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Abstract
Subword regularization, used widely in NLP,
improves model performance by reducing the
dependency on exact tokenizations, augment-
ing the training corpus, and exposing the model
to more unique contexts during training. BPE
and MaxMatch, two popular subword tokeniza-
tion schemes, have stochastic dropout regular-
ization variants. However, there has not been
an analysis of the distributions formed by them.
We show that these stochastic variants are heav-
ily biased towards a small set of tokenizations
per word. If the benefits of subword regular-
ization are as mentioned, we hypothesize that
biasedness artificially limits the effectiveness
of these schemes. Thus, we propose an algo-
rithm to uniformly sample tokenizations that
we use as a drop-in replacement for the stochas-
tic aspects of existing tokenizers, and find that
it improves machine translation quality.

1 Introduction

Tokenization is the first stage in almost all natural
language processing pipelines, where raw text is
transformed into a format that is understood by the
model. Modern neural models use subword tok-
enization, which represents text as a sequence of
subword units drawn from a subword vocabulary
(e.g., decompositional→ de composition al).
Popular subword tokenization schemes are BPE
(Sennrich et al., 2016), MaxMatch/WordPiece (Wu
et al., 2016), and UnigramLM (Kudo, 2018). Un-
intentionally, the downstream models are thus not
conditioned on the raw text, but rather the exact
tokenization of the text. During training, subword
regularization (where static tokenizations are re-
placed with sampled tokenizations) is often used
to break the dependency on the exact tokenization.
It also serves as data augmentation, and improves
performance in a variety of downstream tasks.

0Our code is available at github.com/mcognetta/
distributional-properties-of-subword-regularization.

BPE-Dropout p = 0.1

to ken ization 97.77%
to ke n ization 1.89%
to k en ization 0.25%
to ken iz ation 0.04%
t oken ization 0.03%
to k en iz ation 0.01%
to ke n iz ation 0.01%
to ken i z ation < 0.01%

MaxMatch-Dropout p = 0.3

to ken ization 34.29%
t oken ization 14.66%
to ke n ization 10.48%
to ken iz ation 7.21%
t oke n ization 4.39%
to k en ization 3.15%
t oken iz ation 3.05%
to ke n iz ation 2.14%

Example 1: The most frequently observed tokenizations
of the word tokenization and their empirical frequen-
cies with BPE-Dropout and MaxMatch-Dropout.

There are two main types of stochastic tokeniz-
ers: those which learn a distribution from text (e.g.,
UnigramLM) and those which inject randomness
by corrupting the tokenization scheme (e.g., BPE-
Dropout, Provilkov et al., 2020 and MaxMatch-
Dropout, Hiraoka, 2022). In our work, we focus on
the latter, for which no prior study of the resulting
distributions exists. BPE- and MaxMatch-Dropout
add randomness post hoc into the underlying de-
terministic tokenization, and the distributions they
produce are essentially unrelated to the text distri-
bution. We find that these distributions are heavily
biased, in that they do not produce uniform tok-
enization distributions (see Example 1).

While BPE- and MaxMatch-Dropout empiri-
cally perform well in practice, there is no reason
to believe they would be the best distribution for
improving model performance, especially because
their distributions are unrelated to the underlying
corpus statistics. However, there are reasons to
believe that a different strategy, uniform sampling,
would be better for training, as it would increase
the amount of regularization and augmentation in-
jected into the training process. We experiment
with replacing the stochastic aspects of BPE- and
MaxMatch-Dropout with one which samples uni-
formly at random from all possible tokenizations,
and find that it improves modeling quality on sev-
eral translation tasks.
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2 Motivation

Though stochastic tokenization is known to im-
prove model quality, it remains unclear which
tokenization distribution is the best. BPE- and
MaxMatch-Dropout, which induce unlearned dis-
tributions (probabilities that are not chosen by a
learning algorithm), are a natural way of inject-
ing randomness into the underlying tokenization
algorithm post hoc. However, empirically, we see
that they both induce heavily biased distributions,
and hypothesize that an unbiased stochastic tok-
enizer would be universally better. This hypothesis
is based on three explanations for subword regular-
ization’s effectiveness:
1) Regularization Subword regularization regular-
izes the model by breaking the dependency on a
single, canonical tokenization. As shown in Exam-
ple 1, BPE- and MaxMatch-Dropout allocate most
of their probability mass to only a few tokeniza-
tions for a given input. A tokenizer that uniformly
samples from the distribution will expose the model
to a greater variety of unique tokenizations of the
same input text during training.
2) Augmentation Subword regularization acts as
data augmentation by increasing the number of
unique inputs that are seen during model train-
ing. An unbiased tokenization sampler will pro-
duce more unique tokenizations of the same input
than a biased sampler.
3) Efficiency Subword regularization increases the
tokenizer’s efficiency in the information-theoretic
sense,1 which is a quality shown to be well
correlated with downstream task performance
(Gutierrez-Vasques et al., 2021; Zouhar et al.,
2023). A tokenizer with unbiased sampling will
generally have higher efficiency than a biased one.

