
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 11279–11313
November 12-16, 2024 ©2024 Association for Computational Linguistics

CodeAgent: Autonomous Communicative Agents for Code Review
Xunzhu Tang1, Kisub Kim2, Yewei Song1, Cedric Lothritz3, Bei Li4, Saad Ezzini5,

Haoye Tian6,*, Jacques Klein1, and Tegawendé F. Bissyandé1

1University of Luxembourg
2Singapore Management University

3Luxembourg Institute of Science and Technology
4Northeastern University

5Lancaster University
6The University of Melbourne

Abstract

Code review, which aims at ensuring the over-
all quality and reliability of software, is a cor-
nerstone of software development. Unfortu-
nately, while crucial, Code review is a labor-
intensive process that the research community
is looking to automate. Existing automated
methods rely on single input-output generative
models and thus generally struggle to emulate
the collaborative nature of code review. This
work introduces CodeAgent, a novel multi-
agent Large Language Model (LLM) system
for code review automation. CodeAgent in-
corporates a supervisory agent, QA-Checker,
to ensure that all the agents’ contributions ad-
dress the initial review question. We evaluated
CodeAgent on critical code review tasks: (1)
detect inconsistencies between code changes
and commit messages, (2) identify vulnerabil-
ity introductions, (3) validate code style ad-
herence, and (4) suggest code revision. The
results demonstrate CodeAgent’s effective-
ness, contributing to a new state-of-the-art in
code review automation. Our data and code
are publicly available (https://github.
com/Daniel4SE/codeagent).

1 Introduction

Code review (Bacchelli and Bird, 2013; Bosu and
Carver, 2013; Davila and Nunes, 2021) imple-
ments a process wherein software maintainers ex-
amine and assess code contributions to ensure
quality and adherence to coding standards, and
identify potential bugs or improvements. In recent
literature, various approaches (Tufano et al., 2021,
2022) have been proposed to enhance the perfor-
mance of code review automation. Unfortunately,
major approaches in the field ignore a fundamen-
tal aspect: the code review process is inherently
interactive and collaborative (Bacchelli and Bird,
2013). Instead, they primarily focus on rewriting
and adapting the submitted code (Watson et al.,

*Corresponding author.

2022; Thongtanunam et al., 2022; Staron et al.,
2020). In this respect, an effective approach
should not only address how to review the sub-
mitted code for some specific needs (e.g., vulner-
ability detection (Chakraborty et al., 2021; Yang
et al., 2024a)). Still, other non-negligible aspects
of code review should also be considered, like de-
tecting issues in code formatting or inconsisten-
cies in code revision (Oliveira et al., 2023; Tian
et al., 2022; Panthaplackel et al., 2021). However,
processing multiple sub-tasks requires interactions
among employees in different roles in a real code
review scenario, which makes it challenging to de-
sign a model that performs code review automati-
cally.

Agent-based systems are an emerging paradigm
and a computational framework in which au-
tonomous entities (aka agents) interact with each
other (Li et al., 2023a; Qian et al., 2023; Hong
et al., 2023) to perform a task. Agent-based ap-
proaches have been proposed to address a spec-
trum of software engineering tasks (Qian et al.,
2023; Zhang et al., 2024; Tang et al., 2023; Tian
et al., 2023), moving beyond the conventional sin-
gle input-output paradigm due to their exceptional
ability to simulate and model complex interac-
tions and behaviors in dynamic environments (Xi
et al., 2023; Yang et al., 2024b; Wang et al., 2023).
Recently, multi-agent systems have leveraged the
strengths of diverse agents to simulate human-
like decision-making processes (Du et al., 2023;
Liang et al., 2023; Park et al., 2023), leading to
enhanced performance across various tasks (Chen
et al., 2023; Li et al., 2023b; Hong et al., 2023).
This paradigm is well-suited to the challenge of
code review, where multiple reviewers, each with
diverse skills and roles, collaborate to achieve a
comprehensive review of the code..

This paper. Drawing from the success of agent-
based collaboration, we propose a multi-agent-
based framework CodeAgent to simulate the

11279

https://github.com/Daniel4SE/codeagent
https://github.com/Daniel4SE/codeagent

dynamics of a collaborative team engaged in the
code review process, incorporating diverse roles
such as code change authors, reviewers, and deci-
sion makers. In particular, A key contribution of
CodeAgent is that we address the challenge of
prompt drifting (Zheng et al., 2024; Yang et al.,
2024c), a common issue in multi-agent systems
and Chain-of-Thought (CoT) reasoning. This is-
sue, characterized by conversations that stray from
the main topic, highlights the need for strategies
to maintain focus and coherence (Greyling, 2023;
Chae et al., 2023). This drift, often triggered by
the model-inspired tangents or the randomness of
Large Language Models (LLMs), necessitates the
integration of a supervisory agent. We employ an
agent named QA-Checker (for "Question-Answer
Checker") that monitors the conversation flow, en-
suring that questions and responses stay relevant
and aligned with the dialogue’s intended objec-
tive. Such an agent not only refines queries but
also realigns answers to match the original intent,
employing a systematic approach grounded in a
mathematical framework.

To evaluate the performance of CodeAgent,
we first assess its effectiveness for typical review
objectives such as detecting vulnerabilities 4.1 and
validating the consistency and alignment of the
code format 4.2. We then compare CodeAgent
with state-of-the-art generic and code-specific lan-
guage models like ChatGPT (OPENAI, 2022)
and CodeBERT (Feng et al., 2020). Finally,
we assess the performance of CodeAgent com-
pared to the state-of-the-art tools for code revi-
sion suggestions (Tufano et al., 2021; Thongta-
nunam et al., 2022; Tufano et al., 2022). Since
each of these related works presents a specific
dataset, we also employ them toward a fair com-
parison. Additionally, we also collect pull re-
quests from GitHub, featuring an extensive array
of commits, messages, and comments to evaluate
advanced capabilities.The experimental results re-
veal that CodeAgent significantly outperforms
the state-of-the-art, achieving a 41% increase in
hit rate for detecting vulnerabilities. CodeAgent
also excels in consistency checking and format
alignment, outperforming the target models. Fi-
nally, CodeAgent showcases its robustness for
code revision by presenting superior average edit
progress.

We summarize our contributions as follows:

• To the best of our knowledge, we are the first

to propose an autonomous agent-based sys-
tem for practical code review in the field of
software maintenance.

• We build a new dataset comprising 3 545
real-world code changes and commit mes-
sages. This dataset, which includes all rel-
evant files and details in a self-contained for-
mat, is valuable for evaluating advanced code
review tasks such as vulnerability detection,
code style detection, and code revision sug-
gestions.

• We demonstrate the effectiveness of the QA-
Checker. This agent monitors the conversa-
tion flow to ensure alignment with the orig-
inal intent, effectively addressing the com-
mon prompt drifting issues in multi-agent
systems.

Experimental evaluation highlights the perfor-
mance of CodeAgent: In vulnerability detec-
tion, CodeAgent outperforms GPT-4 and Code-
BERT by 3 to 7 percentage points in terms of
the number of vulnerabilities detected. For for-
mat alignment, CodeAgent outperforms ReAct
by approximately 14% in recall for inconsistency
detection. On the code revision task, CodeAgent
surpasses the state of the art in software engineer-
ing literature, achieving an average performance
improvement of about 30% in the Edit Progress
metric (Zhou et al., 2023).

2 CodeAgent

This section details the methodology behind our
CodeAgent framework. We discuss tasks and
definition in Sec 2.1, pipeline in Section 2.2, de-
fined role cards in Section 2.3, and the design of
the QA-Checker in Sec 2.4.

2.1 Tasks

We define CA, VA, FA, and CR in as following:
CA (Zhang et al., 2022): Consistency analysis be-
tween code change and commit message; the task
is to detect cases where the commit message ac-
curate describes (in natural language) the intent of
code changes (in programming language).
VA (Braz et al., 2022): Vulnerability analysis; the
task is to identify cases where the code change in-
troduces a vulnerability in the code.
FA (Han et al., 2020): Format consistency analysis
between commit and original files; the task is to

11280

Commit MessagePull Request

I prossess a piece of code that might contain some bugs. Could you assist in
inspecting it for any issues? If problems are found, I would appreciate the
provision of a corrected version. I am seeking an in-depth review of the
code, specially focusing on the following aspect:......

CodeAgent

Phases：
Basic Info Sync；
Document

N

Output

document Code modality Language

Role Definition:

##Conversations

Basic Info Sync Document

Your main responsibilities include being an
active decision-maker on code review.....

User CEO ReviewerCPO Coder

Team Roles

CTO

Check in loop

N N

##Files

N

Phases：
Basic Info Sync

N

Output

modality Language

Role Definition:

##Conversations
Basic Info Sync

You are CTO of CodeAgent, you are fimiliar to virous
programming languages and good at overarching....

Phases：
Code Review;
Code Alignment;
Document

N

Role Definition:

##Conversations

Document

Your main responsibilities include being an
active decision-maker on code review.....

N N

##Revised codes

Action Analysis
To address this potential bug, I recommend using the
"Objects.equals" method instead of directly calling "equals" on the
"expected" object. This will ensure a null-safe and consistent
comparison.

Code
Alignment

Code
Review

##Files
Code Log

Role Definition:

##Conversations

You are a Code reviewer at CodeAgent collaborating to
ensure software quality by assessing code for defects,
vulnerabilities, and consistency issues, fixing bugs, and
suggesting improvements...

