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Abstract

Aspect-based sentiment analysis (ABSA) aims
to predict the sentiment polarity of a specific
aspect within a given sentence. Most exist-
ing methods predominantly leverage seman-
tic or syntactic information based on attention
scores, which are susceptible to interference
caused by irrelevant contexts and often lack
sentiment knowledge at a data-specific level. In
this paper, we propose a novel Dynamic Multi-
granularity Attribution Network (DMAN) from
the perspective of attribution. Initially, we lever-
age Integrated Gradients to dynamically extract
attribution scores for each token, which con-
tain underlying reasoning knowledge for senti-
ment analysis. Subsequently, we aggregate at-
tribution representations from multiple seman-
tic granularities in natural language, enhanc-
ing a profound understanding of the seman-
tics. Finally, we integrate attribution scores
with syntactic information to capture the re-
lationships between aspects and their relevant
contexts more accurately during the sentence
understanding process. Extensive experiments
on five benchmark datasets demonstrate the ef-
fectiveness of our proposed method.

1 Introduction

Aspect-based sentiment analysis (ABSA) is a fine-
grained classification task that focuses on identify-
ing the sentiment polarity of specific aspects within
a sentence (Jiang et al., 2011; Pontiki et al., 2014).
For instance, given a sentence “The street is very
crowded, but the atmosphere is pleasant”, the task
aims to predict sentiment polarity associated with
two aspects “street” and “atmosphere”, which are
negative and positive respectively.

The core challenge of ABSA is to model the
correlations between the specific aspect and its con-
texts, especially those parts that express opinions
and sentiments. To this end, various studies (Tang
et al., 2016; Fan et al., 2018; Chen et al., 2020;
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Figure 1: (a) Attention mechanism assigns high scores
to words unrelated to aspect service. (b) When predict-
ing sentiment polarity for aspect “movie”, we construct
attention weights on irrelated words and overlook opin-
ion words, but still yield right prediction.

Zhang et al., 2021) concentrate on attention mecha-
nisms to model the relationships between an aspect
and its contexts. In addition, many methods (Zhang
et al., 2019a; Tang et al., 2020; Li et al., 2021;
Zhang et al., 2022c) leverage syntactic information
derived from dependency trees to better capture
the interactions between aspects and opinion ex-
pressions. With the development of the fine-tuning
paradigm, methods incorporating Pre-trained Lan-
guage Models (PLMs) (Zhang et al., 2022b; Yin
and Zhong, 2024; Sun et al., 2024) have demon-
strated impressive results in ABSA. Despite these
significant advancements, critical challenges per-
sist when directly applying attention mechanisms
or syntactic information to this fine-grained task.

Specifically, attention-based methods may inap-
propriately assign high attention scores to words
that are irrelevant to the aspect. Li et al. (2021);
Zhang et al. (2022c); Ma et al. (2023) propose
that’s because attention mechanisms are usually
vulnerable to noise within sentences. Considering
the sentence in Figure 1 (a), the aspect “service” re-
ceives disproportionately high attention scores for
the unrelated opinion words “pretty” and “good”.
Furthermore, some research that focuses on the
interpretability of attention mechanisms (Serrano
and Smith, 2019; Jain and Wallace, 2019; Bibal
et al., 2022) have indicated that attention scores do
not always correlate with significance. Serrano and
Smith (2019) have discovered that removing fea-
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tures deemed important by attention scores leads to
less prediction flip than gradient-based strategies.
Besides, Jain and Wallace (2019) have observed
shuffling the attention weights often does not af-
fect the final prediction, which is consistent with
our observations that are shown in Figure 1 (b). To
sum up, while attention mechanisms have improved
the performance of ABSA, they often operate as a
black box, leaving their ability to accurately cap-
ture critical opinion words remains debatable. This
underscores the need for methods that efficiently
capture keywords for reasoning sentiment polarity.
Additionally, although leveraging syntactic knowl-
edge can help model the correlations between the
aspect and the contexts, it is important to recognize
that not all syntactic information is equally benefi-
cial to this fine-grained task. More concretely, syn-
tactic information irrelevant to the specific aspect
can be redundant and may even introduce noise
rather than provide valuable insights. Therefore,
it is crucial to focus on extracting relevant syntac-
tic information, emphasizing the identification of
essential words within sentences.

