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Abstract

Large Language Models (LLMs) can generate
the same sequences contained in the pre-train
corpora, known as memorization. Previous
research studied it at a macro level, leaving
micro yet important questions under-explored,
e.g., what makes sentences memorized, the dy-
namics when generating memorized sequence,
its connection to unmemorized sequence, and
its predictability. We answer the above ques-
tions by analyzing the relationship of memo-
rization with outputs from LLM, namely, em-
beddings, probability distributions, and gen-
erated tokens. A memorization score is cal-
culated as the overlap between generated to-
kens and actual continuations when the LLM is
prompted with a context sequence from the pre-
train corpora. Our findings reveal: (1) The inter-
correlation between memorized/unmemorized
sentences, model size, continuation size, and
context size, as well as the transition dynam-
ics between sentences of different memoriza-
tion scores, (2) A sudden drop and increase in
the frequency of input tokens when generating
memorized/unmemorized sequences (bound-
ary effect), (3) Cluster of sentences with dif-
ferent memorization scores in the embedding
space, (4) An inverse boundary effect in the
entropy of probability distributions for gener-
ated memorized/unmemorized sequences, (5)
The predictability of memorization is related to
model size and continuation length. In addition,
we show a Transformer model trained by the
hidden states of LLM can predict unmemorized
tokens. 1

1 Introduction

Large Language Models (LLMs), trained with enor-
mous parameter and pre-train data sizes, like GPT-4
(OpenAI et al., 2024), show surprising performance
on various tasks. Due to such enormous model size

1The code of this study is at https://github.com/
mynlp/memorizationstudy

and pre-train data size, combined with the black-
box nature of neural models (Alain and Bengio,
2018), LLMs present unique behaviors (Wei et al.,
2022) that are unprecedented in previous machine
learning, one of which is memorization.

Memorization (Hartmann et al., 2023) in the
LLMs means the LLM can generate the same con-
tent recorded in their pre-train corpus. Being a coin
with two sides, memorization in LLM can provide
knowledge (Petroni et al., 2019) or cause personal
information leakage (Yao et al., 2024). Previous
research (Tirumala et al., 2022; Carlini et al., 2023;
Biderman et al., 2023b) has studied memorization
at the macro level, revealing memorization from
the training phase or overlap between models, leav-
ing more micro yet important questions left under-
explored, e.g., what makes sentences memorized,
dynamics of sentences with varying memorization
scores transit to other scores when trained in a
larger model, the dynamics when generating mem-
orized/unmemorized sequence, its connection to
unmemorized sequence, and its predictability.

To answer those questions, we study memoriza-
tion from multiple perspectives. We form contexts
of varying lengths from the pre-train corpora and
input them into LLMs of different sizes. By control-
ling the maximum generated tokens, we collect the
outputs (embeddings, decoding probabilities, and
generated tokens) and compute the memorization
score by comparing them with the actual continu-
ations in the pre-train corpora. Our analysis con-
nects memorization to model size, context size, con-
tinuation size, and unmemorized sequences. We
also explored the dynamics of generating memo-
rized/unmemorized tokens at input and output lev-
els and the predictability of memorization. Our
findings reveal:

(I) For both memorized or unmemorized sen-
tences, their increase or decrease with model size
is non-linear, indicating a maximum capacity for
memorization. Memorized sentences decrease sub-
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linearly with continuation size and increase super-
linearly with context size. We also analyzed the
dynamics of how sentences with varying memoriza-
tion scores transit to other scores when trained in
a larger model. The results show that only limited
low memorization score sequences will transit to
higher scores when trained in larger models, and
most memorized sentences are also inherited when
trained in larger models.

(II) A boundary effect was observed when the
model began generating memorized/unmemorized
sequences. The n-gram frequency suddenly de-
creases when generating unmemorized tokens and
suddenly increases when generating memorized
tokens, which is also observed at the sequence
level. The significance of the boundary effect for
memorized sentences decreases with the increase in
model size. However, as large models contain more
memorized sequences, this suggests large models
have a lower threshold in the value of the boundary
effect to memorize a sentence. This indicates the
value of the boundary effect relates to the difficulty
of memorizing a sentence.

(III) The embedding dynamics analysis showed
sentences with different memorization scores clus-
ter in the embedding space, where the mutual em-
bedding distance grows with model size. Sentences
of close memorization scores are also close in em-
bedding space, suggesting the existence of para-
phrase memorization.

(IV) We analyzed decoding dynamics by exam-
ining entropy over vocabulary and the drift of de-
coded embeddings. Entropy analysis revealed an
inverse boundary effect, where entropy suddenly in-
creases for unmemorized sequences and decreases
for memorized sequences.

(V) We trained a Transformer model to discuss
the predictability of memorization. The results sug-
gest that predicting memorization is easier in large
models and easier when predicting unmemorized
sequences, which can be explained by the signifi-
cance of the boundary effect.

2 Related Works

2.1 Scaling Laws of LLM

In this study, our experiments span across various
model sizes. This relates to the research of Scaling
Laws (Kaplan et al., 2020; Abnar et al., 2021; Vil-
lalobos, 2023), which suggests the performance of
LLM scales with the corpora size, the parameter
size, and the computation required.

Inspired by the Scaling Law, researchers scaled
the LLMs in both model and data size to gain higher
performance like T5 (Raffel et al., 2023), GPT-3
(Brown et al., 2020), PaLM 2 (Anil et al., 2023).
On the other hand, researchers also analyzed how
scaling affects particular tasks like translation and
prompt injection attack (Sun and Miceli-Barone,
2024). Within those discussions, the emergent abil-
ities of LLM (Wei et al., 2022) are discovered.
This means the LLM suddenly reaches high perfor-
mance on previous low-performance tasks when
reaching a certain model size. Recent studies have
questioned whether emergent abilities are mirages
caused by metrics misuse (Schaeffer et al., 2023)
or just context-learning (Lu et al., 2023).

Regarding scaling in the field of memorization,
Carlini et al. (2023) discussed the memorization
across model size and found that the number of
memorized texts grows with the model size and
context size. Additionally, Biderman et al. (2023a)
also discussed similar topics and found that a large
portion of memorized text in a small-size model is
also memorized by a larger model, showing that
memorized texts may share common features.

2.2 Memorization

Prior to LLM, over-fitting is close to memoriza-
tion (Tetko et al., 1995), which means a near-zero
loss in the train set, suggesting the model memo-
rized the input and its label (Zhang et al., 2017).
However, memorization differs from overfitting
because LLMs can perform well on the test set,
whereas overfitting usually results in poor test set
performance. Feldman (2020) analyzed the ne-
cessity of memorization in classification models.
They demonstrated that in a long-tail distribution,
where many categories have only a few samples,
the neural model struggles to extract general fea-
tures. Instead, the best strategy for the neural model
is simply to memorize these samples and compare
them with the data in the test set.

LLMs, unlike classification models, can directly
generate their pre-train content, making the mem-
orization observable. This can be used to form
knowledge graphs (Petroni et al., 2019; AlKhamissi
et al., 2022), but also leads to data contamination
(Sainz et al., 2023) and privacy risk (Yao et al.,
2024). Previous research has discussed memo-
rization on a macro level. Tirumala et al. (2022)
showed large models tend to memorize samples
more easily in training. Carlini et al. (2023) dis-
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Figure 1: Memorization and research scope in this study. We prompt a partial context text into the model and
calculate the memorization score of the generated continuations over the whole corpora. We show how inputs,
model factors, and generation dynamics affect the memorization results.

cussed LLM memorization from factors like model
size, continuation size, and context size, showing
their inter-correlations. Biderman et al. (2023a)
studied memorization in LLMs in their training
phase and the overlap between different model
sizes, finding commonly memorized sentences. Li
et al. (2024) studied memorization by using hid-
den states in LLM in several specified datasets.
Prashanth et al. (2024) set a threshold of a number
of repetitions in the pre-train corpora to separate
memorized sequences and predictable sequences.
Speicher et al. (2024) created a sandbox setting to
exploit the memorization of random strings.

Previous research discussed from a macro-level
where they analyzed the memorization from an
overall perspective, focusing mostly on fully mem-
orized sequences with less consideration of the
transition between sentences and how it is related
to the model’s inner-working mechanism. This
study focuses on micro yet under-explored ques-
tions, e.g., the dynamics while generating memo-
rized sequences, why some sentences are memo-
rized, the relation to unmemorized sequences, and
its predictability.

3 Experiment Setting

3.1 Experiment Overview

As shown in Figure 1, we collect LLM outputs (to-
kens, probability distributions, and embeddings)
and calculate a memorization score for every sen-
tence to evaluate its extent of memorization and
obtain general statistics. Then, we conduct an in-
depth analysis of these collected outputs, exam-
ining the dynamics of both the prompted context
input and the generated tokens. Finally, we discuss

the predictability of memorization.

3.2 Memorization Score
We prompt the LLM with context sequence tokens
C = {c1⋯cl} from its pre-train corpora and use
greedy decoding to generate the predicted contin-
uation tokens X = {x1⋯xn}. We also collect the
actual continuations Y = {y1⋯yn} under this con-
text. This process is iterated for the whole corpora.
The memorization score is calculated as follows:

M(X,Y ) = ∑n
i=1 I(xi = yi)

n (1)

n means the length of the continuation tokens. I
is the Indicator Function. If M(X,Y ) = 1, the
sequence is fully memorized under this context se-
quence, termed K-extractable (Carlini et al., 2021).
A sequence Y is unmemorized if M(X,Y ) = 0.2

3.3 Criteria for Memorization Prediction
We use Token Accuracy and Full Accuracy to eval-
uate performance in predicting memorization.

The prediction for a sequence of generated to-
kens is X̂ = {x̂1, x̂1 . . . x̂n} where each prediction
x̂i is a binary label indicating the token at this in-
dex is memorized or not. The gold label is denoted
as Ŷ = {ŷ1, ŷ2 . . . ŷn} where each ŷi is the golden
label. The Token Accuracy is defined as:

T (X̂, Ŷ ) = ∑n
i=1 I(x̂i = ŷi)

n (2)

A prediction for a sequence is defined as fully cor-
rect if T (X̂, Ŷ ) = 1. We obtain Full Accuracy by

2Based on the different number of continuation tokens,
the memorization score has different granularities. In some
experiments, we classify sentences into several memorization
levels based on their memorization scores.
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dividing the number of fully correct sequences by
the number of all sequences.

3.4 Model Setting

We use the Pythia (Biderman et al., 2023b) to ana-
lyze the memorization as it provides LLMs trained
across various sizes with the same training order
using open-sourced Pile (Gao et al., 2020) corpora
that ensure experimental stability. We investigate
the model size of [70m, 160m, 410m, 1b, 2.8b,
6.9b, 12b] where m and b stands for million and
billion. We choose the LLM trained on the dedu-
plicated Pile corpora to avoid the effect of dupli-
cated sentences, as previous research reported the
chance to be memorized grows exponentially with
the number of duplicates (Kandpal et al., 2022).3

3.5 Corpora Setting

The open-sourced Pile (Gao et al., 2020) corpora
are publicly available data. 4 The data contains
146432000 rows with a chunk length of 2048,
reaching a data size of around 800GBs. The exper-
iment is iterated through the whole training data
matrix, meaning that we did not conduct sampling
over the rows. Instead, we iterated the whole Pile
matrices. For example, if the context size is 32
and the continuation size is 96, we prompt the first
32 tokens at each row into the model. We use the
Pythia model to generate the 96 tokens equal to
the continuation size. Then, we compare the gener-
ated token IDs with the gold token IDs in the data
to calculate the memorization score at each row.
This process is repeated for the entire Pile matrix,
distributed over different CUDA devices.

