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Abstract
Keyphrase generation (KPG) aims to automat-
ically generate a collection of phrases rep-
resenting the core concepts of a given doc-
ument. The dominant paradigms in KPG
include ONE2SEQ and ONE2SET. Recently,
there has been increasing interest in apply-
ing large language models (LLMs) to KPG.
Our preliminary experiments reveal that it
is challenging for a single model to excel
in both recall and precision. Further anal-
ysis shows that: 1) the ONE2SET paradigm
owns the advantage of high recall, but suf-
fers from improper assignments of supervi-
sion signals during training; 2) LLMs are pow-
erful in keyphrase selection, but existing se-
lection methods often make redundant selec-
tions. Given these observations, we introduce
a generate-then-select framework decompos-
ing KPG into two steps, where we adopt a
ONE2SET-based model as generator to pro-
duce candidates and then use an LLM as se-
lector to select keyphrases from these candi-
dates. Particularly, we make two important im-
provements on our generator and selector: 1)
we design an Optimal Transport-based assign-
ment strategy to address the above improper
assignments; 2) we model the keyphrase se-
lection as a sequence labeling task to allevi-
ate redundant selections. Experimental results
on multiple benchmark datasets show that our
framework significantly surpasses state-of-the-
art models, especially in absent keyphrase pre-
diction. We release our code at https://
github.com/DeepLearnXMU/KPG-SetLLM.

1 Introduction

The keyphrase generation (KPG) task involves cre-
ating a set of phrases to encapsulate the core con-
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Cognitive Computing Lab, Baidu Research, China.

cepts of given document. High-quality keyphrases
enhance various downstream tasks, such as infor-
mation retrieval (Kim et al., 2013; Tang et al.,
2017; Boudin et al., 2020), text summarization
(Wang and Cardie, 2013; Pasunuru and Bansal,
2018). In general, keyphrases are categorized into
two types: 1) present keyphrases that occur con-
tinuously in the given document, and 2) absent
keyphrases that do not match any continuous sub-
sequence. The quality evaluation of keyphrases in-
cludes two aspects: precision, which requires the
generated keyphrases to be pertinent to the doc-
ument, and recall, which demands the generated
keyphrases cover the core ideas of the document.

Dominant paradigms for KPG include
ONE2SEQ (Yuan et al., 2020) and ONE2SET

(Ye et al., 2021). The former treats KPG as a
sequence generation task, while the latter treats it
as a set generation by introducing multiple control
codes for parallel keyphrase generation and
dynamically assigning keyphrase ground-truths
to control codes as supervision based on bipartite
matching (Kuhn, 2010). Recently, pre-trained
language models (PLMs) have been widely
incorporated into KPG via ONE2SEQ paradigm
(Chowdhury et al., 2022; Zhao et al., 2022; Wu
et al., 2023a; Dong et al., 2023). Particularly, with
the emergence of LLMs, researchers have also
begun to introduce LLMs into KPG via in-context
learning (Song et al., 2023a; Martínez-Cruz et al.,
2023). However, it is difficult for a single model to
achieve high performance in precision and recall
simultaneously. As verified by our preliminary
study (See Section 2), models that excel in recall
tend to have lower precision, while models with
high precision fall short in recall.

In this paper, to deal with the above issue, we in-
troduce a generate-then-select framework that de-
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composes the KPG task into two steps, each han-
dled by a separate sub-model. This framework
includes a generator that aims to recall correct
keyphrases and a selector that eliminates incorrect
candidates.

To identify the most suitable models for the
generator and selector, we conduct further exper-
iments in the preliminary study to investigate the
potential of conventional KPG models and LLMs
for these roles. Our experimental results lead
to two conclusions: 1) SETTRANS, a ONE2SET-
based KPG model, has a significant advantage in
recall and thus is well-suited as the generator, and
2) LLMs with their superior semantic understand-
ing, are more effective than small language models
(SLMs) for keyphrase selection and are suitable as
the selector.

Furthermore, we improve the generator and se-
lector of our framework in two aspects. The gen-
erator assigns each ground-truth to only one con-
trol code. However, the number of control codes
generally exceeds that of ground-truths, leading to
insufficient training for many control codes. To ad-
dress the above improper assignments, we propose
an OT-based assignment strategy for ONE2SET.
This strategy converts the matching of candidates
and ground truth into an OT problem, allowing a
ground-truth to be assigned to multiple candidates.

As for the selector, existing studies (Kong et al.,
2023; Choi et al., 2023; Sun et al., 2023) em-
ploy reranking methods to individually score can-
didates and then select those with high scores,
which, however, results in many semantically sim-
ilar candidates being selected. To address this is-
sue, we convert keyphrase reranking into an LLM-
based sequence labeling task. Leveraging the long
sequence modeling capability of LLMs, we feed
all candidates into the selector and have it au-
toregressively generate decision labels indicating
whether to keep or discard the corresponding can-
didate. In this way, we can not only reduce the
decoding search space of LLMs, but also allevi-
ate semantic repetition by enabling the selector to
fully consider the correlation between the current
candidate and previous selections. Particularly, to
ensure robustness to the order of candidates, we
feed them into the selector in random order during
instruction tuning. This encourages the selector to
develop a deeper understanding of the candidates’
semantics. During inference, candidates are sorted
by quality for the selector to prioritize candidates
more likely to be correct.
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Figure 1: Performance of various models on the KP20k
test set. LLaMAGen, a fine-tuned version of LLaMA-
2-7B, is optimized for KPG using instruction tuning.

