solid
or variegated

• Design/Pattern Solid, flowers, or geometric

• Texture Smooth, rough, bumpy, shiny, or dull

• Material Wooden, metallic, glass, or plastic

• Condition Good, bad, old, new, damaged, or
worn out

• Opacity Transparent, translucent, or opaque

• Orientation Upright, horizontal, inverted, or
tilted

• Location Foreground, middle ground, or back-
ground

• Relationship to other components Interac-
tions or relative spatial arrangement

• Text written on objects Where and how it’s
written, font and its attributes, single/multi-
line, or multiple pieces of individual text

Humans typically associate a set of default fea-
tures to objects. Consider the following examples:

• Car by default is assumed to have 4 of each:
tires, door, windows and 1 of each: trunk,
hood, steering wheel, roof. Mentioning them
separately might not be that useful as it adds
no specific visual detail that we did not al-
ready know as the norm. Now, if the car is
a coupe, has a missing window, or contains
a door painted with a different color than the
overall color, i.e., making it a unique feature,
then that would be worth mentioning in the
description since it holds specific added visual
value.

• The Golden Gate Bridge by default is orange.
That being said, it does not hurt to include
extra detail depending on the use-case. If the
annotators do not recognize the bridge as a
famous well known entity, then it would make
sense to include the color and additional at-
tributes.

When composing the overall image description,
start with a newspaper style tldr sentence that
paints a very clear high level picture. Describe
the objects in order of their saliency while noting
the description of individual objects and relation-
ships in a coherent manner. Include the overall
setting, background, style, and consider:
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• Overall composition Arrangement of the ele-
ments in the image, focal point, balanced, or
asymmetrical

• Lighting Natural or artificial, light source

• Color palette Colors or how they interact with
each other

• Texture Smooth or rough, shiny or dull

• Depth of field Entire image or only a portion
of it is in focus, what effect this has on the
overall composition

• Subject matter Main subject of the image,
other elements that are present, how they re-
late to the subject matter

• Mood or feeling Overall mood or feeling of
the image

Camera angle (i.e., the position of the camera
in relation to the subject) is crucial, as this sets
a precedence for what level and kind of informa-
tion to expect. The choice of camera angle can
have a significant impact on the mood and meaning
of a photograph. Different camera angles can be
used to create different effects and convey different
messages, e.g., details about a close-up are differ-
ent from those of a wide angle shot. Examples of
camera angles (see Figure 5):

• Eye level: The camera is positioned at the
same level as the subject’s eyes. This is the
most natural and neutral camera angle.

• High angle: The camera is positioned above
the subject. This angle can make the subject
appear smaller, weaker, or less important.

• Low angle: The camera is positioned below
the subject, anywhere below the eye line, look-
ing up. This angle can make the subject appear
larger, stronger, or more important. Some-
times, it is even directly below the subject’s
feet.

• Ground level: The camera is positioned at
the ground level. This angle captures what is
in the frame at ground level, that is, the feet,
or maybe the character lying on the ground.

• Dutch tilt: The camera is tilted on its axis.
This angle can be used to create a sense of
unease or disorientation.

• Bird’s-eye view: The camera is positioned
directly above the subject. This angle can be
used to show the subject’s relationship to their
surroundings.

• Worm’s-eye view: The camera is positioned
directly below the subject. This angle can be
used to create a sense of awe or wonder.

• Top-down view or Overhead shot: The
camera is above the subject and you’re tak-
ing the photograph downwards from straight
above, and not at any kind of angle. It is typ-
ically closer to the subject than a bird’s eye
view (see Figure 5 for comparison).

Some other terms that are sometimes used to
describe camera angles and depths:

• Close-up: A close-up is a photograph that is
taken from a very small distance. Close-ups
can be used to show details that would not be
visible from a further distance.

• Medium shot: A medium shot is a photo-
graph that shows the subject from the waist up
or from the knees up. Medium shots are often
used to show the subject’s body language and
facial expressions.

• Long shot: A long shot is a photograph that
shows the subject from a distance. Long shots
can be used to show the subject’s relationship
to their surroundings.

• Full shot: A full shot is a photograph that
shows the subject’s entire body. Full shots are
often used to show the subject’s height and
stature.

• Over-the-shoulder shot: An over-the-
shoulder shot is a photograph that is taken
from behind one person’s shoulder, showing
the other person in the foreground. Over-the-
shoulder shots are often used to create a sense
of intimacy or connection between the two
people.

• Point-of-view shot: A point-of-view shot is a
photograph that is taken from the perspective
of the subject. Point-of-view shots can be used
to create a sense of immersion in the scene.

When text is present, include detail such as
whether the text is in a single line or spread along
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Figure 5: Camera Angles to Consider when Annotating Images. These are important to set a precedence on the
level and kind of information to expect in the image description.

multiple lines, if text is in multiple lines whether
there is mutual alignment, the features of the font
such as size, style, color, and orientation (e.g., ver-
tical, horizontal, arched), casing (e.g., lower, upper,
mixed), and attributes like italics, underlined, bold,
written in quotes, clearly visible or blurred. De-
scribe the words if they are written.

If text is written in multiple lines, we should:

• Quote them as individual units that exist on
the same line

• Mention its mutual alignment using references
like vertically stacked, aligned to the left, etc.

For example, in Figure 6, the phrase (“Juice,”
“ACROSS THE,” “Universe”) has words “Juice”
and “Universe” as capitalized while the phrase
“ACROSS THE” is all uppercase, and components
are aligned along a diagonal. Information on the
font color, type, and shadow effect should be in-
cluded. As another example from the same image,
the phrase (“FREE,” “ARCADE,” “GAMES”) are
all upper-cased, vertically stacked and centrally
aligned.

If you have a good idea of the font family and
are confident, that would be valuable to note.

When people are present, special notes should
be kept in mind to mitigate different types of bias.