4 Experiment Results

4.1 Memorization Factors

This section discusses how memorization is con-
nected to model size, context size, and continuation
size. We collect the number of sentences with dif-
ferent memorization scores under different model
sizes. Then, we divide those sentences with dif-
ferent memorization scores into ten sets with a
memorization score difference of 0.1, as shown in
Figure 2.

3For more details, please refer to https://github.
com/EleutherAI/pythia

4The used data can be downloaded at https:
//huggingface.co/datasets/EleutherAI/
pile-deduped-pythia-preshuffled/tree/
main

Figure 2: Number of sequences of different memoriza-
tion scores across different model sizes.

Firstly, we can see that the memorized sentences
increase with the model size and context size but de-
crease with the increase of continuation size, which
aligns with previous research (Carlini et al., 2023).
We illustrate a more in-depth analysis in the follow-
ing sections.

4.1.1 The Factor of Model Size
In this experiment, we discuss how model size af-
fects the number of memorized and unmemorized
sentences. From Figure 2, we can obtain that:

(I) The number of sentences with low memo-
rization scores (0-0.3) is significantly higher than
those with high memorization scores, indicating
that most of the pre-train data are not memorized
despite the existence of memorization in LLMs.

(II) Among sentences with high memorization
scores, the count of fully memorized sentences
increases more rapidly, suggesting LLMs tend to
memorize sentences fully rather than partially. Ad-
ditionally, the number of sentences with low mem-
orization scores (0, 0.1) decreases as the model size
increases, indicating that unmemorized sentences
gradually become memorized with larger models.

(III) The increase or decrease in the number of
memorized or unmemorized sentences is not linear
with respect to model size. There is a noticeable
increase in numbers for fully memorized sentences
from 70 million to 2.8 billion parameters, com-
pared to 2.8 billion to 12 billion parameters. A sim-
ilar decreasing trend for unmemorized sentences is
observed. This suggests a capacity for memoriza-
tion, implying LLMs cannot memorize the entire
corpus even with sufficiently large model sizes.

4.1.2 Context and Continuation Size
We change the length of the context and fix the
length of continuations or vice versa. Then, we ob-
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Figure 3: Transition matrix of sentences with different memorization scores. The two left figures are the transition
matrix from small size model to large size, with the left one being the transition matrix from 410m to 2.8b and the
right one being 2.8b to 12b. The two right figures are the inverse transition matrix from large size model to small
size model, with the left one being 12b to 2.8b and the right one being 2.8b to 410m.

Figure 4: Number of memorized sentences in different
continuation and context sizes across model size.

serve the change in the number of fully memorized
sequences shown in Figure 4 (a) and (b). We can
conclude:

(I) The decrease of memorized sentences with
increasing continuation size is not linear. For in-
stance, the continuation size increase from 64 to
96 results in a relatively minor decrease compared
to the change from 32 to 48, indicating some sen-
tences are firmly memorized.

(II) The reduction in memorized sentences with
increased continuation size is more obvious in
larger models. This demonstrates that although
larger models memorize more sentences, most of
their memorized sequences are less rooted com-
pared to those of smaller models.

(III) The increase in memorized sentences with
context size is also non-linear, with longer context
leading to an almost exponential rise in the num-
ber of memorized sentences. This increase is more
significant in larger models, indicating more se-
quences are potentially memorized in large models,
which can be elicited by giving longer context.

4.2 Memorization Transition

This section discusses how sentences with differ-
ent memorization scores transit across model sizes.
Specifically, when trained with a larger model, we
study the mutual transition between sentences with
different memorization scores. We classify sen-
tences with memorization scores with a range dif-
ference of 0.2 with labels of very low, low, medium,
high, and very high. We plot the transition matri-
ces in Figure 3, which shows the transition from
the 410m size model to the 2.8b size and 2.8b size
to the 12b size model and their inverse transition
matrices. We can conclude:

(I) Most sentences remain in their previous state
even when trained with a larger model, as indicated
by the diagonal entries in the transition matrices.
Additionally, the higher the memorization score,
the less likely the sentence will transit to another
state. For highly memorized sentences, over 90%
remain memorized compared to those with low
memorization scores. In the inversed transition ma-
trix of the large-to-small size model, we see that
most sequences also tend to stay in their original
state with probability transferring to lower memo-
rization score states, which fits our expectations.

(II) With increasing model size, sentences are
more likely to stay at their original memorization
level. For example, the transition probability at the
diagonal is higher in the transition matrix from 2.8b
to 12b compared to that of 410m to 2.8b. This sug-
gests that memorized or unmemorized sequences
become fixed as the model size increases. For the
inversed matrix, the model is more likely to transfer
to a lower memorization score state. In particular,
transferring to the very low state is more probable
than other low memorization score states. This
shows when LLM starts to forget a sequence, it
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Figure 5: Uni-gram frequency at each index for mem-
orized, unmemorized, and half-memorized sequences.
The context length is 32. The continuation length is 16.
We label the end of context, the beginning of encoding,
and half of the encoding with red, blue, and black lines.

tends to forget that sequence completely.
(III) For high memorization score sentences,

there is only a very small chance to transit to a low
memorized state, implying most sentences mem-
orized by small models are also inherited by the
larger ones. This shows the memorized sentences
are not memorized randomly but share certain com-
mon features with a little share of randomness. This
is also observable in the inverse transition matrix,
where there is little chance of transferring to a high
memorization score state even when the model size
decreases.

4.3 Frequency Dynamics of Input Sequences

In this section, we discuss the question of whether
there is any sign when the model starts to generate
memorized or unmemorized sentences. Especially
what makes sentences memorized at different ex-
tents and why some sentences are memorized by
large models but not small models.

4.3.1 Token Level Frequency Analysis
Firstly, we begin with the input level by analyzing
the frequency of the n-grams in the pre-train cor-
pora. We show the uni-gram frequency across steps
in Figure 5 5, and we can see:

(I) A clear boundary effect is observed around
index 32, representing the first generated token.
The frequency drops and then rises for memorized
sentences (positive boundary effect), whereas it

5N-gram statistics overall steps are in the A.5.

rises and then drops for unmemorized sentences
(negative boundary effect). The negative boundary
effect is more significant than the positive one.

(II) For the half-memorized sentence, we see
the frequency increases and drops (negative bound-
ary effect) around the index of 39, which is half
the length of generated tokens. This shows that
for the half-memorized sentence, the previous half
is mostly memorized, and the later half is mostly
unmemorized, meaning that the memorized tokens
are distributed in a near continuous way rather than
scattered in the generated tokens.

(III) The positive boundary effect in memorized
sentences suggests that memorization is driven by
the higher frequency of initial tokens, implying that
remembering the first few tokens makes the entire
sentence easier to memorize. Conversely, the neg-
ative boundary effect in unmemorized sentences
indicates that the low frequency of initial tokens
makes the following sequences easier to forget.

4.3.2 Sequence Level Frequency Analysis
Given the existence of the token level boundary
effect, we extend the discussion to the sequence
level. As shown in Table 1, we calculate the aver-
age n-gram frequency of context and continuation
and boundary frequency difference. We can obtain:

(I) The frequency of uni-grams is significantly
higher than that of bi-grams, approximately 3.5
times higher on average in both context and con-
tinuation. The boundary effect is consistent in the
bi-gram setting, though the positive boundary ef-
fect is less obvious due to the frequency drop when
computed with bi-grams. Despite this, the actual
frequency gap remains substantial (million level)
when considering the unit is billion.

(II) In memorized sentences, the frequency is
lower in the context and higher in the continuation
of the memorized data (M column), whereas un-
memorized sentences exhibit the opposite pattern.
This suggests the boundary effect also exists at the
sequence level, though less obvious.

(III) For half-memorized sentences, the fre-
quency of continuation tokens is higher than the
context average frequency. This is due to the fre-
quency increase before reaching the first generated
unmemorized tokens, as indicated in Figure 5.

(IV) In the Boundary Frequency Difference col-
umn, both positive and negative boundary effects
decrease with increased model size. However, the
decrease in the positive boundary effect makes it
less significant, while the decrease in the negative

11195



Size
Average Context Frequency Average Continuation Frequency Bounrady Frequency Difference

Uni-gram Bi-gram Uni-gram Bi-gram Uni-gram Bi-gram

M H U M H U M H U M H U M H U M H U

160m 1.708 1.713 1.744 0.551 0.534 0.691 1.739 1.837 1.628 0.535 0.659 0.567 0.114 0.330 -0.939 0.033 0.101 -0.663

1b 1.713 1.711 1.752 0.558 0.552 0.697 1.736 1.832 1.631 0.509 0.682 0.564 0.103 0.270 -0.981 0.028 0.090 -0.696

6.8b 1.721 1.710 1.759 0.570 0.565 0.701 1.736 1.829 1.638 0.496 0.699 0.564 0.090 0.140 -0.963 0.027 0.085 -0.726

12b 1.721 1.720 1.760 0.572 0.569 0.702 1.736 1.846 1.626 0.493 0.704 0.563 0.039 0.237 -1.016 0.026 0.083 -0.732

Table 1: Uni-gram and bi-gram statistics. The frequency unit is billion. Boundary Freq Difference means we use the
first generated token’s frequency to subtract the last token’s frequency in the context (i.e., the boundary effect). M,
H, and U mean memorized, half-memorized, and unmemorized, respectively.

Figure 6: Embedding dynamics across 410m, 2.8b, and
12b model sizes. x Token Memorized means x gener-
ated tokens are the same as the true continuation. The
arrow for each cluster means the visualized moving di-
rection of generated tokens. The gray area means the
span of those clusters.

boundary effect makes it more significant. This
implies the significance of the positive boundary
effect correlates with the ease of memorizing a sen-
tence. In contrast, the significance of the negative
boundary effect correlates with the difficulty of not
memorizing a sentence.

4.4 Decoding Dynamics

In this section, we analyze the dynamics of the out-
put, e.g., the movement of generated embeddings
at each step and corresponding entropy changes for
sequences of varying memorization scores.

4.4.1 Embedding Dynamics
We analyze embeddings of generated tokens for
sentences with varying memorization scores. We
collect the hidden state of the last layer for each
generated token for sentences with different mem-
orization scores and compute the pair-wise Eu-

clidean distance and cosine similarity. We draw
the following figure to represent the embedding
dynamics shown in those pair-wise Euclidean dis-
tance and cosine similarity. 6 We can obtain:

(I) The mutual angle remains stable across dif-
ferent encoding steps between sentences of differ-
ent memorization scores, which also suggests a
stable mutual cosine similarity. Meanwhile, since
they have the trend of moving toward the center,
the Euclidean distance also decreases with the gen-
eration of tokens.