3 Subword Tokenization

Subword tokenizers are typically deterministic in
that the same character sequence will result in the
same tokenized output sequence. Stochastic vari-
ants were developed to allow for sampling tokeniza-
tions, which has been shown to improve model
quality and robustness in a variety of NLP tasks.
We briefly introduce three common subword to-
kenization schemes and their stochastic variants,
which all share the same formalization.

1Rényi efficiency is defined as Hα(pV)/log(|V|), where
Hα is Rényi entropy, V is a subword vocabulary, and pV(w)
is the unigram probability of subword in the tokenized corpus.

Inputs: Word w ∈ Σ+, (Ordered) Merges µ
Output: Tokenized sequence t ∈ V+

1: φ← ⟨(wi, wi+1)|(wi, wi+1) ∈ µ ∧ RAND() > p⟩
2: for φ ̸= ∅ do
3: (x, y)← argmaxµ φ ▷ Ordered by µ
4: w ← REPLACE((x, y)→ xy,w)
5: φ← ⟨(wi, wi+1)| (wi, wi+1) ∈ µ ∧ RAND() > p⟩
6: return w

Algorithm 1: BPE Inference (with dropout)

Formalization. Deterministic tokenization maps
words w ∈ Σ+ to a sequence of subwords from a
finite vocabulary Σ ⊆ V ⊂ Σ∗ as t(w) ∈ V+.
An important part of tokenization is that it is
lossless—a tokenization of an input can be in-
verted to recover the original word. For example,
t(tokenization) = to ken ization but impor-
tantly t−1(to ken ization) = tokenization.

In contrast, stochastic tokenization is not a one-
to-one mapping, but rather a probability distribu-
tion function Tw for each word w. This assigns
each tokenization w̄ a probability Tw(w̄) ∈ [0, 1].
Continuing Example 1, Tw(to ken ization) =
0.98 and Tw(to ke n ization) = 0.02. During
application of the tokenizer, the specific tokeniza-
tion of w is sampled from the distribution Tw.

BPE and Dropout. BPE forms a vocabulary by
iteratively merging the most frequently cooccur-
ring pair of tokens in the corpus (Sennrich et al.,
2016), see Appendix B, Algorithm 4. This forms
a vocabulary V and an ordered list of merges µ.
During inference, the merges are applied greedily
to the input (Algorithm 1). Until no more merges
are available, the highest priority available merge
is found and applied to the sequence. To imple-
ment dropout, a probability p is introduced, and
the highlighted statement randomly removes candi-
date merges during each iteration (Provilkov et al.,
2020).

MaxMatch and Dropout. Given a subword vo-
cabulary,2 MaxMatch tokenizes text from left to
right by iteratively selecting the longest match-
ing subword, shown in Algorithm 2. MaxMatch-
Dropout randomly discards matching subwords and
falls back to shorter ones via the condition on Line
6 (Hiraoka, 2022).

UnigramLM. UnigramLM (Kudo, 2018) intro-
duced the concept of subword regularization. It
learns a vocabulary and unigram probabilities for
each token in the vocabulary according to some

2We use the standard WordPiece training algorithm as
described by (Schuster and Nakajima, 2012).
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Inputs: Word w ∈ Σ+, Vocabulary V
Output: Tokenized sequence t ∈ V+

1: t← [ ]
2: i← 1
3: while i ≤ |w| do
4: z ← wi

5: for j ∈ 1 . . .maxv∈V |v| do
6: if wi ... i+j ∈ V ∧ RAND() > p then
7: z ← wi ... i+j

8: t
append←−−− z

9: i← i+ |z|
10: return t

Algorithm 2: MaxMatch Inference (with dropout)

loss function over the training corpus. The tok-
enization of an input text is sampled from the prob-
ability distribution induced by the model and some
temperature α.3 We do not explore the distribu-
tional properties of UnigramLM here, since they
are highly corpus dependant.

Dropout Distributions. Example 1 and Ap-
pendix D show empirical probabilities for cer-
tain values of p in BPE- and MaxMatch-Dropout.
While BPE- and MaxMatch-Dropout were not de-
signed to form (or even claimed to be) unbiased
distributions, here we concretely show that their
distributions are biased, under mild conditions.