The tone should be respectful to the subject and
not make assumptions or try to guess their gender,
identity, ancestry, where they are from, sexuality,
religion, etc. We emphasize that the descriptions
should be noted in objective, neutral and fair lan-
guage for related attributes and focus solely on the
visual aspects. Consider the following axes with
respect to attributes here:

• How much of their body is visible

• Whether the face is fully visible

• Whether they are facing the camera or looking
somewhere else

• Where and what they are looking at

• What the person is doing (standing, posing,
sitting, running, playing a sport)

• What they are wearing. For each piece, note
the clothing item name (dress, pants, short,
gloves, shoes), color, pattern (plain, striped),
length (if applicable)

• What they are carrying, details about that ob-
ject (bag, purse, camera)

• Whether they are using any assistance device
(wheelchair, cane)

• Whether they have any unique features like
marks, tattoos, scars on their body that are
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Figure 6: An Example where Quoting Text in a Detailed Manner can Enable Precise Reconstruction. The word-
casing and alignment attributes of the multi-line phrase (“Juice,” “ACROSS THE,” “Universe”) has words “Juice”
and “Universe” as capitalized while the phrase “ACROSS THE” is all upper-cased and all components are aligned
along a diagonal. Information on the font color, type, shadow effect should be included. For the phrase (“FREE,”
“ARCADE,” “GAMES”) all words are upper-cased, vertically stacked, and centrally aligned.

visible. If applicable, note the respective posi-
tions on their body where each is present

• For professions with known gender biases like
“nurse,” “doctor,” or “construction worker,”
explicitly include the gender (if clearly de-
ducible) and do not operate under the assump-
tion that one gender is more common in that
profession.

For any apparel, the descriptions should focus
on overall style, unique details, silhouette of the
garment, how it fits, fabric, color, shades, and tone
of the garment. If the branding is visually visible, it
should be included while attributes like size should
be skipped unless visually verifiable.

Where applicable use locale specific names of
objects like clothing (e.g., sherwani, kurta, kimono,
saree), food (e.g., shawarma, dosa, paneer tikka)
etc. The aim is to capture the locale specific vocab-
ulary so the downstream models can pick them up

instead of using generic abstract terms.
For art pieces, include art styles, time periods,

mediums, moods, viewpoints, subject matters, cul-
tures as much as possible from the visual cues.

B Dataset Collection

The dataset was sampled to cover a wide range of
content. We use an internal image classification
system to report the top image categories present
across the splits in Figure 7. Getting a more bal-
anced mix remains active work on our part and
would be updated in future work.

B.1 Human Annotation Worker Pool
We employed and worked with a fixed human an-
notator pool comprising of 20+ annotators with
mixed backgrounds in creative writing, art, history,
photography and related relevant domain subjects
to utilize critical domain expertise and perspec-
tives. The pool is based in multiple countries, with
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(a) IIW-Train Set Image Category Distribution

(b) IIW-Eval Set Image Category Distribution

Figure 7: Image Category Distribution for the IIW Dataset’s Train and Eval Splits.

a US majority currently. In the future, we plan
to intentionally increase diversity in our annota-
tor pool to ensure more locale-specific vocabulary
in our image descriptions. The annotators were
compensated appropriately taking their skill-set,
qualifications, location and the complexity of the
task into account. The pool was trained for the

annotation task over a period of month to achieve a
sense of consistency on the annotation guidelines
as well as the downstream tasks to be covered by
the data being collected. The annotators were also
communicated clearly on the downstream tasks and
data use cases to get a sense of the importance and
quality bar needed for this foundation work. For
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text-to-image generation rankings, we employed
an internal group of six people to rank the images
generated by different model-generated image de-
scriptions (i.e., we did not hire crowd workers).
People participating are domain experts, familiar
with text-to-image generation technology.

B.2 Human Annotation Challenges

Despite the very detailed annotation guidelines we
provided to the annotators, there were several chal-
lenges during the human annotation process. First,
we still found individual instances of random qual-
ity or judgment lapses. To circumvent this, we de-
signed our framework to be sequential (i.e., more
than one annotator works on each sample). We
also found different challenges with respect to each
image. For instance, art images require more do-
main specific expertise to describe an image with
appropriate vocabulary. At the start of our anno-
tation process, we observed that annotators had a
tendency to use filler words and prefixes such as
“This is a,” “There is a,” or “This photo was taken
with,” and we provided feedback asking they do
not include such phrases.

Another challenge during the annotation process
was to encourage annotators to focus on the big
picture and write a TLDR first. We also observed
some tendency to use slightly subjective language
while describing the images, e.g. using adjectives
that are not explicitly supported by the visual cues.
By providing feedback directly to the annotators,
pointing to specific samples, and emphasizing that
certain language styles do not align with the writing
style we were aiming for, we were able to consid-
erably increase the annotation quality and get the
desired type of image descriptions from the anno-
tation process.

B.3 Annotation Methodology

Seeded Annotation Considerations to keep in
mind:

1. Quality of the seeding data is critical. It is
counter productive if it’s noisy as the human
annotators will take longer to comb signal
from the noise than to come up with the infor-
mation themselves. We recommend to restrict
the use of seeding signal to only high preci-
sion models.

2. Risk of biasing the outputs as the human an-
notators may take the easy route of relying

on the seed signal more heavily than intended.
We suggest to note this point explicitly in the
annotation guidelines and spot check the an-
notations for quality control. Additionally,
running annotations with no seeding and com-
paring the outputs can be helpful to judge the
bias being induced.

Sequential Augmentation Considerations to keep
in mind:

1. Heavy reliance on the quality of the base
dense description from the first annotator. If
the quality is not good, the annotator in the
next round will spend considerable time fixing
the input. There are 2 mitigating steps:

(a) Monitor this at the beginning of the an-
notation project when the annotators are
still new to the task using metrics like
edit-distance and provide explicit feed-
back to the annotators as needed.

(b) Annotators in each round have the option
to start from scratch if they deem the
quality from the previous round to be
considerably low. Use this as feedback
for the annotator from the previous round
by presenting them the edited output to
learn from.

