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Abstract
While recent preference alignment algorithms
for language models have demonstrated promis-
ing results, supervised fine-tuning (SFT) re-
mains imperative for achieving successful con-
vergence. In this paper, we revisit SFT in the
context of preference alignment, emphasizing
that a minor penalty for the disfavored style
is sufficient for preference alignment. Build-
ing on this foundation, we introduce a straight-
forward reference model-free monolithic odds
ratio preference optimization algorithm, ORPO,
eliminating the need for an additional prefer-
ence alignment phase. We demonstrate, both
empirically and theoretically, that the odds ra-
tio is a sensible choice for contrasting favored
and disfavored styles during SFT across di-
verse sizes from 125M to 7B. Specifically, fine-
tuning Phi-2 (2.7B), Llama-2 (7B), and Mistral
(7B) with ORPO on the UltraFeedback alone
surpasses the performance of state-of-the-art
language models including Llama-2 Chat and
Zephyr with more than 7B and 13B parame-
ters: achieving up to 12.20% on AlpacaEval2.0
(Figure 1), and 7.32 in MT-Bench (Table 2).
We release code1 and model checkpoints2 for
Mistral-ORPO-α and Mistral-ORPO-β.

1 Introduction

Pre-trained language models (PLMs) with vast
training corpora such as web texts (Gokaslan and
Cohen, 2019; Penedo et al., 2023) or textbooks (Li
et al., 2023c) have shown remarkable abilities in
diverse natural language processing (NLP) tasks
(Brown et al., 2020; Zhang et al., 2022; Touvron
et al., 2023; Jiang et al., 2023; Almazrouei et al.,
2023). However, the models must undergo further
tuning to be usable in downstream applications, typ-
ically through processes such as instruction tuning
and preference alignment.

Instruction-tuning (Wei et al., 2022; Taori et al.,
2023; Wang et al., 2023; Zhou et al., 2023a) trains

1GitHub: https://github.com/xfactlab/orpo
2Models: ORPO collection
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Figure 1: AlpacaEval2.0 result of Llama-2 (7B) and
Mistral (7B) fine-tuned with ORPO (blue) in comparison
to the state-of-the-art models. Notably, Mistral-ORPO-α
& β surpasses Zephyr β and Llama-2-Chat (13B) with a
single epoch training exclusively on the UltraFeedback.

models to follow task descriptions given in natu-
ral language, which enables models to generalize
well to previously unseen tasks. However, despite
the ability to follow instructions, models may gen-
erate harmful or unethical outputs (Carlini et al.,
2021; Gehman et al., 2020; Pryzant et al., 2023).
To further align these models with human values,
additional training is required with pairwise prefer-
ence data using techniques such as reinforcement
learning with human feedback (Ziegler et al., 2020;
Stiennon et al., 2022, RLHF) and direct preference
optimization (Rafailov et al., 2023, DPO). Existing
preference alignment methods typically consist of a
multi-stage process, as shown in Figure 2, typically
requiring a second reference model and a separate
warm-up phase with supervised fine-tuning (SFT)
(Ziegler et al., 2020; Rafailov et al., 2023; Wu et al.,
2023), which adds additional resource overheads.

We propose a novel alignment method, Odds Ra-
tio Preference Optimization (ORPO), which adds
a penalization term that steers the model away
from learning undesired generation styles during
SFT. In evaluation, fine-tuning Phi-2 (2.7B), Llama-
2 (7B), and Mistral (7B) with ORPO results in
higher win rates in AlpacaEval2.0, when compared
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Figure 2: Comparison of model alignment techniques. ORPO aligns the language model without a reference model in
a single-step manner by assigning a weak penalty to the rejected responses and a strong adaptation signal to the
chosen responses with a simple log odds ratio term appended to the negative log-likelihood loss.

to DPO with Phi-2 (2.7B) (+5.57%), and offi-
cial checkpoints for Llama-2 (7B) Chat (+4.48%)
and Llama-2 (13B) Chat (+1.74%), and Zephyr-
α (7B) (+2.98%), respectively. In our analyses,
we demonstrate empirical superiority by compar-
ing ORPO against established methods for model
alignment, RLHF, and DPO for different datasets
and model sizes. Further analysis from theoreti-
cal, empirical, and efficiency perspectives offers
the following enhancements over previous meth-
ods: (1) requiring neither a reference model nor
SFT stage and (2) less than half of the computa-
tional load in actual training. We release the train-
ing code and the checkpoints for Mistral-ORPO-α
(7B) and Mistral-ORPO-β (7B), which achieve 7.24
and 7.32 in MT-Bench and 11.33% and 12.20% on
AlpacaEval2.0, as shown in Figure 1 and Table 2.

2 Related Works

Alignment with reinforcement learning Rein-
forcement learning with human feedback (RLHF)
commonly applies the Bradley-Terry model
(Bradley and Terry, 1952) to estimate the probabil-
ity of a pairwise competition between two indepen-
dently evaluated instances. An additional reward
model is trained to score instances. Reinforcement
learning algorithms such as proximal policy opti-
mization (PPO) (Schulman et al., 2017) are em-
ployed to train the model to maximize the score of
the reward model for the chosen response, result-
ing in language models that are trained with human
preferences (Ziegler et al., 2020; Stiennon et al.,
2022; Ouyang et al., 2022). However, RLHF faces
challenges of extensive hyperparameter searching
due to the instability of PPO (Rafailov et al., 2023;
Wu et al., 2023) and the sensitivity of the reward

models (Gao et al., 2022; Wang et al., 2024). There-
fore, there is a demanding need for stabler prefer-
ence alignment algorithms.

Alignment without reward model Recently pro-
posed techniques for preference alignment mitigate
the need for reinforcement learning (Rafailov et al.,
2023; Song et al., 2023; Azar et al., 2023; Etha-
yarajh et al., 2024; Xu et al., 2024; Rosset et al.,
2024). Rafailov et al. (2023) introduce direct pref-
erence optimization (DPO), which removes the re-
ward modeling stage. Azar et al. (2023) prevented
potential overfitting problems in DPO through iden-
tity preference optimization (IPO). Ethayarajh et al.
(2024) and Cai et al. (2023) proposed Kahneman-
Tversky Optimization (KTO) and Unified Lan-
guage Model Alignment (ULMA) that does not
require the pair-wise preference dataset, unlike
RLHF and DPO. Song et al. (2023) and Xu et al.
(2024) further suggest incorporation of the softmax
value of the reference response set in the negative
log-likelihood loss to merge the supervised fine-
tuning and preference alignment.