Phases：
Code Review;
Code Alignment

N N

Code
Alignment

Code
Review

##Consistency Analysis
... I found that there is a lack of semantic consistency between
them. The commit message does not accurately reflect the
changes mad in the code. This inconsistency

##Security Analysis
... I did not find nay modifications in the code that could introduce
security vulnerabilities, attacks, or bugs....However, it is always
recommended to conduct a thorough security review of the entire
codebase to ensure

Format Analysis
The format of the code snippet does not align with the writing
style and format of the original file. Inconsistent formatting can
negatively impact the readability and maintainability of the
project. It is important to maintain a consistent coding....## Revision Suggestions

I recommend aligning the code snippet with the writing style. I suggest revising the code to fix the
potential risk

Phases：
Document

Role Definition:

##Conversations

You are a CPO woking in codeagent, you are responsible for
assisting CEO and coder to summary code review reports...

##Files

N

Document
N

document

code original file conversation

CEO CTO

Reviewer

Coder

CPO

Figure 1: A Schematic diagram of role data cards of simulated code review team and their conversations
within CodeAgent. We have six characters in CodeAgent across four phases, including “Basic Info Sync",
“Code Review", “Code Alignment", and “Document". Code review is a kind of collaboration work, where we
design conversations between every two roles for every step to complete the task.

validate that the code change formatting style is
not aligned with the target code.
CR (Zhou et al., 2023): Code revisions; this task
attempts to automatically suggest rewrites of the
code change to address any issue discovered.

2.2 Pipeline

We defined six characters and four phases for the
framework. The roles of the characters are il-
lustrated in Figure 1. Each phase contains mul-
tiple conversations, and each conversation hap-
pens between agents. The four phases consist
of 1) Basic Info Sync, containing the roles of
chief executive officer (CEO), chief technology
officer (CTO), and Coder to conduct modality and
language analysis; 2) Code Review, asking the
Coder and Reviewer for actual code review (i.e.,
target sub-tasks); 3) Code Alignment, supporting
the Coder and Reviewer to correct the commit

through code revision and suggestions to the au-
thor; and 4) Document, finalizing by synthesiz-
ing the opinions of the CEO, CPO (Chief Prod-
uct Officer), Coder, and Reviewer to provide the
final comments. In addition to six defined roles,
the proposed architecture of CodeAgent consists
of phase-level and conversation-level components.
The waterfall model breaks the code review pro-
cess at the phase level into four sequential phases.
At the conversation level, each phase is divided
into atomic conversations. These atomic conver-
sations involve task-oriented role-playing between
two agents, promoting collaborative communica-
tion. One agent works as an instructor and the
other as an assistant. Communication follows an
instruction-following style, where agents interact
to accomplish a specific subtask within each con-
versation, and each conversation is supervised by
QA-Checker. QA-Checker is used to align the

11281

Basic Info Sync Code Review Code Alignment Document

In
st

ru
ct

or
A

ss
is

to
r

Modality Language Code/Doc Code/Doc
Reviews

Commit MessagePull Request code original file looped conversations

N

Code/Doc
N N N N N N N

N

User CEO ReviewerCPO CoderCTO

Roles

Figure 2: CodeAgent’s pipeline/scenario of a full conversation during the code review process among different
roles. “Basic Info Sync” demonstrates the basic information confirmation by the CEO, CTO, and Coder; “Code
Review” shows the actual code review process; “Code Alignment” illustrates the potential code revision; and
“Document” represents the summarizing and writing conclusion for all the stakeholders. All the conversations
are being ensured by the Quality Assurance checker until they reach the maximum dialogue turns or meet all the
requirements.

consistency of questions and answers between the
instructor and the assistant in a conversation to
avoid digression. QA-Checker will be introduced
in Section 2.4.

Figure 2 shows an illustrative example of the
CodeAgent pipeline. CodeAgent receives the
request to do the code review with the submitted
commit, commit message, and original files. In
the first phase, CEO, CTO, and Coder will co-
operate to recognize the modality of input (e.g.,
document, code) and language (e.g., Python, Java
and Go). In the second phase, with the help of
Coder, Reviewer will write an analysis report on
consistency analysis, vulnerability analysis, for-
mat analysis and suggestions for code revision. In
the third phase, based on analysis reports, Coder
will align or revise the code if any incorrect snip-
pets are identified with assistance from Reviewer.
Coder cooperates with CPO and CEO to summa-
rize the document and codes about the whole code
review in the final phase.

2.3 Role Card Definition

As shown in Figure 1, we define six characters
in our simulation system (CodeAgent), includ-
ing User, CEO, CPO, CTO, Reviewer, Coder, and
they are defined for different specific tasks.

All tasks are processed by the collaborative
work of two agents in their multi-round conversa-
tions. For example, as a role Reviewer, her respon-
sibility is to do the code review for given codes
and files in three aspects (tasks CA, VA, and FA in

Sec 2.1) and provide a detailed description of ob-
servation. Reviewer’s code review activity is under
the assistance with Coder as shown in Figure 2.
Meanwhile, with the Reviewer’s assistance, Coder
can process the code revision as shown in the ‘Re-
vised codes’ part in the Coder card in Figure 1.
Apart from Reviewer, Coder also cooperates with
CTO and CEO in the simulated team.

Each role and conversation, input and output of
each conversation is designed in Figure 1. Further
information about role definition details is pro-
vided in our Appendix-Section C.1.

2.4 Self-Improving CoT with QA Checker

1

instructor

assistor

question (instruction)

answer

2 Nq0 a0

QA
checker

q1

CB(q0+ aai0)

a1

QA
checker

q2

CB(q1+ aai1)

... an

QA
checker

influence

shared
memory

 q

a

CB

aai

Combination
function

added adjusted
instruction

Figure 3: This diagram shows the architecture of our
designed Chain-of-Thought (CoT): Question-Answer
Checker (QA-Checker).

QA-Checker is an instruct-driven agent, de-
signed to fine-tune the question inside a conver-
sation to drive the generated answer related to

11282

the question. As shown in Figure 3, the initial
question (task instruction) is represented as q0,
and the first answer of the conversation between
Reviewer and Coder is represented as a0. If QA-
Checker identifies that a0 is inappropriate for q0,
it generates additional instructions attached to the
original question (task instruction) and combines
them to ask agents to further generate a different
answer. The combination in Figure 3 is defined
as q1 = CB(q0 + aai0), where aai0 is the addi-
tional instruction attached. The conversation be-
tween two agents is held until the generated an-
swer is judged as appropriate by QA-Checker or it
reaches the maximum number of dialogue turns.

Theoretical Analysis of QA-Checker in Di-
alogue Refinement The QA-Checker is an
instruction-driven agent, crucial in refining ques-
tions and answers within a conversation to ensure
relevance and precision. Its operation can be un-
derstood through the following lemma and proof
in Appendix A.

3 Experimental Setup

We evaluate the performance of CodeAgent
through various qualitative and quantitative exper-
iments across nine programming languages, us-
ing four distinct metrics. In this section, we will
discuss experimental settings, including datasets,
metrics, and baselines. For more information,
please see Appendix C.

3.1 Datasets

To conduct a fair and reliable comparison for the
code revision task, we employ the same datasets
(i.e., Trans-Reviewdata, AutoTransformdata, and
T5-Reviewdata) as the state-of-the-art study (Zhou
et al., 2023). Furthermore, we collect and curate
an additional dataset targeting the advanced tasks.
Table 1 shows our new dataset which includes over
3,545 commits and 2,933 pull requests from more
than 180 projects, spanning nine programming
languages: Python, Java, Go, C++, JavaScript, C,
C#, PHP, and Ruby. It focuses on consistency and
format detection, featuring both positive and nega-
tive samples segmented by the merged and closed
status of pull requests across various languages.
The detailed information about the dataset can be
seen in Appendix-Section F.

Table 1: Comparison of Positive and Negative Samples
in CA and FA (CA and FA are defined in Section 2.1).

Samples CA FA
Merged Closed Merged Closed

Positive (consistency) 2,089 820 2,238 861
Negative (inconsistency) 501 135 352 94

3.2 Metrics
• F1-Score and Recall. We utilized the F1-

Score and recall to evaluate our method’s
effectiveness on tasks CA and FA. The F1-
Score, a balance between precision and re-
call, is crucial for distinguishing between
false positives and negatives. Recall mea-
sures the proportion of actual positives
correctly identified (Hossin and Sulaiman,
2015).

• Edit Progress (EP). EP evaluates the im-
provement in code transitioning from erro-
neous to correct by measuring the reduction
in edit distance between the original code
and the prediction on task CR. A higher EP
indicates better efficiency in code genera-
tion (Dibia et al., 2022; Elgohary et al., 2021;
Zhou et al., 2023).

• Hit Rate (Rate) We also use hit rate to eval-
uate the rate of confirmed vulnerability is-
sues out of the found issues by approaches
on task VA.

3.3 State-of-the-Art Tools and Models
Our study evaluates various tools and models for
code revision and modeling. Trans-Review (Tu-
fano et al., 2021) employs src2abs for code ab-
straction, effectively reducing vocabulary size.
AutoTransform (Thongtanunam et al., 2022)
uses Byte-Pair Encoding for efficient vocabulary
management in pre-review code revision. T5-
Review (Tufano et al., 2022) leverages the T5 ar-
chitecture, emphasizing improvement in code re-
view through pre-training on code and text data.
In handling both natural and programming lan-
guages, CodeBERT (Feng et al., 2020) adopts a
bimodal approach, while GraphCodeBERT (Guo
et al., 2021) incorporates code structure into its
modeling. CodeT5 (Wang et al., 2021), based
on the T5 framework, is optimized for identi-
fier type awareness, aiding in generation-based

11283

Table 2: The number of vulnerabilities found by CodeAgent and other approaches. As described in Appendix-
Section F, we have 3,545 items to evaluate. Ratecr represents the confirmed number divided by the number of
findings while Rateca is the confirmed number divided by the total evaluated number. CodeAgent w/o indicates
the version without QA-Checker.