Human-in-the-Loop Learning Our annotation
framework implicitly unlocks a feedback loop for
the annotators due to the sequential augmentation
process discussed above. Each annotator gets an
opportunity to read and learn from each other’s
perspective which in turn improves their individual
quality. As an example from Figure 8, we demon-
strate how Annotator-1 get an opportunity to learn
from Annotator-3 for the first image and Annotator-
2 gets an opportunity to learn from Annotator-1 in
the second image.

Model-in-the-Loop Annotation We employ an
active learning loop for the VLMs where after some
initial annotation data is available, a model version
M1 can be trained over the base VLM to improve
the seed description quality. As more data gets an-
notated, M1 can be updated to M2, M3, ..., Mn to
reduce the human effort needed.

Advantages:

1. Reduces the dependency on the human both
in terms of number of annotation rounds and
time.
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Figure 8: Human-in-the-Loop Learning. Over time with a constant annotator pool, each annotator gets an opportu-
nity to read and learn from others’ perspective via an implicit feedback loop. This has shown to improve individual
annotator quality as shown in the main paper.

2. Provides a way to evaluate current model qual-
ity by monitoring the time, volume and pat-
terns of augmentations during the human an-
notation stage.

Some considerations to keep in mind:

1. As discussed above, the effectiveness relies
very heavily on the capability of the model,
i.e., having high comprehensiveness and low
hallucinations.

B.4 Annotation Framework

We now discuss the annotation framework with
concrete examples and UI illustrations:

Annotation Task-1: Fine Grained Objects and
Attributes In Task-1, the human annotators are pre-
sented with seed annotations for the objects from
an Object-Detection (OD) model and VLM gener-
ated seed captions for each object (see Figure 9).
The annotators can then annotate to note the salient
objects and their corresponding description (see
Figure 10).

Annotators can make the following augmenta-
tions to annotate salient objects:

• Edit make adjustments to the label and/or
bounding box. This can include:

– Making the labels more specific, e.g Ani-
mal to German Shepherd

– Enlarging or tightening the bounds of the
bounding box by expanding or contract-
ing the seed box.

• Remove any invalid pre-populated objects or
considerably invalid bounding boxes.

• Add any missing salient object by drawing
out a tight bounding box and adding an appro-
priate fine-grained label to it.

• Merge if object(s) are fragmented and/or pre-
populated as two or more objects, the anno-
tators can remove the individual objects and
create a new single object.

– Closely placed objects of the
same/similar label/type which indi-
vidually hold low value but can be
described as a collection to hold a higher
context value should be combined, e.g.,
five identical cups in an image lined
up next to each other do not need to
be tagged as separate objects. If there
are attributes that separate one or more
of them from the others, we expect the
annotators to split them in groups and
proceed accordingly.
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Figure 9: IIW Annotation UI for Task-1 with VLM seeds. We illustrate the seed object-detection objects and VLM
generated object-level captions with object cropped image bytes as input.

Figure 10: IIW Annotation UI for Task-1 after human augmentation. We illustrate the human augmented salient
objects and their human-authored descriptions. The annotations are built on seed information from Figure 9. This
example demonstrates how humans can alter the seed annotations based on the annotation guidelines, which can
include merging, deleting, editing and adding new salient objects and then describing each.

– Sub-components of a larger object
should not be explicitly tagged unless
there is something unique and/or worth
mentioning about them. Think does miss-
ing this detail create a different men-

tal picture than the actual image?, e.g.,
doors, windows, or tires of a Car can be
omitted unless there is something unique
about them, as they are standard expecta-
tions from a Car object.
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For each (label, bounding box) pair, we ask the
annotators to generate a detailed description fo-
cused on the object in the context of the image
considering the several axes as reference (see Ap-
pendix A).

Annotation Task-2: Overall Image Description
In Task-2, human annotators are presented with
the annotations from Task-1 and a seeded VLM
description (see Figure 11) which is then refined by
human annotators in sequential rounds to produce
the final hyper-detailed description (see Figure 12).

C IIW Fine-Tuning Tasks

We define seven tasks with the IIW Task-1 and
Task-2 annotations to fine-tune two IIW based
VLM model variants of PaLI-3 5B (Chen et al.,
2023a). Our models include IIW Combined, trained
on a mixture of all seven tasks and IIW-Task-2
based aka IIW Model, which is only trained on the
final most detailed image description output. The
seven tasks can be grouped into three categories:
image region, salient objects, and detailed descrip-
tion based tasks, see Figure 13 for illustration.

As we later discuss, we generally find the IIW
(Task 2 only) Model to be preferred over the IIW
Combined variant, but include details on the addi-
tional training tasks and resulting ablations here for
completeness. All results in the main paper use the
IIW Model.

C.1 Image Region Tasks

Using one object at a time from the list of (label,
bounding box, description) Task 1 annotations, we
perform three region-based tasks. We use normal-
ized bounding boxes in [ymin, xmin, ymax, xmax]
format as in Pix2Seq (Chen et al., 2022). Our first
task is description-label grounding. In multi-object
dense images, a label in itself is not enough to
uniquely identify an object. Thus, we create a
grounding task with (image, label, description) in-
puts that are tasked to predict the corresponding
normalized bounding box coordinates.

Our second image region task is label prediction,
in which we predict an open vocab label for the
object with input (image, bounding box). Lastly,
we perform object description generation, which
produces descriptions for each object in the image
given (image, bounding box, label).

C.2 Salient Objects Tasks

Our next category of fine-tuning tasks concerns the
salient objects in an image. We target the aggre-
gated list of (label, bounding box) object features
per image from Task 1. Our first task is label gener-
ation, in which given an image, we aim to generate
a text list of the salient object labels. The object
labels are sorted alphabetically for consistency, but
in future work ordering by saliency would be use-
ful. Our second object-level task is grounded label
generation. The task is to generate the list of (label,
bounding box) pairs per object in the image; we
similarly sort the list alphabetically with respect to
label name.