Alignment with supervised fine-tuning There
have been approaches to build human-aligned
language models by conducting supervised fine-
tuning (SFT) only with filtered datasets (Zhou
et al., 2023a; Li et al., 2023a; Haggerty and Chan-
dra, 2024; Zhou et al., 2023b; Dong et al., 2023;
Yuan et al., 2023; Gulcehre et al., 2023). Zhou
et al. (2023a) demonstrated that SFT with a small
amount of data with fine-grained curation could
be sufficient for building helpful language model
assistants. Furthermore, Li et al. (2023a) and Hag-
gerty and Chandra (2024) proposed an iterative
process of fine-tuning the supervised fine-tuned
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language models with their own generations after
fine-grained selection of aligned generations and
Zhou et al. (2023b) suggested that a curated subset
of preference dataset is sufficient for alignment.

3 Odds Ratio Preference Optimization

We introduce a novel preference alignment algo-
rithm, Odds Ratio Preference Optimization (ORPO),
which incorporates an odds ratio-based penalty to
the conventional supervised fine-tuning (SFT) loss
(i.e., negative log-likelihood (NLL)) for differen-
tiating the generation styles between favored and
disfavored responses. We discuss the effects of
SFT on preference alignment in Section 3.2 and
explain the mechanism of ORPO in Section 3.3.

3.1 Preliminaries
Given a language model πθ and an input sequence
x, the average log-likelihood of πθ generating the
output sequence y is computed as:

logPθ(y|x) =
1

|y|
m∑

t=1

log πθ(yt|x, y<t).

And the odds of generating the output sequence y
given an input sequence x is defined as:

oddsθ(y|x) =
Pθ(y|x)

1− Pθ(y|x)
,

where we use exponentiated average log-likelihood
Pθ(y|x) to represent the likelihood of response y
given prompt x in the form of probability.

We adopt the odds to model the preference
given the likelihood of binary outcomes, preferred
and dispreferred responses (Rafailov et al., 2023).
While this is due to model a binary aspect of prefer-
ences, setting in which the odds ratio is applied, the
use of average log-likelihood in alignment methods
is widely studied for length regularization (Yuan
et al., 2023; Park et al., 2024; Grinsztajn et al.,
2024; Meng et al., 2024).

Intuitively, oddsθ(y|x) = k implies that it is k
times more likely for the model πθ to generate the
output sequence y than not generating it. Thus,
the odds ratio of the chosen response yw over the
rejected response yl, ORθ(x, yw, yl),

ORθ(x, yw, yl) =
oddsθ(yw|x)
oddsθ(yl|x)

, (1)

indicates how much more likely it is for the model
θ to generate yw than yl given input x.
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Figure 3: Log probabilities for chosen and rejected
responses during OPT-350M model fine-tuning on HH-
RLHF dataset. Despite only chosen responses being
used for supervision, rejected responses show a compa-
rable likelihood of generation.

3.2 Revisiting Supervised Fine-tuning

Methods in RLHF often leverage SFT to ensure
the stable update of the active policy (Schulman
et al., 2017), using the SFT model as a reference
policy. Even in non-RL alignment methods, em-
pirical findings indicate that the SFT is crucial for
achieving convergence to desired results (Rafailov
et al., 2023; Tunstall et al., 2023). In detail, SFT
uses cross-entropy loss to penalize the model if the
predicted logits for the reference answers are low:

LSFT(x,y) = − 1

m

m∑

k=1

logP (x(k),y(k)) (2)

= − 1

m

m∑

k=1

|V |∑

i=1

y
(k)
i · log(p(k)i ), (3)

where yi is a boolean value that indicates if ith
token in the vocabulary set V is a label token, pi
refers to the probability of ith token, and m is the
length of sequence. Cross-entropy alone gives no
direct penalty or compensation for the logits of non-
answer tokens (Lin et al., 2017) as yi will be set
to 0. While cross-entropy is generally effective for
domain adaptation (Mao et al., 2023), there are no
mechanisms to penalize rejected responses when
compensating for the chosen responses. Therefore,
the log probabilities of the tokens in the rejected re-
sponses increase along with the chosen responses,
which is not desired from the viewpoint of prefer-
ence alignment.

Generalization over both response styles We
conduct a pilot study to empirically demonstrate
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the miscalibration of chosen and rejected responses
with supervised fine-tuning alone. We fine-tune
OPT-350M (Zhang et al., 2022) on the chosen re-
sponses only from the HH-RLHF dataset (Bai et al.,
2022b). Throughout the training, we monitor the
log probability of rejected responses for each batch
and report this in Figure 3. Both the log probability
of chosen and rejected responses exhibited a simul-
taneous increase. This can be interpreted from two
different perspectives. First, the cross-entropy loss
effectively guides the model toward the intended
domain (e.g., dialogue). However, the absence of
a penalty for unwanted generations results in re-
jected responses sometimes having even higher log
probabilities than the chosen ones.

Penalizing undesired generations Appending
an unlikelihood penalty to the loss has successfully
reduced unwanted degenerative traits in models
(Welleck et al., 2019; Li et al., 2020). For example,
to prevent repetitions, an unwanted token set of pre-
vious contexts, k ∈ Crecent, is disfavored by adding
the following term to (1− p

(k)
i ) to the loss which

penalizes the model for assigning high probabilities
to recent tokens. Motivated by SFT ascribing high
probabilities to rejected tokens (Figure 3) and the
effectiveness of appending penalizing unwanted
traits, we design a monolithic preference alignment
method that dynamically penalizes the disfavored
response for each query without the need for craft-
ing sets of rejected tokens.