CodeBERT GPT-3.5 GPT-4.0 COT ReAct CodeAgent CodeAgent w/o

Find 1,063 864 671 752 693 483 564
Confirm 212 317 345 371 359 449 413
Ratecr 19.94% 36.69% 51.42% 49.34% 51.80% 92.96% 73.23%
Rateca 5.98% 8.94% 9.73% 10.46% 10.13% 12.67% 11.65%

The values in gray (nn.nn) denote the greatest values for the confirmed number of vulnerabilities and the
rates.

tasks. Additionally, we compare these tools with
GPT (OPENAI, 2022) by OpenAI, notable for
its human-like text generation capabilities in nat-
ural language processing. Finally, we involve
COT (Wei et al., 2022) and ReAct (Yao et al.,
2022), of which COT is a method where lan-
guage models are guided to solve complex prob-
lems by generating and following a series of in-
termediate reasoning steps and ReAct synergis-
tically enhances language models by interleav-
ing reasoning and action generation, improving
task performance and interpretability across var-
ious decision-making and language tasks.

4 Experimental Result Analysis

This section discusses the performance of
CodeAgent in the four tasks considered for our
experiments. In Appendix Section E, we provide
further analyses: we discuss the difference in
the execution time of CodeAgent in different
languages and perform a capability analysis
between CodeAgent and recent approaches.

4.1 Vulnerability Analysis
Compared to CA and FA, VA is a more complex
code review subtask, covering more than 25 differ-
ent aspects (please see the Appendix-Section G),
including buffer overflows, sensitive data expo-
sure, configuration errors, data leakage, etc. Vul-
nerability analysis being a costly, time-consuming,
resource-intensive and sensitive activity, only a
low proportion of commits are labeled. We there-
fore propose a proactive method for data annotion:
we execute CodeAgent on the 3,545 samples
(covering nine languages) and manual verify the
identified cases to build a ground truth. Then, we
applied CodeBERT (Feng et al., 2020) and GPT
on the dataset with the task of vulnerability binary
prediction.

Comparison As shown in Table 2,
CodeAgent successfully identified 483 potential
vulnerabilities within a data set of 3,545 samples,
with an impressive 449 of these finally confirmed
as high-risk vulnerabilities1. CodeBERT, a key
pre-trained model for code-related tasks, with its
parameters frozen for this experiment, initially
identified 1,063 items as vulnerable, yet only 212
passed the stringent verification criteria. Similar
trends were observed with GPT-3.5 and GPT-4.0,
which confirmed 317 and 345 vulnerabilities out
of 864 and 671 identified items, respectively.
These outcomes are further quantified by the con-
firmation rates (Ratecr) of 19.94% for CodeBERT,
36.69% for GPT-3.5, and 51.42% for GPT-4.0,
while CodeAgent demonstrated a remarkable
Ratecr of 92.96%. Additionally, the analysis of
confirmed vulnerabilities against all analyzed
items (Rateca) yielded 5.98%, 8.94%, 9.73%, and
12.67% for CodeBERT, GPT-3.5, GPT-4.0, and
CodeAgent, respectively. Evidently, Table 2 not
only highlights CodeAgent’s high precision in
identifying vulnerable commits but also reveals
the progressive improvement from GPT-3.5 to
GPT-4.0, likely due to the latter’s capacity to
handle longer input sequences, with token limits
of 4,096 and 32,768, respectively. The integra-
tion of sophisticated algorithms like CoT and
QA-Checker in CodeAgent has significantly en-
hanced its capabilities in vulnerability detection,
surpassing the individual input-output efficiencies
of GPT and CodeBERT. Appendix-Sections D
and M highlight further details regarding the
importance of the QA-checker. Moreover, more
experimental results in 9 languages are accessible

1The verification process involved a rigorous manual ex-
amination, extending beyond 120 working hours. Each sam-
ple being validated by at least 2 people: a researcher and an
engineer

11284

in Appendix-Section J.
In addition, the analysis of vulnerabilities iden-

tified by various models reveals interesting over-
laps among the models. CodeBERT confirmed
212 vulnerabilities, whereas GPT-3.5, GPT-4.0,
and CodeAgent confirmed 317, 345, and 449
vulnerabilities, respectively. Notably, the inter-
section of vulnerabilities confirmed by CodeBERT
and GPT-3.5 is 169, indicating a substantial over-
lap in their findings. Similarly, the intersec-
tion between CodeBERT and GPT-4.0 is 170,
while a larger overlap of 212 vulnerabilities is ob-
served between GPT-3.5 and GPT-4.0. The com-
bined intersection among CodeBERT, GPT-3.5,
and GPT-4.0 is 137, underscoring the commonali-
ties in vulnerabilities detected across these mod-
els. Further, the intersections of vulnerabilities
confirmed by CodeBERT, GPT-3.5, and GPT-4.0
with CodeAgent are 212, 317, and 334, respec-
tively, highlighting the comprehensive coverage
and detection capabilities of CodeAgent.

10
73

89

32

33

75

137

CodeBERT

ChatGPT3.5

ChatGPT4.0

CodeAgent

11

Figure 4: Overlap of vulnerability detection by Code-
BERT, GPT-3.5, GPT-4.0, and CodeAgent.

Ablation Study. As shown in Table 2, we con-
ducted an ablation study to evaluate the effective-
ness of the QA-Checker in CodeAgent. Specif-
ically, we created a version of our tool without
the QA-Checker, referred to as CodeAgent w/o.
We then compared this version to the full version
of CodeAgent that includes the QA-Checker.
The results demonstrate that CodeAgent w/o is
substantially less effective in identifying vulner-
able issues, yielding lower hit rates (Ratecr and
Rateca). This reduction in performance highlights
the critical role of the QA-Checker in enhancing
CodeAgent’s overall effectiveness. More de-
tailed information about the ablation study can be
found in Appendix-Section M.

4.2 Consistency and Format Detection
In this section, we will discuss the performance
of CodeAgent and baselines on metrics like the

F1-Score and recall score of task CA and FA. For
CA and FA, the dataset we have is shown in Ta-
ble 1 and more detailed data information is shown
in Figure 7 in Appendix.

Code Change and Commit Message Consis-
tency Detection. As illustrated in Table 3, we
assess the efficacy of CodeAgent in detecting
the consistency between code changes and commit
messages, contrasting its performance with other
prevalent methods like CodeBERT, GPT-3.5, and
GPT-4.0. This evaluation specifically focuses on
merged and closed commits in nine languages. In
particular, CodeAgent exhibits remarkable per-
formance, outperforming other methods in both
merged and closed scenarios. In terms of Re-
call, CodeAgent achieved an impressive 90.11%
for merged commits and 87.15% for closed ones,
marking a considerable average improvement of
5.62% over the other models. Similarly, the
F1-Score of CodeAgent stands at 93.89% for
merged and 92.40% for closed commits, surpass-
ing its counterparts with an average improvement
of 3.79%. More comparable details in different
languages are shown in Appendix-Section. K.

Table 3: Comparison of CodeAgent with other meth-
ods on merged and closed commits across 9 languages
on CA task. ‘Imp’ represents the improvement.

Merged CodeBERT GPT-3.5 GPT-4.0 COT ReAct CodeAgent Imp (pp)

Recall 63.64 80.08 84.27 80.73 82.04 90.11 5.84
F1 75.00 87.20 90.12 87.62 88.93 93.89 3.77

Closed CodeBERT GPT-3.5 GPT-4.0 COT ReAct CodeAgent Imp (pp)

Recall 64.80 79.05 81.75 81.77 83.42 87.15 5.21
F1 77.20 87.35 89.61 89.30 89.81 92.40 3.35

Average CodeBERT GPT-3.5 GPT-4.0 COT ReAct CodeAgent Imp (pp)

Recall 64.22 79.57 83.01 81.25 82.73 88.63 5.62
F1 76.01 87.28 89.61 88.46 89.37 93.16 3.79

Format Consistency Detection. In our detailed
evaluation of format consistency between commits
and original files, CodeAgent’s performance
was benchmarked against established models like
CodeBERT and GPT variants across nine different
languages. This comparative analysis, presented
in Table 4, was centered around pivotal met-
rics such as Recall and F1-Score. CodeAgent
demonstrated a significant edge over the state-of-
the-art, particularly in the merged category, with
an impressive Recall of 89.34% and an F1-Score
of 94.01%. These figures represent an average im-
provement of 10.81% in Recall and 6.94% in F1-
Score over other models. In the closed category,
CodeAgent continued to outperform, achieving

11285

a Recall of 89.57% and an F1-Score of 94.13%,
surpassing its counterparts with an improvement
of 15.56% in Recall and 9.94% in F1-Score.
The overall average performance of CodeAgent
further accentuates its superiority, with a Recall
of 89.46% and an F1-Score of 94.07%, mark-
ing an average improvement of 13.39% in Re-
call and 10.45% in F1-Score. These results un-
derscore CodeAgent’s exceptional capability in
accurately detecting format consistency between
commits and their original files.

Table 4: Comparison of CodeAgent with other meth-
ods on merged and closed commits across the 9 lan-
guages on FA task. ‘Imp’ represents the improvement.