C.3 Detailed Description Tasks

Finally, our last fine-tuning tasks relate to the se-
quentially annotated descriptions from Task 2. We
perform description elaboration in addition to di-
rect description generation. Given the image and
description from the N th sentence, description
elaboration trains the model to elaborate the cur-
rent description to the final description. We also
create synthetically corrupted versions of the final
description to serve as additional training samples.
Specifically, we randomly drop X% of sentences.
Sentences are dropped starting from the last sen-
tence so that the structure of the overall text piece
is maintained (as opposed to random sentence re-
moval). For final description generation, given the
image, a VLM learns to generate the final most
hyper-detailed description available from the entire
annotation framework. This final task (and not de-
scription elaboration), is the only task used to train
the IIW model (whereas all are used for the IIW
Combined ablation).

D Experiments

D.1 Seeded Annotation SxS

We additionally run a human SxS evaluation to
compare the effects of seeding in the IIW anno-
tation framework. In Table 7, we compare de-
scriptions written without and with VLM seeding
on a subset of IIW-400 (50 samples). There is
a trend across all metrics that seeding improves
description quality, as seen with marginal or sub-
stantial gains across comprehensiveness (+54%),
specificity (+48%), TLDR quality (+28%), and
human-likeness (+25%). The hallucinations met-
ric is primarily neutral with a slight preference to
seeded descriptions (+9%). This is somewhat ex-
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Figure 11: IIW Annotation UI for Task-2 with seed VLM description. This VLM has been fine-tuned in an active
learning mode as data was collected iteratively. The seed caption from the same VLM (PaLI-5B) without the IIW
fine-tuning is “a pink bicycle with a basket of flowers on it.” The seed annotation is then refined and augmented
by human annotators, see Figure 12 for the final resulting description.

Figure 12: IIW Final Annotation UI for Task-2. We illustrate the human annotations available from Task-1 as
the human annotators hover over the salient objects in the image. The annotators can additionally switch between
hiding all salient objects to view the image properly. Task-2 annotations start with the seed caption from the VLM
and is then refined by human annotators in sequential rounds, building on top of the previous round’s output.

pected, and affirms that despite model-generated
outputs having a potential risk for hallucinations,
the humans are able to correct and improve on them.
Thus, the SxS confirms seeding is advantageous to
the IIW annotation framework.

D.2 IIW Human versus IIW Model SxS

In Table 8, we perform a SxS evaluation on a subset
of IIW-400 (on 100 samples). This compares data
from the human authored IIW annotation frame-
work to descriptions generated by the IIW fine-

tuned model. Across all metrics there is an ex-
tremely high preference to the human annotated
data, with significant and marginal gains: compre-
hensiveness (+78%), specificity (+91%), fewer hal-
lucinations (+31%), TLDR quality (+58%), human-
likeness (+52%). This confirms the quality of data
produced by the IIW human-in-the-loop annotation
framework, and demonstrates the need for more
modeling efforts to bridge the gap between the IIW
human authored versus model generated descrip-
tion quality. For example, larger capacity models
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Figure 13: IIW based VLM Fine-tuning Tasks. We show tasks based on data collected from Task-1 and Task-2 per
the IIW annotation framework. Different tasks enable the fine-tuning to focus on the image at (object, attribute),
(image, objects) or (image, hyper-detailed description) levels.

Metric
IIW-400

Unseeded Seeded
++ + - + ++

Comprehensiveness 6 8 18 45 23
Specificity 10 6 20 39 25
Hallucinations 4 16 51 23 6
TLDR 4 27 10 43 16
Human-Likeness 10 12 31 33 14

Table 7: Human SxS to Evaluate Gains from Seed-
ing the Annotation in the IIW Annotation Framework.
We report rounded percentages comparing 50 IIW-400
samples annotated by the IIW framework with and
without machine-generated seeding on Comprehensive-
ness, Specificity, Hallucinations, TLDR quality, and
Human-Likeness.

may be needed.

D.3 Automatic Readability Measurements

In addition to our human SxS comparisons, we
use a suite of readability metrics to quantify writ-
ing style differences between DCI, DOCCI, and
IIW. We run heuristics based readability metrics
over both human-authored and model-generated de-
scriptions representing each style, and present the
results in Table 9. Each metric roughly estimates
the level of education needed to understand a piece
of written text using different units, e.g. education

years or grade-level. While they are proxy signals,
a pattern across all can be seen as a clear indication
of a more mature and articulate writing style for
IIW in comparison with the other alternatives.

For the metrics, we used spaCy (Honnibal et al.,
2020) (v3.0.0rc2) to tokenize the text and the imple-
mentation in Github’s py-readability-metrics repo
(v1.4.1) to calculate the scores. We also include
the readability metric distributions in Figure 14.
The distributions further demonstrate a more ma-
ture writing style in both the IIW human-authored
dataset and fine-tuned model generated outputs.

D.4 Side-by-Side (SxS) Evaluation
Framework

We demonstrate the Human SxS annotation UI to
show the input (see Figure 15) and the correspond-
ing human responses (see Figure 16) across the 5
metrics, each on a 5 point scale. The metrics are
defined as:

• Comprehensiveness: The description should
capture all of the important elements of the
image, including objects, people, locations,
actions, relationships between objects, etc.

• Specificity: The description should use pre-
cise and descriptive language to avoid vague-
ness and ambiguity. E.g. “3 apples” and “Taj
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Metric
IIW-400

IIW-Human IIW-Model
++ + - + ++

Comprehensiveness 40 43 12 4 1
Specificity 79 14 5 2 0
Hallucinations 6 46 33 17 4
TLDR 29 43 14 10 4
Human-Like 27 32 34 6 1

Table 8: Human SxS to Evaluate IIW Fine-tuned PaLI-3 5B Model Predictions when compared to IIW Human-
Authored Data on IIW-400 using 100 samples.