3.3 Objective Function of ORPO

The objective function of ORPO in Equation 4 con-
sists of two components: 1) supervised fine-tuning
(SFT) loss (LSFT ); 2) odd ratio loss (LOR) for the
tuple d = (x, yl, yw) ∼ D:

L(d; θ) = LSFT (x, yw; θ) + λLOR(d; θ). (4)

LSFT follows the conventional NLL loss formu-
lation in Equation (3) to maximize the likelihood
of generating the reference tokens as previously
discussed in Section 3.2. LOR maximizes the odds
ratio between the likelihood of generating the fa-
vored response yw and the disfavored response yl:

LOR (d; θ) = − log σ

(
log

oddsθ(yw|x)
oddsθ(yl|x)

)
. (5)

We wrap the log odds ratio with the log sigmoid
function so that LOR could be minimized by in-
creasing the log odds ratio between yw and yl.

Weighting the LOR term with λ tailors the pre-
trained language model to adapt to the specific sub-
set of the desired domain and disfavor generations
in the rejected response sets. We further discuss
the role of the odds ratio in learning the preference
in Appendix D, showing that a simple probability
ratio could lead to an excessive likelihood margin
between the chosen and rejected responses.

3.4 Gradient Analysis

We provide the derivation of ∇θLOR in Ap-
pendix A. Analysis of the gradient of LOR justifies
using the odds ratio loss. Where the two terms,

∇θLOR = δ(d) · h(d), (6)

have complementary roles: δ(d) penalizes the
wrong predictions of the model and h(d) contrasts
between chosen and rejected responses:

δ(d) =

[
1 +

oddsθP (yw|x)
oddsθP (yl|x)

]−1

(7)

h(d) =
∇θ logPθ(yw|x)
1− Pθ(yw|x)

− ∇θ logPθ(yl|x)
1− Pθ(yl|x)

.

(8)

When the odds of the favored responses are rela-
tively higher than the disfavored responses, δ(d)
in Equation 7 will converge to 0. This indicates
that the δ(d) will play the role of a penalty term,
accelerating the parameter updates if the model is
more likely to generate the rejected responses.

In equation 8, h(d) implies a weighted contrast
between the gradients from the chosen and rejected
responses. Specifically, the term 1 − P (y|x) in
the denominators amplifies the gradients when the
corresponding side of the likelihood, P (y|x), is
high. For chosen responses, this will accelerate
the model’s adaptation toward the distribution of
chosen responses as the likelihood increases.

4 Experimental Settings

4.1 Training Configurations

Models and datasets We finetune state-of-the-
art pre-trained language models with ORPO by dif-
ferent scales, Phi-2 (2.7B) (Javaheripi and Bubeck,
2023), Llama-2 (7B) (Touvron et al., 2023) and
Mistral (7B) (Jiang et al., 2023) on Binarized Ultra-
Feedback (Tunstall et al., 2023). Furthermore, to
assess the controlled scalability of ORPO, we fine-
tune a series of OPT models (Zhang et al., 2022)
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Model Name Size AlpacaEval1.0 AlpacaEval2.0
Phi-2 + SFT 2.7B 48.37% (1.77) 0.11% (0.06)
Phi-2 + SFT + DPO 2.7B 50.63% (1.77) 0.78% (0.22)
Phi-2 + ORPO (Ours) 2.7B 71.80% (1.59) 6.35% (0.74)
Llama-2 Chat * 7B 71.34% (1.59) 4.96% (0.67)
Llama-2 Chat * 13B 81.09% (1.38) 7.70% (0.83)
Llama-2 + ORPO (Ours) 7B 81.26% (1.37) 9.44% (0.85)
Zephyr (α) * 7B 85.76% (1.23) 8.35% (0.87)
Zephyr (β) * 7B 90.60% (1.03) 10.99% (0.96)
Mistral-ORPO-α (Ours) 7B 87.92% (1.14) 11.33% (0.97)
Mistral-ORPO-β (Ours) 7B 91.41% (1.15) 12.20% (0.98)

Table 1: Table of instruction-following abilities of each checkpoint measured through AlpacaEval. While clearly
showing the improvements in instruction-following abilities after training with ORPO, it is notable that ORPO models
exceed RLHF or DPO models of Llama-2 and Mistral (* indicates the results from the official leaderboard.)

scaling from 125M to 1.3B parameters on An-
thropic’s HH-RLHF (Bai et al., 2022a) and Ultra-
Feedback, comparing supervised fine-tuning (SFT),
proximal policy optimization (PPO), direct pref-
erence optimization (DPO), and compare these
to ORPO. PPO and DPO models were fine-tuned
with TRL (von Werra et al., 2020) on SFT models
trained for a single epoch on the chosen responses
following Rafailov et al. (2023) and Tunstall et al.
(2023). We notate this by prepending "+" to each
algorithm (e.g., +DPO). Further training details are
in Appendix C. We filtered out instances where
yw = yl or where yw = ∅, or yl = ∅.

Reward models We train OPT-350M and OPT-
1.3B on each dataset for a single epoch for reward
modeling with the objective function in Equation
9 (Ziegler et al., 2020). The OPT-350M reward
model was used for PPO, and OPT-1.3B reward
model was used to assess the generations of fine-
tuned models. We refer to these reward models as
RM-350M and RM-1.3B in Section 5.

−E(x,yl,yw) [log σ (r(x, yw)− r(x, yl))] (9)

4.2 Leaderboard Evaluation

In Section 5.1, we evaluate the models using the
AlpacaEval1.0 and AlpacaEval2.0 (Li et al., 2023b)
benchmarks, comparing ORPO to other instruction-
tuned models reported in the official leaderboard,3

including Llama-2 Chat (7B) and (13B) (Touvron
et al., 2023), and Zephyr α and β (Tunstall et al.,
2023). Similarly, in Section 5.2, we evaluate the
models with MT-Bench (Zheng et al., 2023) and

3https://tatsu-lab.github.io/alpaca_eval/

report the results and the scores of the same mod-
els reported in the official leaderboard.4 Using
GPT-4 (Achiam et al., 2023) as an evaluator in
AlpacaEval1.0, we assess if the trained model can
be preferred over the responses generated from
text-davinci-003. For AlpacaEval2.0, we used
GPT-4-turbo5 as an evaluator following the default
setting. We assess if the generated responses are fa-
vored over those generated from GPT-4. Finally, us-
ing GPT-4 as an evaluator in MT-Bench, we check
if the models can follow the instructions with hard
answers in a multi-turn conversation.