Merged CodeBERT GPT-3.5 GPT-4.0 COT ReAct CodeAgent Imp (pp)

Recall 60.59 60.72 78.53 70.39 71.21 89.34 10.81
F1 74.14 74.88 87.07 80.69 82.18 94.01 6.94

Closed CodeBERT GPT-3.5 GPT-4.0 COT ReAct CodeAgent Imp (pp)

Recall 69.95 73.61 68.46 73.39 74.01 89.57 15.56
F1 80.49 84.19 80.16 83.65 83.90 94.13 9.94

Average CodeBERT GPT-3.5 GPT-4.0 COT ReAct CodeAgent Imp (pp)

Recall 65.27 67.17 73.50 71.89 72.61 89.46 15.96
F1 77.32 79.54 83.62 82.17 83.04 94.07 10.45

4.3 Code Revision

We evaluate the effectiveness of CodeAgent in
revision suggestion (i.e., bug fixing) based on
Edit Progress (EP) metric. We consider Trans-
Review, AutoTransform, T5-Review, CodeBERT,
GraphCodeBERT, CodeT5 as comparable state
of the art. As detailed in Table 5, these ap-
proaches exhibit a varied performance across dif-
ferent datasets. In particular, CodeAgent shows
remarkable performance in the T5-Review dataset,
achieving the highest EP of 37.6%. This is a sig-
nificant improvement over other methods, which
underlines the effectiveness of CodeAgent in
handling complex code revision tasks. Further-
more, with an average EP of 31.6%, CodeAgent
consistently outperforms its counterparts, posi-
tioning itself as a leading solution in automated
code revision. Its ability to excel in the T5-
Review, a challenging benchmark data, indicates a
strong capability to address complex bugs. In ad-
dition, its overall average performance surpasses
other state-of-the-art models, highlighting its ro-
bustness and reliability.

5 Related Work

Automating Code Review Activities. Our work
contributes to automating code review activities,
focusing on detecting source code vulnerabilities

Table 5: Experimental Results for the Code Revi-
sion (CR task) of CodeAgent and the state-of-the-art
works. Bold indicates the best performers.

Approach Trans-Reviewdata AutoTransformdata T5-Reviewdata Average

EP EP EP EP

Trans-Review -1.1% -16.6% -151.2% -56.3%
AutoTransform 49.7% 29.9% 9.7% 29.8%
T5-Review -14.9% -71.5% 13.8% -24.2%
CodeBERT 49.8% -75.3% 22.3% -1.1%
GraphCodeBERT 50.6% -80.9% 22.6% -2.6%
CodeT5 41.8% -67.8% 25.6% -0.1%
CodeAgent 42.7% 14.4% 37.6% 31.6%

and maintaining code consistency. Related stud-
ies include Hellendoorn et al. (Hellendoorn et al.,
2021), who addressed code change anticipation,
and Siow et al. (Siow et al., 2020), who intro-
duced CORE for code modification semantics.
Hong et al. (Hong et al., 2022) proposed COM-
MENTFINDER for comment suggestions, while
Tufano et al. (Tufano et al., 2021) and Li et al. (Li
et al., 2022) developed tools for code review au-
tomation using models like T5CR and CodeRe-
viewer, respectively. Recently, Lu et al. (Lu
et al., 2023) incorporated large language models
for code review, enhancing fine-tuning techniques.
Collaborative AI. Collaborative AI, involving
AI systems working towards shared goals, has
seen advancements in multi-agent LLMs (Talebi-
rad and Nadiri, 2023; Qian et al., 2023), focusing
on collective thinking, conversation dataset cura-
tion (Wei et al., 2023; Li et al., 2023a), and so-
ciological phenomenon exploration (Park et al.,
2023). Research by Akata et al. (Akata et al.,
2023) and Cai et al. (Cai et al., 2023) further ex-
plores LLM cooperation and efficiency. However,
there remains a gap in integrating these advance-
ments with structured software engineering prac-
tices (Li et al., 2023a; Qian et al., 2023), a chal-
lenge our approach addresses by incorporating ad-
vanced human processes in multi-agent systems.
For a complete overview of related work, please
refer to our Appendix-Section B.

6 Conclusion

In this paper, we introduced CodeAgent, a novel
multi-agent framework that automates code re-
views. CodeAgent leverages its novel QA-
Checker system to maintain focus on the re-
view’s objectives and ensure alignment. Our ex-
periments demonstrate CodeAgent’s effective-
ness in detecting vulnerabilities, enforcing code-
message consistency, and promoting uniform code
style. Furthermore, CodeAgent outperforms ex-

11286

isting state-of-the-art solutions in code revision
suggestions. By incorporating human-like con-
versational elements and considering the specific
characteristics of code review, CodeAgent sig-
nificantly improves both efficiency and accuracy.
We believe this work opens exciting new avenues
for research and collaboration practices in soft-
ware development.

7 Acknowledgments

This work is supported by the NATURAL project,
which has received funding from the European Re-
search Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme
(grant No. 949014). The author Cedric Lothritz is
supported by the Luxembourg National Research
Fund (FNR) PEARL program, grant agreement
16544475.

Limitations

Firstly, the generalizability of the system across
different software development environments or
industries may require further validation and test-
ing. While the system has shown promising results
in the provided datasets, its applicability to other
contexts remains uncertain without additional em-
pirical evidence. This limitation suggests that the
findings may not be fully transferable to all set-
tings within the software development domain.
Secondly, the baseline test used in the study might
be insufficient. The current testing approach may
not fully capture the system’s performance, par-
ticularly in edge cases or more complex scenar-
ios. This could result in an overestimation of the
system’s capabilities and an underestimation of its
limitations. Further, more comprehensive testing
is needed to establish a more robust baseline and
to ensure that the system performs reliably across
a wider range of conditions.

Ethics Statements

This study was conducted in compliance with eth-
ical guidelines and standards for research. The
research did not involve human participants, and
therefore, did not require informed consent or eth-
ical review from an institutional review board. All
data used in this study were publicly available, and
no personal or sensitive information was accessed
or processed. The development and evaluation of
the CodeAgent system were performed with a

focus on transparency, reproducibility, and the po-
tential positive impact on the software develop-
ment community.

References

Elif Akata, Lion Schulz, Julian Coda-Forno,
Seong Joon Oh, Matthias Bethge, and Eric
Schulz. 2023. Playing repeated games with large
language models. arXiv preprint.

Alberto Bacchelli and Christian Bird. 2013. Expec-
tations, outcomes, and challenges of modern code
review. In 2013 35th International Conference
on Software Engineering (ICSE), pages 712–721.
IEEE.

Amiangshu Bosu and Jeffrey C Carver. 2013. Impact
of peer code review on peer impression formation:
A survey. In 2013 ACM/IEEE International Sympo-
sium on Empirical Software Engineering and Mea-
surement, pages 133–142. IEEE.

Larissa Braz, Christian Aeberhard, Gül Çalikli, and Al-
berto Bacchelli. 2022. Less is more: supporting de-
velopers in vulnerability detection during code re-
view. In Proceedings of the 44th International Con-
ference on Software Engineering, pages 1317–1329.

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen,
and Denny Zhou. 2023. Large language models as
tool makers. arXiv preprint.

Hyungjoo Chae, Yongho Song, Kai Tzu-iunn Ong,
Taeyoon Kwon, Minjin Kim, Youngjae Yu,
Dongha Lee, Dongyeop Kang, and Jinyoung Yeo.
2023. Dialogue chain-of-thought distillation for
commonsense-aware conversational agents. arXiv
preprint arXiv:2310.09343.

Saikat Chakraborty, Rahul Krishna, Yangruibo Ding,
and Baishakhi Ray. 2021. Deep learning based vul-
nerability detection: Are we there yet? IEEE Trans-
actions on Software Engineering, 48(9):3280–3296.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang,
Chenfei Yuan, Chen Qian, Chi-Min Chan, Yujia Qin,
Yaxi Lu, Ruobing Xie, et al. 2023. Agentverse:
Facilitating multi-agent collaboration and explor-
ing emergent behaviors in agents. arXiv preprint
arXiv:2308.10848.

Nicole Davila and Ingrid Nunes. 2021. A systematic
literature review and taxonomy of modern code re-
view. Journal of Systems and Software, 177:110951.

Victor Dibia, Adam Fourney, Gagan Bansal, Forough
Poursabzi-Sangdeh, Han Liu, and Saleema Amer-
shi. 2022. Aligning offline metrics and human
judgments of value of ai-pair programmers. arXiv
preprint arXiv:2210.16494.

11287

Yilun Du, Shuang Li, Antonio Torralba, Joshua B
Tenenbaum, and Igor Mordatch. 2023. Improv-
ing factuality and reasoning in language mod-
els through multiagent debate. arXiv preprint
arXiv:2305.14325.

Ahmed Elgohary, Christopher Meek, Matthew
Richardson, Adam Fourney, Gonzalo Ramos,
and Ahmed Hassan Awadallah. 2021. NL-EDIT:
Correcting semantic parse errors through natural
language interaction. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 5599–5610, Online.
Association for Computational Linguistics.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
bert: A pre-trained model for programming and nat-
ural languages. In Findings of the Association for
Computational Linguistics: EMNLP 2020, Online
Event, 16-20 November 2020, volume EMNLP 2020
of Findings of ACL, pages 1536–1547. Association
for Computational Linguistics.

Cobus Greyling. 2023. Prompt drift and chaining.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng,
Duyu Tang, Shujie Liu, Long Zhou, Nan Duan,
Alexey Svyatkovskiy, Shengyu Fu, Michele Tu-
fano, Shao Kun Deng, Colin B. Clement, Dawn
Drain, Neel Sundaresan, Jian Yin, Daxin Jiang, and
Ming Zhou. 2021. Graphcodebert: Pre-training
code representations with data flow. In 9th Inter-
national Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net.

DongGyun Han, Chaiyong Ragkhitwetsagul, Jens
Krinke, Matheus Paixao, and Giovanni Rosa. 2020.
Does code review really remove coding convention
violations? In 2020 IEEE 20th International Work-
ing Conference on Source Code Analysis and Ma-
nipulation (SCAM), pages 43–53. IEEE.

Vincent J Hellendoorn, Jason Tsay, Manisha Mukher-
jee, and Martin Hirzel. 2021. Towards automating
code review at scale. In Proceedings of the 29th
ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Founda-
tions of Software Engineering, pages 1479–1482.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng
Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou,
et al. 2023. Metagpt: Meta programming for
multi-agent collaborative framework. arXiv preprint
arXiv:2308.00352.