Dataset Human Authored Model Generated
ARI↑ FK↑ GF↑ SMOG↑ ARI↑ FK↑ GF↑ SMOG↑

DCI 5.8 5.7 8.1 8.1 2.9 3.7 6.2 6.9
DOCCI 7.5 7.1 9.5 8.7 6.4 6.6 8.7 8.2
IIW 10.4 9.5 11.8 11.5 9.3 9.0 11.3 11.7

Table 9: Readability Metrics on Human and Model Annotated Data. We include ARI (Wikipedia contributors,
2023b), Flesch Kincaid (FK) (Wikipedia contributors, 2023c), Gunning Fog (GF) (Wikipedia contributors, 2023d),
and SMOG (Wikipedia contributors, 2023e) metrics. They approximate the grade level needed to comprehend the
text and results indicate a more mature writing style in IIW human-authored and model generated outputs.

Mahal” are more specific than “some apples”
and “a white marble structure,” respectively.

• Hallucinations: The description should be
factually correct and avoid making assump-
tions or interpretations that are not visually
supported by the image.

• First few line(s) as tldr: The first few line(s)
should paint a high level picture of what to
expect in the image and create a succinct sum-
mary.

• Human-Like: The descriptions should feel
as if an educated person wrote them and
should be free from artifacts hinting that a
machine generated them (e.g. stuttering, re-
peating facts, fragmented chain of thought,
etc.).

The 5 metrics are defined to capture 3 broad um-
brella metrics of precision, recall and writing-style.
An overall metric score can further be computed by
taking an average of the 3 umbrella metrics. Each
can be defined as follows:

Recall = avg(Comprehens.,Specific.)

Precision = Hallucination

Writing Style = avg(TLDR,Human Like)

Overall = avg(Rec.,Prec.,Writing Sty.)

D.5 Additional Automatic Metrics

We include evaluations of model-generated outputs
with automated text similarity metrics for complete-
ness, but note that common text similarity metrics
are ill-suited for long texts and more recent image-
text metrics are often length limited. We report
these results simply to emphasize the limitations
of these metrics when measuring the quality of
hyper-detailed image descriptions. Using standard
automatic metrics, Table 10 illustrates how fine-
tuned models largely perform better in replicating
their own style.

In addition to reporting BLEU-4, ROUGE-1,
and ROUGE-2 automatic metrics, we include
CIDEr (Vedantam et al., 2015), BERTScore (Zhang
et al., 2020), and BLEURT (Pu et al., 2021) met-
rics in Table 11. We include BERTScore and
BLEURT as they are newer, model-based metrics
which have been shown to correlate more closely
with human judgements. CIDEr, like BLEU and
ROUGE metrics are not limited by sequence length.
BERTScore and BLEURT have a maximum se-
quence length of 512 (we specifically use the
“wwm_cased_L-24_H-1024_A-16” BERT check-
point and the latest BLEURT-20 model), but for
our descriptions, they likely fit under this maximum
length, with only outliers being truncated.

CIDEr and BERTScore generally show the same
trend of each fine-tuned model performing best on
the same test domain (i.e., DCI fine-tuned mod-
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PaLI-ft DCI Test (112) DOCCI Test (5k) IIW Test (445)
bleu-4 rouge-1 rouge-2 bleu-4 rouge-1 rouge-2 bleu-4 rouge-1 rouge-2

DCI 4.97 35.38 12.70 5.24 39.55 12.95 2.30 31.70 8.58
DOCCI 4.24 34.60 10.70 8.68 45.50 17.07 3.50 36.10 10.02
IIW 3.02 31.59 8.02 4.60 38.10 10.06 5.66 38.57 11.73

Table 10: Cross Dataset Automatic Metric Evaluation of Fine-tuned Models.
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(a) Distribution on the Human Authored Datasets from DCI, DOCCI and IIW.
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(b) Distribution on the Fine-tuned Model Generated Outputs from DCI, DOCCI and IIW.

Figure 14: Distribution-based Readability Metrics. We compare both human authored and model generated outputs
from IIW and prior work to show the distribution of Education based units reflected in the writing style. IIW outputs
from both the human annotators and the model produce a more mature style across the metrics.

els perform best on DCI test set, DOCCI mod-
els perform best on DOCCI test set, and so on).
One anomaly occurs with CIDEr on the DCI test
set, where PaLI models fine-tuned with DOCCI
slightly outperform the DCI trained model (4.91
versus 4.57). Due to how low the metric values
are, these differences may not be significant. When
evaluating the DCI, DOCCI, and IIW test sets with
BLEURT, we instead find a slight preference for
IIW models. Across all three datasets, BLEURT
shows PaLI-IIW variants perform better or simi-
larly to the same-domain test set. Thus, newer met-
rics may reveal IIW fine-tuned models generalize
better than models fine-tuned on other datasets.

D.6 IIW Fine-tuned Model Ablations

As an IIW ablation study, we fine-tune a separate
PaLI-5B model, IIW-Combined, using all the data
from Task 1 and Task 2 as a mixture of 7 training
tasks, defined in Appendix C. Table 11 and 12 show

that this has no clear significant gains on Task-2’s
final description eval set. This currently remains a
less explored area and we aim to investigate this in
future work to further improve the model on Task-2
evaluations.

D.7 Reconstructing Images with IIW
Descriptions

For reconstructing images sentence-by-sentence,
we fed the T2I model the first sentence, first two
sentences, first three sentences, etc. as prompts
from each of the three datasets (DCI, DOCCI and
IIW). Figure 17 showcases the prompts and the T2I
model outputs from three descriptions along with
the original image.

We then asked human annotators to rank the gen-
erated images by how similar they are to the origi-
nal image. The image most similar to the original
image is ranked number 1. We allowed generated
images to be ranked the same if they are very sim-
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Figure 15: Human SxS Annotation UI. Annotators are shown the input image and two input image descriptions
to evaluate side-by-side. The input descriptions could be from any combination of (human, model) sources. This
information is not shared with the annotators and the sources are randomly flipped and marked as A or B to prevent
any source or order based bias.