(II) Sentences with high memorization scores
are close in the embedding space. This suggests
their generated sequences are both semantically
and lexically similar to the actual continuation.
This indicates the existence of paraphrase mem-
orization since those high memorization score se-
quences are probably only different in a few tokens
while sharing the same meaning.

(III) Larger models exhibit larger mutual Eu-
clidean distances and angles. The increase in an-
gle leads to a decrease in cosine similarity. The
reason can be attributed to the expansion of hid-
den sizes (e.g., 512 for 70m, 2048 for 1b model).
The expansion of hidden size increases the expres-
sivity of the embedding and enlarges the mutual
distances, making different sentences more differ-
entiable. This also helps to explain the performance
gap between different model sizes: larger models
distribute different sentences more distinctly with
fewer embedding overlaps, while smaller models
mix embeddings more, leading to ambiguity and
degraded performance.

4.4.2 Generation Dynamics and Entropy
This section discusses the generation dynamics
when the LLM generates sentences with different

6Detailed numbers of Cosine Similarity and Euclidean dis-
tance between sentences with different memorization scores
at different decoding steps are at Appendix A.3
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Figure 7: Averaged entropy dynamics at each index
for memorized, unmemorized, and half-memorized se-
quences. The prompted context length is 32, and the
continuation length is 16. We label the end of context,
the beginning of encoding, and the half of the encoding
with red, blue, and black lines.

memorization scores. Given the boundary effect
at the input frequency, we ask whether the model
exhibits similar behaviors when generating mem-
orized or unmemorized sequences. As shown in
Figure 7, we collect the probability distributions
for each generated token of memorized, unmemo-
rized, and half-memorized sentences, with 10,000
samples for each, and calculate the average entropy
at each token. We can conclude:

(I) First, we can see that the entropy differs
based on memorization scores and model size. Un-
memorized sentences have a higher average en-
tropy at each token than memorized sentences. This
shows LLM is more confident when generating
memorized sequences.

(II) Additionally, the entropy drops when gen-
erating memorized sequences (fully memorized
and former half of half-memorized sequences) and
increases when generating unmemorized ones (un-
memorized and later half of half-memorized se-
quences). This shows an inverse boundary effect
in entropy compared to the one in frequency. How-
ever, the entropy drop for memorized sentences
is not samely significant as the half-memorized
sentence, as LLM is more confident when generat-
ing memorized sequences, which is naturally low
entropy, leaving less space for the entropy drop.

(III) We can also see the entropy decreases with
the increase in model size. This suggests that
larger models are more confident about generat-
ing tokens than small ones. Additionally, the en-
tropy of context for memorized tokens is also lower,
showing that the entropy of context also relates to

whether its continuations are memorized. Further,
the significance of the inverse boundary effect in
entropy decreases with the model size for mem-
orized sequences while remaining unchanged for
unmemorized sequences. This differs from the
boundary effect in frequency, whose significance
decreases with increased model size for memorized
sequences while increasing for unmemorized ones.

4.5 Prediction of Memorization
Since similar context can trigger memorized texts
(Stoehr et al., 2024), and the generated token may
also be a paraphrase of the actual continuation (Ip-
polito et al., 2023), common methods that check
memorization by searching the generated tokens in
the corpora are challenged. Thus, it would be bene-
ficial if it were possible to predict the memorization
by embedding. We sample sentences with differ-
ent memorization scores evenly from the whole
corpora. A Transformer (Vaswani et al., 2023) is
trained to predict a binary label at each continuation
token, predicting whether this token is memorized
by receiving all embeddings generated so far and
related statistics, e.g., the entropy and frequency.7

4.5.1 Results on Prediction of Memorization
We discuss the predictability of predicting memo-
rization based on results presented in Table 2. We
can obtain:

(I) First, regarding Token Accuracy, we can see
with a naive Transformer model, the token-level
accuracy can reach 80% accuracy or even higher,
showing that the prediction of memorization at the
token level is easy. The Full Accuracy is low as
this requires a correct prediction for every token.

(II) In either continuation length, both token ac-
curacy and full accuracy increase with model size.
This shows the prediction of memorization is eas-
ier for large models because the greater embedding
distances make classification easier.

(III) Token Accuracy increases with the contin-
uation size in either model size, likely due to in-
creased training data. For instance, continuation
length 64 contains four times larger tokens than that
of continuation length 16. However, Full Accuracy
decreases as the continuation length increases as
more tokens need to be predicted correctly.

4.5.2 Analysis of Full Accuracy
In this experiment, we analyze how fully correct
predictions are distributed across memorization

7Experiment details and settings are in Appendix A.1.3.
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Len 70m 410m 1b 2.8b 6.9b 12b Dist

Token Full Token Full Token Full Token Full Token Full Token Full M U

16 78.2 10.2 78.6 10.4 78.8 10.6 80.1 10.7 77.4 8.3 80.3 10.9 53.1 46.9

32 78.6 5.9 79.6 6.0 79.7 6.1 80.1 6.3 80.5 6.4 80.8 6.4 51.6 48.4

48 79.6 5.2 80.3 5.4 80.4 5.6 80.4 5.5 80.8 5.8 81.0 6.0 51.0 49.0

64 80.1 4.7 80.8 4.8 81.2 5.2 81.5 5.5 81.8 5.8 82.1 6.0 50.7 49.3

Table 2: Performance on memorization prediction at context length 32. Len means the length of continuation tokens
for prediction. Token and Full mean Token and Full Accuracy. The various model sizes in the column show which
size of LLM’s embeddings are used to train the Transformer. The M and U in the Dist column mean the distribution
of memorized and unmemorized tokens used to train and evaluate. For each continuation length, the best results
across model sizes are in bold. The best results in a model size across continuation lengths are underlined.

Figure 8: Full accurate predictions distribution at differ-
ent memorization scores across model size

scores to discuss whether the difficulty in predict-
ing memorization changes with the memorization
score as shown in Figure 8, and we can obtain:

(I) The Transformer model trained with embed-
dings from any LLM size is better at predicting sen-
tences with low memorization scores, even when
the label distribution is close. The low portion of
sentences with high memorization scores indicates
they are harder to predict accurately.

(II) As model size increases, the proportion of
low memorization scores rises and decreases for
high memorization score sentences, which even
reaches zero for the 6.9b model. This suggests
predicting unmemorized sentences is easier in large
models compared to memorized ones.

(III) A possible explanation for the above behav-
iors can be made. Previous experiments show that
the boundary effect of unmemorized sequences is
more significant than that of memorized sequences
in both token frequency and entropy. Additionally,
the significance of the boundary effect decreases
for memorized sequences while increasing for un-
memorized sequences with increased model size.

With the decrease of significance in such features
for memorized sequences, they become hard to pre-
dict. The unmemorized sequences become easy to
predict as the significance increases.

4.6 Conclusion

In this study, we comprehensively examined LLM
memorization from various perspectives. At the
statistical level, we extended previous research to
include sentences with lower memorization scores
and conducted experiments showing memorization
transitions across model sizes. Analyzing input
dynamics through frequency analysis, we identi-
fied positive and negative boundary effects when
generating memorized and unmemorized tokens,
indicating their relation to the ease of memoriza-
tion. In the output dynamics, at the embedding
level, we found clusters of sentences with different
memorization scores in the embedding space, and
the close distance of sentences with high memoriza-
tion scores indicates the existence of paraphrase
memorization. At the entropy in the output dy-
namics, we observed an inverse boundary effect
and analyzed its change with model size. Finally,
we trained a Transformer model to predict mem-
orization, showing that token-level prediction is
easy while sentence-level is challenging. Through
analysis of fully correct predicted samples, we
found unmemorized tokens are easier to predict
than memorized tokens, which can be explained by
the significance of the boundary effect.
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6 Limitations

This research has analyzed various factors regard-
ing the memorization behavior of LLMs. We ac-
knowledge that there are still limitations to this
research. Due to the lack of LLMs whose models
and data are both being released, it is hard to com-
pare the memorization across different LLMs since
even if they were released, the pre-train data differs
based on different LLMs. Future research can fo-
cus on how to comprehensively measure the memo-
rization of various LLMs, either close-sourced like
GPT-4 or open-sourced like Pythia. Additionally,
Pythia only provides LLMs up to 12b, which is still
considerably small when compared to SotA open-
sourced LLMs like LLaMa2, whose largest model
is 70b. The emergent abilities reaching 70b size
may also affect memorization. Though we trained
a Transformer model to predict the memorization
of LLMs, it is more analysis-oriented, proving the
possibility of predicting memorization. Thus, the
performance in the prediction experiment is not the
main focus.

Additionally, in this research, the discussion of
memorization is under the context when the LLM
generates tokens that are the same as the actual con-
tinuations in the corpora, defined as K-extracble in
this study. It is possible that paraphrase memoriza-
tion exists. However, it is difficult to identify such
behavior on a large scale, especially across whole
corpora. This is because the identification of para-
phrase memorization can not be simply decided
by either token overlap or embedding similarity
since neither of them can truly compare whether a
sentence is a paraphrase. This means we have to
identify by more complex methods, e.g., human an-
notators or a trained classification model. However,
a classification model cannot be 100% accurate
when applied to the corpora level, leading to false
positives and false negatives that influence the anal-
ysis results. However, paraphrase memorization
can be left to future research.

7 Ethical Considerations

In this study, we prompted the Pythia model with
context tokens from its pre-train corpora. The data
released by Pythia are all tokenized and turned into
token IDs, so the original information is not visible.
We have provided a case study of the prediction of
memorization in the Appendix A.2 by turning the
token IDs into texts. However, we did not observe
any personal information or offensive language dur-

ing this process. Additionally, we obeyed related
open-source licenses of both Pythia and Pile cor-
pora. Thus, this study is not concerned with ethical
issues.
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A Appendix

A.1 Experiment Setting

A.1.1 Pythia LLM Generation
The experiment uses 64 A100 40Gbs GPUs when
using LLMs to generate tokens given the previous
context, which utilizes PyTorch’s parallel running
packages. We run the model with half-precision,
which increases both the speed and saves memory.
This follows the previous Pythia implementation
when generating tokens given context.

The running time depends on the model size and
the generated token length. When a 70m model
with 32 context tokens and 16 tokens is required
to be generated, it can be run with one A100 GPU
within several hours. However, if such an experi-
ment is in a single A100 GPU, it would estimated to
take two weeks to finish the generation. Therefore,
with 64 GPUs, the running of the 12b model in
such a situation can be shortened to around one day.
However, the generation time also largely increases
with the length of generated tokens, which grows
linearly with the number of tokens to be generated.
Additionally, since we use greedy decoding and
do not consider other possible decoding options
but the token with the highest probability, it is also
possible that the running time may be different if
using a more complicated decoding strategy. How-
ever, using a more complex decoding strategy does
not affect the results. If a sequence of tokens is
memorized, the memorized token will always be
the most probable token when generating them.