5 Experimental Results

First, we assess the general instruction-following
abilities of the models by comparing the preference
alignment algorithms in single-turn (Section 5.1)
and multi-turn (Section 5.2) instruction following
benchmarks. Then, we compare ORPO against other
alignment methods in the controlled setting, using
OPT with various model sizes (Section 5.3).

5.1 Single-turn Instruction Following
Phi-2 (2.7B) ORPO improved pre-trained Phi-2
to exceed the performance of the Llama-2 Chat
instruction-following language model by only us-
ing UltraFeedback as the instruction-tuning dataset,
as shown in Table 1. λ of 0.25 was applied for Phi-
2, resulting in 71.80% and 6.35% in AlpacaEval.

Llama-2 (7B) Notably, UltraFeedback and ORPO
with λ of 0.2 on Llama-2 (7B) resulted in higher

4https://huggingface.co/spaces/lmsys/
chatbot-arena-leaderboard

5https://platform.openai.com/docs/models/
gpt-4-and-gpt-4-turbo
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AlpacaEval scores than the chat versions of both
7B and 13B scale trained with RLHF, eventually
showing 81.26% and 9.44% in both AlpacaEvals.

In contrast, in our controlled experimental set-
ting of conducting one epoch of SFT and three
epochs of DPO following Tunstall et al. (2023) and
Rafailov et al. (2023), Llama-2 + SFT and Llama-
2 + SFT + DPO yielded models with outputs that
could not be evaluated. This supports the efficacy
of ORPO, in which the model can rapidly learn the
desired domain and the preference with limited
data. This aligns with the h(d) examination in the
gradient of our method studied in Section 3.4.

Mistral-ORPO-α (7B) Furthermore, fine-tuning
Mistral (7B) with single-turn conversation dataset,
UltraFeedback, and ORPO with λ of 0.1 outper-
forms Zephyr series, which are the Mistral (7B)
models fine-tuned with SFT on 200K UltraChat
(Ding et al., 2023) and DPO on the full Ultra-
Feedback. As shown in Table 1, Mistral-ORPO-α
(7B) achieves 87.92% and 11.33%, which exceeds
Zephyr α by 1.98% and Zephyr β by 0.34% in
AlpacaEval2.0. The sample responses and corre-
sponding references from GPT-4 can be found in
Appendix I.

Mistral-ORPO-β (7B) Using the same configura-
tion of Mistral-ORPO-α (7B), we additionally com-
pare fine-tuning Mistral on the cleaned version
of the UltraFeedback (Bartolome et al., 2023) to
demonstrate the effect of the data quality. While
the sizes of datasets are similar, ORPO gains fur-
ther advantages from the dataset quality by scoring
over 91% and 12% on AlpacaEval, as shown in Ta-
ble 1. Further evaluations on instruction-following
with IFEval (Zhou et al., 2023c) and four different
benchmarks are in the Appendices E and F.

5.2 Multi-turn Instruction Following

With our best model, Mistral-ORPO-α (7B) and
Mistral-ORPO-β (7B), we also assess the multi-turn
instruction-following skills with deterministic an-
swers (e.g., math) through MT-Bench.

As shown in Table 2, Mistral-ORPO series ex-
ceeds larger instruction-following chat models, es-
pecially Llama-2-Chat (70B). Eventually, Mistral-
ORPO-α (7B) and Mistral-ORPO-β (7B) scored 7.23
and 7.32 in MT-Bench without being exposed to
the multi-turn conversation dataset during training,
while Zephyr-β was trained on 200k multi-turn
conversations during SFT.

MT-Bench 1st Turn 2nd Turn Average
Llama-2-7B Chat 6.41 6.13 6.27

Llama-2-13B Chat 7.06 6.24 6.65
Llama-2-70B Chat 6.99 6.73 6.86

Mistral-ORPO-α 7.49 6.96 7.23
Zephyr-β 7.68 6.98 7.33

Mistral-ORPO-β 7.64 7.00 7.32

Table 2: MT-Bench results of instruction-following lan-
guage models. Mistral-ORPO-β surpasses or is on par
with the models trained on more data.

5.3 Case Study with Smaller Models
We assess the win rate of ORPO over other pref-
erence alignment methods using different scales
of OPT models, including supervised fine-tuning
(SFT), PPO, and DPO, using RM-1.3B to under-
stand the effectiveness of ORPO in Tables 3 and 4.
Additionally, we visually verify that ORPO can ef-
fectively enhance the expected reward compared to
SFT in Figure 4.

HH-RLHF In Table 3, ORPO outperforms SFT
and PPO across all model scales. The highest win
rate against SFT and PPO across the size of the
model was 78.0% and 79.4%, respectively. Mean-
while, the win rate over DPO correlated to the
model’s size, with the largest model having the
highest win rate: 70.9%.

ORPO vs SFT +DPO +PPO
OPT-125M 84.0 (0.62) 41.7 (0.77) 66.1 (0.26)
OPT-350M 82.7 (0.56) 49.4 (0.54) 79.4 (0.29)
OPT-1.3B 78.0 (0.16) 70.9 (0.52) 65.9 (0.33)

Table 3: Average win rate (%) and its standard deviation
of ORPO and standard deviation over other methods on
HH-RLHF dataset for three rounds. Sampling decoding
with a temperature of 1.0 was used on the test set.

UltraFeedback The win rate in UltraFeedback
followed similar trends to what was reported in HH-
RLHF, as shown in Table 4. ORPO was preferred
over SFT and PPO for maximum 80.5% and 85.8%,
respectively. While consistently preferring ORPO
over SFT and PPO, the win rate over DPO grad-
ually increases as the model size increases. The
scale-wise trend exceeding DPO will be further
shown through 2.7B models in Section 5.1.

6 Analysis

In this section, we study the advantages of ORPO
from different perspectives. We first compare the
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Figure 4: Reward distribution comparison between OPT-125M (left), OPT-350M (middle), and OPT-1.3B (right)
trained with SFT (blue), RLHF (green), DPO (orange), and ORPO (red) on the test set of UltraFeedback (top) and
HH-RLHF (bottom) using the RM-1.3B. While the rewards of the trained models are roughly normal and preference
optimization algorithms (RLHF, DPO, and ORPO) tend to move the reward distribution in the positive direction,
ORPO is on par or better than RLHF and DPO in increasing the expected reward.