Lemma 3.1. Let B = (V, µ) be a BPE tokenizer
such that there exists (a, b), (b, b), (b, c) ∈ µ with
(a, b) >µ (b, b) >µ (b, c) and abb, bbc, abbc /∈ V .
Then, there exists a word w ∈ Σ+ for which the
distribution of the dropout tokenizer B′(w) is non-
uniform for any p.

Proof. Since abb, bbc, abbc /∈ V , then
(ab, b), (a, bb), (b, bc) /∈ µ. Consider the
word abbc. There are 5 possible tokenizations
[a, b, b, c], [a, b, bc], [a, bb, c], [ab, b, c], [ab, bc].
We proceed by case analysis and compute the
probability of each, given a dropout probability p.

case [a, b, b, c] → p3

Merges (a, b), (b, b), and (b, c) must be
dropped which has probability p×p×p=p3.

case [a, b, bc] → p2(1− p)
Merges (a, b), and (b, b) must be dropped,
but not (b, c).

case [a, bb, c] → p(1− p)
Merge (a, b) must be dropped but not (b, b).
Merge (b, c) is irrelevant as (b, b) >µ (b, c).

3Note that α = 0 yields the uniform distribution, but this
would sample a tokenization of the entire sentence, rather than
word-by-word, and has been shown to harm model quality
(Kudo 2018; Figure 1).

case [ab, b, c] → (1− p)p

case [ab, bc] → (1− p)2

To be uniform, p3 = p2(1 − p) = p(1 − p) =
(1− p)2 = 1

5 , which does not exist. Hence, there
is no p such that B′(abbc) is uniform.

Lemma 3.2. Let M be a MaxMatch tokenizer over
vocabulary V , such that Σ ⊂ V and there exists a
token v ∈ V \ Σ which is a proper prefix of some
other token z = vy ∈ V . Then, there exists a word
w ∈ Σ+ for which the distribution of the dropout
tokenizer M′(w) is non-uniform for any p.

Proof. Consider the distribution of tokenizations
M′(z), under which the probability of z being the
final tokenization is (1 − p). Let the total num-
ber of tokenizations be n, and assume the distri-
bution is unbiased. The probability of the tok-
enization [v, y1, y2, . . . , yk] is (1− p)pk. Thus, the
distribution is only unbiased if (1 − p) = (1 −
p)pk = 1

n . Since there are at least 3 tokenizations
[z], [z1, z2, . . . , zn], and [v, y1, y2, . . . , yk], this is a
contradiction.

A consequence of Lemmas 3.1 and 3.2 is that it is
not even possible to form an unbiased sampler from
BPE- or MaxMatch-Dropout by simply picking a
different p for each input (contrary to the typical
implementation, which uses a fixed p for all inputs),
and so another approach must be used.

0 1a 2b 3a 4b 5c

(a) An automaton A representing ababc.

3

5

c:#bc

4
b:#ab

0 2

a:a
b:b
c:c

1

a:ε

b:ε

a:ε

a:#a
b:#b
c:#c

b:ab

b:ε

a:ε

a:#a
b:#b
c:#c

(b) A transducer T for the subword vocabulary
{a, b, c, ab, #a, #b, #c, #ab, #bc}.

0

2
ab

1a

5#ab

4

#a

3#b
#ab

#a

6

#c#b
#bc

(c) A lattice, A ◦ T , of all possible tokenizations of ababc.

Figure 1: Uniformly sampling tokenizations from A◦T .
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4 Uniformly Sampling Tokenizations

Given a subword vocabulary, we first produce a
character-to-subword finite-state transducer repre-
senting it. Encoding an input word as a linear finite-
state automaton and composing it with this trans-
ducer produces a lattice which encodes all possible
tokenizations. Since the word length is finite, this
lattice must be acyclic, and we can sample paths
from it using Algorithm 6 (Lavrov, 2018). An ex-
ample of the transducer construction, composition,
and sampling is shown in Figure 1.

Inputs: Word w, Tokenizer T , Probability p
Output: Tokenized sequence t ∈ V+

1: if RAND() ≤ p then
2: return UNIFORMSAMPLE(w)
3: else
4: return T (w)

Algorithm 3: Uniform Sampling Tokenization.

Given a baseline BPE or MaxMatch tokenizer,
we implement our uniform sampling tokenizer by
constructing a subword transducer from its sub-
word vocabulary and selecting a dropout proba-
bility p. During training, a word is tokenized via
uniform sampling with probability p and via the
deterministic tokenizer with probability 1− p, as
shown in Algorithm 3.