Yang Hong, Chakkrit Tantithamthavorn, Patanamon
Thongtanunam, and Aldeida Aleti. 2022. Com-
mentfinder: a simpler, faster, more accurate code re-
view comments recommendation. In Proceedings of
the 30th ACM Joint European Software Engineering

Conference and Symposium on the Foundations of
Software Engineering, pages 507–519.

Mohammad Hossin and Md Nasir Sulaiman. 2015. A
review on evaluation metrics for data classification
evaluations. International journal of data mining &
knowledge management process, 5(2):1.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani
Itani, Dmitrii Khizbullin, and Bernard Ghanem.
2023a. Camel: Communicative agents for" mind"
exploration of large scale language model society.
arXiv preprint arXiv:2303.17760.

Yuan Li, Yixuan Zhang, and Lichao Sun. 2023b.
Metaagents: Simulating interactions of human be-
haviors for llm-based task-oriented coordination via
collaborative generative agents. arXiv preprint
arXiv:2310.06500.

Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh
Jannu, Grant Jenks, Deep Majumder, Jared Green,
Alexey Svyatkovskiy, Shengyu Fu, et al. 2022.
Codereviewer: Pre-training for automating code re-
view activities. arXiv e-prints, pages arXiv–2203.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang,
Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng Tu,
and Shuming Shi. 2023. Encouraging divergent
thinking in large language models through multi-
agent debate. arXiv preprint arXiv:2305.19118.

Junyi Lu, Lei Yu, Xiaojia Li, Li Yang, and Chun Zuo.
2023. Llama-reviewer: Advancing code review
automation with large language models through
parameter-efficient fine-tuning. In 2023 IEEE 34th
International Symposium on Software Reliability
Engineering (ISSRE), pages 647–658. IEEE.

Delano Oliveira, Reydne Santos, Fernanda Madeiral,
Hidehiko Masuhara, and Fernando Castor. 2023. A
systematic literature review on the impact of format-
ting elements on code legibility. Journal of Systems
and Software, 203:111728.

OPENAI. 2022. Chatgpt.

Sheena Panthaplackel, Junyi Jessy Li, Milos Glig-
oric, and Raymond J Mooney. 2021. Deep just-
in-time inconsistency detection between comments
and source code. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pages
427–435.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai,
Meredith Ringel Morris, Percy Liang, and Michael S
Bernstein. 2023. Generative agents: Interactive sim-
ulacra of human behavior. In Proceedings of the
36th Annual ACM Symposium on User Interface
Software and Technology, pages 1–22.

Chen Qian, Xin Cong, Cheng Yang, Weize Chen,
Yusheng Su, Juyuan Xu, Zhiyuan Liu, and Maosong
Sun. 2023. Communicative agents for software de-
velopment. arXiv preprint arXiv:2307.07924.

11288

https://doi.org/10.18653/v1/2021.naacl-main.444
https://doi.org/10.18653/v1/2021.naacl-main.444
https://doi.org/10.18653/v1/2021.naacl-main.444
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://blog.humanfirst.ai/prompt-drift/
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
https://chat.openai.com/

Jing Kai Siow, Cuiyun Gao, Lingling Fan, Sen Chen,
and Yang Liu. 2020. Core: Automating review
recommendation for code changes. In 2020 IEEE
27th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 284–
295. IEEE.

Miroslaw Staron, Mirosław Ochodek, Wilhelm Med-
ing, and Ola Söder. 2020. Using machine learning
to identify code fragments for manual review. In
2020 46th Euromicro Conference on Software Engi-
neering and Advanced Applications (SEAA), pages
513–516. IEEE.

Yashar Talebirad and Amirhossein Nadiri. 2023.
Multi-agent collaboration: Harnessing the power of
intelligent llm agents.

Xunzhu Tang, Zhenghan Chen, Kisub Kim, Haoye
Tian, Saad Ezzini, and Jacques Klein. 2023.
Just-in-time security patch detection–llm at the
rescue for data augmentation. arXiv preprint
arXiv:2312.01241.

Patanamon Thongtanunam, Chanathip Pornprasit, and
Chakkrit Tantithamthavorn. 2022. Autotransform:
Automated code transformation to support modern
code review process. In Proceedings of the 44th
international conference on software engineering,
pages 237–248.

Haoye Tian, Weiqi Lu, Tsz On Li, Xunzhu Tang,
Shing-Chi Cheung, Jacques Klein, and Tegawendé F
Bissyandé. 2023. Is chatgpt the ultimate program-
ming assistant–how far is it? arXiv preprint
arXiv:2304.11938.

Haoye Tian, Xunzhu Tang, Andrew Habib, Shang-
wen Wang, Kui Liu, Xin Xia, Jacques Klein, and
Tegawendé F Bissyandé. 2022. Is this change the
answer to that problem? correlating descriptions of
bug and code changes for evaluating patch correct-
ness. arXiv preprint arXiv:2208.04125.

Rosalia Tufano, Simone Masiero, Antonio Mas-
tropaolo, Luca Pascarella, Denys Poshyvanyk, and
Gabriele Bavota. 2022. Using pre-trained models to
boost code review automation. In Proceedings of
the 44th International Conference on Software En-
gineering, pages 2291–2302.

Rosalia Tufano, Luca Pascarella, Michele Tufano,
Denys Poshyvanyk, and Gabriele Bavota. 2021. To-
wards automating code review activities. In 2021
IEEE/ACM 43rd International Conference on Soft-
ware Engineering (ICSE), pages 163–174. IEEE.

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven
C. H. Hoi. 2021. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code under-
standing and generation. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2021, Virtual Event /
Punta Cana, Dominican Republic, 7-11 November,
2021, pages 8696–8708. Association for Computa-
tional Linguistics.

Zhenhailong Wang, Shaoguang Mao, Wenshan Wu,
Tao Ge, Furu Wei, and Heng Ji. 2023. Unleash-
ing cognitive synergy in large language models:
A task-solving agent through multi-persona self-
collaboration. arXiv preprint arXiv:2307.05300.

Cody Watson, Nathan Cooper, David Nader Palacio,
Kevin Moran, and Denys Poshyvanyk. 2022. A sys-
tematic literature review on the use of deep learn-
ing in software engineering research. ACM Trans-
actions on Software Engineering and Methodology
(TOSEM), 31(2):1–58.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits
reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–
24837.

Jimmy Wei, Kurt Shuster, Arthur Szlam, Jason Weston,
Jack Urbanek, and Mojtaba Komeili. 2023. Multi-
party chat: Conversational agents in group settings
with humans and models. arXiv preprint.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen
Ding, Boyang Hong, Ming Zhang, Junzhe Wang,
Senjie Jin, Enyu Zhou, et al. 2023. The rise and
potential of large language model based agents: A
survey. arXiv preprint arXiv:2309.07864.

Aidan ZH Yang, Haoye Tian, He Ye, Ruben Mar-
tins, and Claire Le Goues. 2024a. Security vulnera-
bility detection with multitask self-instructed fine-
tuning of large language models. arXiv preprint
arXiv:2406.05892.

Boyang Yang, Haoye Tian, Weiguo Pian, Haoran Yu,
Haitao Wang, Jacques Klein, Tegawendé F Bis-
syandé, and Shunfu Jin. 2024b. Cref: an llm-
based conversational software repair framework for
programming tutors. In Proceedings of the 33rd
ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis, pages 882–894.

Xiaoyu Yang, Jie Lu, and En Yu. 2024c. Adapt-
ing multi-modal large language model to concept
drift in the long-tailed open world. arXiv preprint
arXiv:2405.13459.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. arXiv preprint.

Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong
Zhou, Yilun Du, Joshua B Tenenbaum, Tianmin
Shu, and Chuang Gan. 2023. Building coopera-
tive embodied agents modularly with large language
models. arXiv preprint.

Mengxi Zhang, Huaxiao Liu, Chunyang Chen, Yuzhou
Liu, and Shuotong Bai. 2022. Consistent or not?
an investigation of using pull request template in
github. Information and Software Technology,
144:106797.

11289

https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Ab-
hik Roychoudhury. 2024. Autocoderover: Au-
tonomous program improvement. arXiv preprint
arXiv:2404.05427.

Jonathan Zheng, Alan Ritter, and Wei Xu. 2024.
Neo-bench: Evaluating robustness of large lan-
guage models with neologisms. arXiv preprint
arXiv:2402.12261.

Xin Zhou, Kisub Kim, Bowen Xu, DongGyun Han,
Junda He, and David Lo. 2023. Generation-based
code review automation: How far are we? arXiv
preprint arXiv:2303.07221.

11290

Contents (Appendix)

A Details of QA-Checker Algorithm 13

B Complete Related Work 15

C Experimental Details 15
C.1 Role Definition 15
C.2 Execute Time Across Languages . 16

D Comparative Analysis of QA-Checker
AI System and Recursive Self-
Improvement Systems 17
D.1 Comparison Table 17
D.2 Differences and Implications . . . 17
D.3 Importance of QA-Checker in

Role Conversations 17
D.4 Conclusion 17

E Capabilities Analysis between
CodeAgent and Other Methods 17

F Dataset 17

G Key Factors Leading to Vulnerabilities 19

H Data Leakage Statement 19

I Algorithmic Description of CodeAgent
Pipeline with QA-Checker 19

J Detailed Performance of CodeAgent in
Various Languages on VA task 21

K More detailed experimental results on
CA and FA tasks 21

L Case Study 21
L.1 Performance on 9 languages . . . 21
L.2 Difference of CodeAgent-3.5

and CodeAgent-4.0 21

M Ablation study 21

N Cost statement 24

O Tool 35

A Details of QA-Checker Algorithm

Lemma A.1. Let Q(Qi, Ai) denote the quality
assessment function of the QA-Checker for the
question-answer pair (Qi, Ai) in a conversation
at the i-th iteration. Assume Q is twice differ-
entiable and its Hessian matrix H(Q) is positive
definite. If the QA-Checker modifies the question
Qi to Qi+1 by attaching an additional instruc-
tion aaii, and this leads to a refined answer Ai+1,
then the sequence {(Qi, Ai)} converges to an opti-
mal question-answer pair (Q∗, A∗), under specific
regularity conditions.