To address the aforementioned issues, we intro-
duce attribution analysis into ABSA and propose
a Dynamic Multi-granularity Attribution Network
(DMAN). Attribution information reflects the im-
portance of different tokens towards the prediction,
which contains reasoning knowledge of the sen-
timent at a data-specific level. Initially, we em-
ploy Integrated Gradients (IG) (Sundararajan et al.,
2017), a well-established gradient-based attribution
method, to compute the importance scores of to-
kens. Inspired by the observation (Brouwer et al.,
2021; Zhang et al., 2022b) that the significance of
essential words dynamically changes during seman-
tic comprehension, we design multi-step attribution
analysis to capture the dynamic significance of to-
kens during the comprehension process. More con-
cretely, we utilize stacked self-attention blocks in
conjunction with IG to calculate attribution scores
for each layer and adopt a Top-K strategy to filter
out dimensions with low values, thereby reducing
the impact of trivial dimensions. Subsequently, we
incorporate semantic representations at both token
and span levels to derive multi-granularity attribu-
tion scores, ensuring more comprehensive semantic
concepts. Finally, we construct the adjacency ma-
trices based on the dependency tree, and then use
obtained attribution scores to initialize different
adjacency matrices for different layers of GCNs,

which facilitates the dynamic capture of critical
syntactic knowledge during throughout the process
of sentence comprehension.

In summary, our contributions could be summa-
rized as follows:

• To the best of our knowledge, we are the
first to introduce attribution analysis into the
ABSA task, which provides data-specific in-
sights for reasoning sentiment polarity.

• We propose a novel model DMAN that lever-
ages IG to dynamically extract attribution
scores of tokens from multi-granularity per-
spectives. Furthermore, we integrate these
scores with syntax to capture essential syntac-
tic elements during sentence comprehension.

• Extensive experiments on five public bench-
mark datasets show the effectiveness and in-
terpretability of our proposed DMAN1.

2 Related Works

2.1 Aspect-based Sentiment Analysis

The goal of ABSA is to identify the sentiment polar-
ity of the specific aspect in the sentence. In recent
years, various approaches have utilized attention
mechanisms to investigate the semantic correla-
tions between contexts (Tang et al., 2016; Wang
et al., 2016; Ma et al., 2017; Fan et al., 2018; Tan
et al., 2019; Zhang et al., 2019b; Pang et al., 2021;
Zhang et al., 2021). For instance, Ma et al. (2017)
proposed interactive attention networks to learn
correlations in contexts and targets interactively.
Fan et al. (2018) exploited a novel multi-grained at-
tention network to capture the interaction between
aspects and contexts. Tan et al. (2019) designed
dual attention mechanisms to distinguish conflict-
ing opinions. Zhang et al. (2021) proposed a cross-
domain feature learning module with an aspect-
oriented multi-head attention mechanism.

In addition, various approaches (Zhang et al.,
2019a; Huang and Carley, 2019; Wang et al., 2020;
Tang et al., 2020; Li et al., 2021; Tian et al., 2021;
Zhang et al., 2022a; Yin and Zhong, 2024) propose
different methods that leverage syntactic knowl-
edge to model relationships between aspects and
contexts. For instance, Wang et al. (2020) proposed
a relational graph attention network to encode the
new tree structure. Li et al. (2021) designed a

1Code is available at https://github.com/yjchen218/DMAN
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dual graph convolutional network to model syn-
tax structures and semantic correlations simultane-
ously. Tian et al. (2021) exploited an approach to
explicitly utilize dependency types with type-aware
graph convolutional networks, and Yin and Zhong
(2024) proposed a double-view graph Transformer
to alleviate the over-smoothing problem.

The core idea underlying these methods is to
comprehend the semantics and syntax of sentences,
thereby directing greater attention to significant
words. Distinct from these approaches, our study
pioneers the investigation of ABSA from an attribu-
tion perspective, exploring the reasoning processes
behind sentiment polarity at a data-specific level.