A.1.2 N-Gram Statistics Caculation
For the analysis of 4.3, since calculating n-gram
statistics for pre-trin corpora demands lots of mem-
ory, we used another experimental environment
with 128G RAM. It takes several days to calculate
each gram’s statistics. Also, storing the result of
n-gram statistics takes over 1TB of storage.

A.1.3 Memorization Prediction
Regarding the prediction of memorization, we sam-
ple 2,000 sentences at the sentence set of each mem-
orization score. For example, in the situation where
the continuation length is 16, we will sample 2,000
sentences from memorization scores, the range of
which is from 0 to 1 with 0.0625 as the unit. The
Transformer model receives embedding of the last
layer at each generated step with the corresponding
entropy and uni-gran frequency and then outputs
an embedding at each step. This output embedding

from the Transformer model will be used to pass
through a linear layer, and the Softmax function
calculates the probability that the token at this in-
dex is a memorized token or not. The training is
conducted using a 4-layer Transformer model with
a dropout probability of 0.5, and the learning rate
is 1e-4. Additionally, the only changing parameter
with the increase in model size is the hidden size,
as the larger model has a larger hidden size. The
training and evaluation are conducted across five
random seeds, and we report the average perfor-
mance. The train, valid, and test split ratio is 0.6,
0.2 and 0.2. Additionally, we make sure that the
distribution of sentences of different memorization
scores is even in the dataset; thus, the model does
not make biased predictions.

A.2 Case Study
We also provide a case study of the model’s pre-
diction on the test set regarding the prediction of
memorization in Figure 9. From this figure, we can
see that:

1. Confirming previous experiments, the memo-
rized token is mostly continuous, showing the mem-
orization happens in chunks of sequences rather
than individual sequences.

2. In the first example, the model outputs a fully
correct prediction that aligns with the actual label,
showing the possibility of predicting memorization
by utilizing embedding information.

3. In the second example, we see that the
model’s prediction does not align with the actual
continuation. The model predicts an unmemoriza-
tion label for the memorized label.

4. In the third example, we can see this unmem-
orized sequence. The model fully predicted those
labels. We also noticed that the probability for the
corresponding token is very high, showing that the
model is very confident about the prediction.

A.3 Supplementary Data for Embedding
Dynamics

We have presented the PCA visualized embedding
dynamics in Figure 6. In this section, we provide
the actual numbers of both Cosine Similarity and
Euclidean distance to further illustrate this point.

Similarly to Figure 6, we also provide detailed
cosine similarity and distance results from Figure
10 to Figure 18. From those figures, we can see
that the cosine similarity fluctuates but remains
relatively stable for sentences with different mem-
orization scores. Additionally, sentences that are
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Context Label 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

How many minutes are 
there between 2:02 AM 
and 2:01 PM? 7

Text 19 ＼n how many minutes are there between 5 : 46 PM and 3 : 32
Pred Prob 0.90 0.99 0.94 0.93 0.83 0.95 0.89 0.95 0.95 0.94 0.98 0.54 0.83 0.93 0.91 0.97

Gold 0.69 M M M M M M M M U M U U M U M U
Pred 0.69 M M M M M M M M U M U U M U M U

The objective of all equity 
funds is to seek out profit 
opportunities. Types of 
equity

Text funds ＼n ＼n There are different types of equity funds , categorized according to risk levels
Pred Prob 0.97 0.75 0.60 0.83 0.89 0.93 0.98 0.97 0.99 0.99 0.98 0.97 0.98 0.94 0.99 0.99

Gold 0.65 M M M M M U M M M M U U U U U U
Pred 0.5 U M U U U U U U U U U U U U U U

Creating men whose 
expectations of what they 
should look like are 
unattainable. In recent 
years, 

Text researcher at the University of California School of Medicine injected the brain of diabetic rats with
Pred Prob 0.93 0.95 0.80 0.99 0,99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Gold 0 U U U U U U U U U U U U U U U U
Pred 0 U U U U U U U U U U U U U U U U

Figure 9: Prediction Examples. Pred Prob means the output predicted probability of the corresponding label in the
pred row for each example. Gold means the true label. Pred means the predicted label, and Pred Prob means the
probability of the corresponding prediction. M means the label for a token at this index is a memorized token. U
means the label for a token at this index is an unmemorized token.

Figure 10: 410m Model, Step 2

Figure 11: 410m Model, Step 9

11203



Figure 12: 410m Model, Step 16

Figure 13: 2.8b Model, Step 2

Figure 14: 2.8b Model, Step 9
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Figure 15: 2.8b Model, Step 16

Figure 16: 12b Model, Step 2

Figure 17: 12b Model, Step 9
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Figure 18: 12b Model, Step 16

not exactly the same but close regarding the mem-
orization score are very close in the embedding
space. For example, fully memorized sentences
are also close to sentences with high memorization
scores and embedding similarity of over 0.9. This
shows the possibility that the model is generating
paraphrased memorized sequences. However, with
the increase in the model size, the cosine similar-
ity decreases. For the Euclidean distance, we can
see that the embedding distances have a decreasing
trend with the increasing decoding steps, while the
mutual Euclidean increases with the model size.

A.4 Does LLM prefer to memorize specific
parts within the training data?

In this section, we discuss the question of whether
LLM prefers to memorize a specific part within the
training data. We split the corpora into 50 parts
based on their index and examine how many mem-
orized sentences are in those parts.

From the result shown in Figure 19, though the
number of memorized sentences is not completely
evenly distributed, we can see that there is no signif-
icant part that the number of memorized sentences
is clearly more than others. This shows the training
order does not affect memorization.

A.5 Detail N-Gram Statistics

We also provided detailed uni-gram and bi-gram
statistics for the memorized, un-memorized, half-
memorized, and quarter-memorized contents. The
average frequency is calculated at each step, and
we compute the average frequency of the context,
the average frequency of the continuation, and the

average frequency of the whole sequence. The
results span from the 70m size model to the 12b
size model shown in Table 3 to Table 6.
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Figure 19: Index Distribution of Memorized Sequences in 12b model.