Overall, the major contributions of our work can
be summarized as follows:

• Our in-depth analysis reveals that achieving
high precision and recall simultaneously for
a single model is challenging. Moreover, we
find that SETTRANS is advantageous as a
generator, while LLM excels as a selector.

• We design an OT-based assignment strategy
to refine the training of ONE2SET and en-
hance our selector by converting keyphrase
reranking into a sequence labeling task.

• Experimental results and in-depth analysis
of several commonly-used datasets demon-
strate the effectiveness of our framework, es-
pecially in absent keyphrase prediction.

2 Preliminary Study

To verify the necessity of decomposing KPG, we
first explore the performance of dominant models
in terms of recall and precision. Then, through
more experiments, we analyze which models are
best suited as the generator and selector.

Trade-off in Keyphrase Generation. We mea-
sure the performance of dominant models on
the testset of KP20k, including SETTRANS, fine-
tuned BART-large, SciBART-large, Flan-T5-large,
and LLaMA-2-7B and report the results in Figure
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Figure 2: R@M of LLaMA-2-7B and SETTRANS
when generating the same number of keyphrases.

1. As shown in Figure 1, achieving high accu-
racy and recall simultaneously is challenging for a
single model. Whether it is a conventional KPG
model or an LLM, as the number of predicted
keyphrases increases, the recall of the model in-
evitably increases while its accuracy decreases,
and vice versa. This result proves the necessity
of decomposing KPG into two steps.

Evaluating the Recall Performance of
LLaMA-2-7B and SETTRANS. As revealed
above, SETTRANS and LLaMA-2-7B exhibit ex-
cellent recall in commonly-used setting. In Figure
2, we further investigate their recall under various
settings for a full comparison. We can clearly ob-
serve that as the number of generated candidates
increases, SETTRANS consistently exhibits better
recall performance than LLaMA-2-7B. Given its
stronger recall performance and lower computa-
tional consumption, we choose SETTRANS as
the generator. Additionally, SETTRANS tends
to recall more correct keyphrases along with
more incorrect candidates (see Appendix B.2),
highlighting the necessity of a selector with strong
filtering capabilities to improve accuracy.

Evaluating SLM and LLM for Keyphrase Se-
lection. To identify a suitable selector, we first
use SETTRANS as the generator to output can-
didates, and then compare multiple representa-
tive keyphrase reranking methods. The methods
we consider include 1) SLM-Scorer, the reranker
from (Choi et al., 2023), which is an SLM-based
one and achieves SOTA performance in keyphrase
reranking, and 2) LLM-Scorer, a LLaMA-2-7B
reranker, which is fined-tuned as detailed in Ap-
pendix D.2. As shown in Table 1, LLM-Scorer
achieves higher accuracy and better F1@M scores,
indicating that the powerful semantic understand-
ing capability of LLMs is helpful for keyphrase

Model Acc F1@M
Pre Abs Pre Abs

SETTRANS + SLM-Scorer 0.813 0.806 0.429 0.082
SETTRANS + LLM-Scorer 0.823 0.812 0.441 0.089

Table 1: Keyphrase selection performance of SLM and
LLM on the KP20k test set. Acc represents the accuracy
of selection, while Pre and Abs stand for present and
absent keyphrases, respectively.

selection. Consequently, we adopt LLaMA-2-7B
as the selector.

3 Our Framework

As described above, our framework involves an
improved ONE2SET-based generator and an LLM-
based selector. Unlike the conventional ONE2SET

paradigm, our generator improves the supervision
signal assignment during training by modeling
it as an Optimal Transport (OT) problem. Dis-
tinct from previous studies on keyphrase reranking
(Kong et al., 2023; Choi et al., 2023) and LLM-
based reranking (Qin et al., 2023; Zhuang et al.,
2023), our selector autoregressively generates de-
cision labels for keeping or discarding each candi-
date. This approach not only reduces the decoding
search space but also fully considers the correla-
tion between selections, thus effectively minimiz-
ing semantically repetitive selections. Moreover,
we design an R-tuning S-infer strategy to help the
selector comprehend the semantics of candidates.

3.1 The ONE2SET-based Generator
As an extension of SETTRANS, our generator also
uses Transformer (Vaswani et al., 2017) as the
backbone, of which the decoder is equipped with
N control codes to individually generate candidate
keyphrases. During the model training, ground-
truth keyphrases {yi}M−1

i=1 or ∅ (yM ) are dynam-
ically assigned to the control codes as supervision
signals. Concretely, the model first predicts K to-
kens as the prediction ŷj for the j-th control code
and then calculates a matching score µij between
the ground-truth yi and the prediction ŷj via a pair-
wise matching function Cmatch(∗)1:

µij =
Cmatch(yi, ŷj)

1
τ

N∑
j=1

Cmatch(yi, ŷj)
1
τ

, (1)

where τ is a normalized hyper-parameter.
Then, instead of using bipartite matching, we

consider the assignments between ground-truths
1The detail of Cmatch(∗) is described in Appendix C.1.