2.2 Attribution Analysis

The purpose of attribution analysis (Baehrens et al.,
2010; Ancona et al., 2018; Brunner et al., 2020) is
to assign importance scores to the intermediate or
input elements of a network, which matches well
with the objectives of sentiment analysis. There are
various types of attribution methods. Occlusion-
based techniques (Zeiler and Fergus, 2014) deter-
mine the significance of each feature by occluding
it and comparing the resulting output to the origi-
nal. Gradient-based methods (Sundararajan et al.,
2017; Ding et al., 2019; Serrano and Smith, 2019;
Brunner et al., 2020; Bibal et al., 2022) use the
gradient information of features to approximate
their importance. Compared to occlusion-based
methods, gradient-based methods are generally ef-
fective because they require only a single forward
pass. Perturbation-based methods (Guan et al.,
2019; De Cao et al., 2020; Ivanovs et al., 2021)
add noise to features to evaluate their significance
for model predictions.

Attribution analysis has not been extensively ex-
plored in aspect-based sentiment analysis. In our
work, we take the initiative to investigate whether
attribution analysis can enhance ABSA perfor-
mance and provide more reliable interpretations.

3 Methods

In this section, we describe our proposed DMAN
in detail. Specifically, we begin with the problem
definition, followed by the encoder module and the
overall architecture of our DMAN.
Problem Definition. Given a sentence-aspect pair
(s, a), where s = {w1, w2, ..., wn} is a sentence
with n words, and a = {a1, a2, ..., am} is the given
aspect with m words. ABSA aims to predict the

sentiment polarity of the aspect a in the sentence s.
Encoder. We utilize BERT as the sentence encoder
to extract aspect-specific context representations.
We construct input as “[CLS] s [SEP ] a [SEP ]”
to map each word into a real-value vector, obtain-
ing sentence embedding E0 = {e1, e2, ..., en} and
aspect embedding Ea = {ea1 , ea2 , ..., eam}.
Overall Architecture. As illustrated in Figure
2, our proposed Dynamic Multi-granularity Attri-
bution Network mainly comprises three primary
components: (1) Multi-step Attribution Extraction,
(2) Multi-granularity Attribution, and (3) Dynamic
Syntax Concentration. The technical details will
be elaborated on as follows.

3.1 Multi-step Attribution Extraction

Integrated Gradients. Sundararajan et al. (2017)
proposed IG for attributing the prediction of a deep
network to its input or intermediate features. For-
mally, suppose a function F to represent a network,
and let x = [x1, x2, ..., xn] be the input feature
and x′ = [x′1, x

′
2, ..., x

′
n] be the baseline feature,

IG considers the straight line path from x′ to x
and aggregate the gradients at all points along the
path. The Integrated Gradients of i-th dimension is
defined as IGi(F, x) as follows:

IGi(F, x) = (xi−x′
i)×

∫ 1

α=0

∂F (x′ + α× (x− x′
i))

∂xi
dα.

(1)

Attribution Extraction. In this study, we design
a stacked self-attention architecture to facilitate se-
mantic comprehension and dynamically capture
attribution knowledge at each layer. Unlike tradi-
tional methods that utilize attention mechanisms
for final classification, we treat the attention layers
as black boxes for semantic understanding, concen-
trating on the gradient variations of tokens. Specif-
ically, given sentence embedding E0 from the en-
coder, we process it through multiple blocks con-
sisting of Self-Attention and Feed-Forward Net-
works (FFN), which can be formulated as follows:

E′
l = softmax

(
(El−1W

q
l )(El−1W

k
l )

T

√
dk

)
El−1W

v
l , (2)

El = max(0, E′
lW

1
l + b1l )W

2
l + b2l , (3)

where W k
l , W q

l , W v
l , W 1

l , W 2
l are learnable model

parameters of l-th layer, and El ∈ {el1, el2, ..., eln}
is the product of l-th layer while El−1 is the output
from the preceding layer.
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Sentence: The roast chicken is so delicious.
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Figure 2: The overall architecture of our proposed DMAN, which consists of three modules arranged from left to
right: Multi-step Attribution Extraction, Multi-granularity Attribution, and Dynamic Syntax Concentration.