target memorized memorized memorized memorized memorized memorized memorized forgotten forgotten forgotten forgotten forgotten forgotten forgotten
size 70m 160m 410m 1b 2.8b 6.9b 12b 70m 160m 410m 1b 2.8b 6.9b 12b
0 1,761,877,325 1,744,677,836 1,753,317,716 1,749,565,941 1,759,384,624 1,763,400,000 1,794,900,000 1,732,531,426 1,732,526,814 1,733,883,954 1,735,430,248 1,757,800,000 1,717,300,000 1,753,200,000
1 1,756,407,896 1,733,466,452 1,737,641,504 1,739,836,645 1,747,576,577 1,712,000,000 1,742,500,000 1,733,790,778 1,734,398,485 1,735,811,740 1,737,110,533 1,754,500,000 1,724,000,000 1,759,900,000
2 1,754,544,442 1,735,828,900 1,739,272,135 1,740,794,079 1,750,863,001 1,758,000,000 1,804,000,000 1,733,955,892 1,734,433,227 1,735,927,786 1,737,263,808 1,719,800,000 1,730,300,000 1,755,600,000
3 1,745,749,714 1,740,145,636 1,739,384,453 1,740,237,878 1,749,816,871 1,700,300,000 1,818,500,000 1,734,815,677 1,735,031,658 1,736,843,088 1,737,987,235 1,686,300,000 1,765,900,000 1,779,800,000
4 1,733,568,727 1,729,484,889 1,728,938,412 1,733,592,149 1,742,113,248 1,766,400,000 1,708,800,000 1,735,128,356 1,735,452,086 1,737,120,799 1,738,793,702 1,767,300,000 1,733,300,000 1,759,200,000
5 1,727,964,181 1,723,277,679 1,725,427,437 1,727,321,616 1,736,693,521 1,738,500,000 1,710,400,000 1,736,270,145 1,736,331,860 1,737,850,119 1,740,340,490 1,758,200,000 1,717,900,000 1,739,900,000
6 1,725,841,351 1,716,563,761 1,723,081,626 1,725,702,469 1,735,415,386 1,758,000,000 1,742,900,000 1,735,559,708 1,736,435,200 1,738,820,970 1,740,165,047 1,780,700,000 1,742,500,000 1,713,400,000
7 1,722,343,456 1,711,523,969 1,719,492,821 1,724,003,560 1,732,499,267 1,698,400,000 1,731,400,000 1,736,139,862 1,737,411,285 1,738,841,087 1,740,979,176 1,708,700,000 1,726,500,000 1,761,400,000
8 1,715,952,971 1,703,541,696 1,712,534,695 1,717,230,465 1,730,417,914 1,679,100,000 1,709,000,000 1,736,938,342 1,738,000,206 1,739,984,548 1,741,715,014 1,752,400,000 1,775,600,000 1,740,500,000
9 1,701,602,676 1,696,501,612 1,705,597,804 1,710,036,650 1,721,980,996 1,776,400,000 1,716,900,000 1,737,218,230 1,738,548,131 1,740,764,383 1,742,163,420 1,759,400,000 1,722,800,000 1,764,800,000
10 1,708,709,485 1,703,507,469 1,707,974,902 1,712,561,959 1,724,060,121 1,672,300,000 1,733,400,000 1,737,059,426 1,738,812,313 1,740,973,658 1,742,911,460 1,760,200,000 1,807,900,000 1,753,800,000
11 1,708,002,048 1,700,334,479 1,705,745,789 1,712,145,483 1,721,887,809 1,719,300,000 1,729,500,000 1,737,667,494 1,739,075,343 1,741,033,716 1,742,470,266 1,743,600,000 1,812,600,000 1,758,700,000
12 1,704,765,267 1,690,528,200 1,700,680,032 1,703,727,332 1,714,582,320 1,739,700,000 1,711,800,000 1,737,833,800 1,738,990,635 1,741,004,691 1,742,710,814 1,768,300,000 1,754,700,000 1,771,800,000
13 1,693,927,960 1,683,230,446 1,695,709,392 1,702,676,948 1,712,420,697 1,731,000,000 1,690,500,000 1,737,172,555 1,738,180,555 1,740,335,149 1,741,471,936 1,698,100,000 1,745,800,000 1,745,100,000
14 1,696,634,570 1,681,852,317 1,695,295,636 1,701,256,215 1,712,257,191 1,725,700,000 1,699,700,000 1,737,522,088 1,738,958,841 1,740,701,751 1,742,059,832 1,740,500,000 1,699,000,000 1,728,500,000
15 1,679,551,926 1,671,142,177 1,688,416,481 1,697,105,648 1,709,669,411 1,752,700,000 1,720,700,000 1,736,261,928 1,737,987,431 1,740,131,961 1,741,684,474 1,752,300,000 1,705,000,000 1,746,200,000
16 1,667,903,751 1,670,413,255 1,678,747,207 1,691,187,011 1,704,670,219 1,719,900,000 1,699,800,000 1,735,533,670 1,737,210,612 1,738,579,355 1,740,344,603 1,750,300,000 1,781,300,000 1,752,600,000
17 1,682,336,989 1,679,636,457 1,684,708,172 1,696,051,548 1,706,414,493 1,718,300,000 1,727,400,000 1,736,647,826 1,737,903,626 1,739,991,371 1,741,869,751 1,754,200,000 1,752,800,000 1,780,200,000
18 1,696,024,732 1,688,157,613 1,693,550,892 1,701,124,435 1,711,161,137 1,689,300,000 1,685,300,000 1,736,875,723 1,738,169,859 1,740,186,111 1,742,150,532 1,723,700,000 1,764,500,000 1,720,000,000
19 1,700,044,430 1,691,379,251 1,700,787,282 1,703,484,170 1,713,713,338 1,735,600,000 1,698,900,000 1,736,115,268 1,738,516,054 1,740,906,141 1,742,896,568 1,716,700,000 1,778,500,000 1,739,500,000
20 1,710,839,951 1,700,701,910 1,706,890,340 1,710,112,768 1,717,662,092 1,703,300,000 1,750,400,000 1,735,637,929 1,737,519,099 1,740,228,710 1,741,971,117 1,776,900,000 1,761,300,000 1,752,300,000
21 1,710,751,717 1,696,906,569 1,701,929,069 1,706,919,694 1,714,832,769 1,726,500,000 1,722,600,000 1,736,494,732 1,739,238,409 1,742,035,789 1,744,490,773 1,747,300,000 1,730,200,000 1,727,900,000
22 1,707,031,048 1,694,596,312 1,700,606,809 1,707,393,546 1,714,688,122 1,688,200,000 1,719,400,000 1,735,343,187 1,738,714,382 1,741,858,543 1,743,975,469 1,763,800,000 1,738,800,000 1,757,900,000
23 1,720,840,503 1,710,023,803 1,709,653,995 1,713,995,947 1,719,166,026 1,728,600,000 1,726,500,000 1,735,401,486 1,738,931,803 1,743,158,826 1,745,299,877 1,733,700,000 1,745,300,000 1,764,500,000
24 1,731,576,174 1,715,940,520 1,714,003,336 1,715,023,292 1,717,926,947 1,758,400,000 1,722,100,000 1,734,596,940 1,738,386,519 1,742,505,032 1,744,500,841 1,749,300,000 1,761,700,000 1,760,400,000
25 1,752,003,292 1,731,855,788 1,727,114,867 1,724,798,309 1,728,919,793 1,724,100,000 1,708,500,000 1,737,772,973 1,742,462,185 1,746,923,721 1,749,250,474 1,773,200,000 1,764,900,000 1,739,600,000
26 1,755,434,381 1,735,918,727 1,728,805,371 1,726,260,802 1,725,855,889 1,717,700,000 1,710,400,000 1,736,254,689 1,741,221,711 1,746,794,790 1,750,257,624 1,782,600,000 1,737,100,000 1,737,500,000
27 1,751,078,472 1,732,474,044 1,721,053,568 1,718,911,936 1,720,139,844 1,730,200,000 1,697,500,000 1,737,465,109 1,745,018,430 1,752,091,624 1,756,426,168 1,732,400,000 1,741,600,000 1,753,500,000
28 1,752,459,582 1,738,590,437 1,733,534,889 1,725,443,806 1,726,659,853 1,686,300,000 1,679,200,000 1,727,033,252 1,738,018,143 1,747,326,896 1,754,100,491 1,764,800,000 1,752,900,000 1,767,200,000
29 1,727,987,920 1,710,624,126 1,706,925,069 1,698,887,785 1,701,059,926 1,699,000,000 1,699,700,000 1,742,590,726 1,758,725,331 1,772,881,062 1,782,612,036 1,789,600,000 1,790,700,000 1,810,600,000
30 1,723,009,291 1,712,857,933 1,705,443,834 1,699,764,161 1,701,619,618 1,711,900,000 1,710,500,000 1,742,138,296 1,764,672,256 1,781,900,380 1,793,731,882 1,863,100,000 1,825,200,000 1,818,400,000
31 1,697,576,775 1,687,242,321 1,674,099,012 1,668,454,050 1,668,926,625 1,649,200,000 1,683,400,000 1,856,009,443 1,902,117,823 1,941,790,973 1,967,891,756 1,975,400,000 1,987,200,000 2,005,800,000
Avg Context 1,719,510,719 1,708,216,456 1,711,448,892 1,713,925,259 1,721,720,489 1,721,178,125 1,722,078,125 1,739,930,530 1,744,606,260 1,749,349,648 1,752,719,607 1,759,534,375 1,759,221,875 1,763,115,625
32 1,812,724,891 1,801,299,369 1,783,560,981 1,771,127,395 1,765,849,310 1,739,200,000 1,722,000,000 957,760,109 963,964,253 981,205,278 986,644,973 1,017,100,000 1,024,300,000 989,330,000
33 1,785,198,082 1,782,599,042 1,764,708,279 1,754,286,257 1,750,603,678 1,748,500,000 1,734,000,000 1,477,089,688 1,452,367,316 1,435,934,090 1,428,928,547 1,415,800,000 1,418,800,000 1,417,900,000
34 1,772,561,111 1,767,491,083 1,753,649,952 1,744,671,079 1,742,356,129 1,769,300,000 1,735,800,000 1,623,949,166 1,609,532,509 1,597,061,854 1,592,797,469 1,560,600,000 1,576,000,000 1,592,600,000
35 1,762,468,180 1,755,171,008 1,742,357,780 1,734,034,726 1,733,128,170 1,732,800,000 1,735,800,000 1,656,747,957 1,650,264,891 1,644,001,022 1,641,698,771 1,625,200,000 1,654,900,000 1,635,900,000
36 1,751,084,744 1,744,819,021 1,731,757,083 1,727,988,589 1,726,739,343 1,728,600,000 1,706,600,000 1,678,449,622 1,673,912,651 1,669,885,767 1,668,314,472 1,642,100,000 1,683,100,000 1,643,100,000
37 1,737,469,976 1,729,200,256 1,720,955,403 1,720,387,855 1,719,147,209 1,712,900,000 1,787,300,000 1,694,329,815 1,691,870,813 1,689,952,951 1,689,876,998 1,727,300,000 1,699,700,000 1,699,200,000
38 1,737,353,894 1,724,369,474 1,716,962,208 1,710,620,923 1,711,850,544 1,691,900,000 1,761,400,000 1,696,281,632 1,695,900,348 1,694,668,623 1,695,468,826 1,674,600,000 1,697,300,000 1,679,200,000
39 1,715,081,363 1,703,843,951 1,703,301,172 1,705,983,119 1,709,368,578 1,706,400,000 1,660,200,000 1,700,949,641 1,700,918,018 1,700,662,603 1,701,381,229 1,735,200,000 1,703,000,000 1,694,800,000
40 1,686,685,834 1,682,653,925 1,690,744,526 1,694,008,976 1,698,953,947 1,698,400,000 1,732,100,000 1,699,950,424 1,700,320,136 1,700,698,424 1,701,888,972 1,709,600,000 1,749,200,000 1,717,200,000
41 1,697,887,078 1,690,596,776 1,699,039,050 1,702,293,288 1,706,226,135 1,706,000,000 1,729,200,000 1,701,980,579 1,703,673,165 1,704,305,693 1,705,426,679 1,713,800,000 1,688,200,000 1,721,300,000
42 1,706,446,759 1,699,625,915 1,704,257,959 1,710,138,829 1,711,973,193 1,706,800,000 1,696,400,000 1,699,916,580 1,701,963,362 1,704,179,446 1,704,239,602 1,693,500,000 1,680,700,000 1,699,700,000
43 1,724,996,796 1,711,048,851 1,718,405,094 1,721,177,377 1,728,269,651 1,730,100,000 1,737,300,000 1,701,424,868 1,702,896,473 1,704,910,899 1,706,115,083 1,699,300,000 1,718,400,000 1,702,000,000
44 1,729,978,559 1,717,877,194 1,721,748,175 1,727,317,540 1,725,798,564 1,752,400,000 1,680,700,000 1,699,235,317 1,702,231,574 1,704,286,186 1,705,328,377 1,732,700,000 1,719,100,000 1,715,900,000
45 1,756,734,060 1,740,464,386 1,745,501,552 1,750,234,915 1,752,814,925 1,722,000,000 1,740,000,000 1,699,769,885 1,702,350,463 1,703,950,116 1,705,365,109 1,683,000,000 1,753,700,000 1,696,100,000
46 1,772,357,723 1,765,976,491 1,769,251,508 1,775,699,434 1,780,492,152 1,796,400,000 1,773,900,000 1,697,965,233 1,700,236,541 1,702,146,238 1,703,508,158 1,740,600,000 1,727,900,000 1,724,700,000
47 1,826,784,956 1,810,274,933 1,823,557,511 1,829,605,754 1,834,611,860 1,849,800,000 1,853,200,000 1,694,816,806 1,697,715,045 1,699,839,943 1,701,149,553 1,730,400,000 1,716,300,000 1,675,600,000
Avg Continuation 1,748,488,375 1,739,206,980 1,736,859,890 1,736,223,503 1,737,386,462 1,736,968,750 1,736,618,750 1,630,038,582 1,628,132,347 1,627,355,571 1,627,383,301 1,631,300,000 1,638,162,500 1,625,283,125
Avg Sentence 1,729,169,938 1,723,124,945 1,719,919,225 1,721,358,007 1,726,942,480 1,726,441,667 1,726,925,000 1,703,299,881 1,705,781,622 1,708,684,955 1,710,940,838 1,716,789,583 1,718,868,750 1,717,171,458