11142



ො𝑦1 ො𝑦2 ො𝑦3 ො𝑦4

𝑦1

𝑦2

𝑦3

𝒄𝒊𝒋cost matrix𝝁𝒊𝒋score matrix

ො𝑦1 ො𝑦2 ො𝑦3 ො𝑦4

𝑦1

𝑦2

𝑦3

optimal assignments

𝜋∗

𝒅𝒋demanding vector

𝒔𝒊supplying vector

ො𝑦1 ො𝑦2 ො𝑦3 ො𝑦4

𝑦1

𝑦2

𝑦3

predictions

ground

-truths
-

∑

Figure 3: The OT-based supervision signal assignment for keyphrase generation.
∑

represents summing as Equa-
tion 2, while − stands for taking the negative following Equation 3.

and control codes as an OT problem2 and search
the optimal assignments with Sinkhorn-Knopp It-
eration (Cuturi, 2013). Concretely, we consider
the following crucial definitions in OT algorithm:
1) control codes are regarded as demanders with
a demanding vector {dj}Nj=1, where dj represents
the number of ground-truths assigned to the j-th
control code; 2) ground-truths are regarded as sup-
pliers with a supplying vector {si}Mi=1, where si
represents the number of control codes that yi can
be assigned to; 3) the cost matrix {cij}M,N

i=1,j=1,
where cij represents the cost of assigning yi to the
j-th control code. More specifically, we heuristi-
cally define them as follows:

• Since assigning multiple ground-truths to one
control code at the same time may interfere
with each other, we directly limit dj to 1.

• Intuitively, if yi is highly matched with more
control codes, it should be assigned to more
control codes. To this end, we define si as
a dynamic number positively correlated with
{µij}Nj=1:

si =




⌈∑ topK({µij}Nj=1, k)⌉, if yi ̸= ∅.
N − ∑

yi′ ̸=∅
si′ , otherwise.

(2)
where ⌈·⌉ indicates rounding up to an integer
and k is a predefined hyper-parameter.

• To model the intuition that the higher the
matching score between yi and ŷj , the lower
the cost for assigning yi to the j-th control
code, we define cij as

cij =

{
−µij , if yi ≠ ∅.
0, otherwise.

(3)

Having obtained the above vectors and matrix,
we seek the optimal assignments π∗ according to

2A detailed description of the OT problem can be found
in Appendix C.2.

the following objective function:

π∗ =argmin
π

M∑

i=1

N∑

j=1

cijπij , π ∈ RM×N

s.t.
M∑

i=1

πij = dj ,
N∑

j=1

πij = si,

M∑

i=1

si =

N∑

j=1

dj , πij ≥ 0.

(4)

Finally, each control code is assigned with
the ground-truth or ∅ that has the maximal as-
signment value as shown in the right of Figure
3. Note that we seek the optimal assignment
plans π∗

p for present keyphrases and π∗
a for absent

keyphrases, respectively, and subsequently calcu-
late their cross-entropy losses accordingly.

3.2 The LLM-based Selector

After using the above generator to obtain candi-
date keyphrases, it is natural to focus on how to
select high-quality keyphrases from them. How-
ever, through in-depth analysis, we find that both
traditional keyphrase reranking methods and LLM
reranking methods tend to output keyphrases with
serious semantic repetition. To solve this problem,
we propose to utilize LLMs to model keyphrase se-
lection as a sequence labeling task. Furthermore,
we design a random-tuning sorted-inference strat-
egy that enables the selector to improve perfor-
mance while retaining robustness to input order.

Semantic Repetition As shown in Figure 4(a),
existing reranking studies contain the following
two types: 1) one first individually score each
candidate and then keep the candidates with high
scores (Choi et al., 2023; Zhuang et al., 2023), 2)
the other directly ask LLMs to generate a sorted
list of candidates without specific scores and save
highest ranked candidates (Sun et al., 2023; Qin
et al., 2023). However, when applying these meth-
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Figure 4: The comparison between the reranking meth-
ods and our sequence labeling method. A green can-
didate indicates a correct keyphrase, while a red candi-
date is an incorrect keyphrase.

ods to select keyphrases, they tend to assign simi-
lar ranks to candidates with similar semantics but
different surface representations (i.e. “safe prob-
lem” and “safe hazard”).

LLM-based Sequence Labeling To address the
above-mentioned issue, we fine-tune an LLM to
model keyphrase reranking as a sequence labeling
task. Concretely, we input all candidates into the
selector and then ask it to autoregressively output
decision labels, each indicating whether to keep or
discard the corresponding candidate. As shown in
Figure 4(b), each kept candidate is mapped to the
label “T” while each discarded one to “F”. The
instruction template we use is shown as follows:

### Task Definition:
You are required to perform a sequence label-
ing task to select multiple keyphrases from
the numbered candidates according to the
given document. Use the label “T” to indicate
the selection of a candidate and the label “F”
to indicate its rejection. For instance, a label
sequence “T F F” denotes selecting candidate
[1] and rejecting candidates [2] and [3].
### Input:
Document: {document}
Candidates:
[1] {candidate1}

......
[n] {candidaten}
### Response:
Label sequence: {label_sequence}

During autoregressive generation, the selec-
tor considers previous selections when deciding
whether to keep or discard the current candi-
date. This approach not only reduces the decoding

search space but also alleviates semantic repetition.
In the example in Figure 4(b), the selector is able
to discard “safe hazard” after keeping “safe prob-
lem”.