Proof. The QA-Checker refines the question and
answers using the rule:

Qi+1 = Qi + aaii,

Ai+1 = Ai − αH(Q(Qi, Ai))
−1∇Q(Qi, Ai),

where α is the learning rate. To analyze con-
vergence, we consider the Taylor expansion of Q
around (Qi, Ai):
Q(Qi+1, Ai+1) ≈ Q(Qi, Ai) +∇Q(Qi, Ai)

· (Qi+1 −Qi, Ai+1 −Ai)

+
1

2
(Qi+1 −Qi, Ai+1 −Ai)

T

H(Q(Qi, Ai))(Qi+1 −Qi, Ai+1 −Ai).

Substituting the update rule and rearranging, we
get:

Q(Qi+1, Ai+1) ≈ Q(Qi, Ai)

− α∇Q(Qi, Ai)
TH(Q(Qi, Ai))

−1

∇Q(Qi, Ai)

+
α2

2
∇Q(Qi, Ai)

TH(Q(Qi, Ai))
−1

∇Q(Qi, Ai).

For sufficiently small α, this model suggests an
increase in Q, implying convergence to an optimal
question-answer pair (Q∗, A∗) as i → ∞. The
convergence relies on the positive definiteness of
H(Q) and the appropriate choice of α, ensuring
each iteration moves towards an improved quality
of the question-answer pair.

In practical terms, this lemma and its proof un-
derpin the QA-Checker’s ability to refine answers
iteratively. The QA-Checker assesses the qual-
ity of each answer concerning the posed question,
employing advanced optimization techniques that
are modeled by the modified Newton-Raphson
method to enhance answer quality. This frame-
work ensures that, with each iteration, the system
moves closer to the optimal answer, leveraging
both first and second-order derivatives for efficient
and effective learning.

11291

Further Discussion The QA-Checker computes
Q(Qi, Ai) at each iteration i and compares it to a
predefined quality threshold τ . If Q(Qi, Ai) <
τ , the QA-Checker generates an additional in-
struction aaii to refine the question to Qi+1 =
Qi+aaii, prompting the agents to generate an im-
proved answer Ai+1.

First, we assume that the quality assessment
function Q(Qi, Ai) is twice differentiable with re-
spect to the question Qi. This assumption is rea-
sonable given the smooth nature of the component
functions (relevance, specificity, and coherence)
and the use of continuous word embeddings. Next,
we apply the second-order Taylor approximation
to Q(Qi+1, Ai+1) around the point (Qi, Ai):

Q(Qi+1, Ai+1) ≈ Q(Qi, Ai) +∇Q(Qi, Ai)
T∆Qi

+
1

2
∆QT

i H(Q(Qi, Ai))∆Qi +R2(∆Qi)

where ∆Qi = Qi+1 − Qi, H(Q(Qi, Ai)) is
the Hessian matrix of Q evaluated at (Qi, Ai), and
R2(∆Qi) is the remainder term.

Assuming that the remainder term R2(∆Qi)
is negligible and that the Hessian matrix is posi-
tive definite, we can approximate the optimal step
∆Q∗

i as:

∆Q∗
i ≈ −H(Q(Qi, Ai))

−1∇Q(Qi, Ai).

Substituting this approximation into the Taylor
expansion and using the fact that Qi+1 = Qi +
α∆Q∗

i (where α is the learning rate), we obtain:

Q(Qi+1, Ai+1) ≈Q(Qi, Ai)− α∇Q(Qi, Ai)
T

·H(Q(Qi, Ai))
−1∇Q(Qi, Ai)

+
α2

2
∇Q(Qi, Ai)

TH(Q(Qi, Ai))
−1

· ∇Q(Qi, Ai).

The assumptions of twice differentiability, neg-
ligible remainder term, and positive definite Hes-
sian matrix provide a more solid foundation for
the approximation in Lemma 3.1. For suffi-
ciently small α, this approximation suggests an in-
crease in Q, implying convergence to an optimal
question-answer pair (Q∗, A∗) as i → ∞. The
convergence relies on the positive definiteness of
H(Q) and the appropriate choice of α, ensuring
each iteration moves towards an improved quality
of the question-answer pair.

The quality assessment function Q used by the
QA-Checker is defined as:

Q(Qi, Ai) = α · Relevance(Qi, Ai)

+ β · Specificity(Ai)

+ γ · Coherence(Ai)

where:

• Qi and Ai represent the question and answer
at the i-th iteration of the conversation.

• Relevance(Qi, Ai) measures how well the
answer Ai addresses the key points and intent
of the question Qi, computed as:

Relevance(Qi, Ai) =
Q⃗i · A⃗i

|Q⃗i||A⃗i|

where Q⃗i and A⃗i are vector representations
of Qi and Ai.

• Specificity(Ai) assesses how specific and de-
tailed the answer Ai is, calculated as:

Ai =

∑
t∈ContentWords(Ai)

TechnicalityScore(t)

Length(Ai)

where ContentWords(Ai) is the set
of substantive content words in Ai,
TechnicalityScore(t) is a measure of
how technical or domain-specific the term
t is, and Length(Ai) is the total number of
words in Ai.

• Coherence(Ai) evaluates the logical flow and
structural coherence of the answer Ai, com-
puted as:

Coherence(Ai) =α · DiscourseConnectives(Ai)

+ β · CoreferenceConsistency(Ai)

+ γ · AnswerPatternAdherence(Ai)

where DiscourseConnectives(Ai) is the
density of discourse connectives in Ai,
CoreferenceConsistency(Ai) measures the
consistency of coreference chains in Ai,
and AnswerPatternAdherence(Ai) assesses
how well Ai follows the expected structural
patterns for the given question type.

α, β, and γ are non-negative weights that sum
to 1, with α = β = γ.

11292

B Complete Related Work

Automating Code Review Activities Our focus
included detecting source code vulnerabilities, en-
suring style alignment, and maintaining commit
message and code consistency. Other studies ex-
plore various aspects of code review. Hellen-
doorn et al. (Hellendoorn et al., 2021) addressed
the challenge of anticipating code change posi-
tions. Siow et al. (Siow et al., 2020) introduced
CORE, employing multi-level embeddings for
code modification semantics and retrieval-based
review suggestions. Hong et al. (Hong et al., 2022)
proposed COMMENTFINDER, a retrieval-based
method for suggesting comments during code re-
views. Tufano et al. (Tufano et al., 2021) de-
signed T5CR with SentencePiece, enabling work
with raw source code without abstraction. Li et
al. (Li et al., 2022) developed CodeReviewer, fo-
cusing on code diff quality, review comment gen-
eration, and code refinement using the T5 model.
Recently, large language models have been in-
corporated; Lu et al. (Lu et al., 2023) fine-tuned
LLama with prefix tuning for LLaMA-Reviewer,
using parameter-efficient fine-tuning and instruc-
tion tuning in a code-centric domain.
Collaborative AI Collaborative AI refers to artifi-
cial intelligent systems designed to achieve shared
goals with humans or other AI systems. Previ-
ous research extensively explores the use of mul-
tiple LLMs in collaborative settings, as demon-
strated by Talebirad et al. (Talebirad and Nadiri,
2023) and Qian et al. (Qian et al., 2023). These
approaches rely on the idea that inter-agent in-
teractions enable LLMs to collectively enhance
their capabilities, leading to improved overall
performance. The research covers various as-
pects of multi-agent scenarios, including collec-
tive thinking, conversation dataset curation, soci-
ological phenomenon exploration, and collabora-
tion for efficiency. Collective thinking aims to
boost problem-solving abilities by orchestrating
discussions among multiple agents. Researchers
like Wei et al. (Wei et al., 2023) and Li et al. (Li
et al., 2023a) have created conversational datasets
through role-playing methodologies. Sociologi-
cal phenomenon investigations, such as Park et
al. (Park et al., 2023)’s work, involve creating vir-
tual communities with rudimentary language in-
teractions and limited cooperative endeavors. In
contrast, Akata et al. (Akata et al., 2023) scruti-
nized LLM cooperation through orchestrated re-

peated games. Collaboration for efficiency, pro-
posed by Cai et al. (Cai et al., 2023), introduces
a model for cost reduction through large mod-
els as tool-makers and small models as tool-users.
Zhang et al. (Zhang et al., 2023) established a
framework for verbal communication and collab-
oration, enhancing overall efficiency. However, Li
et al. (Li et al., 2023a) and Qian et al. (Qian et al.,
2023), presenting a multi-agent framework for
software development, primarily relied on natural
language conversations, not standardized software
engineering documentation, and lacked advanced
human process management expertise. Challenges
in multi-agent cooperation include maintaining
coherence, avoiding unproductive loops, and fos-
tering beneficial interactions. Our approach em-
phasizes integrating advanced human processes,
like code review in software maintenance, within
multi-agent systems.

C Experimental Details

In our work, the maximum number of conversa-
tion rounds is set at 10.

C.1 Role Definition

Six roles are defined as shown in Figure 5.

Apart from that, for the QA-checker in
CodeAgent, we define an initial prompt for it,
which is shown as follows:

11293

Role Specialization

I'm Chief Executive Officer. Now, we are both working at CodeAgent and we share a common interest in collaborating

to successfully complete the code review for commits or code. My main responsibilities include being a decision-maker

in policy and strategy, a leader managing teams, and an effective communicator with management and employees. I also

specialize in summarizing complex code reviews.

My primary responsibilities involve the integration of commit content, crafting commit messages, managing original

files, and supplying necessary input information like commit details and code.