ORPO vs SFT +DPO +PPO
OPT-125M 73.2 (0.12) 48.8 (0.29) 71.4 (0.28)
OPT-350M 80.5 (0.54) 50.5 (0.17) 85.8 (0.62)
OPT-1.3B 69.4 (0.57) 57.8 (0.73) 65.7 (1.07)

Table 4: Average win rate (%) and its standard devia-
tion of ORPO and standard deviation over other methods
on UltraFeedback dataset for three rounds. Sampling
decoding with a temperature of 1.0 was used.

computational costs of DPO and ORPO in Section
6.1. Then, we analyze ORPO from the reward maxi-
mization objective in Section 6.2. Furthermore, we
measure the lexical diversity of the models trained
with ORPO and DPO in Section 6.3.

6.1 Computational Efficiency

DPO ORPO
Training Time (hours) (↓) 12.6 5.5

Max Batch (↑) 1 4

Table 5: Computational costs of DPO and ORPO for 1
epoch on UltraFeedback using 2 NVIDIA A100 GPUs
with AdamW and DeepSpeed ZeRO 3. We exclude SFT
training time for DPO.

As depicted in Figure 2, ORPO’s efficiency de-

rives from two aspects: 1) no reference model
and 2) no separate SFT stage. In that sense, ORPO
is computationally more efficient than RLHF and
DPO in both time and memory.

We demonstrate this through controlled training
on DPO and ORPO with 2 NVIDIA A100 GPUs
using DeepSpeed ZeRO 3(Rajbhandari et al., 2021)
and AdamW (Loshchilov and Hutter, 2019) on Mis-
tral (7B). As shown in Table 5, ORPO reduces 56.3%
of training time compared to that of DPO and was
able to fit a four times larger batch size per de-
vice. Furthermore, as DPO typically requires a
pre-supervised fine-tuning (SFT) stage, the actual
computational efficiency difference becomes more
drastic as the SFT datasets are quite large6. The ref-
erence model (πSFT ) in the context of RLHF and
DPO denotes the model trained with SFT, which
will be the base model for updating the parameters
with PPO or DPO (Ziegler et al., 2020; Rafailov
et al., 2023). Thus, two πSFT s, a frozen reference
model and the model undergoing tuning, are re-
quired during training. Furthermore, in theory, two
forward passes should be calculated for each model
to acquire the logits for the chosen and rejected
responses. In other words, four forward passes

6UltraChat dataset consists of 200k instances
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Per Input↓ Across Input↓
Phi-2 + SFT + DPO 0.8012 0.6019
Phi-2 + ORPO 0.8909 0.5173
Llama-2 + SFT + DPO 0.8889 0.5658
Llama-2 + ORPO 0.9008 0.5091

Table 6: Lexical diversity of Phi-2 and Llama-2 fine-
tuned with DPO and ORPO. Lower cosine similarity is
equivalent to higher diversity. The highest value in each
column within the same model family is bolded.

happen for a single batch. On the other hand, a
reference model is not required in ORPO as πSFT is
directly updated. This leads to half the number of
forward passes required for each batch.

6.2 Overall Reward Distribution

In addition to the reward model win rate discussed
in Section 5.3, we compare the reward distribution
of the responses generated with respect to the test
set of the UltraFeedback and HH-RLHF in Figure
4. Regarding the SFT reward distribution as a de-
fault, PPO, DPO, and ORPO shift it in both datasets.
However, the magnitude of reward shifts for each
algorithm differs.

In Figure 4, RLHF (i.e., SFT + PPO) has some
abnormal properties of the distribution with a low
expected reward. We attribute this to empirical
evidence of the instability and reward mismatch
problem (Rafailov et al., 2023; Gao et al., 2022;
Shen et al., 2023) as the RLHF models were trained
with RM-350M and assessed with RM-1.3B. Mean-
while, it is notable that the ORPO distribution (red)
is mainly located on the very right side of each sub-
plot, indicating higher expected rewards. Recalling
the intent of preference alignment, the distributions
in Figure 4 indicate that ORPO tends to fulfill the
aim of preference alignment for all model sizes.

6.3 Lexical Diversity

The lexical diversity of the preference-aligned lan-
guage models was studied in previous works (Kirk
et al., 2024). We expand the concept of per-input
and across-input diversity introduced in Kirk et al.
(2024) by using Gemini-Pro (Gemini Team et al.,
2023) as an embedding model, which is suitable
for assessing the diversity of instruction-following
language models by encoding a maximum of 2048
tokens. The diversity metric with the given set of
sampled responses is defined as:

Oi
θ := {yj ∼ θ(y|xi)|j = 1, 2, ...,K} (10)
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Figure 5: Average log-likelihood for chosen and re-
jected responses and log odds ratio per batch. The odds
consistently increase during training with ORPO.

D(Oi
θ) =

1

2
·
∑N−1

i=1

∑N
j=i+1 cos(hi, hj)

N · (N − 1)
(11)

where cos(hi, hj) refers to the cosine similarity
between the embedding hi and hj . 5 different re-
sponses are sampled with a temperature of 1.0 to
160 queries in AlpacaEval (i.e., K = 5, N = 160)
using Phi-2 and Llama-2 trained with ORPO and
DPO. We report the results in Table 6.

Per Input Diversity (PID) We average the input-
wise average cosine similarity between the gener-
ated samples with Equation 12 to assess the per-
input diversity. In Table 6, ORPO models have the
highest average cosine similarity in the first column
for both models, which implies the lowest diversity
per input. This indicates that ORPO generally as-
signs high probabilities to the desired tokens, while
DPO has a relatively smoother logit distribution.

PIDD(θ) =
1

N

N∑

i=1

D(Oi
θ) (12)

Across Input Diversity (AID) Using 8 samples
generated per input, we sample the first item for
each input and examine their inter cosine similarity
with Equation 13 for across-input diversity. Un-
like per-input diversity, it is noteworthy that Phi-2
(ORPO) has lower average cosine similarity in the
second row of Table 6. We can infer that ORPO
triggers the model to generate more instruction-
specific responses than DPO.