Subsequently, we map the final output from the
stacked architecture into a probability distribution
Pc = [P1, ..., PC ] ∈ RC , where c presents the sen-
timent polarity labels. In our approach, we denote
the function E → P c as F c, and we conduct ex-
haustive attribution analysis for each dimension of
input features and obtain attribution scores of i-th
token, which could be denoted as IGi:

IGi(F
c, E) =

m∑

j=1

IGij(F
c, E)

(4)

=
m∑

j=1

(eij − e′ij)×
∫ 1

α=0

∂F c(e′ij + α× (eij − e′ij))

∂eij
dα.

During the process, we employ an efficient ap-
proximation technique for estimating integral cal-
culations, which significantly enhances computa-
tional efficiency. The approximated method can be
formulated as a discrete summation:

IGij(F
c, E) ≈

T∑

t=1

< ∇eiF
c(e′ij +∆ek), (eij − e′ij) >

=
(eij − e′ij)

T
×

T∑

t=1

∂F c(e′ij +
t
T
× (eij − e′ij))

∂eij
. (5)

In our implementation, we use zero vectors as
baseline features to reflect the significance of each
token. In our approach, we do not consider the
sign to avoid cancellation when summing up at-
tribution scores of individual dimensions. Specif-
ically, we utilize absolute values to aggregate at-
tributions across each dimension, thereby deriving

token-level attribution values. Moreover, It is in-
tuitive to recognize that not all dimensions hold
equal significance, and selecting the crucial dimen-
sions becomes essential. During the computational
process, we have observed that certain dimensions
consistently maintain low values, failing to differ-
entiate between various tokens or attribution stages
effectively. Therefore, we employ the Top-K algo-
rithm to filter out dimensions with low attribution
influence, which is denoted as:

IG′
i(F

c, E) = | TopK(IGi(F
c, E)) |. (6)

In our method, attribution analysis is conducted
on each self-attention block to thoroughly eluci-
date the dynamic semantic comprehension. The
attribution values of k-th layer is denoted as Vk:

Vk = ∥ni=1 IG′
i(F

c, Ek), (7)

where ∥ represents the concatenation operation and
Vk ∈ {vk1 , vk2 , ..., vkn}.

3.2 Multi-granularity Attribution
Most existing ABSA approaches focus on single
granularity representations, overlooking that texts
are comprehensive representations constructed
across multiple granularity levels (i.e., token, span,
sentence). To the end, our method extracts attribu-
tion from both token and span granularities, provid-
ing hierarchical information that aids in a deeper
understanding of the underlying motivations be-
hind sentiments.

The first granularity is the token-level. Given
the vector Vk, vki represents the attribution value of

10923



the i-th token, offering a fine-grained level repre-
sentation. The second granularity is the span-level,
which may consist of consecutive words. To en-
sure semantic coherence, we extract phrases that
convey complete meaning as a span. For instance,
in the sentence “The Mona Lisa is a famous paint-
ing housed in the Louvre Museum”, “Mona Lisa”
and “Louvre Museum” are two meaningful spans.
For a sentence with n tokens, we utilize spaCy2

toolkit to construct spans sspan = [s1, s2, ..., sn],
where si = [wj , ..., wj+qi−1] denotes that i-th to-
ken belongs to a span starting at the j-th token and
containing qi tokens. Subsequently, for tokens be-
longing to the same span, we employ mean pooling
to obtain span-level attribution values:

v̂ki = (
∑j+qi−1

j
vkj ) / qi, (8)

where v̂ki is the span-granularity attribution of i-th
token, and V̂k = {v̂k1 , v̂k2 , ..., v̂kn}. Then, we design
a simple linear operation to integrate token-level
and span-level attribution values:

V k = (αVk + (1− α)V̂k)/τk, (9)

where V k is integrated multi-granularity attribution
scores of k-th layer, α and τk is the coefficient
hyperparameter of the k-th layer.