Table 3: Uni-gram Statistics for Memorized and Unmemorized Content
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target half half half half half half half quarter quarter quarter quarter quarter quarter quarter
size 70m 160m 410m 1b 2.8b 6.9b 12b 70m 160m 410m 1b 2.8b 6.9b 12b
0 1,747,500,000 1,780,200,000 1,752,900,000 1,700,100,000 1,729,500,000 1,733,700,000 1,715,500,000 1774800000 1,754,800,000 1785800000 1763800000 1781400000 1778900000 1756200000
1 1,771,400,000 1,735,900,000 1,707,600,000 1,717,800,000 1,756,600,000 1,731,400,000 1,729,600,000 1746500000 1,781,100,000 1767400000 1746500000 1742600000 1779500000 1736400000
2 1,747,800,000 1,745,400,000 1,758,500,000 1,731,800,000 1,705,000,000 1,687,200,000 1,774,100,000 1754000000 1,794,900,000 1781500000 1756500000 1768900000 1760300000 1753800000
3 1,760,400,000 1,712,100,000 1,743,700,000 1,745,200,000 1,726,600,000 1,753,500,000 1,763,800,000 1791200000 1,776,600,000 1769500000 1776000000 1791900000 1748200000 1782600000
4 1,693,800,000 1,720,700,000 1,726,500,000 1,696,900,000 1,748,200,000 1,697,300,000 1,723,500,000 1696800000 1,740,300,000 1789400000 1761900000 1792900000 1760800000 1754400000
5 1,711,200,000 1,746,400,000 1,762,300,000 1,722,900,000 1,680,700,000 1,715,700,000 1,714,000,000 1761700000 1,765,300,000 1777000000 1720700000 1763800000 1765800000 1746100000
6 1,700,900,000 1,717,100,000 1,673,600,000 1,753,500,000 1,774,500,000 1,735,800,000 1,771,000,000 1764900000 1,757,900,000 1726200000 1744400000 1742400000 1761400000 1785200000
7 1,737,400,000 1,743,900,000 1,710,200,000 1,741,300,000 1,766,200,000 1,688,400,000 1,730,600,000 1755400000 1,690,800,000 1790000000 1717000000 1751600000 1740100000 1754900000
8 1,705,800,000 1,721,300,000 1,728,200,000 1,723,200,000 1,720,900,000 1,676,100,000 1,738,200,000 1739900000 1,726,100,000 1799800000 1773900000 1806700000 1704900000 1737600000
9 1,754,600,000 1,756,100,000 1,762,300,000 1,722,400,000 1,767,400,000 1,772,800,000 1,708,800,000 1785800000 1,741,600,000 1756200000 1763000000 1744900000 1757800000 1708900000
10 1,737,700,000 1,726,600,000 1,761,000,000 1,715,500,000 1,724,600,000 1,754,200,000 1,757,500,000 1753600000 1,763,700,000 1757000000 1760600000 1748400000 1736600000 1770700000
11 1,778,500,000 1,738,600,000 1,691,800,000 1,753,500,000 1,704,100,000 1,744,300,000 1,765,900,000 1774300000 1,773,600,000 1764500000 1746700000 1752300000 1741700000 1740200000
12 1,721,500,000 1,696,300,000 1,678,400,000 1,699,000,000 1,714,100,000 1,718,900,000 1,765,400,000 1776700000 1,734,000,000 1771900000 1716500000 1736100000 1727900000 1730800000
13 1,751,300,000 1,732,400,000 1,708,000,000 1,700,400,000 1,698,800,000 1,754,600,000 1,719,200,000 1714300000 1,744,900,000 1749500000 1741100000 1729200000 1746400000 1742400000
14 1,737,600,000 1,731,900,000 1,735,500,000 1,682,700,000 1,695,200,000 1,701,600,000 1,730,800,000 1751000000 1,749,400,000 1731600000 1773600000 1738200000 1766800000 1712100000
15 1,693,700,000 1,725,700,000 1,774,900,000 1,732,300,000 1,713,300,000 1,775,300,000 1,743,900,000 1728000000 1,724,300,000 1739000000 1742500000 1762500000 1736200000 1782100000
16 1,739,000,000 1,749,900,000 1,740,800,000 1,777,700,000 1,747,300,000 1,749,300,000 1,702,800,000 1738500000 1,740,800,000 1705500000 1771500000 1729500000 1763500000 1749200000
17 1,741,900,000 1,694,200,000 1,742,100,000 1,771,200,000 1,721,200,000 1,741,300,000 1,783,000,000 1745700000 1,740,100,000 1767500000 1736700000 1738900000 1741000000 1761400000
18 1,738,200,000 1,703,300,000 1,740,700,000 1,711,900,000 1,705,700,000 1,704,600,000 1,686,400,000 1737100000 1,743,400,000 1743200000 1737100000 1724500000 1735100000 1756800000
19 1,728,500,000 1,725,600,000 1,729,100,000 1,719,600,000 1,725,700,000 1,679,600,000 1,747,000,000 1726900000 1,791,300,000 1728300000 1740300000 1707300000 1736600000 1719900000
20 1,691,300,000 1,761,400,000 1,714,800,000 1,761,200,000 1,695,900,000 1,702,800,000 1,733,400,000 1727700000 1,767,400,000 1707000000 1730800000 1771400000 1725200000 1795800000
21 1,677,600,000 1,738,600,000 1,699,400,000 1,737,100,000 1,691,400,000 1,680,900,000 1,697,700,000 1755200000 1,741,500,000 1750000000 1777700000 1751000000 1741700000 1746900000
22 1,740,300,000 1,713,600,000 1,716,200,000 1,668,000,000 1,698,100,000 1,718,800,000 1,722,600,000 1774400000 1,710,600,000 1757000000 1774700000 1797700000 1752900000 1746100000
23 1,748,200,000 1,666,100,000 1,664,400,000 1,729,100,000 1,677,100,000 1,734,500,000 1,731,200,000 1747300000 1,737,000,000 1766600000 1782700000 1761900000 1757800000 1723400000
24 1,691,700,000 1,735,300,000 1,716,500,000 1,722,300,000 1,733,100,000 1,699,600,000 1,678,600,000 1735800000 1,734,200,000 1748600000 1712500000 1743000000 1772400000 1700900000
25 1,728,800,000 1,656,600,000 1,726,600,000 1,700,200,000 1,690,500,000 1,697,900,000 1,732,800,000 1731200000 1,766,800,000 1740300000 1724100000 1736800000 1782600000 1718200000
26 1,700,700,000 1,715,200,000 1,654,200,000 1,694,200,000 1,703,700,000 1,684,400,000 1,733,500,000 1708800000 1,715,100,000 1739000000 1734800000 1721100000 1695100000 1749000000
27 1,724,500,000 1,645,400,000 1,754,400,000 1,707,800,000 1,724,900,000 1,721,800,000 1,672,900,000 1703300000 1,715,900,000 1711100000 1697200000 1718800000 1708100000 1695900000
28 1,658,300,000 1,712,500,000 1,744,100,000 1,660,800,000 1,739,500,000 1,678,300,000 1,701,000,000 1743400000 1,732,800,000 1752700000 1712300000 1724300000 1736400000 1680500000
29 1,692,600,000 1,667,500,000 1,686,700,000 1,655,700,000 1,657,100,000 1,676,700,000 1,707,500,000 1697300000 1,771,300,000 1731300000 1717800000 1677500000 1714100000 1691500000
30 1,655,500,000 1,690,700,000 1,658,200,000 1,647,300,000 1,683,200,000 1,639,600,000 1,628,200,000 1760800000 1,689,800,000 1675800000 1691500000 1678700000 1649800000 1697800000
31 1,666,800,000 1,541,100,000 1,637,100,000 1,564,000,000 1,513,400,000 1,579,400,000 1,554,100,000 1562100000 1,515,300,000 1536200000 1484100000 1477500000 1436800000 1507600000
Avg Context 1,721,093,750 1,713,987,500 1,718,771,875 1,711,456,250 1,710,421,875 1,710,321,875 1,720,765,625 1,739,512,500 1,738,518,750 1,744,262,500 1,735,328,125 1,737,928,125 1,733,200,000 1,732,353,125
32 1,878,300,000 1,871,300,000 1,800,300,000 1,834,700,000 1,812,500,000 1,719,500,000 1,791,700,000 2189100000 2,090,900,000 2020500000 1992900000 1907700000 1938700000 1895000000
33 1,842,000,000 1,854,700,000 1,836,200,000 1,829,200,000 1,869,400,000 1,834,500,000 1,749,400,000 2458900000 2,344,000,000 2383700000 2295800000 2224900000 2269700000 2275200000
34 1,842,600,000 1,900,800,000 1,843,500,000 1,862,600,000 1,778,400,000 1,812,100,000 1,832,600,000 2650800000 2,597,500,000 2592700000 2537800000 2483300000 2511000000 2568800000
35 1,841,600,000 1,875,500,000 1,883,700,000 1,894,300,000 1,866,800,000 1,843,400,000 1,868,600,000 2520900000 2,583,300,000 2586100000 2591600000 2586700000 2599000000 2572600000
36 1,871,800,000 1,901,500,000 1,932,600,000 1,931,300,000 1,926,100,000 1,872,300,000 1,893,200,000 1778900000 1,742,400,000 1743700000 1696700000 1687300000 1715400000 1720500000
37 1,885,600,000 1,921,800,000 1,997,900,000 1,915,800,000 1,981,000,000 2,077,100,000 2,038,100,000 1736300000 1,739,900,000 1728100000 1685100000 1664500000 1681500000 1700300000
38 1,998,200,000 2,101,300,000 2,081,700,000 2,115,900,000 2,156,700,000 2,209,100,000 2,254,500,000 1762300000 1,710,100,000 1711100000 1737600000 1718500000 1736000000 1705300000
39 2,032,100,000 2,158,400,000 2,168,100,000 2,189,200,000 2,246,300,000 2,276,200,000 2,369,000,000 1809200000 1,768,100,000 1799700000 1747600000 1744100000 1738300000 1758800000
40 1,723,200,000 1,690,600,000 1,715,300,000 1,692,500,000 1,691,600,000 1,691,900,000 1,719,100,000 1765200000 1,751,200,000 1789500000 1746300000 1757000000 1733900000 1779400000
41 1,738,700,000 1,731,600,000 1,699,700,000 1,709,900,000 1,706,600,000 1,668,700,000 1,706,000,000 1773400000 1,777,100,000 1770200000 1803300000 1780300000 1788700000 1780500000
42 1,707,400,000 1,795,200,000 1,719,700,000 1,721,300,000 1,743,300,000 1,700,900,000 1,725,800,000 1822600000 1,814,600,000 1763300000 1800800000 1793500000 1788700000 1740000000
43 1751700000 1,708,000,000 1,720,500,000 1,713,600,000 1,733,400,000 1,727,600,000 1,687,200,000 1839800000 1,774,600,000 1838300000 1761600000 1754700000 1787300000 1805000000
44 1753600000 1,742,000,000 1,764,800,000 1,694,000,000 1,739,700,000 1,686,500,000 1,721,000,000 1760300000 1,806,500,000 1817700000 1760600000 1787800000 1782700000 1752900000
45 1729900000 1,720,800,000 1,715,200,000 1,721,700,000 1,786,500,000 1,697,200,000 1,733,700,000 1775700000 1,763,900,000 1829800000 1840800000 1784300000 1822300000 1734000000
46 1733000000 1,717,200,000 1,741,500,000 1,705,100,000 1,750,600,000 1,721,000,000 1,737,400,000 1797500000 1,799,100,000 1788600000 1729000000 1772000000 1765100000 1758700000
47 1732500000 1,715,600,000 1,748,500,000 1,788,200,000 1,710,100,000 1,731,500,000 1,712,500,000 1763400000 1,757,300,000 1783200000 1835300000 1791700000 1764800000 1766000000
Avg Continuation 1,816,387,500 1,837,893,750 1,835,575,000 1,832,456,250 1,843,687,500 1,829,343,750 1,846,237,500 1,950,268,750 1,926,281,250 1,934,137,500 1,910,175,000 1,889,893,750 1,901,443,750 1,894,562,500
Avg Sentence 1,752,858,333 1,755,289,583 1,757,706,250 1,751,789,583 1,754,843,750 1,749,995,833 1,762,589,583 1,809,764,583 1,801,106,250 1,807,554,167 1,793,610,417 1,788,583,333 1,789,281,250 1,786,422,917

Table 4: Uni-gram Statistics for Half-memorized and Quarter-memorized content

target memorized memorized memorized memorized memorized memorized memorized forgotten forgotten forgotten forgotten forgotten forgotten forgotten
size 70m 160m 410m 1b 2.8b 6.9b 12b 70m 160m 410m 1b 2.8b 6.9b 12b