AIDD(θ) = D

(
N⋃

i=1

Oi,θ,j=1

)
(13)

6.4 Minimizing LOR

We demonstrate that models trained with ORPO
learned to reflect the preference throughout the
training process. We monitored the log probabili-
ties of the chosen and rejected responses and the
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log odds ratio with λ = 1.0. With the same dataset
and model as Figure 3, Figure 5 shows that the
log probability of rejected responses is diminishing
while that of chosen responses is on par with Figure
3 as the log odds ratio increases. This indicates that
ORPO is successfully preserving the domain adap-
tation of SFT while the penalty term LOR induces
the model to lower the likelihood of unwanted gen-
erations. We discuss the effect of λ in Equation
4 in Appendix G, studying the proclivity of the
log probability margin between the favored and
disfavored responses with respect to λ.

7 Conclusion

In this paper, we introduced a reference-free mono-
lithic preference alignment method, odds ratio pref-
erence optimization (ORPO), by revisiting and un-
derstanding the value of the supervised fine-tuning
(SFT) phase in the context of preference align-
ment. ORPO was consistently preferred by the
fine-tuned reward model against SFT and RLHF
across the scale, and the win rate against DPO
increased as the model size increased. Further-
more, we validate the scalability of ORPO with 2.7B
and 7B pre-trained language models by exceeding
the larger state-of-the-art instruction-following lan-
guage models in AlpacaEval. Specifically, Mistral-
ORPO-α and Mistral-ORPO-β achieved 11.33% and
12.20% in AlpacaEval2.0, 7.23 and 7.32 in MT-
Bench, thereby underscoring the efficiency and ef-
fectiveness of ORPO.

Limitations

While conducting a comprehensive analysis of the
diverse preference alignment methods, including
DPO and RLHF, we did not incorporate a more
comprehensive range of preference alignment algo-
rithms. We leave the broader range of comparison
against other methods as future work, along with
scaling our method to over 7B models. In addi-
tion, we will expand the fine-tuning datasets into
diverse domains and qualities, thereby verifying
the generalizability of our method in various NLP
downstream tasks. Finally, we would like to study
the internal impact of our method on the pre-trained
language model, expanding the understanding of
preference alignment procedure to not only the
supervised fine-tuning stage but also consecutive
preference alignment algorithms.
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A Derivation of ∇θLOR with Odds Ratio

Suppose that g(x, yl, yw) =
oddsθP (yw|x)
oddsθP (yl|x)

∇θLOR = ∇θ log σ

(
log

oddsθP (yw|x)
oddsθP (yl|x)

)
(14)

=
σ′ (log g(x, yl, yw))
σ (log g(x, yl, yw))

(15)

=
σ (− log g(x, yl, yw))

g(x, yl, yw)
· ∇θg(x, yl, yw) (16)

= σ (− log g(x, yl, yw)) · ∇θ log g(x, yl, yw) (17)

=

(
1 +

oddsθP (yw|x)
oddsθP (yl|x)

)−1

· ∇θ log
oddsθP (yw|x)
oddsθP (yl|x)

(18)

In Equation 18, the remaining derivative can be further simplified by replacing 1 − Pθ(y|x) terms

where P (y|x) = N

√∏N
t Pθ(yt|x, y<t) in oddsθ(y|x) as follows.

∇θ log (1− Pθ(y|x)) =
∇θ (1− Pθ(y|x))

1− Pθ(y|x)
(19)

=
−∇θPθ(y|x)
1− Pθ(y|x)

(20)

= − Pθ(y|x)
1− Pθ(y|x)

· ∇θ logPθ(y|x) (21)

= −oddsθ(y|x) · ∇θ logPθ(y|x) (22)

∇θ log
oddsθP (yw|x)
oddsθP (yl|x)

= ∇θ log
Pθ(yw|x)
Pθ(yl|x)

−
(
∇θ log(1− Pθ(yw|x))−∇θ log(1− Pθ(yl|x))

)
(23)

= (1 + oddsθP (yw|x))∇θ logPθ(yw|x)− (1 + oddsθP (yl|x))∇θ logPθ(yl|x)
(24)

Therefore, the final form of ∇θLOR would be

∇θLOR =
1 + oddsθP (yw|x)
1 + oddsθP (yw|x)

oddsθP (yl|x)
· ∇θ logPθ(yw|x)−

1 + oddsθP (yl|x)
1 + oddsθP (yw|x)

oddsθP (yl|x)
· ∇θ logPθ(yl|x) (25)

=

(
1 +

oddsθP (yw|x)
oddsθP (yl|x)

)−1

·
(∇θ logPθ(yw|x)

1− P (yw|x)
− ∇θ logPθ(yl|x)

1− P (yl|x)

)
(26)
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B Ablation on Probability Ratio and Odds Ratio

In this section, we continue the discussion in Appendix D through empirical results comparing the log
probabilities of chosen and rejected responses in UltraFeedback when trained with probability and odds
ratios. Recalling the sensitivity of each ratio discussed in Appendix D, it is expected for the probability
ratio to lower the log probabilities of the rejected responses with a larger scale than the odds ratio. This is
well-shown in Figure 6, which is the log probabilities of each batch while fine-tuning with probability
ratio (left) rapidly reaches under -4, while the same phenomenon happens after the over-fitting occurs in
the case of odds ratio (right).

Figure 6: The log probability trace when the model is trained with the probability ratio (left) and the odds ratio
(right) given the same hyperparameters. The probability ratio leads the rejected responses to have relatively lower
log probabilities.

C Experimental Details

Flash-Attention 2 (Dao, 2023) is applied for all the pre-trained models for computational efficiency. In
particular, the OPT series and Phi-2 (2.7B) were trained with DeepSpeed ZeRO 2 (Rasley et al., 2020),
Llama-2 (7B) and Mistral (7B) were trained with Fully Sharded Data Parallel(FSDP) (Zhao et al., 2023).
7B and 2.7B models were trained with four and two NVIDIA A100, and the rest were trained on four
NVIDIA A6000. For optimizer, AdamW optimizer (Loshchilov and Hutter, 2019) and paged AdamW
(Dettmers et al., 2023) were used, and the linear warmup with cosine decay was applied for the learning
rate. For input length, every instance was truncated and padded to 1,024 tokens and 2,048 tokens for
HH-RLHF and UltraFeedback, respectively. To guarantee that the models can sufficiently learn to generate
the proper response to the conversation history or the complex instruction, we filtered instances with
prompts with more than 1,024 tokens.