R-tuning S-infer Strategy Intuitively, sorting
candidates in a fixed order is beneficial for humans
to select candidates. However, such sorting may
cause the selector to select candidates based on
their input order rather than truly understanding
their semantics. To address this issue, we propose
a R-tuning S-infer strategy to handle the candi-
dates differently during the selector training and
inference. Specifically, during instruction tuning,
candidates are input into the selector in a random
order, encouraging the selector to learn the seman-
tics of candidates instead of order. By contrast,
during inference, candidates are sorted by their
quality measured with the average log probability
of the generator. In this way, the selector can pri-
oritize candidates more likely to be correct.

3.3 Two-stage Training

We adopt a two-stage training strategy to train
our framework, where the generator is first trained
with the keyphrase generation data, and the selec-
tor is then trained with the instruction data.

Generator Training With the optimal assign-
ment plans π∗

p and π∗
a (See Section 3.1), we

compute the cross-entropy losses for absent and
present keyphrases, respectively, and combine
these two losses with weighted summation to get
the final loss. Please refer to Appendix C.3 for de-
tails.

Selector Training When training the selector,
we adopt the next-token-prediction task that has
been widely used in LLMs. Particularly, due to
the imbalanced numbers of positive and negative
candidates, we design the following loss:

L(ϕ) = 1

NT

|Y |∑

t=1

I{Yt=T} log pϕ(Yt|X,Y<t)+

1

NF

|Y |∑

t=1

I{Yt=F} log pϕ(Yt|X,Y<t),

(5)

where ϕ represents the parameters of the selector,
NT and NF are the numbers of “T” and “F”, re-
spectively, Y is the label sequence consisting of
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NT “T” and NF “F”, and X is the input exclud-
ing label sequence. The negative effect of label
imbalance in tuning can be mitigated by averaging
loss items with identical labels.

In our experiments, we adopt QLoRA
(Dettmers et al., 2023) to perform quantiza-
tion on model parameters for efficient training.
As such, the trainable parameters in our model are
about 0.06% of the original size.

4 Experiments

4.1 Setup

Datasets. Following previous studies (Meng et al.,
2017; Ye et al., 2021; Choi et al., 2023), we use
the training set of KP20k to train all models and
then evaluate them on five benchmarks3: Inspec
(Hulth, 2003), Krapivin (Krapivin et al., 2009),
NUS (Nguyen and Kan, 2007), SemEval (Kim
et al., 2010), KP20k (Meng et al., 2017).

Baselines. We compare our framework with three
kinds of baselines: 1) Generative Models: these
models predict both present and absent keyphrases
through generation. We consider following repre-
sentative models, catSeq (Yuan et al., 2020) under
ONE2SEQ along with its variant ExHiRD-h (Chen
et al., 2020), and SetTrans (Ye et al., 2021) un-
der ONE2SET along with its variant WR-one2set
(Xie et al., 2022). Besides, since PLM has been
widely applied in KPG, we also consider two com-
petitive models, CorrKG (Zhao et al., 2022) and
SciBART-large + TAPT + DESEL (Wu et al.,
2023a). 2) Unified Models: these models inte-
grate extractive and generative methods to predict
keyphrases. We report the performance of the rep-
resentative models including SEG-Net (Ahmad
et al., 2021), UniKeyphrase (Wu et al., 2021),
PromptKP (Wu et al., 2022) and SimCKP (Choi
et al., 2023). 3) Composite Models: We addition-
ally select several representative models combined
like our framework.

Evaluation Metrics. As implemented in previ-
ous studies (Chan et al., 2019; Zhao et al., 2022;
Choi et al., 2023), We evaluate all models us-
ing macro-average F1@M, and further provide the
F1@5 results in Appendix A. Both predictions and
ground-truths are stemmed with the Porter Stem-
mer (Porter, 2006), and then the duplicates are re-
moved before scoring.

3https://huggingface.co/memray

Implementation Details. We separately use
Transformer-base (Vaswani et al., 2017) and
LLaMA-2-7B (Touvron et al., 2023) to construct
the generator and selector, both are optimized with
Adam optimizer (Loshchilov and Hutter, 2019).

When constructing the generator, we select the
top 50,002 frequent tokens to build the vocabulary.
To ensure the consistency with (Ye et al., 2021;
Xie et al., 2022), the number of control codes N is
20, K is 2, learning rate is 0.0001, and batch size
is 12. Through grid search in Appendix B.3, we
set the following hyper-parameters in OT-based as-
signment: τ = 10 in Equation 1 and Top-3 in
Equation 2. During inference, we employ beam
search with beam size = 10 and save all candidates
for the subsequent selection.4

As for the selector, we adopt QLoRA with r
= 8, α = 32, and dropout of 0.05. Note that,
due to the significant performance gap between
present keyphrases and absent keyphrases, we use
the same instruction template to tune a LoRA
module for each type of keyphrase. The LoRA
is optimized with a learning rate of 3e-4 for ab-
sent keyphrase, a learning rate of 1e-4 for present
keyphrase, per-gpu batch size of 24, and the maxi-
mum epoch of 5. Validations are performed every
1,000 iterations for present keyphrase and 400 it-
erations for absent keyphrase, respectively. Early
stopping is triggered if the validation performance
does not improve in 5 consecutive rounds. We
save the model with the best F1@M score on vali-
dation set for testing. Particularly, we perform ex-
periments with three random seeds and report the
average results.