One of the reasons for the success of subword
regularization is that they expose the model to a
more diverse set of tokenizations (Section 2). Fig-
ure 2 shows that across any choice of p, even with
far fewer samples, a much more diverse set of tok-
enizations for a given word is observed when using
Uniform Sampling compared to Dropout, indicat-
ing that a model will be exposed to a far greater
number of unique contexts during training.

10
100

1000
10000Sa

m
pl

es

BPE-Dropout MaxMatch-Dropout

0 1Dropout p

10
100

1000
10000Sa

m
pl

es

BPE-Uniform

0 1Dropout p

MaxMatch-Uniform

One tokenization observed All tokenizations observed

Figure 2: The number of unique, observed tokenizations
of a word with N samples and dropout p.

5 Experiments

We use English↔German, English↔Romanian,
and English↔French as our translation tasks. For
each language pair, we train a baseline BPE and
MaxMatch tokenizer with the same vocabulary size
and use them to build Dropout and Uniform Sam-
pler variants so that the vocabulary between a base-
line tokenizer and its stochastic variants is exactly
the same and only the tokenization distribution is
different. We include a UnigramLM tokenizer with
the same vocabulary size as a learned-distribution
baseline.We use the same underlying transformer
model (Appendix A) for each language pair, and
only change the embedding and decoding layers,
according to the choice of tokenizer. We compare
tokenizer efficiency (via tokenization-scorer),
BLEU (Papineni et al., 2002; Post, 2018), CHRF
(Popović, 2015), and COMETDA-22 (Rei et al.,
2022) by averaging the results of three experimen-
tal runs per model. We use p = 0.1 for BPE-
Dropout, p = 0.3 for MaxMatch-Dropout, and
α = 0.3 for UnigramLM. These values were taken
from the literature where they have been shown
to perform well (Provilkov et al., 2020; Hiraoka,
2022; Kudo, 2018).4

For our smallest dataset, EN↔DE, we experi-
ment with the use of dropout with both the source-
and target-side tokenizers. However, for the largest,
EN↔FR, we use dropout only on the source side,
in line with other work which has shown target-
side dropout to not be helpful (and sometimes even
harmful) in high-resource settings (Provilkov et al.,
2020). For EN↔RO, which is in between the size
of the other two, we experiment with both settings.

For Uniform Sampling, we use p = 0.1 and
0.25, which were chosen as an estimate of the fre-
quency that a non-canonical tokenization of word
in BPE- and MaxMatch-Dropout was sampled, re-
spectively. Thus, we should expect Uniform Sam-
plers to have roughly the same amount of non-
canonically-tokenized-words in a corpus as BPE-
and MaxMatch-Dropout, so the salient difference
is the variety of tokenizations.

A subset of the results are shown in Table 1,
with the complete set appearing in Appendix C,
Table 5. In nearly every translation metric, Uni-
form Sampling outperforms BPE- and MaxMatch-

4We performed a small hyperparameter sweep of p for
MaxMatch- and BPE-Dropout found that, as p increases, per-
formance quickly degrades. This result matches what was
found in (Provilkov et al. 2020; Figure 2) and (Hiraoka 2022;
Figure 2).
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Tokenizer Efficiency BLEU CHRF COMET

BPE 0.4636 28.44 55.80 76.22
BPE + Dropout (p=0.1) 0.4747 29.37 56.63 77.51
BPE + Uniform (p=0.1) 0.4731 30.05 56.37 78.12
BPE + Uniform (p=0.25) 0.4719 30.16 56.47 78.08

MaxMatch 0.4584 28.41 55.97 76.57
MaxMatch + Dropout (p=0.3) 0.4530 29.13 56.43 77.38
MaxMatch + Uniform (p=0.1) 0.4657 29.18 56.43 77.76
MaxMatch + Uniform (p=0.25) 0.4633 29.43 56.57 77.62

Unigram (α=1) 0.4452 28.40 55.93 76.66
Unigram (α=0.3) 0.3796 28.97 56.33 77.44

(a) English→German (source+target dropout)

Tokenizer Efficiency BLEU CHRF COMET

BPE 0.4524 23.56 53.20 81.03
BPE + Dropout (p=0.1) 0.4614 23.98 53.70 81.90
BPE + Uniform (p=0.1) 0.4594 23.83 53.67 82.00
BPE + Uniform (p=0.25) 0.4647 24.13 53.73 82.20