3.3 Dynamic Syntax Concentration

Leveraging syntactic information has significantly
improved the performance of ABSA (Tang et al.,
2020; Li et al., 2021; Zhang et al., 2022c). How-
ever, we propose that syntactic information within
a sentence does not always hold equal importance.
As semantic understanding is a dynamic process,
the critical syntactic elements also change dynami-
cally in response to this process.

In this module, we adjust dependency relation-
ship graphs based on multi-step attribution scores
to achieve dynamic syntax concentration. Specifi-
cally, we construct adjacent matrix A according to
the dependency tree derived from spaCy:

Aij =

{
1 if link(i, j) = True or i = j,
0 otherwise,

(10)
where link(i, j) represents whether i-th and j-th
token have a dependency relationship. To model
the dynamic changes of key syntactic information
during sentence comprehension, we utilize attribu-
tion V k to derive the dynamic adjacency matrix

2We use spaCy toolkit: https://spacy.io/

Datasets Positive Neutral Negative

Train Test Train Test Train Test

Lap14 994 341 464 169 870 128
Rest14 2164 728 637 196 807 196
Rest15 912 326 36 34 256 182
Rest16 1240 469 69 30 439 117
MAMS 3380 400 5042 607 2764 329

Table 1: The statistics of five benchmark datasets.

Ak. Then, we employ GCNs to capture syntactic
knowledge, which can be formulated as:

Ak = V k ⊗A, (11)

hki = ReLU(
n∑

j=1

Ak
ijW

khk−1
j + bk ), (12)

where hki is the i-th token representation of k-
th GCN, W k and bk are learnable parameters.
The output of the k-th layer is denoted as Hk =
{hk0, hk1, ..., hkn}, and we take initial input H0 =
E0, which comes from the encoder of attribution
module. With these above calculations, we finally
obtain dynamic syntax-enhanced representations
H for subsequent classification.

3.4 Model Training
Attribution Analysis. To ensure that the stacked
self-attention architecture provide valid attribution
knowledge, we first fine-tune the attribution mod-
ule. Specifically, we map the final representation
into a probability distribution P , and apply the fol-
lowing function to train attribution module:

LA = −
M∑

i=1

C∑

c=1

yci log (p
c
i ) , (13)

where yci is the ground truth label, C is the number
of labels, M is the number of training samples.
Sentiment Classification. After obtaining dy-
namic syntax-enhanced representation H , we con-
catenate it with sentence semantic representation
Ek to get the final sentiment classification features.
Then we map it to the probabilities over sentiment
polarities through a softmax layer:

z = [H, Ek], (14)

ŷ = softmax(Wzz + bz), (15)

where Wz and bz are trainable parameters. Finally,
we use cross-entropy loss as our objective function:

L = −
M∑

i=1

C∑

c=1

yci log (ŷ
c
i ) . (16)
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Models Lap14 Rest14 Rest15 Rest16 MAMs

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

BERT-SPC (Song et al., 2019) 78.99 75.03 84.46 76.98 83.40 65.28 89.54 70.47 80.11 80.34
R-GAT (Wang et al., 2020) 78.21 74.07 86.60 81.35 81.80 68.21 89.51 75.81 82.93 82.75
DGEDT (Tang et al., 2020) 79.80 75.60 86.30 80.00 84.00 71.00 91.90 79.00 - -
DualGCN (Li et al., 2021) 81.80 78.10 87.13 81.16 84.69 72.97 89.87 77.26 83.83 83.47
T-GCN (Tian et al., 2021) 80.88 77.03 86.16 79.95 85.26 71.69 92.32 77.29 83.38 82.77
SSEGCN (Zhang et al., 2022c) 81.01 77.96 87.31 81.09 - - - - - -
MGFN (Tang et al., 2022) 81.83 78.26 87.31 82.37 84.40 72.66 92.04 81.57 - -
TF-BERT (Zhang et al., 2023) 81.80 78.46 87.09 81.15 - - - - - -
RSC (Wang et al., 2023b) 81.56 75.92 87.45 82.41 83.98 70.86 91.61 77.44 84.68 84.23
TextGT (Yin and Zhong, 2024) 81.33 78.71 87.31 82.27 - - - - - -
Our DMAN 82.29 78.91 87.59 82.47 86.30 72.97 92.85 77.37 85.55 85.01

Table 2: Experiment results (%) comparison on five publicly benchmark datasets. The best scores are in bold, and
the second best ones are underlined. All models are based on BERT.