1 56,865,298 55,633,408 57,631,394 57,851,391 58,747,419 59,390,492 59,538,566 67,723,858 67,753,352 67,683,530 67,708,452 67,740,430 67,754,040 67,767,823
2 57,323,714 56,317,639 57,433,612 57,993,010 58,602,181 59,488,016 59,803,389 67,737,009 67,768,452 67,769,364 67,815,489 67,769,957 67,800,825 67,828,380
3 56,730,613 56,231,828 57,388,365 58,009,821 58,928,771 59,525,329 59,598,379 67,775,953 67,738,481 67,807,016 67,780,588 67,804,139 67,851,921 67,894,036
4 55,911,242 56,234,359 56,980,241 57,792,288 58,806,766 59,391,815 59,636,502 67,949,220 67,825,207 67,839,517 67,841,697 67,867,488 67,909,524 67,967,557
5 55,692,756 55,655,983 56,819,836 57,273,741 58,351,556 59,022,366 59,346,451 67,958,033 67,886,128 67,874,628 68,003,000 67,965,687 68,045,776 68,030,203
6 55,894,920 55,666,111 56,911,193 57,438,723 58,686,676 59,320,405 59,557,076 67,985,473 67,869,913 67,917,993 68,012,109 67,974,605 68,003,875 68,007,874
7 56,047,068 55,753,285 56,733,219 57,360,465 58,300,186 59,087,792 59,572,316 68,058,487 68,015,919 68,064,231 68,101,370 68,115,977 68,153,223 68,184,607
8 55,832,397 55,349,442 56,329,311 57,111,974 58,349,971 58,924,645 59,505,541 68,017,225 68,013,215 68,034,561 68,111,358 68,101,007 68,139,029 68,201,839
9 55,253,643 54,713,056 55,885,459 56,532,115 57,837,312 58,610,331 59,086,863 68,135,592 68,114,172 68,143,152 68,214,493 68,138,035 68,189,743 68,155,354
10 54,503,716 54,257,056 55,495,149 56,166,844 57,307,569 58,022,654 58,377,791 68,160,293 68,172,545 68,187,816 68,250,398 68,215,884 68,267,972 68,242,452
11 54,988,987 54,708,110 55,773,288 56,333,064 57,701,866 58,500,535 58,871,367 68,234,320 68,217,765 68,269,026 68,248,385 68,243,497 68,268,692 68,241,732
12 54,935,679 54,664,019 55,533,124 56,267,162 57,079,217 58,003,846 58,331,501 68,213,578 68,234,560 68,252,214 68,247,968 68,328,780 68,343,161 68,299,170
13 54,767,327 54,145,183 55,296,145 55,857,794 56,871,961 57,652,393 57,921,174 68,226,649 68,274,620 68,277,162 68,277,302 68,337,296 68,382,126 68,389,974
14 54,021,320 53,569,285 54,624,126 55,455,249 56,409,277 57,387,470 57,829,909 68,213,386 68,233,133 68,245,257 68,296,277 68,307,432 68,429,171 68,395,506
15 54,367,150 53,970,143 55,279,001 55,940,451 57,010,866 57,759,141 58,109,891 68,177,596 68,207,430 68,237,580 68,241,325 68,279,727 68,326,632 68,368,250
16 53,451,225 53,327,809 54,393,699 55,350,104 56,364,900 57,290,723 57,711,596 68,022,941 68,094,829 68,169,848 68,158,831 68,224,797 68,273,585 68,255,991
17 53,645,203 53,634,633 54,177,271 55,078,600 56,138,436 57,251,531 57,541,351 68,138,549 68,147,333 68,221,638 68,287,831 68,325,084 68,415,608 68,411,921
18 54,668,363 54,174,847 55,256,176 56,064,089 56,740,259 57,769,268 57,973,134 68,224,597 68,282,517 68,395,059 68,437,841 68,522,898 68,598,086 68,599,844
19 55,562,101 54,791,623 55,294,695 55,928,589 56,768,136 57,599,180 58,081,287 68,209,538 68,324,444 68,446,514 68,525,618 68,628,926 68,686,765 68,753,261
20 55,938,657 55,081,208 55,877,542 56,253,266 57,048,367 57,967,318 58,106,207 68,136,189 68,313,557 68,470,777 68,543,198 68,639,292 68,722,909 68,829,286
21 56,331,087 55,229,266 55,652,638 56,067,216 56,679,203 57,502,276 57,635,297 68,141,999 68,361,062 68,547,360 68,644,264 68,783,591 68,859,312 68,950,347
22 56,997,804 55,715,430 56,053,895 56,356,954 56,761,453 57,545,255 57,751,704 68,198,529 68,480,921 68,670,594 68,818,205 69,044,454 69,163,424 69,194,391
23 56,802,977 55,429,313 55,735,965 56,197,410 56,471,773 57,057,789 57,383,903 68,143,528 68,525,019 68,831,257 68,946,803 69,230,759 69,321,426 69,445,410
24 57,826,178 56,183,113 56,044,365 55,945,228 55,984,317 56,618,627 56,771,473 68,271,377 68,728,185 69,037,189 69,197,403 69,488,552 69,616,627 69,731,068
25 58,617,239 57,079,668 56,202,206 56,102,928 55,885,915 56,296,069 56,349,525 68,384,381 68,871,654 69,255,113 69,446,599 69,840,923 69,999,312 70,097,498
26 59,309,065 57,207,648 56,075,430 55,816,944 55,552,723 55,814,962 55,846,995 68,608,814 69,166,616 69,653,434 69,885,998 70,350,797 70,565,524 70,654,203
27 59,214,372 56,581,831 55,453,438 55,266,849 54,772,970 55,091,733 55,084,942 68,827,806 69,591,707 70,264,503 70,708,424 71,312,980 71,558,722 71,777,086
28 58,905,505 56,371,887 55,174,878 54,389,172 54,041,511 54,335,228 54,268,336 68,505,025 69,619,124 70,499,723 71,115,782 71,913,592 72,172,923 72,454,327
29 58,023,696 56,122,492 55,053,358 53,998,472 53,301,028 53,274,003 53,087,300 68,732,220 70,492,616 71,644,050 72,524,388 73,553,428 73,967,910 74,302,156
30 56,113,860 54,313,900 52,636,358 51,531,025 50,770,809 50,519,079 50,314,047 74,810,707 77,539,372 79,590,655 80,895,889 82,592,009 83,417,356 83,993,892
31 51,887,230 50,597,329 48,600,945 47,771,643 46,600,073 46,175,796 45,915,086 77,719,313 81,332,604 84,241,907 86,088,401 88,563,161 89,838,828 90,658,855
Avg Context 56,013,884 55,119,707 55,541,817 55,854,922 56,415,273 57,038,583 57,255,126 68,698,135 69,103,111 69,436,860 69,657,280 69,942,103 70,098,195 70,196,268
32 55,823,256 53,884,097 51,681,052 50,569,791 49,394,788 48,863,702 48,537,557 13,930,348 15,076,103 16,016,778 16,465,745 16,788,294 17,279,969 17,455,400
33 58,738,344 56,674,056 54,054,542 52,888,037 51,528,984 50,887,306 50,414,778 26,816,835 27,093,410 27,773,603 27,962,715 28,191,993 28,477,352 28,654,271
34 56,938,764 55,281,907 52,909,883 51,461,738 50,038,303 49,641,208 49,084,752 47,564,034 45,235,994 44,031,407 43,883,655 43,877,411 43,554,253 43,485,497
35 54,366,396 53,029,014 50,888,507 49,755,655 48,770,433 48,334,318 47,981,902 53,101,160 51,120,417 49,742,735 49,185,432 48,518,180 48,081,379 47,894,499
36 52,936,332 51,682,636 49,570,706 48,713,389 47,794,113 47,573,073 47,233,332 58,003,949 56,939,073 55,963,819 55,597,113 55,051,241 54,774,326 54,588,795
37 51,647,223 50,371,630 48,303,608 47,632,078 46,858,461 46,786,053 46,376,421 61,213,159 60,453,961 59,829,451 59,536,354 59,153,093 59,031,495 58,838,218
38 50,931,788 49,209,356 47,576,761 46,731,794 45,968,874 45,790,581 45,477,362 62,655,390 62,137,314 61,620,255 61,458,679 61,231,410 61,110,159 61,003,516
39 51,042,601 49,027,546 47,618,052 46,768,291 45,998,476 45,883,841 45,473,705 63,348,201 62,998,381 62,683,843 62,649,981 62,440,555 62,378,970 62,319,582
40 49,590,360 47,756,219 46,431,515 45,965,206 45,449,164 45,252,564 45,184,300 63,866,857 63,600,670 63,423,587 63,430,422 63,301,531 63,282,617 63,207,398
41 49,954,374 47,928,574 46,848,807 46,364,193 45,679,210 45,474,688 45,440,294 64,301,293 64,110,817 63,913,386 63,893,724 63,873,160 63,880,434 63,857,697
42 50,897,285 48,822,840 47,723,273 47,389,348 46,461,956 46,336,541 46,106,581 64,486,391 64,515,591 64,453,381 64,379,111 64,406,903 64,442,057 64,385,303
43 52,467,447 49,948,494 48,687,532 48,087,823 47,426,244 47,134,027 46,970,169 64,557,953 64,566,576 64,532,662 64,488,626 64,565,552 64,573,767 64,585,706
44 54,876,822 52,145,505 50,513,749 49,816,893 48,819,838 48,428,789 48,281,333 64,662,055 64,739,419 64,747,685 64,807,289 64,861,456 64,982,075 64,897,827
45 56,056,772 53,288,677 51,530,428 50,709,794 49,538,754 49,171,650 48,847,311 64,772,578 64,907,757 64,948,826 64,997,734 65,068,658 65,124,986 65,132,858
46 61,167,369 59,469,476 57,204,341 55,850,490 54,489,360 53,898,637 53,288,932 64,727,227 64,840,307 64,926,333 64,908,159 65,053,638 65,091,642 65,154,625
47 71,009,467 67,839,176 66,565,545 65,503,549 63,999,825 63,292,284 62,803,150 64,590,446 64,867,523 64,840,482 64,903,198 65,014,873 65,036,948 65,120,427
48 66,672,308 64,419,151 63,096,912 62,676,497 61,761,157 60,991,890 60,750,602 66,612,523 66,803,144 66,905,353 66,952,648 67,075,374 67,116,770 67,266,114
Avg Continuation 55,595,112 53,575,197 51,835,601 50,993,210 49,998,702 49,631,832 49,308,969 57,012,377 56,706,262 56,491,387 56,441,211 56,380,784 56,365,835 56,343,984
Avg Sentence 55,865,569 54,572,693 54,229,199 54,133,066 54,142,738 54,415,359 54,440,862 64,559,429 64,712,561 64,852,005 64,976,589 65,139,135 65,234,651 65,290,251