Supervised Fine-tuning (SFT) For SFT, the maximum learning rate was set to 1e-5. Following Ziegler
et al. (2020) and Rafailov et al. (2023), the training epoch is set to 1.

Reinforcement Learning with Human Feedback (RLHF) For RLHF, the hyperparameters were set as
Table 7 for UltraFeedback. For the HH-RLHF dataset, the output_min_length and output_max_length
were set to 64 and 256.

Direct Preference Optimization (DPO) For DPO, β was set to 0.1 for every case. The learning rate
was set to 5e-6, and the model was trained for three epochs to select the best model by evaluation loss in
each epoch. However, in most cases, the first or the second checkpoint was selected as the best model as
the evaluation loss increased from the third epoch.
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Hyperparameter Setting
ppo_epoch 4
init_kl_coef 0.1
horizon 2,000
batch_size 64
mini_batch_size 8
gradient_accumulation_steps 1
output_min_length 128
output_max_length 512
optimizer AdamW
learning_rate 1e-05
gamma 0.99

Table 7: Hyperparameter settings for RLHF.

Odds Ratio Preference Optimization (ORPO) As ORPO does not require any special hyperparameter,
only the learning rate and epoch were the only hyperparameter to set. For ORPO, the maximum learning
rate was set to 8e-6 and trained for 10 epochs. The best model is selected based on the lowest evaluation
loss for the OPT series, Phi-2 (2.7B) and Llama-2 (7B).

D Comparison to Probability Ratio

The rationale for selecting the odds ratio instead of the probability ratio lies in its stability. The probability
ratio for generating the favored response yw over the disfavored response yl given an input sequence x
can be defined as:

PRθ(yw, yl) =
Pθ(yw|x)
Pθ(yl|x)

. (27)

While this formulation has been used in previous preference alignment methods that precede SFT
(Rafailov et al., 2023; Azar et al., 2023), the odds ratio is a better choice in the setting where the
preference alignment is incorporated in SFT as the odds ratio is more sensitive to the model’s preference
understanding. In other words, the probability ratio leads to more extreme discrimination of the disfavored
responses than the odds ratio.

We visualize this through the sample distributions of the log probability ratio logPR(X2|X1) and log
odds ratio logOR(X2|X1). We sample 50,000 samples each with Equation 28 and plot the log probability
ratio and log odds ratio in Figure 7. We multiply β for the probability ratio as it is practiced in the
probability ratio-based methods and report the cases where β = 0.2 and β = 1.0.

X1, X2 ∼ Unif(0, 1) (28)

Y ∼ β (logX1 − logX2) (29)

Y ∼ log
X1

1−X1
− log

X2

1−X2
(30)

Recalling that the log sigmoid function is applied to the log probability ratio and log odds ratio, each
ratio’s scale determines the expected margin between the likelihood of the favored and disfavored styles
when the loss is minimized. In that sense, the contrast should be relatively extreme to minimize the log
sigmoid loss when PR(X2|X1) is inputted instead of OR(X2|X1) to the log sigmoid function, regarding
the sharp distribution of logPR(X2|X1) in Figure 7. This results in overly suppressing the logits for the
tokens in the disfavored responses in the setting where SFT and preference alignment are incorporated, as
the model is not adapted to the domain. We empirically support this analysis through the ablation study in
Appendix B. Therefore, the odds ratio is a better choice when the preference alignment is done with SFT
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Figure 7: Sampled distribution of logPR(X2|X1) and logOR(X2|X1). logOR(X2|X1) has a wider range given
the same input probability pairs (X1, X2).

due to the mild discrimination of disfavored responses and the prioritizing of the favored responses to be
generated.

Throughout fine-tuning, minimizing the log sigmoid loss leads to either PR(X2|X1) or OR(X2|X1) to
be larger. This is equivalent to the rejected responses’ token-wise likelihood, which will generally get
smaller. In this context, it is essential to avoid an overly extreme contrast. This precaution is especially
important given the sharp distribution of logPR(X2|X1) depicted in Figure 7. The excessive margin could
lead to the unwarranted suppression of logits for tokens in disfavored responses within the incorporated
setting, potentially resulting in degeneration issues.

E IFEval Result for Mistral-ORPO-α and Mistral-ORPO-β

Along with the AlpacaEval results reported in Section 5.1, we report the results of Mistral-ORPO-α and
Mistral-ORPO-β on IFEval (Zhou et al., 2023c), calculated with the codes from Gao et al. (2023).

Model Type Prompt-Strict Prompt-Loose Inst-Strict Inst-Loose
Mistral-ORPO-α 0.5009 0.5083 0.5995 0.6163
Mistral-ORPO-β 0.5287 0.5564 0.6355 0.6619

Table 8: IFEval scores of Mistral-ORPO-α and Mistral-ORPO-β.

F Benchmark Evaluation Result for Mistral-ORPO-β and Zephyr-β

We report the benchmark evaluation results of Mistral-ORPO-β and Zephyr-β on ARC (Yadav et al.,
2019), MMLU (Hendrycks et al., 2021), HellaSwag (Zellers et al., 2019), and Winogrande (Sakaguchi
et al., 2021). While Zephyr-β was trained on 200k multi-turn conversations with supervised fine-tuning
and 61k single-turn conversations with DPO, Mistral-ORPO-β was trained on 61k single-turn with ORPO,
highlighting the data efficiency of ORPO by being on par.

Model Name ARC (25) MMLU (5) HellaSwag (10) Winogrande (5)
Mistral-ORPO-β 60.7 59.5 85.0 79.6
Zephyr-β 62.0 61.1 84.4 77.7

Table 9: Language model benchmark evaluation results of Mistral-ORPO-β and Zehyr-β
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G Ablation on the Weighting Value (λ)

For the weighting value λ in Equation 4, we conduct an ablation study with {0.1, 0.5, 1.0}. Mistral
(7B) and UltraFeedback were used for the base model and dataset. In Section G.1, we compare the log
probability trends by the value of λ, and we assess the downstream effect of λ in Section G.2.