User

CEO

Reviewer

CPO

Coder

CTO

I am the Chief Product Officer at CodeAgent, collaborating closely with my team to complete code reviews

successfully. I am responsible for assisting CEO and coder to summary code review reports

I am the CTO of CodeAgent, familiar with various programming languages and skilled in overarching technology

strategies. My role involves collaborating on new customer tasks, making high-level IT decisions that align with our

organization's goals, and working closely with IT staff in everyday operations.

I am a Code reviewer at CodeAgent collaborating to ensure software quality by assessing code for defects,

vulnerabilities, and consistency issues, fixing bugs, and suggesting improvements. I also collobrate with othe stuffs to

complete the code revision and summary of code review

I am a Coder at CodeAgent who actively reviews and revises code. I make decisions about code changes and

ensure code quality by evaluating code for defects and suggesting improvements. I am proficient in various

programming languages and platforms, including Python, Java, Go, C++, JavaScript, C, C#, PHP, and Ruby, etc.

Figure 5: Specialization of six main characters in CodeAgent.

I’m the QA-Checker, an AI-driven
agent specializing in ensuring quality and
coherence in conversational dynamics, par-
ticularly in code review discussions at
CodeAgent. My primary role involves ana-
lyzing and aligning conversations to main-
tain topic relevance, ensuring that all dis-
cussions about code commits and reviews
stay focused and on track. As a sophis-
ticated component of the AI system, ad-
vanced algorithms are applied, including
chain-of-thought reasoning and optimiza-
tion techniques, to evaluate and guide con-
versational flow. I am adept at identify-
ing and correcting topic drifts and ensur-
ing that every conversation adheres to its
intended purpose. My capabilities extend
to facilitating clear and effective communi-
cation between team members, making me
an essential asset in streamlining code re-
view processes and enhancing overall team
collaboration and decision making.

C.2 Execute Time Across Languages

As depicted in the data, we observe a significant
trend in the average execution time for code re-
views in CodeAgent across various program-
ming languages. The analysis includes nine lan-
guages: Python, Java, Go, C++, JavaScript, C, C#,
PHP, and Ruby. For each language, the average
execution time of code reviews for both merged
and closed pull requests (PRs) is measured. The
results, presented in Figure 6, indicate that, on av-
erage, the execution time for merged PRs is longer
than that for closed PRs by approximately 44.92
seconds. This considerable time difference can be
attributed to several potential reasons. One pri-
mary explanation is that merged PRs likely un-
dergo a more rigorous and detailed review process.
They are intended to be integrated into the main
codebase, and as such, contributors might be re-
quested to update their commits in the PRs more

11294

frequently to adhere to the project’s high-quality
standards. On the other hand, closed PRs, which
are not meant for merging, might not require such
extensive review processes, leading to shorter re-
view times on average, which may also be the rea-
son they are not merged into main projects.

Python Java Go C++ JavaScript C C# PHP Ruby
Programming Language

200

250

300

350

400

450

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Average Execution Time with Patterns for Different Programming Languages
Category

Merged
Closed

Figure 6: Execution time with CodeAgent across dif-
ferent language (count unit: second).

D Comparative Analysis of QA-Checker
AI System and Recursive
Self-Improvement Systems

In this section, we will delve into the differences
between QA-Checker and self-improvement sys-
tems (Hong et al., 2023), and underscore the im-
portance of the QA-Checker in role conversations.

D.1 Comparison Table

We begin with a comparative overview presented
in Table 6.

D.2 Differences and Implications

The key differences between these systems lie
in their application scope, learning mechanisms,
and improvement scopes. The QA-Checker is
highly specialized, focusing on QA tasks with
efficiency and precision. In contrast, recursive
self-improvement systems boast a broader appli-
cation range and adaptability, integrating experi-
ences from diverse projects for systemic improve-
ments.

D.3 Importance of QA-Checker in Role
Conversations

In the context of role conversations, the QA-
Checker plays a pivotal role. Its specialized na-
ture makes it exceptionally adept at handling spe-
cific conversational aspects, such as accuracy, rel-
evance, and clarity in responses. This specializa-

tion is crucial in domains where the quality of in-
formation is paramount, ensuring that responses
are not only correct but also contextually appro-
priate and informative.

Furthermore, the efficiency of the QA-Checker
in refining responses based on advanced optimiza-
tion techniques makes it an invaluable tool in dy-
namic conversational environments. It can quickly
adapt to the nuances of a conversation, providing
high-quality responses that are aligned with the
evolving nature of dialogue.

D.4 Conclusion

While recursive self-improvement systems offer
broad adaptability and systemic learning, the QA-
Checker stands out in its specialized role in QA
tasks, particularly in role conversations. Its fo-
cused approach to improving answer quality and
its efficiency in handling conversational nuances
make it an essential component in AI-driven com-
munication systems.

E Capabilities Analysis between
CodeAgent and Other Methods

Compared to open-source baseline methods such
as AutoGPT and autonomous agents such as Chat-
Dev and MetaGPT, CodeAgent offers functions
for code review tasks: consistency analysis, vul-
nerability analysis, and format analysis. As shown
in Table 7, our CodeAgent encompasses a wide
range of abilities to handle complex code review
tasks efficiently. Incorporating the QA-Checker
self-improved module can significantly improve
the conversation generation between agents and
contribute to the improvement of code review.
Compared to COT, the difference and the ad-
vantages of CodeAgent with QA-Checker are
shown in Section D.

F Dataset

Previous Dataset As shown in Zhou
et al. (2023), our study incorporates three
distinct datasets for evaluating the perfor-
mance of CodeAgent: Trans-Reviewdata,
AutoTransformdata, and T5-Reviewdata.
Trans-Reviewdata, compiled by Tufano et
al. (Tufano et al., 2021), derives from Gerrit
and GitHub projects, excluding noisy or overly
lengthy comments and review data with new
tokens in revised code not present in the initial
submission. AutoTransformdata, collected by

11295

Table 6: Comparative Overview of QA-Checker AI System and Recursive Self-Improvement Systems

Feature/System QA-Checker AI System Recursive Self-Improvement System

Application Focus
Specialized for QA tasks with
precise task execution

Broad scope, covering various dimensions like
software development and learning algorithms

Learning Mechanism
Advanced optimization techniques
for iterative improvement in QA

Multi-level learning: learning, meta-learning,
and recursive self-improvement

Scope of Improvement
Focused on individual capability
in specific QA tasks

Enhances the entire system, including multi-agent
interactions and communication protocols

Experience Integration
Based on mathematical models
to optimize answer quality

Utilizes experiences from past projects to improve
overall performance

Table 7: Comparison of capabilities for CodeAgent and other approaches. ‘✓’ indicates the presence of a specific
feature in the corresponding framework, ‘✗ is absence. ChatDev and MetaGPT are two representative multi-agent
frameworks, GPT is a kind of single-agent framework, and CodeBert is a representative pre-trained model.

Approaches Consistency Analysis Vulnerability Analysis Format Analysis Code Revision COT QA-Checker

ChatDev (Qian et al., 2023) ✗ ✗ ✗ ✗ ✓ ✗

MetaGPT (Hong et al., 2023) ✗ ✗ ✗ ✗ ✓ ✗

GPT (OPENAI, 2022) ✓ ✓ ✓ ✓ ✗ ✗

CodeBert (Feng et al., 2020) ✓ ✓ ✓ ✓ ✗ ✗

CodeAgent ✓ ✓ ✓ ✓ ✓ ✓

Thongtanunam et al. (Thongtanunam et al., 2022)
from three Gerrit repositories, comprises only
submitted and revised codes without review com-
ments. Lastly, T5-Reviewdata, gathered by Tufano
et al. (Tufano et al., 2022) from Java projects
on GitHub, filters out noisy, non-English, and
duplicate comments. These datasets are employed
for Code Revision Before Review (CRB) and
Code Revision After Review (CRA) tasks, with
the exception of AutoTransformdata for CRA and
Review Comment Generation (RCG) due to its
lack of review comments.

New Dataset Design and Collection To en-
hance our model evaluation and avoid data leak-
age, we curated a new dataset, exclusively col-
lecting data from repositories created after April
2023. This approach ensures the evaluation of our
CodeAgent model on contemporary and relevant
data, free from historical biases. The new dataset
is extensive, covering a broad spectrum of soft-
ware projects across nine programming languages.

Dataset Description Our dataset, illustrated in
Fig. 8, encapsulates a detailed analysis of consis-
tency and format detection in software develop-
ment, spanning various programming languages.
It includes CA (consistency between commit and
commit message (See Sec 2.1)) and FA (format
consistency between commit and original (See
Sec 2.1)) data, segmented into positive and neg-

ative samples based on the merged and closed sta-
tus of pull requests. For example, in Python, the
dataset comprises 254 merged and 35 closed neg-
ative CA samples, alongside 803 merged and 213
closed positive CA samples, with corresponding
distributions for other languages like Java, Go,
C++, and more. Similarly, the FA data follows
this pattern of positive and negative samples across
languages. Figure 7 graphically represents this
data, highlighting the distribution and compari-
son of merged versus closed samples in both CA
and FA categories for each language. This com-
prehensive dataset, covering over 3,545 commits
and nearly 2,933 pull requests from more than 180
projects, was meticulously compiled using a cus-
tom crawler designed for GitHub API interactions,
targeting post-April 2023 repositories to ensure
up-to-date and diverse data for an in-depth anal-
ysis of current software development trends.

Table 8: Statistics of Studied Datasets.