PaLI-ft DCI Test (112) DOCCI Test (5k) IIW Test (445)
CIDEr BERT BLEURT CIDEr BERT BLEURT CIDEr BERT BLEURT

DCI 4.57 0.60 0.41 4.71 0.61 0.42 0.75 0.56 0.40
DOCCI 4.91 0.58 0.39 11.09 0.65 0.45 2.40 0.59 0.41
IIW 1.87 0.56 0.41 4.52 0.59 0.46 4.04 0.61 0.45
IIW Comb. 0.61 0.56 0.43 4.15 0.59 0.46 1.77 0.60 0.46

Table 11: Additional Automatic Metric Results. We report CIDEr, BERTScore (referred to as BERT in table
due to space), and BLEURT metrics for all fine-tuned models. We compare DCI, DOCCI, IIW, and IIW Comb.
(Combined).

ilar. Figure 18(a) shows the reconstruction rank
counts for all the sentence counts and Figure 18(b)
shows the rank counts when we use sentence 1,
sentence 1 and 2, sentence 1, 2 and 3, and sentence
1, 2, 3, and 4. Sentences from IIW descriptions are
ranked first much more frequently than sentences
from DCI and DOCCI descriptions. Specifically,
for the first sentence, the difference is most no-
table, supporting our claim that IIW descriptions
are higher quality earlier on and IIW first sentences
are designed to capture a TLDR.

D.8 Compositional Reasoning with IIW
Descriptions

In our downstream evaluation of ARO, SVO-
Probes, and Winoground compositional reasoning
benchmarks with IIW descriptions, we formulate a

new LLM-only method of evaluation. We prompt
a LLM (e.g., PaLM 2) to determine which is the
true matching caption given the generated image
description and the image caption options to select
from. We define the LLM prompt which includes
an image description as:

“Given the following image description
and image caption options, choose the
most likely OPTION number :

IMAGE-DESCRIPTION : <DESCRIP-
TION>

OPTIONS : <CHOICES>

RESPONSE : ”

where we fill in the <DESCRIPTION> from
each VLM description model (e.g., either our IIW
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Figure 16: Human SxS Annotation UI responses for the input image and two image description pairs (see Fig-
ure 15). The annotators respond to the 5 metrics independently on a 5 point scale. They are additionally asked to
justify their choices which can be used to sanity check and perform quality sweeps.

PaLI-ft DCI Test (112) DOCCI Test (5k) IIW Test (445)
bleu-4 rouge-1 rouge-2 bleu-4 rouge-1 rouge-2 bleu-4 rouge-1 rouge-2

IIW 3.02 31.59 8.02 4.60 38.10 10.06 5.66 38.57 11.73
IIW Combined 2.95 30.63 7.30 4.76 38.25 10.48 5.40 37.64 11.62

Table 12: Ablation Results Comparing IIW Variants on Automatic Metrics.

fine-tuned model, InstructBLIP or LLaVA) and the
list of <CHOICES> are from the corresponding
evaluation dataset, respectively. Choices are enu-
merated in a list-like fashion, and we ask the model
to generate the number of the most likely caption.

We define a different prompt for the language
bias baseline, which serves as a sanity check that
the image/image description is truly needed for
these datasets. It provides a lower bound for com-
parison, too. While the prompt is different as we
do not input any image description, we try to make
it as similar as possible to the above image descrip-
tion based prompt. We set the language bias prompt
to:

“Given the following image caption op-
tions, choose the most likely OPTION
number :

OPTIONS : <CHOICES>

RESPONSE : ”

where <CHOICES> are filled in in the same

format as previously described.
Importantly, when filling in the caption choices,

we deterministically swap the index of the “answer,”
i.e., the true matching caption, among the choices
list in the prompt. This is done to ensure an equal
distribution and reduce any order bias (e.g., a LLM
may be more prone to believing the first option is
the correct option).

To obtain the image description which is then
fed into the LLM, we prompt our fine-tuned models
with “Generate a detailed image description.” For
the InstructBLIP and LLaVA models, we define
similar prompts given the prompts used in their
published papers papers: “Write a long and detailed
description for the photo.” and “Provide a detailed
description of the given image” for InstructBLIP
and LLaVA, respectively.

We process the LLM outputs as classes, (e.g.,
when choosing between image caption choices [1]
and [2], LLM responses are ‘1’ or ‘2’) and calcu-
late accuracy with respect to the true image caption
class. If the LLM does not produce a valid class,
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it’s considered an incorrect prediction. Note that
this task set up is different from how VLM models
are typically evaluated on these reasoning datasets:
prior work considers a sample to be correctly rea-
soned about if the image-text similarity of the true
image caption is higher than the image-text simi-
larity of the incorrect image caption. Due to the
long length of our descriptions, we cannot com-
pute image-text similarity reasonably with models
like CLIP without significantly truncating our im-
age descriptions. In future work, once input length
limitations are mitigated, dual-encoder VLMs like
CLIP can be fine-tuned with our rich data, which
will help to improve VLM reasoning.

Note that ARO and Winoground datasets are
built with positive and negative captions for each
image. SVO-Probes differs in that it originally
contained a positive and negative image for each
positive caption. For our experiments, we need a
true and false caption associated with an image. A
large portion (∼90%) of the SVO-Probes negative
images also serve as separate samples (where they
are considered positive images, with associated
captions). Thus, we can pull these captions to serve
as the negative caption for the original sample.

For the remaining ∼10%, we use the negative
triplet (the S, V, O triplet specifying the subject,
object, and verb, with one of them being modi-
fied) to automatically flip the negative S, V, or O
in the positive caption. Ten of these samples did
not have negative triplets in the dataset, so they
were removed. Lastly, there were 114 samples with
positive captions not containing the S, V, or O that
needed to be swapped to form the negative caption.
This happens as a result of SVO triplets containing
root forms of the words, which were not spelled
the same way in the caption. For example, an SVO
may be “man,lie,beach” with the caption stating
“A man lying on a beach.” Due to the verb tense
differences, it would require additional processing
to match “lie” to “lying.” We remove these edge
cases for simplicity.