MaxMatch 0.4476 23.52 53.23 81.17
MaxMatch + Dropout (p=0.3) 0.4578 23.95 53.70 81.98
MaxMatch + Uniform (p=0.1) 0.4528 24.32 53.90 82.11
MaxMatch + Uniform (p=0.25) 0.4563 24.10 53.87 82.06

Unigram (α=1) 0.4338 23.68 53.37 81.28
Unigram (α=0.3) 0.4284 24.17 53.87 82.00

(b) English→Romanian (source only dropout)

Table 1: Experimental results for EN→DE and
EN→RO. In each block, we compare a baseline tok-
enizer with its dropout and uniform sampling variants.
Each group has the same vocabulary and differs only
in the tokenization distribution. The best performing
model for each baseline and metric is bolded. The full
results for all languages is in Appendix C.

Dropout. However, curiously, Uniform Sampling
does not always have higher efficiency than BPE-
or MaxMatch-Dropout (but is always higher than
the baseline), as Uniform Sampling guarantees
maximum entropy at the word-tokenization level,
which does not necessarily translate to the global-
tokenization entropy.

There is only one metric (EN→DE, BPE, CHRF)
where a Uniform Sampling model is not the best.
However, in that same case, the Uniform Sam-
pler improved upon the BPE-Dropout model by
0.8 BLEU, which is nearly as much as the BPE-
Dropout improved upon the BPE baseline. In ad-
dition, the +0.61 increase in COMETDA-22 cor-
responds to a 82% agreement accuracy with hu-
mans (Kocmi et al., 2024). In the EN→RO pair,
Uniform Sampling models were the best across
all metrics and underlying tokenizers. Further,
Uniform Sampling consistently outperforms Un-
igramLM both in terms of raw translation quality
metrics and improvement over the deterministic

baseline. In line with other research, the effects
of subword tokenization lessen as the dataset size
grows (Provilkov et al., 2020). Still, the observed
improvements extend to our full experimental re-
sults (Appendix C) and support our hypothesis that
an unbiased tokenizer should generally outperform
biased dropout tokenizers.

6 Conclusion

We investigate the distributions induced by BPE-
and MaxMatch-Dropout, two popular subword reg-
ularization schemes. We hypothesize and show
that BPE- and MaxMatch-Dropout are subopti-
mal in that they form heavily biased distributions.
We introduce a Uniform Sampler tokenizer, which
guarantees uniform distributions and consistently
outperforms BPE- and MaxMatch-Dropout on ma-
chine translation tasks.

Future work. Uniform Sampling is uniform at
the word level, but past research suggests that
uniformity at the global unigram level is desired
(Gutierrez-Vasques et al., 2021; Zouhar et al.,
2023). Therefore, algorithms could be designed
to directly optimize global uniformity. Further in-
vestigations should reconcile how both Uniform
Sampling and UnigramLM improve performance
despite their opposing motivations (higher/lower
entropy).

Limitations

We did not establish statistical significance for our
results, but note that the trend holds across lan-
guage pairs, tokenizers, and metrics. We did not
do substantial hyperparameter searching for vocab-
ulary size or dropout rates, but rather used values
that commonly appear in the literature. It is possi-
ble that some trends in our results may change with
different choices of tokenization hyperparameters.

We also did not experiment with extremely-low
resource settings (our smallest setting, EN↔DE
has 150k sentence pairs), or very large settings (our
largest, EN↔FR, has 2M sentence pairs). Addi-
tionally, in our largest case, the improvement seen
by Uniform Sampling are less consistent and less
significant. However, this is in line with prior re-
search that shows the diminishing effectiveness of
subword regularization as the corpus size increases.
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A Training Details

We use fairseq (Ott et al., 2019) for language
modeling, HuggingFace’s tokenizers library for
our underlying BPE and MaxMatch tokenizers, and
OpenFst (Allauzen et al., 2007) for the subword
lattice construction. For UnigramLM, we used Sen-
tencePiece (Kudo and Richardson, 2018). We used
fairseq’s transformer_iwslt_de_en architec-
ture for EN↔DE, and the baseline transformer
architecture for EN↔RO and EN↔FR. The hyper-
parameters and optimizer configuration are given
in Tables 2, 3, and 4. Our datasets were:
• EN↔DE: 160k, IWSLT14 (Cettolo et al., 2014)
• EN↔RO: 600k, WMT16 (Bojar et al., 2016)
• EN↔FR: 2M, Europarl (Koehn, 2005)

Vocabulary Sizes (src, tgt) EN↔DE: (10k, 10k)
Embedding Dimension 512
FFN Dimension 1024
Number of Heads 4
Number of Layers 6
Dropout 0.3

Table 2: The transformer_iwslt_en_de architecture,
used for the English↔German task.