4 Experiments

4.1 Datasets

We evaluate our DMAN on five public standard
datasets, including Lap14 and Rest14 from (Pon-
tiki et al., 2014), Rest15 from (Pontiki et al., 2015),
Rest16 from (Pontiki et al., 2016), and MAMs from
(Jiang et al., 2019). We adopt the official data splits,
which are strictly the same as those in previous pa-
pers, and we use the accuracy and macro-averaged
F1 value as the main evaluation metrics. Each
sample in these datasets consists of a sentence, an
aspect, and the sentiment polarity. The statistics of
the datasets are presented in Table 1.

4.2 Implementation Details

In the implementation, we build our framework
based on bert-based-uncased with a max length of
90. We employ the AdamW optimizer and train the
model for 20 epochs. The embedding size is set to
768. The batch size is manually tested in [16, 32],
and the learning rate is carefully tuned amongst
[1e-5, 2e-5, 4e-5]. The dropout rate is set to 0.1.
The number of Multi-step is finally set to 2, and the
K value of Top-K is tested in [10, 300]. The num-
ber of GCN layers is set to 2. The hyper-parameter
α is set to 0.6, and τk is adjusted amongst [0.04,
0.07] for different layers. The training process con-
tains two stages. Specifically, we merely fine-tune
the attribution module at the beginning, thus IG
can contain useful attribution towards sentiments.
Then, we freeze the parameters of the encoder and
train the attribution module and GCN module si-
multaneously. We conduct experiments on a single
NVIDIA 4090 GPU.

4.3 Baselines

To validate the effectiveness of our approach, we
compared it with advanced baseline models. To
ensure a fair comparison, all selected baselines are
based on the bert-based-uncased architecture.
BERT-SPC (Song et al., 2019) feeds the contexts
and aspects into the BERT model for the sentence
pair classification task.
RGAT (Wang et al., 2020) generates a unified
aspect-oriented dependency and proposes a rela-
tional graph attention network.
DGEDT (Tang et al., 2020) proposes a dependency
graph dual-transformer network by considering flat
representations and graph-based representations.
DualGCN (Li et al., 2021) proposes a dual graph
convolutional networks model that considers syn-
tax structures and semantic correlations.
T-GCN (Tian et al., 2021) proposes an approach to
explicitly utilize dependency types for ABSA with
type-aware graph convolutional networks.
SSEGCN (Zhang et al., 2022c) designs an aspect-
aware attention mechanism to enhance the node
representations with GCN.
MGFN (Tang et al., 2022) leverages the richer
syntax dependency relation label information and
affective semantic information of words.
TF-BERT (Zhang et al., 2023) proposes a novel
table filling based model, which considers the con-
sistency of multi-word opinion expressions.
RSC (Wang et al., 2023b) proposes two straight-
forward methods to leverage the explanation for
preventing spurious correlations.
TextGT (Yin and Zhong, 2024) designs a novel
double-view graph Transformer on text and a new
algorithm to implement edge features in graphs.
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Models Lap14 Rest14 Rest15 Rest16 MAMs

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Our DMAN 82.29 78.91 87.59 82.47 86.30 72.97 92.85 77.37 85.55 85.01
w/o multi-attribution 80.88 76.37 86.34 79.95 84.63 68.84 91.87 75.74 83.83 83.04
w/o token-level 81.66 77.83 87.05 80.35 85.37 71.00 92.04 75.90 84.73 84.08
w/o span-level 81.82 78.06 87.23 81.76 85.74 71.68 92.36 76.89 85.03 84.36
w/o syntax information 81.03 77.39 86.61 81.09 85.19 70.86 91.71 75.17 84.13 83.39

Table 3: Ablation study results (%) of our DMAN on five benchmark datasets.