4.2 Main Results

The comparison results on the five testsets are
shown in Table 2. As for the present keyphrase pre-
diction, our framework significantly outperforms
all baselines on all datasets, except for Inspec.
In contrast, on the absent keyphrase prediction,
our framework always performs best among all
models. Note that as an extension of SciBART-
large, + TAPT + DESEL is additionally trained in
OAGKX (Çano and Bojar, 2020), which leads to
its huge improvement on Inspec. Compared to
other baselines, our framework still holds compa-
rable performance on this dataset. Our genera-

4The experiments on the impact of different beam sizes
during inference are presented in Appendix B.4
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Model Inspec Krapivin NUS SemEval KP20k
Pre Abs Pre Abs Pre Abs Pre Abs Pre Abs

Unified Models

SEG-Net (Ahmad et al., 2021) 0.265 0.015 0.366 0.036 0.397 0.036 0.283 0.030 0.367 0.036
UniKeyphrase (Wu et al., 2021) 0.288 0.036 — — 0.443 0.056 0.322 0.052 0.352 0.068
PromptKP (Wu et al., 2022) 0.294 0.022 — — 0.439 0.042 0.356 0.032 0.355 0.042
SimCKP (Choi et al., 2023) 0.358 0.035 0.405 0.089 0.498 0.088 0.386 0.047 0.427 0.080

Generation Models

catSeq (Yuan et al., 2020) 0.262 0.008 0.354 0.036 0.397 0.028 0.283 0.028 0.367 0.032
ExHiRD-h (Chen et al., 2020) 0.291 0.022 0.347 0.043 — — 0.335 0.025 0.374 0.032
SetTrans (Ye et al., 2021) 0.324 0.034 0.364 0.073 0.450 0.060 0.357 0.034 0.392 0.058
WR-ONE2SET (Xie et al., 2022) 0.351 0.034 0.362 0.074 0.452 0.071 0.370 0.043 0.378 0.064
CorrKG (Zhao et al., 2022) 0.365 0.045 — — 0.449 0.079 0.359 0.044 0.404 0.071
SciBART-large (Wu et al., 2023a) 0.328 0.026 0.329 0.056 0.421 0.050 0.304 0.033 0.396 0.057

+ TAPT + DESEL 0.402 0.036 0.352 0.086 0.449 0.068 0.341 0.040 0.431 0.076
LLaMA-2-7B 0.344 0.038 0.434 0.087 0.481 0.062 0.354 0.042 0.449 0.069

Composite Models

SciBART-large + Our selector 0.352 0.053 0.430 0.098 0.521 0.084 0.392 0.046 0.445 0.076
WR-ONE2SET + Our selector 0.350 0.059 0.430 0.123 0.523 0.118 0.398 0.057 0.448 0.108
Our generator + SLM-scorer 0.350 0.033 0.410 0.094 0.510 0.093 0.390 0.050 0.429 0.084
Our generator + Our selector 0.3572 0.0641‡ ‡0.4353‡ 0.1263‡ 0.5282‡ 0.1223‡ 0.4055‡ 0.0584 0.4531‡ 0.1121‡

Table 2: Testing results on all datasets. The best performance is boldfaced, while the second best is underlined.
The subscript denotes the corresponding standard deviation (e.g., 0.1121 indicates 0.112 ± 0.001). ‡ indicates
significant at p < 0.01 over SimCKP with 1, 000 booststrap tests (Tibshirani and Efron, 1993).

Model In-domain Out-domain
Pre Abs Pre Abs

Ours 0.453 0.112 0.431 0.093

⇒bipartite matching 0.446 0.105 0.421 0.087
⇒GenKP 0.441 0.089 0.382 0.062
⇒R-tuning R-inference 0.442 0.102 0.416 0.083
⇒S-tuning R-inference 0.264 0.060 0.243 0.048
⇒CE_loss 0.435 0.096 0.412 0.062

Table 3: Ablation study. ⇒* means replacing the cor-
responding component of our framework with *. We
use three random orders and report the average perfor-
mance in the R-inference setting.

tor combined with our selector outperforms other
composite models, making it the best combination.
When comparing the results of “Our generator +
SLM-scorer” with “Our generator + Our selector”,
it becomes evident that the LLM-based selector
(our selector) demonstrates powerful filtering ca-
pabilities, underscoring the semantic understand-
ing of LLMs in keyphrase filtering. In the compari-
son of results for “* + Our selector”, the generators
based on the One2Set paradigm excel at handling
absent keyphrases, with our generator achieving
the best performance, indicating that the OT-based
assignment strategy enhances its effectiveness.

4.3 Ablation Study

In Table 3, we investigate the effect of each com-
ponent on our framework to verify their validity.

Following previous studies (Xie et al., 2022; Choi
et al., 2023), we conduct experiments on two kinds
of test sets: 1) in-domain, which is KP20k, and
2) out-of-domain, which is the combination of In-
spec, Krapivin, NUS, and SemEval.