Vocabulary Sizes (src, tgt)
EN↔RO: (14k, 14k)
EN↔FR: (30k, 30k)

Embedding Dimension 512
FFN Dimension 2048
Number of Heads 6
Number of Layers 8
Dropout 0.1

Table 3: The transformer architecture, used for the
English↔Romainan and English↔French tasks.

Optimizer ADAM
β1, β2 (0.9, 0.98)
Learning Rate 5× 10−4

Warmup 4000 steps
Scheduler Inverse Square Root
Tokens-per-batch 8192

Patience
EN↔DE: 8
EN↔RO: 10
EN↔FR: 5

Table 4: The optimizer parameters, used for all tasks.

B Algorithms

Algorithms 5 and 6 are simply a reference for sam-
pling uniformly from a DAG. As a rejection sam-
pling scheme, their runtime depends heavily on the
underlying DAG. In our implementation, we use a
more efficient linear time (in the input length) sam-
pling algorithm. We were unable to find a reference
for this algorithm in the literature, and including it
here it is outside of the scope of the paper.

Inputs: Corpus C, Alphabet Σ, Target size n,
Outputs: Vocabulary V , Merges µ
1: V ← Σ
2: for i ∈ 1 . . . n do
3: (x, y)← argmax

a,b∈V
COUNT((a, b), C)

4: V ← V ∪ {xy}
5: µ← µ ∪ ⟨(x, y)⟩
6: C ← REPLACE((x, y)→ xy, C)
7: return V, µ

Algorithm 4: BPE Training.

Inputs: Directed Acyclic Graph D,
Outputs: Path π, Path-probability p
1: π ← ⟨ ⟩
2: p← 1
3: CUR ← qstart
4: while CUR is not final do
5: (w, q) ∼ UNIFORM(ADJ(CUR))
6: APPEND(π, (CUR, w, q))
7: p← p× 1

DEG(CUR)

8: CUR ← q

9: return π, p

Algorithm 5: Biased DAG Sampling.

Inputs: Directed Acyclic Graph D,
Output: Path π

1: pmin =
∏

q∈D

1
DEG(q)

2: (π, p) ∼ BIASEDSAMPLE(D)
3: while RAND() > pmin

p
do

4: (π, p) ∼ BIASEDSAMPLE(D)

5: return π

Algorithm 6: Unbiased DAG Sampling.
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Figure 3: Distribution uniformity measured by Shannon
Efficiency (higher=more uniform; excludes the canoni-
cal form, which takes up most of the probability mass).
Our Uniform Sampling versions guarantee balanced
sampling of tokenizations, which is not true for the
standard Dropout versions whose balance depends non-
linearly on the dropout rate p.
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C Full Experiments

Tokenizer Efficiency BLEU CHRF COMET

BPE 0.4636 33.66 57.10 79.30
BPE + Dropout (p=0.1) 0.4747 35.06 58.07 80.51
BPE + Uniform (p=0.1) 0.4731 35.03 57.97 80.46
BPE + Uniform (p=0.25) 0.4719 35.22 58.13 80.57

MaxMatch 0.4584 33.85 57.17 79.48
MaxMatch + Dropout (p=0.3) 0.4530 34.92 57.87 80.37
MaxMatch + Uniform (p=0.1) 0.4657 35.17 58.10 80.60
MaxMatch + Uniform (p=0.25) 0.4633 35.32 58.13 80.71

Unigram (α=1) 0.4452 33.37 56.77 79.43
Unigram (α=0.3) 0.3796 34.24 57.70 80.31

(a) German→English (source+target dropout)

Tokenizer Efficiency BLEU CHRF COMET

BPE 0.4636 28.44 55.80 76.22
BPE + Dropout (p=0.1) 0.4747 29.37 56.63 77.51
BPE + Uniform (p=0.1) 0.4731 30.05 56.37 78.12
BPE + Uniform (p=0.25) 0.4719 30.16 56.47 78.08

MaxMatch 0.4584 28.41 55.97 76.57
MaxMatch + Dropout (p=0.3) 0.4530 29.13 56.43 77.38
MaxMatch + Uniform (p=0.1) 0.4657 29.18 56.43 77.76
MaxMatch + Uniform (p=0.25) 0.4633 29.43 56.57 77.62

Unigram (α=1) 0.4452 28.40 55.93 76.66
Unigram (α=0.3) 0.3796 28.97 56.33 77.44

(b) English→German (source+target dropout)