Table 5: Bi-gram Statistics for memorized and unmemorized content
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target half half half half half half half quarter quarter quarter quarter quarter quarter quarter
size 70m 160m 410m 1b 2.8b 6.9b 12b 70m 160m 410m 1b 2.8b 6.9b 12b

1 53,888,945 55,774,256 56,835,849 57,399,791 58,749,349 58,746,839 59,572,656 65,365,004 66,059,083 66,813,871 67,057,786 67,482,982 67,249,886 67,522,493
2 53,633,778 55,585,291 56,294,740 57,125,864 58,375,426 58,787,083 59,024,756 65,505,804 66,197,266 66,585,597 66,774,723 67,277,478 67,415,528 67,313,805
3 53,966,515 55,464,751 56,571,797 57,248,585 58,522,726 59,007,609 59,282,618 65,526,925 66,301,214 66,609,558 67,101,450 67,242,630 67,240,433 67,479,250
4 53,788,979 55,012,249 55,852,524 56,732,428 58,632,577 58,585,481 59,106,526 65,575,121 65,977,326 66,498,055 66,914,635 67,144,082 67,128,936 67,304,810
5 52,887,357 54,130,559 55,380,593 56,487,949 57,789,441 58,410,016 58,836,366 65,413,320 66,086,522 66,640,160 66,821,619 67,103,545 67,257,537 67,368,841
6 53,346,585 54,626,718 56,348,320 56,603,397 58,159,466 58,648,425 58,945,615 65,113,237 66,153,641 66,499,304 66,682,733 67,063,613 67,252,679 67,384,155
7 52,836,947 54,888,957 55,457,422 56,613,020 57,855,215 58,349,009 58,580,014 65,090,106 65,649,597 66,459,689 66,678,897 66,947,213 67,002,958 67,127,891
8 52,478,474 54,201,487 55,628,345 56,114,532 57,493,118 58,018,440 58,920,964 64,824,999 65,498,431 66,241,656 66,399,994 66,746,465 66,760,013 66,819,417
9 53,600,100 55,410,940 56,362,313 57,618,326 58,256,347 59,088,717 59,814,719 64,941,905 65,788,899 66,460,344 66,506,701 66,921,900 67,080,681 67,174,870
10 53,868,058 55,087,199 56,362,786 57,058,982 58,314,177 58,745,840 59,526,404 64,563,380 65,502,285 66,335,635 66,276,258 66,961,511 66,922,326 66,965,502
11 52,884,280 54,383,701 56,075,362 56,818,188 58,050,191 58,352,813 58,596,784 64,715,807 65,616,229 66,029,659 66,452,694 66,712,759 66,674,522 66,995,794
12 52,928,646 54,849,387 55,982,049 56,771,448 58,094,228 58,565,819 58,811,948 64,820,938 65,424,995 65,790,449 66,253,435 66,525,526 66,698,298 66,719,967
13 52,690,921 54,559,756 55,697,194 56,532,692 57,846,992 58,355,202 58,946,804 64,842,590 65,142,936 65,893,506 66,065,102 66,465,922 66,738,926 66,653,765
14 52,781,679 54,368,904 56,019,791 56,847,208 57,869,958 58,242,828 58,685,929 64,404,765 65,245,584 65,797,393 66,052,000 66,479,573 66,541,779 66,586,451
15 53,765,298 55,537,152 56,289,403 57,279,213 58,113,960 58,741,123 59,494,649 64,231,835 64,970,624 65,603,603 65,691,554 66,258,007 66,393,008 66,421,189
16 53,740,078 55,037,415 55,929,818 56,941,982 57,702,245 58,282,107 58,697,163 64,285,467 64,973,050 65,644,470 65,985,554 66,366,943 66,449,639 66,680,453
17 53,610,921 55,130,291 56,781,859 57,648,192 58,161,184 58,670,246 59,044,372 64,584,535 65,324,214 66,141,495 66,173,896 66,423,703 66,634,663 66,523,072
18 52,403,931 54,507,436 56,143,121 56,609,104 57,872,099 58,070,077 58,324,067 64,823,801 65,426,701 65,725,421 65,794,806 66,079,791 66,355,245 66,570,526
19 51,734,926 53,970,664 55,420,133 56,429,139 57,389,684 58,026,044 57,807,255 64,435,084 65,175,915 65,608,367 65,736,235 66,057,197 66,188,760 66,351,043
20 52,066,233 53,844,254 55,306,358 56,168,419 56,834,780 57,322,399 57,930,955 64,026,114 64,482,213 64,845,907 65,324,118 65,663,196 65,946,061 65,795,199
21 54,499,372 55,151,054 55,817,487 56,104,835 57,282,099 57,680,431 58,491,658 63,854,665 64,377,391 64,858,096 64,933,132 65,479,905 65,461,356 65,605,633
22 53,002,234 53,689,249 54,689,980 55,709,870 56,393,115 56,890,668 57,461,711 63,953,011 64,210,926 64,748,681 64,882,441 65,007,446 65,115,475 65,219,898
23 54,475,618 54,209,390 55,114,979 55,800,549 56,745,566 56,890,699 57,313,138 63,693,211 64,323,138 64,361,084 64,798,794 64,818,666 65,024,302 64,992,457
24 52,696,844 53,885,907 54,088,030 55,057,040 55,463,131 56,208,303 56,444,958 63,400,561 63,820,771 63,700,022 64,438,090 64,258,752 64,141,101 64,186,891
25 50,318,283 51,269,205 52,481,347 53,465,984 53,891,662 54,781,920 54,713,197 63,232,652 63,129,362 63,259,586 63,725,082 63,910,320 63,867,932 63,988,413
26 50,229,788 51,354,758 52,362,605 53,242,078 53,893,195 54,326,699 54,530,116 61,826,182 61,893,288 62,274,584 62,752,607 62,746,811 62,887,121 63,116,564
27 52,206,436 52,688,837 53,341,050 53,769,840 54,270,899 54,576,546 55,060,048 60,352,198 60,726,965 60,923,515 61,131,020 60,963,222 61,265,266 61,663,726
28 49,682,706 50,249,019 51,876,101 52,495,005 52,542,959 53,202,973 53,174,103 60,534,641 60,288,939 60,079,857 59,975,267 60,096,463 59,981,804 60,079,474
29 49,857,350 50,055,633 51,690,368 51,477,619 51,245,707 51,586,655 52,023,933 61,446,881 60,521,500 59,891,967 59,610,978 59,336,539 59,242,416 59,109,188
30 48,055,193 47,429,451 48,033,530 48,151,423 48,174,882 48,183,182 48,215,800 59,390,999 57,149,284 56,340,637 55,831,719 55,327,710 54,997,345 54,953,972
31 39,251,259 39,137,018 39,388,512 39,273,372 39,230,840 39,250,211 39,423,466 47,469,654 45,842,988 45,103,473 44,628,970 44,396,335 44,093,542 44,099,541
Avg Context 52,167,024 53,402,932 54,503,993 55,212,777 56,103,781 56,535,303 56,929,119 63,427,271 63,783,267 64,121,472 64,304,913 64,524,716 64,580,953 64,670,137
32 50,487,094 49,193,302 48,748,380 48,353,375 48,143,528 47,788,231 47,682,812 73,626,535 69,054,469 66,707,831 64,778,405 63,608,111 62,438,327 62,279,482
33 61,392,551 59,894,701 58,602,818 58,523,094 57,350,370 57,349,346 56,865,365 127,465,382 117,081,737 110,181,057 106,211,754 102,176,536 100,298,529 98,864,531
34 61,328,405 61,880,320 61,897,331 61,603,725 61,037,948 60,910,761 61,148,637 183,840,986 178,535,599 174,318,924 169,430,877 164,785,135 162,605,626 161,446,058
35 62,108,896 64,859,473 66,373,167 66,487,737 66,963,760 67,607,923 67,185,378 207,065,353 212,630,432 212,924,641 212,313,484 210,389,783 209,373,568 209,264,567
36 64,491,225 66,128,068 68,573,633 68,479,538 69,624,085 69,468,930 70,076,197 107,042,066 102,720,927 98,446,681 95,544,431 91,884,559 89,921,371 89,176,573
37 64,176,596 67,738,610 71,189,574 72,648,126 74,649,180 75,348,320 76,011,136 78,418,713 75,370,613 73,491,350 72,095,517 70,419,121 69,798,088 69,480,522
38 83,023,501 86,268,700 92,242,626 95,541,179 100,137,087 103,141,517 104,996,137 75,331,828 73,633,103 72,372,719 71,451,162 70,344,087 69,870,019 69,555,251
39 114,997,010 123,345,929 132,119,453 137,345,936 144,729,841 148,911,774 152,506,274 72,416,590 71,374,676 70,711,375 69,920,343 69,170,308 68,691,759 68,547,626
40 72,923,797 75,060,147 76,865,835 77,568,398 78,566,453 79,311,885 80,082,621 73,411,371 72,849,906 71,665,061 71,318,529 70,698,319 70,306,675 70,168,524
41 62,139,748 64,712,748 65,532,787 65,890,626 66,512,689 66,430,631 67,029,855 73,147,695 72,602,565 71,681,923 71,271,172 70,741,320 70,453,928 70,443,127
42 61,518,278 63,119,965 63,331,920 63,642,209 64,136,809 63,861,430 63,990,245 72,618,045 71,781,987 71,440,631 71,063,281 70,644,161 70,394,990 70,299,681
43 58,893,899 59,747,917 60,630,537 60,111,792 60,897,906 60,413,416 60,685,337 72,647,660 71,716,108 71,179,077 70,986,376 70,431,462 70,058,904 70,263,439
44 57,229,696 57,312,370 57,433,177 58,104,220 57,890,592 58,313,878 58,439,482 72,211,146 71,314,701 70,977,086 70,897,382 70,417,594 70,322,615 70,408,343
45 55,873,454 56,139,949 56,811,592 56,589,596 57,622,149 57,870,333 58,004,104 72,853,238 71,729,416 71,312,109 71,062,683 70,958,396 70,941,043 70,812,855
46 54,966,654 55,910,428 56,508,715 56,557,283 57,408,451 57,383,704 58,025,074 73,234,042 72,148,832 71,787,141 71,388,367 71,441,543 70,955,811 71,090,486
47 55,258,100 55,540,073 56,121,577 56,868,270 57,182,726 57,490,540 58,014,824 71,452,519 70,861,810 70,783,165 70,262,176 70,511,868 70,420,548 70,296,965
48 53,806,444 54,635,210 54,818,474 55,121,630 55,692,510 56,391,570 56,482,717 65,034,377 65,452,587 65,749,667 66,046,086 66,391,820 66,416,952 66,424,818
Avg Continuation 64,389,138 65,969,877 67,517,741 68,202,161 69,326,240 69,882,011 70,425,070 92,459,856 90,638,792 89,160,614 88,002,472 86,765,537 86,074,632 85,813,109
Avg Sentence 56,495,689 57,853,725 59,113,028 59,813,184 60,786,735 61,262,262 61,708,935 73,709,645 73,294,599 72,989,502 72,697,798 72,401,674 72,193,298 72,158,273

Table 6: Bi-gram Statistics for half-memorized and quarter-memorized content.
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