(1) ⇒bipartite matching. In this variant, we
replace the OT-based assignment with bipartite
matching and observe the performance degrada-
tion in both present and absent keyphrases. Fur-
thermore, we compare the recall scores of our
generator, SETTRANS, and WR-ONE2SET at the
same precision level. From Figure 5, the recall
of our generator consistently exceeds those of (Ye
et al., 2021) and (Xie et al., 2022) with close accu-
racy. Both experiments demonstrate the effective-
ness of our OT-based assignment.

(2) ⇒GenKP. In this variant, we tune the se-
lector to generate the list of kept candidates di-
rectly. Compared to our selector, its prediction
performance significantly drops, especially on out-
of-domain datasets. We argue that the sequence
labeling task adopted by our selector reduces the
decoding space, thus effectively reducing the task
difficulty and improving generalization.

(3) ⇒R-tuning R-inference. Unlike our selector,
this variant inputs candidates into the selector in a
random order during both training and inference,
resulting in a slight performance drop. This indi-
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Figure 5: The recall and precision of our generator and other baselines.

cates that our sorted-inference strategy helps the
selector make better selections.

(4) ⇒S-tuning R-inference. Different from the
above variant, this variant inputs candidates into
the selector in a fixed order during training while
in a random order during inference. Compared to
R-tuning R-inference, we observe a more signifi-
cant performance degradation, suggesting that the
random-tuning strategy enhances the robustness of
the selector to the input order.

(5) ⇒CE_loss. In this variant, we tune the se-
lector with vanilla cross-entropy loss without loss
item averaging. The removal of loss item averag-
ing notably diminishes the performance of the se-
lector, demonstrating the effectiveness of this op-
eration. The fact that there are more incorrect can-
didates than correct ones leads to the overfitting
of incorrect candidates when training with vanilla
cross-entropy loss.

4.4 Diversity of Predicted Keyphrases

Following Wu et al. (2023b), we take emb_sim
and dup_token_ratio as the diversity metrics. As
shown in Table 4, the semantic repetition in the
original candidate set is severe but significantly re-
duced by selection models. Among these meth-
ods, our selector obtains the lowest emb_sim and
dup_token_ratio, demonstrating its effectiveness
in reducing semantic repetition.

Please see Appendix B.1 for more experiments.

5 Related Work

The related works to ours mainly include
keyphrase generation and keyphrase selection.

Model Dup_token_ratio ↓ emb_sim ↓
Our generator 0.406 0.198

+ SLM-Scorer 0.330 0.155
+ LLM-Scorer 0.247 0.149
+ Our Selector 0.222 0.147

ground-truth 0.072 0.132

Table 4: The diversity of all keyphrases produced by
various models.

Keyphrase Generation. Generally, KPG
models are constructed under the following
paradigms: 1) ONE2ONE (Meng et al., 2017),
where keyphrases of each document are split and
each keyphrase along with the document forms a
training instance. During inference, top-K candi-
dates are picked under beam search. 2) ONE2SEQ

(Yuan et al., 2020), which treats KPG as a se-
quence generation task, concatenating keyphrases
into a sequence according to a predefined order.
3) ONE2SET (Ye et al., 2021), which generates
keyphrases as an unordered set conditioned on
learnable control codes. Among these paradigms,
ONE2SET excels in recall. Ye et al. (2021) utilize
the bipartite matching to assign ground-truths or ∅
to control codes as the supervision signal. Further-
more, Xie et al. (2022) propose a re-assignment
mechanism to refine the assignment results of the
bipartite matching, which allows a proportion of
control codes matched with ∅ to learn ground-
truths.

Keyphrase Selection. Currently, researchers
(Song et al., 2021; Zhang et al., 2022; Kong et al.,
2023) select keyphrases from candidates using
reranking methods. The common practice is to per-
form phrase mining on n-grams within document
to extract candidates. Recently, Choi et al. (2023)
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obtain present keyphrase candidates through data
mining and absent keyphrase candidates from the
KPG model. All the above methods individually
score each candidate with PLMs and select those
with high scores. However, this independent scor-
ing leads to semantic repetition issue. With the
rapid development of LLMs, researchers try to in-
sert the candidates into prompt and instruct the
LLMs to generate an ordered list (Sachan et al.,
2022; Sun et al., 2023; Zhuang et al., 2023; Qin
et al., 2023), which demonstrates impressive effec-
tiveness in document reranking tasks.

Overall, our work differs from previous stud-
ies for two main reasons. First, unlike (Xie et al.,
2022), we treat the matching of control codes and
ground-truths as an OT problem and propose an
OT-based assignment strategy to refine the target
assignment in the ONE2SET paradigm. Second, in
contrast to current selection methods, we consider
keyphrase selection as an LLM-based sequence la-
beling task, where the correlation between the cur-
rent candidate and previous selections can be fully
exploited.

6 Conclusion and Future Work

This paper introduces a generate-then-select
framework that integrates a ONE2SET model and
an LLM selector together, so as to fully lever-
age the high recall of the ONE2SET paradigm and
powerful semantic understanding of LLM. The
ONE2SET model acts as the generator and is opti-
mized by our OT-based assignment to recall more
correct candidates. The LLM acts as the selec-
tor that models the selection of keyphrase candi-
dates as a sequence labeling task and reduces the
semantic repetition through its long sequence mod-
eling capability. Experimental results show that
our framework achieves significant performance
improvements compared to existing state-of-the-
art models.