Tokenizer Efficiency BLEU CHRF COMET

BPE 0.4034 40.86 64.57 86.39
BPE + Dropout (p=0.1) 0.4137 40.96 64.57 86.50
BPE + Uniform (p=0.1) 0.4139 41.10 64.70 86.52
BPE + Uniform (p=0.25) 0.4259 40.86 64.57 86.36

MaxMatch 0.4003 41.02 64.70 86.48
MaxMatch + Dropout (p=0.3) 0.4186 40.88 64.57 86.47
MaxMatch + Uniform (p=0.1) 0.4094 41.04 64.70 86.54
MaxMatch + Uniform (p=0.25) 0.4194 40.80 64.50 86.38

Unigram (α=1) 0.3801 40.59 64.43 86.27
Unigram (α=0.3) 0.3773 40.71 64.53 86.36

(c) French→English (source only dropout)

Tokenizer Efficiency BLEU CHRF COMET

BPE 0.4034 41.27 65.77 86.86
BPE + Dropout (p=0.1) 0.4137 41.45 65.90 87.08
BPE + Uniform (p=0.1) 0.4139 41.54 65.93 87.04
BPE + Uniform (p=0.25) 0.4259 41.35 65.83 87.03

MaxMatch 0.4003 41.38 65.87 87.00
MaxMatch + Dropout (p=0.3) 0.4186 41.24 65.80 86.95
MaxMatch + Uniform (p=0.1) 0.4094 41.44 65.93 87.07
MaxMatch + Uniform (p=0.25) 0.4194 41.22 65.77 86.93

Unigram (α=1) 0.3801 40.47 65.27 86.36
Unigram (α=0.3) 0.3773 40.15 65.00 86.08

(d) English→French (source only dropout)
Tokenizer Efficiency BLEU CHRF COMET

BPE 0.4524 30.81 57.30 77.77
BPE + Dropout (p=0.1) 0.4614 32.13 58.17 79.50
BPE + Uniform (p=0.1) 0.4594 31.92 58.13 79.64
BPE + Uniform (p=0.25) 0.4647 31.85 58.23 79.54

MaxMatch 0.4476 31.01 57.23 78.03
MaxMatch + Dropout (p=0.3) 0.4578 31.90 58.13 79.63
MaxMatch + Uniform (p=0.1) 0.4528 32.02 58.37 79.81
MaxMatch + Uniform (p=0.25) 0.4563 31.83 58.33 79.74

Unigram (α=1) 0.4338 30.34 56.97 77.74
Unigram (α=0.3) 0.4284 31.53 58.07 79.40

(e) Romanian→English (source only dropout)

Tokenizer Efficiency BLEU CHRF COMET

BPE 0.4524 23.56 53.20 81.03
BPE + Dropout (p=0.1) 0.4614 23.98 53.70 81.90
BPE + Uniform (p=0.1) 0.4594 23.83 53.67 82.00
BPE + Uniform (p=0.25) 0.4647 24.13 53.73 82.20

MaxMatch 0.4476 23.52 53.23 81.17
MaxMatch + Dropout (p=0.3) 0.4578 23.95 53.70 81.98
MaxMatch + Uniform (p=0.1) 0.4528 24.32 53.90 82.11
MaxMatch + Uniform (p=0.25) 0.4563 24.10 53.87 82.06

Unigram (α=1) 0.4338 23.68 53.37 81.28
Unigram (α=0.3) 0.4284 24.17 53.87 82.00

(f) English→Romanian (source only dropout)

Tokenizer Efficiency BLEU CHRF COMET

BPE 0.4524 30.81 57.30 77.77
BPE + Dropout (p=0.1) 0.4672 32.48 58.87 80.29
BPE + Uniform (p=0.1) 0.4615 32.46 58.87 80.26
BPE + Uniform (p=0.25) 0.4562 32.83 59.07 80.71

MaxMatch 0.4476 31.01 57.23 78.03
MaxMatch + Dropout (p=0.3) 0.4465 32.89 59.03 80.69
MaxMatch + Uniform (p=0.1) 0.4544 32.83 58.97 80.36
MaxMatch + Uniform (p=0.25) 0.4484 33.03 59.13 80.65

Unigram (α=1) 0.4338 30.29 57.07 0.7774
Unigram (α=0.3) 0.4061 32.30 58.70 0.8011

(g) Romanian→English (source+target dropout)

Tokenizer Efficiency BLEU CHRF COMET

BPE 0.4524 23.56 53.20 81.03
BPE + Dropout (p=0.1) 0.4672 24.85 54.30 82.71
BPE + Uniform (p=0.1) 0.4615 24.78 54.30 83.03
BPE + Uniform (p=0.25) 0.4562 24.77 54.00 82.67