G.1 Log Probability
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Figure 8: The log probability trend by λ. With larger λ (e.g., λ = 1.0), LOR gets more influential in fine-tuning the
models with ORPO.

In Figure 8, we find that larger λ leads to stronger discrimination of the rejected responses in general.
With λ = 0.1, the average log probability of the chosen and the rejected responses stay close as the
fine-tuning proceeds. Also, unlike other settings, the log probabilities for the rejected responses do not
decrease, but rather, the log probabilities of the chosen responses increase to minimize LOR term.

Moreover, in λ = 0.5, there exists a similar trend of further increasing the log probabilities of the
chosen responses, but the log probabilities of the rejected responses are diminishing simultaneously.
Lastly, in λ = 1.0, the chosen responses diminish along with the rejected responses while enlarging the
margin between them. However, this does not mean smaller λ is always the better. It will depend on the
specific need and model.

G.2 MT-Bench
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Figure 9: MT-Bench result comparison by differing λ = 0.1 and λ = 1.0.
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The downstream impact of λ stands out in the MT-Bench result. In comparison to λ = 0.1, Mis-
tral+ORPO (7B) with λ = 1.0 performs worse in extraction, math, and reasoning, which are the categories
that generally require deterministic answers. On the other hand, it performs better in STEM, humanities,
and roleplay, which ask the generations without hard answers. Along with the amount of discrepancy be-
tween the trend in the logits of chosen and rejected responses, we can infer that making a more significant
margin between the chosen and the rejected responses through higher λ in ORPO leads to overly adapting to
the chosen responses set in the training dataset. This proclivity results in open-ended generations generally
being preferred by the annotator while showing weaker performance in the hard-answered questions.

H MT-Bench Result of Mistral-ORPO-α (7B) and Mistral-ORPO-β (7B)

For the MT-Bench result in Section 5.2, we report the category-wise scores of Mistral-ORPO-α (7B) and
Mistral-ORPO-β (7B) in Figure 10. While surpassing Llama-2 Chat (13B) and Llama-2 Chat (70B) in
most cases, Mistral-ORPO-β (7B) is comparable to GPT-3.5-turbo in the categories that require descriptive
generations. However, it lacks coding and math skills, which we speculate is due to the lack of training
data, as we used 61k instances in UltraFeedback.
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Figure 10: MT-Bench result of Mistral-ORPO-α (7B) and Mistral-ORPO-β (7B) by the category.
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I Generation Samples from Mistral-ORPO-α (7B)

In this section, we two sample generations from Mistral-ORPO-α (7B) on AlpacaEval, including the
one which is preferred over the response of GPT-4 and the one in which GPT-4 was preferred. For
readability, the instances with short responses are selected for both cases. Additionally, the responses for
Mistral-ORPO-α (7B) were sampled with a temperature of 0.7.

Query 1 (GPT-4 Win): Give a brief description of the book that you are given. Matilda

1. GPT-4:
"Matilda" is a children’s novel written by the British author Roald Dahl. It was first published in 1988.
The story revolves around a very intelligent and precocious young girl named Matilda Wormwood.
Despite being neglected and mistreated by her ignorant and self-absorbed parents, Matilda finds
solace in reading books and quickly develops a love for learning.

At the age of five, she begins attending school and meets Miss Honey, a kindhearted teacher
who recognizes Matilda’s extraordinary intellectual abilities. However, the school’s tyrannical
headmistress, Miss Trunchbull, is a cruel and oppressive figure who takes pleasure in punishing the
children with her unreasonable and harsh methods.

Matilda discovers that she possesses a unique telekinetic ability, which she learns to control and
use to her advantage. With her wit, intelligence, and special powers, Matilda sets out to defend her
friends from Miss Trunchbull’s abuses and to help Miss Honey overcome her own difficult past.

The book is a tale of good triumphing over evil, and it celebrates the power of knowledge, kindness,
and standing up for what is right. It has been adapted into a successful film, stage musical, and has
remained a beloved classic in children’s literature.

2. Mistral-ORPO-β:
"Matilda" is a children’s book written by Roald Dahl, published in 1988. The story revolves around
the life of Matilda Wormwood, a brilliant and gifted five-year-old girl who has telekinetic powers.
The story explores themes of education, family, and the importance of reading and intellectual
curiosity. The book has been praised for its wit, humor, and powerful message, making it a classic
and beloved children’s book.
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Query 2 (Mistral-ORPO-β Win): What do you think about ChatGPT?

1. GPT-4:
As an AI developed by OpenAI, I don’t have personal opinions. However, I can share that ChatGPT
is an advanced language model that has received considerable attention for its ability to generate
human-like text. It’s designed to assist users in a wide range of tasks, from answering questions to
creating content and engaging in conversation.

ChatGPT has been praised for its fluency and versatility in handling various topics and for its
potential to streamline and enhance communication in both personal and professional settings.
However, like any technology, it also faces challenges and criticisms, such as ensuring the accuracy
of information, preventing misuse, and managing ethical considerations surrounding AI-generated
content.

Overall, ChatGPT represents a significant achievement in natural language processing and has
sparked discussions about the future of AI in our daily lives.

2. Mistral-ORPO-β:
As an AI language model, I am an example of the technology used in ChatGPT. I can provide a
personal opinion, but please keep in mind that I am designed to be socially unbiased and positive in
nature.

ChatGPT is an impressive advancement in artificial intelligence and natural language processing.
It has the ability to understand and generate human-like text, making it possible for users to
have engaging and informative conversations with the AI. This technology has the potential
to revolutionize various industries, including customer support, education, content creation, and more.

However, it’s important to recognize that ChatGPT, like any AI technology, is not perfect. It may
sometimes provide inaccurate or biased information due to the limitations of its training data or
the complexity of human language. It’s crucial to verify the facts and use critical thinking when
interacting with AI systems like ChatGPT.

Overall, ChatGPT represents a significant step forward in the field of AI, and its potential applications
are vast. As a responsible user, it’s important to approach this technology with a critical and respectful
mindset, recognizing its strengths and limitations.
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