In the future, we tend to combine the genera-
tion and selection tasks into a multi-task learning
framework, which further improves the synergy
between the two tasks.
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Limitations

While this paper introduces a generate-then-select
framework for KPG that effectively combines the
strengths of the ONE2SET paradigm and LLM, it
has several limitations in terms of resource con-
sumption. First, the LLM is inherently resource-
intensive due to its large number of parameters,
demanding significant computational power and
memory. Second, the two-step process of gen-
erating and then selecting keyphrases is time-
consuming, which can lead to relative inefficiency
in practical applications. These factors combined
make the proposed framework more resource-
consuming and challenging to implement com-
pared to single-model solutions.
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Model Inspec Krapivin NUS SemEval KP20k
Pre Abs Pre Abs Pre Abs Pre Abs Pre Abs

SimCKP 0.358 0.035 0.405 0.089 0.498 0.088 0.386 0.047 0.427 0.080
Our generator + Our selector 0.357 0.064 0.435 0.126 0.528 0.122 0.405 0.058 0.453 0.112

Table 5: F1@5 results on all datasets.

Model Inspec Krapivin NUS SemEval KP20k
Pre Abs Pre Abs Pre Abs Pre Abs Pre Abs

SimCKP (Choi et al., 2023) 0.358 0.035 0.405 0.089 0.498 0.088 0.386 0.047 0.427 0.080
SciBART-large (Wu et al., 2023a) 0.328 0.026 0.329 0.056 0.421 0.050 0.304 0.033 0.396 0.057

+ TAPT + DESEL 0.402 0.036 0.352 0.086 0.449 0.068 0.341 0.040 0.431 0.076
Zephyr-7B 0.358 0.035 0.428 0.092 0.479 0.058 0.353 0.047 0.443 0.072
Our generator + Our selector (Zephyr-7B) 0.374 0.058 0.430 0.133 0.518 0.114 0.401 0.067 0.448 0.114

Table 6: F1@M results on different LLM-based selectors.

A Experimental Results of F1@5

The F1@5 results of our generator + our selector
are shown in Table 5. On this metric, our frame-
work also outperforms the strongest baseline, prov-
ing its effectiveness.

B Further Experiments

B.1 Experimental Results on More LLMs

More Results on Open LLMs As described
previously, we mainly conduct experiments on
LLaMA-2-7b, due to its widespread use in the
research community. To verify the validity of
our framework on other LLMs, we report the re-
sults of experiments using Zephyr-7B (Tunstall
et al., 2023). As shown in Table 6, our framework
still achieves better performance to other baselines,
suggesting that our framework is not sensitive to
the choice of LLMs.

More Results on Close LLMs We conduct ex-
periments to report the few-shot performance of
GPT-4 as the generator and selector, respectively.
The experiment results on the top-100 samples of
each dataset are shown Table 7. Consistent with
previous studies (Song et al., 2023b; Martínez-
Cruz et al., 2023; Xie et al., 2023), GPT-4 also
excels in the present keyphrase prediction of In-
spec dataset. However, on other datasets, GPT-4
exhibits significantly worse performance than Our
generator + Our selector, highlighting the effec-
tiveness of our framework. Furthermore, when re-
placing our selector with GPT-4, Our generator +
GPT-4 selector is still inferior to Our generator +
Our selector on most datasets, demonstrating that
One2set generator and LLM-based selector are the
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Figure 6: The recall and precision of our generator over
different τ on KP20k validation set.

best combination for keyphrase generation.

B.2 Recall and Precision of SETTRANS with
Different Numbers of Prediction

As mentioned in Section 2, SETTRANS tends to
recall more correct keyphrases along with more in-
correct candidates. We report the recall and preci-
sion of SETTRANS in Table 8. As the number of
predicted keyphrases increases, recall greatly im-
proves, but precision significantly drops, indicat-
ing that more incorrect candidates are generated.
This underscores the urgent need for a strong se-
lector to improve accuracy.

B.3 Effect of τ

We conduct experiments on various τ for smooth-
ing the matching scores among predictions and
ground-truth keyphrases and report the precision
and recall of the generator under various beam
sizes. As shown in Figure 6, the generator
achieves the best performance at 10. Therefore,
we adopt τ = 10 in all experiments.
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Model Inspec@100 Krapivin@100 NUS@100 SemEval@100 KP20k@100
Pre Abs Pre Abs Pre Abs Pre Abs Pre Abs

SimCKP (Choi et al., 2023) 0.342 0.046 0.397 0.101 0.482 0.064 0.387 0.051 0.420 0.086
LLaMA-2-7B 0.307 0.048 0.453 0.073 0.498 0.042 0.372 0.034 0.413 0.056
GPT-4 0.513 0.055 0.343 0.010 0.244 0.037 0.356 0.024 0.224 0.015
Our generator + GPT-4 selector 0.435 0.067 0.435 0.077 0.400 0.077 0.354 0.034 0.309 0.038
Our generator + Our selector 0.327 0.069 0.457 0.142 0.499 0.136 0.405 0.058 0.424 0.097

Table 7: F1@M results on GPT-4.