4.4 Main Results

The experiment results of different methods on
five benchmark datasets are presented in Table
2. Our DMAN consistently outperforms all com-
pared baselines on the Lap14, Rest14, Rest15, and
MAMs datasets, and achieves overall better results
than the baselines on the Rest16 dataset, demon-
strating the effectiveness of our method. Compared
to methods utilizing attention scores and depen-
dency graphs (e.g., RGAT, DualGCN, SSEGCN),
our attribution-based DMAN effectively reduces
noise interference from irrelevant opinion words
that could be introduced through attention scores.
Compared to more methods that leverage syntac-
tic information in different ways (e.g., T-GCN,
MGFN), our DMAN still achieves better perfor-
mance, validating that integrating attribution scores
to dynamically capture keywords facilitates a more
effective use of syntactic information. Furthermore,
As MAMs is a challenging dataset that is large-
scale and has multipe aspects within sentences, our
method still has significant improvements. This
further demonstrates DMAN’s capability to effec-
tively focus on aspect-related opinion words and
capture attribution knowledge towards sentiments.

4.5 Ablation Study

To further investigate the effectiveness of each com-
ponent in our model, we conducted ablation stud-
ies on the five datasets. The results are shown in
Table 3. In the model without multi-attribution
module, the performance of DMAN suffers from
a sharp degradation, with accuracy decreases of
1.41%, 1.48% and 1.72% on Lap14, Rest15 and
MAMs datasets, respectively. These results demon-
strate the effectiveness of our proposed multi-step
attribution framework, which can accurately iden-
tify the critical words for sentiment expression and
dynamically leverage the effective syntactic struc-
tures. In the model w/o syntax information, we
do not introduce syntax information based on de-
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Figure 3: Accuracy (%) and macro-F1 value (%) on
Rest14 dataset with different K values in Top-K strategy.
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Figure 4: Accuracy (%) and macro-F1 value (%) on
MAMs dataset with different K values in Top-K strat-
egy.

pendency trees. The results show that syntactic
information offers crucial clues for word correla-
tions, effectively mitigating potential attribution
errors and significantly enhancing classification
precision. Moreover, we conduct experiments only
using single-granularity attribution. The decrease
in performance demonstrates that integrating multi-
granularity representations significantly enhances
the precise comprehension of semantics.

4.6 Further Analysis

Effect of Top-K. To mitigate the interference of
noisy dimensions, we have employed the Top-K
strategy on the attribution scores to filter out di-
mensions with relatively low significance. In this
section, we explore the impact of varying K val-
ues. Specifically, we conducted experiments on
the Rest14 and MAMs datasets, testing a range of
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Figure 5: Accuracy (%) of DMAN on Rest14, Lap14
and MAMs datasets with different attribution steps.
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(b) visualization for service.

Figure 6: Visualization of attention scores and multi-
step attribution scores on two aspects, price and service.
score denotes attention scores, 1-step and 2-step denote
attribution scores of 1st and 2nd layers.

K values from 100 to 300. The results, illustrated
in Figure 3 and Figure 4 show that accuracy and
macro-F1 scores on both datasets initially improve
as K increases, but then plateau or slightly decrease.
We conjecture that low K values fail to adequately
capture attribution knowledge, while high K values
may introduce noise. Thus, selecting an appropri-
ate K value is crucial for optimal performance.

Effect of Attribution Steps. To investigate how
the number of attribution steps influences perfor-
mance, we evaluated our DMAN with varying steps
on the Rest14, Lap14, and MAMs datasets. No-
tably, to maintain compatibility with our frame-
work, the number of GCN layers must increase
correspondingly as the number of attribution steps
increases. As depicted in Figure 5, our model
achieves optimal performance with two steps,
while the performance significantly declines with
further increases in the number of layers. We at-
tribute this phenomenon to two primary factors.
Firstly, when the number of GCN layers becomes
excessive, node representations face the issue of
over-smoothing, leading to vanishing gradients and
information redundancy. Secondly, due to the rel-
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Figure 7: Accuracy (%) on Lap14 and MAMs datasets
with different α values for granularity fusion.

atively small size of ABSA datasets, the network
is prone to overfitting as the model complexity in-
creases, which results in a situation where gradients
convey less effective attribution knowledge.