Finally, we include more vision language compo-
sitional reasoning results with different PaLI fine-
tuned models in Table 13. Here we additionally in-
clude the models fine-tuned with DCI and DOCCI
datasets. The IIW descriptions still result in high-
est reasoning accuracy for ARO VG-A and are
comparable with DOCCI on Winoground. Trends
also stay the same with SVO-Probes, with DOCCI
performing similarity to IIW, but InstructBLIP per-
forming slightly better (by less than 1 accuracy

point). Finally, we find that DOCCI performs best
on VG-R, which might be result of its dataset be-
ing designed to explicitly contain connected and
contrasting images, which might more frequently
capture similar images that only differ by the visual
relationship between objects.

While performance differences between DCI,
DOCCI, and IIW are smaller, this could be an arti-
fact of the reasoning datasets; ARO, SVO-Probes,
and Winoground are all built upon short caption
datasets, so the utility and quality differences be-
tween DCI, DOCCI, and IIW are not fully captured
by these probing datasets.

E Enriching Image Caption Datasets

As discussed in the main paper, we enrich 1k
samples from two existing image caption datasets,
namely, Localized Narratives and CrossModal
(XM) 3600, with new image descriptions generated
by IIW fine-tuned models. The goal of releasing
these enriched versions is to provide longer, hyper-
detailed image descriptions that can be used for
evaluation purposes in future work. The enriched
versions not only allow for finer-grained, full cov-
erage evaluations of the content in images (via new
metrics or probing datasets), but also may enable
autorater models which learn from the precision
and recall errors in the generated descriptions.

In Table 14, we report the language statistics on
the original 1k samples from each dataset and the
enriched versions. It is clear that the IIW descrip-
tions are significantly longer and richer, as we have
higher counts of tokens, sentences, and each part
of speech.

F Percentages Reported in the Main
Paper

We re-quote and define all analysis percentages re-
ported in the main paper for clarity on how they
were calculated in Tables 15-17. The reference lo-
cation is defined by the section, paragraph, and line
it appeared in. We only include paragraph number
for multi-paragraph sections, and only include line
number if the same percentage occurs more than
once within a paragraph. For example, “S4.3 P2
L3” means Section 4, Paragraph 2, Line 3. Most
percentages were rounded to the nearest point in
the main paper.
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Image Description Model ARO SVO-Probes WinogroundVG-A VG-R
None (Language Bias Baseline) 56.50 59.94 50.71 49.88
InstructBLIP-Vicuna-7B 83.99 62.73 89.35 65.25
LLaVA-V1.5-7B 84.80 63.71 87.89 63.38
PaLI-3 + DCI 5B 88.19 66.47 86.50 64.62
PaLI-3 + DOCCI 5B 89.70 68.85 88.73 69.50
PaLI-3 + IIW 5B 90.37 66.19 88.66 69.38
PaLI-3 + IIW Combined 5B 89.46 64.88 87.78 66.88

Table 13: VL Compositional Reasoning Accuracy with Image Descriptions. We evaluate whether rich descriptions
can distinguish the true matching image caption in ARO (Yuksekgonul et al., 2023), SVO-Probes (Hendricks and
Nematzadeh, 2021), and Winoground (Thrush et al., 2022) datasets. The COCO and Flickr30k Order subsets of
ARO are not reported due to a very high language bias baseline of 98%.

Dataset Sample Tokens Tokens Sentences NN ADJ ADV VB
Count / Sent. / Desc.

LocNar (Pont-Tuset et al., 2020) 1000 14.35 30.56 2.12 8.02 1.09 0.16 2.39
IIW Enriched 22.19 128.87 5.80 32.37 16.02 1.82 11.44

XM3600 (Thapliyal et al., 2022) 1000 10.40 10.40 1.00 3.45 1.08 0.04 0.61
IIW Enriched 22.25 130.56 5.86 33.18 15.82 1.72 11.87

Table 14: Dataset Statistics Comparing ImageInWords (IIW) Descriptions of Prior Work to their Original Anno-
tations. We include the number of samples (i.e., subset of captions/descriptions that we enrich) and the average
number of tokens, sentences, nouns (NN), adjectives (ADJ), adverbs (ADV), and verbs (VB). Language statistics
are averages reported per description unless otherwise noted.
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Figure 17: T2I Outputs and Human Ranking Evaluations. We show example T2I results where the first sentence,
first two sentences, ..., all the sentences of the image descriptions from DCI, DOCCI and IIW models are fed
sequentially as inputs, i.e., at each step an additional sentence chunk is fed to the T2I model.
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(a) Reconstruction Rank Counts across Inputs over All Cumulative Sentence Chunks.

(b) Reconstruction Rank Counts across Inputs of Specific Cumulative Sentence Chunks.

Figure 18: T2I Human Rank Distributions. We illustrate bar plots for the image reconstruction evaluation results
using image descriptions from fine-tuned PaLI-5B models on three datasets (DCI, DOCCI, IIW). Images recon-
structed from IIW descriptions are consistently ranked better than other descriptions.
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Percent Reference Equation and Explanation
+66% Abstract,

Intro P5,
Conclu-
sion

Average difference of IIW preference vs. other dataset
preference, averaged over DCI and DOCCI datasets
and averaged over the five metrics corresponding to
(comprehensiveness, specificity, hallucinations, tldr,
human-likeness). Differences of IIW marginally and
substantially better - other dataset marginally and
substantially better for (comprehensiveness,
specificity, hallucinations, tldr, human-likeness)
metrics from Table 2 correspond to DCI (61, 80, 42,
91, 82) and DOCCI (42, 82, 35, 79, 68). The final
average preference over the five metrics and two
datasets is 66.2%.