Model Present Absent Num
P@M R@M P@M R@M

SetTrans

0.340 0.500 0.050 0.030 5
0.274 0.611 0.066 0.064 10
0.221 0.693 0.044 0.105 20
0.195 0.734 0.032 0.133 30
0.178 0.763 0.026 0.156 40

Table 8: Recall and precision of SETTRANS with dif-
ferent prediction numbers.

Model F1@M
Pre Abs

Our generator (#bs = 1) + Our selector 0.438 0.050

Our generator (#bs = 5) + Our selector 0.457 0.065

Our generator (#bs = 10) + Our selector 0.457 0.080

Our generator (#bs = 15) + Our selector 0.457 0.080

Table 9: Performance on KP20k validation set. #bs
denotes beam size.

B.4 Effect of Different Beam Sizes

We investigate the impact of beam size on the
KP20k validation set. To this end, we gradually
varied beam size from 1 to 15. As shown in Table
9, both present keyphrases and absent keyphrases
achieved the best performance with a beam size of
10, and the performance is maintained as the beam
size increased further. Therefore, we use a beam
size of 10.

C Algorithm Details

C.1 Formulation of Cmatch

Same as (Ye et al., 2021), we generate K tokens
conditioned on each control code and collect their
predictive probability distributions {Pj}j=1,2,...,N

and Pj = {ptj}t=1,...,K , where ptj is the predictive
distribution at time step t for control code j. The
matching score between any pair of ground-truth
yi and candidate ŷπ(i) is calculated as following:

Cmatch(yi, ŷπ(i)) = −
K′∑

t=1

I{yti ̸=∅} p
t
π(i)(y

t
i) (6)

where K ′ = min(|yi| ,K) and ptπ(i)(y
t
i) repre-

sents the probability of token yti in ptπ(i). The
scores from matching any prediction with ∅ are
set to 0, which avoids interference in the assign-
ment of valid ground-truths.

C.2 Optimal Transport

Assume a scenario involving m suppliers and n
demanders, where the i-th supplier holds si units
of goods and the j-th demander needs dj units
of goods. Every route between a supplier and
demanders has a per-unit transportation cost, de-
noted by cij . The objective of Optimal Transport
(OT) is to seek the most efficient distribution plan
π∗ = {πij |i = 1, 2, . . . ,m, j = 1, 2, . . . , n},
which minimizes the total cost of transporting all
goods from suppliers to demanders.

An equivalent mathematical formulation of the
OT problem is presented as follows:

min
π

m∑

i=1

n∑

j=1

cijπij

s.t.
m∑

i=1

πij = dj ,
n∑

j=1

πij = si,

m∑

i=1

si =

n∑

j=1

dj , πij ≥ 0,

i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

In order to tackle the OT problem efficiently, we
employ the Sinkhorn-Knopp Iterative algorithm
(Cuturi, 2013), which demonstrates polynomial-
time complexity.

C.3 Formulation of The Generator Loss
Function

Following (Ye et al., 2021), we organize the loss
of our generator as:

L(θ) = −
[ N

2∑

i=1

Lp(θ, yπ∗
p(i)) +

N∑

i=N
2
+1

La(θ, yπ∗
a(i))

]
(7)
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Lp(θ, yi) =

{
λpre ·

∑|yi|
t=1 log p̂

t
i(y

t
i), if yi=∅.∑|yi|

t=1 log p̂
t
i(y

t
i), otherwise.

(8)

where yti is the t-th token of target yi, p̂ti de-
notes the predictive probability distribution of
the i-th candidate at t-th step, λpre is a hyper-
parameter used to decrease the impact of exces-
sive ∅. La(θ, yi) is defined in the same form as
Lp(θ, yi), except that λpre is replaced with λabs.
We adopt λpre as 0.2 and λabs as 0.1.

D Implementation Details

D.1 LLaMA-2-7B

We use LLaMA-2-7B to perform instruction tun-
ing and use the prompt template as follows:

### Instruction: Generate keyphrases for the
given document and use ; to space keyphrases.
For example, “phraseA; phraseB; phraseC”.
### Input: Document: {document}
### Response: Keyphrases: {keyphrases}

We adopt QLoRA and a learning rate of 2e-4. Val-
idation is performed every 1,000 iterations. The
rest of the experimental setup is consistent with
4.1.

D.2 LLM-Scorer

We use LLaMA-2-7B to perform instruction tun-
ing and use the prompt template as follows:

### Instruction:
Score each candidate according to the given
document.
### Input:
Document: {document}
Candidates:
[1] {candidate1}

[n] {candidaten}
### Response:
Score: {scores}

The LLM-Scorer predicts the scores for all can-
didates in one step by generating a logit distribu-
tion, where candidate1 maps to token “<0x00>”,
candidate2 maps to token “<0x01>”, and so forth.
We extract the logits corresponding to these in-
dices and assign these values as the scores for
candidate1 to candidaten. The scorer is then
tuned using the contrastive loss function proposed
by (Choi et al., 2023), which helps to maximize

the distinction between the correct and incorrect
candidates by adjusting the scores accordingly.

We adopt QLoRA and a learning rate of 3e-4 to
tune a LoRA module for both present and absent
keyphrases. The rest of the experimental setup is
consistent with 4.1.
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