4.7 Visualization on Attribution

To demonstrate the effectiveness of attribution anal-
ysis in our approach, we selected samples with mul-
tiple aspects and visualized the attention scores and
multi-step attribution scores in Figure 6 (a) and
(b). Specifically, given the sentence “The price
is reasonable although the service is poor” with
two aspects, “price” and “service”, attention scores
are shown to be susceptible to noise within the
sentence, often assigning relatively high scores
to irrelevant words (e.g., “is poor” for “price”).
In contrast, our proposed DMAN more accurately
identifies aspect-related opinion words (e.g., “rea-
sonable” for “price”, “poor” for “service”). Fur-
thermore, the progression of attribution scores from
the first to the second step illustrates the process
of semantic understanding, clearly indicating the
effectiveness and interpretability of our model in
dynamically capturing aspect-related contexts.

4.8 Impact of α in Multi-granularity

In the Multi-granularity Attribution Module, we
introduce α to balance token granularity and span
granularity. To investigate their impact on model
performance, we conducted experiments with dif-
ferent values of α on Lap14 and MAMs datasets.
As illustrated in Figure 7, the performance im-
proves with increasing α value and reaches a peak,
and then declines. Specifically, relying solely on
token-level attribution overlooks the holistic na-
ture of conceptual words that encompass multiple
tokens. Conversely, relying solely on span-level
attribution disregards the distinctiveness of each
token within these conceptual words. Effective
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Models
Lap14 Rest14

Acc F1 Acc F1

MOSS (Wang et al., 2023b) 70.85 61.21 77.59 61.81
LLaMa2-13b (Su et al., 2024) 73.00 65.00 78.00 67.00
ChatGPT (zero-shot) 77.64 72.30 82.39 73.64
ChatGPT (few-shot) 78.15 75.79 84.62 76.08
DMAN (Ours) 82.29 78.91 87.59 82.47

Table 4: Results of LLMs on Lap14 and Rest14.

integration of token-level and span-level granulari-
ties can ensure that the attribution values capture
both the integrity and the individuality of seman-
tic concepts. Notably, considering that ABSA is a
fine-grained classification task, we do not employ
sentence-level granularity.

4.9 Comparison with LLMs

Large Language Models (LLMs) have exhibited
excellent performance on various natural language
understanding and generation tasks (Wang et al.,
2023a; Laskar et al., 2023; Wadhwa et al., 2023).
In this section, we investigate the performance of
LLMs on the ABSA task. From the results in Table
4, we can see that although LLMs can yield rela-
tively impressive results by utilizing the In-Context
Learning technique, they do not perform as well
as our method. This phenomenon indicates that
the application of LLMs in ABSA requires further
exploration. In the future, there are some research
ways to better harness LLMs’ capabilities, such as
designing Chain of Thought prompt or leveraging
LLMs to conduct data augmentation for ABSA.

5 Conclusion

In this paper, we propose a novel Dynamic Multi-
granularity Attribution Network (DMAN) for the
ABSA task, which differs from traditional models
that rely on attention scores. Specifically, we first
leverage Integrated Gradients to extract multi-step
attribution during semantic comprehension, and the
Top-K strategy is adopted to filter out unimportant
dimensions. We then consider multiple granular-
ities of semantic concepts, fusing attribution rep-
resentations from both token-level and span-level.
Finally, we integrate these attribution values with
dependency trees to dynamically capture relevant
syntactic knowledge, thereby enhancing semantic
understanding for sentiment classification. Exten-
sive experiments on five public datasets demon-
strate the effectiveness of our proposed DMAN.

Limitations

One of the primary limitations of our approach is
that our method does not always provide accurate
attributions when addressing sentences with overly
complex content and structure. This is a common
limitation among most methods. Additionally, Our
framework comprises two components: attribution
analysis and sentiment classification. The com-
plexity of the model structure results in increased
computational costs during training process.
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