MaxMatch 0.4476 23.52 53.23 81.17
MaxMatch + Dropout (p=0.3) 0.4465 25.02 54.20 82.67
MaxMatch + Uniform (p=0.1) 0.4544 24.77 54.40 83.08
MaxMatch + Uniform (p=0.25) 0.4484 25.16 54.33 83.00

Unigram (α=1) 0.4338 23.61 53.23 0.8114
Unigram (α=0.3) 0.4061 24.61 54.13 0.8274

(h) English→Romanian (source+target dropout)

Table 5: The main results of machine translation performance (average across 3 seeds). In almost all cases the
Uniform sampling yields the best results.
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D Examples of Distributions from Data

BPE-Dropout p=0.1

something 96.50%
some thing 1.60%
so met hing 1.52%
so m et hing 0.16%
so me thing 0.09%
som eth ing 0.03%
s ome thing 0.03%
so m eth ing 0.03%
somet hing 0.01%
some th ing 0.00%

MaxMatch-Dropout p=0.3

something 69.85%
somet hing 14.79%
somet hi n g 4.54%
some thing 4.35%
somet h ing 1.31%
some th ing 0.93%
som eth ing 0.91%
some t hing 0.42%
somet h in g 0.38%
some th in g 0.29%

BPE-Dropout p=0.1

started 97.56%
star ted 2.15%
star te d 0.11%
start ed 0.07%
st ar ted 0.05%
st art ed 0.02%
s ta r ted 0.02%
star t ed 0.01%
s ta r t ed 0.00%
s t art ed 0.00%

MaxMatch-Dropout p=0.3

started 69.97%
start ed 14.88%
start e d 6.21%
star ted 4.37%
star te d 1.33%
st art ed 0.91%
star t ed 0.42%
s ta r ted 0.39%
st art e d 0.39%
st ar ted 0.26%

BPE-Dropout p=0.1

percent 73.54%
per c ent 8.83%
per cent 8.12%
perce nt 7.84%
per ce nt 0.88%
p er c ent 0.18%
p er ce n t 0.12%
p er cent 0.11%
pe r cent 0.10%
per ce n t 0.09%

MaxMatch-Dropout p=0.3

percent 69.93%
perce nt 14.61%
perce n t 6.40%
per cent 4.53%
pe r cent 1.33%
per ce nt 0.90%
per ce n t 0.39%
p er cent 0.38%
per c ent 0.37%
pe r ce nt 0.26%

BPE-Dropout p=0.1

different 82.44%
dif fe rent 8.74%
diff ere nt 8.05%
differ ent 0.29%
dif fe re nt 0.20%
dif f ere nt 0.13%
dif fer ent 0.07%
d iff ere nt 0.03%
d if fer ent 0.03%
di ff er ent 0.01%

MaxMatch-Dropout p=0.3

different 69.95%
differ ent 14.74%
differ en t 4.44%
diff ere nt 3.05%
differ e nt 1.36%
diff ere n t 1.27%
dif fer ent 0.94%
diff er ent 0.94%
differ e n t 0.56%
diff e rent 0.41%

BPE-Dropout p=0.1

together 88.88%
to ge ther 9.94%
to get her 0.95%
tog ether 0.08%
to ge t her 0.07%
to g ether 0.03%
to ge th er 0.03%
tog e ther 0.00%
t og ether 0.00%
tog eth er 0.00%

MaxMatch-Dropout p=0.3

together 69.99%
tog ether 14.68%
tog eth er 3.12%
to get her 3.05%
t og ether 1.35%
tog eth e r 1.33%
to ge ther 0.95%
tog et her 0.94%
to get he r 0.90%
t o get her 0.41%

BPE-Dropout p=0.1

happening 95.11%
happen ing 1.93%
ha pp ening 1.71%
happ ening 0.91%
ha pp en ing 0.16%
happ en ing 0.08%
h app en ing 0.03%
happ e ning 0.03%
ha pp e ning 0.02%
h app ening 0.01%

MaxMatch-Dropout p=0.3

happening 70.05%
happen ing 14.80%
happen in g 4.46%
happ ening 4.26%
happen i n g 1.83%
ha pp ening 0.94%
happ en ing 0.89%
h app ening 0.44%
happ e ning 0.40%
ha p pe ning 0.27%

Example 2: Frequencies of tokenizations of several words sampled from BPE-Dropout (with p = 0.1) and
MaxMatch-Dropout (with p = 0.3). The top row in each is the canonical tokenization.
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