+48% Abstract,
Intro P5

Average difference of IIW preference vs. GPT-4V
outputs, averaged over the five metrics corresponding
to (comprehensiveness, specificity, hallucinations, tldr,
human-likeness). Differences of IIW marginally and
substantially better - GPT-4V marginally and
substantially better for (comprehensiveness,
specificity, hallucinations, tldr, human-likeness)
metrics from Table 3 correspond to (35, 53, 59, 70,
21). The final average preference over the five metrics
is 47.6%.

+31% Abstract,
Intro P5,
S5.1 P1,
Conclu-
sion

Average difference of IIW model output preference vs.
other fine-tuned model output preference, averaged
over DCI and DOCCI fine-tuned models and averaged
over the five metrics corresponding to
(comprehensiveness, specificity, hallucinations, tldr,
human-likeness). Differences of IIW marginally and
substantially better - other dataset marginally and
substantially better for (comprehensiveness,
specificity, hallucinations, tldr, human-likeness)
metrics from Table 3 correspond to DCI (42, 54, -9,
51, 57) and DOCCI (4, 37, -7, 57, 23). The final
average preference over the five metrics and two
datasets is 30.9%.

20% more S3.2 P6 The median increase in token count from annotation
round 1 to round 3: (205-170)/170 = 20%.

30% less S3.2 P6 The median decrease in time spent annotating from
round 1 to round 3 compared to if three individual
round 1s occurred: ((800*3)-(800+600+300))/(800*3)
= 30%.

+61% S4.1 P1 The amount IIW is more comprehensive than DCI in
Table 2: (30+41) - (3+7) = 61%.

+42% S4.1 P1
L4

The amount IIW is more comprehensive than DOCCI
in Table 2: (33+19) - (4+6) = 42%.

+80% S4.1 P1
L5

The amount IIW is more specific than DCI in Table 2:
(20+68) - (5+3) = 80%.

Table 15: Percentages from the Main Text. We reference each percentage and define how they were calculated for
clarity.
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Percent Reference Equation and Explanation
+82% S4.1 P1

L5
The amount IIW is more specific than DOCCI in
Table 2: (22+65) - (3+2) = 82%.

42% S4.1 P1
L5

The amount IIW contains fewer hallucinations than
DCI in Table 2: (32+15) - (2+3) = 42%.

35% S4.1 P1
L6

The amount IIW contains fewer hallucinations than
DOCCI in Table 2: (34+13) - (0+12) = 35%.

+91% S4.1 P1
L6

The amount IIW contains better TLDR than DCI in
Table 2: (20+74) - (3+0) = 91%.

+79% S4.1 P1
L7

The amount IIW contains better TLDR than DOCCI
in Table 2: (30+54) - (1+4) = 79%.

+82% S4.1 P1
L7

The amount IIW is more human-like than DCI in
Table 2: (25+59) - (1+1) = 82%.

+68% S4.1 P1
L8

The amount IIW is more human-like than DOCCI in
Table 2: (46+23) - (1+0) = 68%.

+35% S4.1 P2 The amount IIW is more comprehensive than GPT-4V
outputs in Table 3: (29+19)-(3+10) = 35%.

+53% S4.1 P2 The amount IIW is more specific than GPT-4V
outputs in Table 3: (35+34) - (6+10) = 53%.

+59% S4.1 P2 The amount IIW is contains fewer hallucinations than
GPT-4V outputs in Table 5: (34+31) - (0+6) = 59%.

+70% S4.1 P2 The amount IIW contains better TLDR than GPT-4V
outputs in Table 3: (47+34) - (5+6) = 70%.

+21% S4.1 P2 The amount IIW is more human-like than GPT-4V
outputs in Table 3: (27+13) - (6+13) = 21%.

+42% S5.1 P1 The amount IIW is more comprehensive than DCI in
Table 3: (32+27) - (7+10) = 42%.

+4% S5.1 P1 The amount IIW is more comprehensive than DOCCI
in Table 3: (26+5) - (5+22) = 4%.

+54% S5.1 P1 The amount IIW is more specific than DCI in Table 3:
(24+46) - (6+10) = 54%.

+37% S5.1 P1 The amount IIW is more specific than DOCCI in
Table 3: (33+24) - (6+14) = 37%.

Table 16: Percentages from the Main Text. We reference each percentage and define how they were calculated for
clarity.
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Percent Reference Equation and Explanation
+51% S5.1 P1 The amount IIW contains better TLDR than DCI in

Table 3: (30+41) - (9+11) = 51%.
+57% S5.1 P1 The amount IIW contains better TLDR than DOCCI in

Table 3: (42+28) - (6+7) = 57%.
+55% S5.1 P1 The amount IIW is more human-like than DCI in Table

3: (32+39) - (11+5) = 55%.
+23% S5.1 P1 The amount IIW is more human-like than DOCCI in

Table 3: (27+14) - (6+12) = 23%.
-9% S5.1 P1 The amount IIW contains fewer hallucinations than DCI

in Table 3: (11+13) - (12+21) = -9%.
-7% S5.1 P1 The amount IIW contains fewer hallucinations than

DOCCI in Table 3: (21+6) - (9+25) = -7%.
34% S5.3 P4 The accuracy improvement on VG-A from using IIW

over the language bias baseline: (90.37) - (56.50) =
33.87%.

6% S5.3 P4 The accuracy improvement on VG-R from using IIW
over the language bias baseline: (66.19) - (59.94) =
6.25%.

20% S5.3 P4 The accuracy improvement on Winoground from using
IIW over the language bias baseline: (69.38) - (49.88) =
19.5%.

6% Abstract,
S5.3 P4,
Conclu-
sion

The accuracy improvement on VG-A from using IIW
over the next best baseline LLaVA: (90.37) - (84.80) =
5.57%.

2% S5.3 P4 The accuracy improvement on VG-R from using IIW
over the next best baseline LLaVA: (66.19) - (63.71) =
2.48%.

4% S5.3 P4 The accuracy improvement on Winoground from using
IIW over the next best baseline InstructBLIP: (69.38) -
(65.25) = 4.13%.

Table 17: Percentages from the Main Text. We reference each percentage and define how they were calculated for
clarity.
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