Dataset Statistics #Train #Valid #Test

Trans-Review 13,756 1,719 1,719

AutoTransform 118,039 14,750 14,750

T5-Review 134,239 16,780 16,780

11296

Merged Closed
0

100

200

300

400

500

600

700

800

Sa
m

pl
e

Co
un

t

254

803

35

213

Python
Negative
Positive

Merged Closed
0

50

100

150

200

250

Sa
m

pl
e

Co
un

t

40

247

8

89

Java
Negative
Positive

Merged Closed
0

20

40

60

80

100

Sa
m

pl
e

Co
un

t

19

114

18

56

Go
Negative
Positive

Merged Closed
0

20

40

60

80

100

Sa
m

pl
e

Co
un

t

36

102

10

46

C++
Negative
Positive

Merged Closed
0

50

100

150

200

Sa
m

pl
e

Co
un

t

45

235

11

101

JavaScript
Negative
Positive

Merged Closed
0

20

40

60

80

100

120

Sa
m

pl
e

Co
un

t

14

100

20

126C
Negative
Positive

Merged Closed
0

20

40

60

80

100

120

140

160

Sa
m

pl
e

Co
un

t

37

169

10

52

C#
Negative
Positive

Merged Closed
0

20

40

60

80

100

120

140

Sa
m

pl
e

Co
un

t

24

149

13

92

PHP
Negative
Positive

Merged Closed
0

20

40

60

80

100

120

140

160

Sa
m

pl
e

Co
un

t

32

170

10

45

Ruby
Negative
Positive

(a) Positive and negative data of both merged and closed com-
mits across 9 languages on CA task (Sec 2.1).

Merged Closed
0

200

400

600

800

Sa
m

pl
e

Co
un

t

190

867

35

213

Python
Negative
Positive

Merged Closed
0

50

100

150

200

250

Sa
m

pl
e

Co
un

t

11

276

5

92

Java
Negative
Positive

Merged Closed
0

20

40

60

80

100

120

Sa
m

pl
e

Co
un

t

16

117

7

67

Go
Negative
Positive

Merged Closed
0

20

40

60

80

100

120

Sa
m

pl
e

Co
un

t

19

119

5

51

C++
Negative
Positive

Merged Closed
0

50

100

150

200

250

Sa
m

pl
e

Co
un

t

28

252

7

105

JavaScript
Negative
Positive

Merged Closed
0

20

40

60

80

100

120

Sa
m

pl
e

Co
un

t

18

96

18

128C
Negative
Positive

Merged Closed
0

25

50

75

100

125

150

175

Sa
m

pl
e

Co
un

t

29

177

5

57

C#
Negative
Positive

Merged Closed
0

20

40

60

80

100

120

140

160

Sa
m

pl
e

Co
un

t

17

156

6

99

PHP
Negative
Positive

Merged Closed
0

25

50

75

100

125

150

175

Sa
m

pl
e

Co
un

t

24

178

6

49

Ruby
Negative
Positive

(b) Positive and negative data of both merged and closed com-
mits across 9 languages on FA task (Sec 2.1).

Figure 7: Distribution of positive, negative of both merged and closed data across 9 languages, including ‘python’,
‘java’, ‘go’, ‘c++’, ‘javascript’, ‘c’, ‘c#’, ‘php’, ‘ruby’.

Python Java Go C++ JavaScript C C# PHP Ruby
0

200

400

600

800

1000

Nu
m

be
r

1057

287

133 138

280

114

206
173

202
248

97 74 56
112

146

62
105

55

Merged and Closed Issues in Different Programming Languages with Values
Merged
Closed

Figure 8: Comparative Visualization of Merged and
Closed Commit Counts Across Various Programming
Languages

G Key Factors Leading to Vulnerabilities

The following table outlines various key factors
that can lead to vulnerabilities in software sys-
tems, along with their descriptions. These factors
should be carefully considered and addressed to
enhance the security of the system.

H Data Leakage Statement

As the new dataset introduced in Section F,
the time of the collected dataset is after April
2023, avoiding data leakage while we evaluate
CodeAgent on codeData dataset.

I Algorithmic Description of
CodeAgent Pipeline with QA-Checker

This algorithm demonstrates the integration of
QA-Checker within the CodeAgent pipeline,
employing mathematical equations to describe the
QA-Checker’s iterative refinement process.

Algorithm 1 Integrated Workflow of
CodeAgent with QA-Checker

Input: Code submission, commit message,
original files
Output: Refined code review document
Initialize phase p = 1
while p ≤ 4 do

Switch: Phase p
Case 1: Basic Info Sync
Conduct initial information analysis
Update: p = 2
Case 2: Code Review
Perform code review with Coder and Re-

viewer
Update: p = 3
Case 3: Code Alignment
Apply code revisions based on feedback
Update: p = 4
Case 4: Document
Finalize review document
Update: p = 5 (End)
QA-Checker Refinement (Applies in

Cases 2 and 3)
Let Qi be the current question and Ai the

current answer
Evaluate response quality: qScore =

Q(Qi, Ai)
if qScore below threshold then

Generate additional instruction aai
Update question: Qi+1 = Qi + aai
Request new response: Ai+1

end if
end while
Return: Refined code review document

11297

No. Vulnerability Factor Description
1 Insufficient Input Validation Check for vulnerabilities like SQL injection, Cross-Site

Scripting (XSS), and command injection in new or modi-
fied code, especially where user input is processed.

2 Buffer Overflows Particularly in lower-level languages, ensure that memory
management is handled securely to prevent overflows.

3 Authentication and Authorization Flaws Evaluate any changes in authentication and authorization
logic for potential weaknesses that could allow unautho-
rized access or privilege escalation.

4 Sensitive Data Exposure Assess handling and storage of sensitive information like
passwords, private keys, or personal data to prevent expo-
sure.

5 Improper Error and Exception Handling Ensure that errors and exceptions are handled appropri-
ately without revealing sensitive information or causing
service disruption.

6 Vulnerabilities in Dependency Libraries or Components Review updates or changes in third-party libraries or com-
ponents for known vulnerabilities.

7 Cross-Site Request Forgery (CSRF) Verify that adequate protection mechanisms are in place
against CSRF attacks.

8 Unsafe Use of APIs Check for the use of insecure encryption algorithms or
other risky API practices.

9 Code Injection Look for vulnerabilities related to dynamic code execu-
tion.

10 Configuration Errors Ensure that no insecure configurations or settings like
open debug ports or default passwords have been intro-
duced.

11 Race Conditions Analyze for potential data corruption or security issues
arising from race conditions.

12 Memory Leaks Identify any changes that could potentially lead to mem-
ory leaks and resource exhaustion.

13 Improper Resource Management Check resource management, such as proper closure of
file handles or database connections.

14 Inadequate Security Configurations Assess for any insecure default settings or unencrypted
communications.

15 Path Traversal and File Inclusion Vulnerabilities Examine for risks that could allow unauthorized file ac-
cess or execution.

16 Unsafe Deserialization Look for issues that could allow the execution of mali-
cious code or tampering with application logic.

17 XML External Entity (XXE) Attacks Check if XML processing is secure against XXE attacks.
18 Inconsistent Error Handling Review error messages to ensure they do not leak sensitive

system details.
19 Server-Side Request Forgery (SSRF) Analyze for vulnerabilities that could be exploited to at-

tack internal systems.
20 Unsafe Redirects and Forwards Check for vulnerabilities leading to phishing or redirec-

tion attacks.
21 Use of Deprecated or Unsafe Functions and Commands Identify usage of any such functions and commands in the

code.
22 Code Leakages and Hardcoded Sensitive Information Look for hardcoded passwords, keys, or other sensitive

data in the code.
23 Unencrypted Communications Verify that data transmissions are securely encrypted to

prevent interception and tampering.
24 Mobile Code Security Issues For mobile applications, ensure proper handling of per-

mission requests and secure data storage.
25 Cloud Service Configuration Errors Review any cloud-based configurations for potential data

leaks or unauthorized access.

11298

In this algorithm, Q(Qi, Ai) represents the
quality assessment function of the QA-Checker,
which evaluates the relevance and accuracy of the
answer Ai to the question Qi. If the quality score
qScore is below a predefined threshold, the QA-
Checker intervenes by generating an additional in-
struction aai to refine the question, prompting a
more accurate response in the next iteration.

J Detailed Performance of CodeAgent
in Various Languages on VA task

In our comprehensive analysis using
CodeAgent, as detailed in Table 9, we observe
a diverse landscape of confirmed vulnerabili-
ties across different programming languages.
The table categorizes these vulnerabilities into
‘merged’ and ‘closed’ statuses for languages such
as Python, Java, Go, C++, JavaScript, C, C#, PHP,
and Ruby. A significant finding is a markedly high
number of ‘merged’ vulnerabilities in Python,
potentially reflective of its extensive application
or intrinsic complexities leading to security gaps.
Conversely, languages like Go, Ruby, and C
exhibit notably lower counts in both categories,
perhaps indicating lesser engagement in complex
applications or more robust security protocols.
Table 9 that the ‘closed’ category consistently
presents lower vulnerabilities than ‘merged’
across most languages, signifying effective res-
olution mechanisms. However, an exception is
noted in C, where ‘closed’ counts surpass those
of ‘merged’, possibly indicating either delayed
vulnerability identification or efficient mitigation
strategies. Remarkably, the Rateclose is generally
observed to be higher than Ratemerge across the
languages, exemplifying a significant reduction
in vulnerabilities post-resolution. For example,
Python demonstrates a Ratemerge of 14.00%
against a higher Rateclose of 18.16%. This trend
is consistent in most languages, emphasizing the
importance of proactive vulnerability manage-
ment. The Rateavg, representing the proportion
of confirmed vulnerabilities against the total of
both merged and closed items, further elucidates
this point, with C++ showing the highest Rateavg
at 16.49%. These insights not only underline the
diverse vulnerability landscape across program-
ming languages but also highlight the adeptness
of CodeAgent in pinpointing and verifying
vulnerabilities in these varied contexts.

K More detailed experimental results on
CA and FA tasks

Detailed experimental results of CA are shown in
Figure 9 and Figure 10. Detailed experimental re-
sults of FA are shown in Figure 11 and Figure 12.

L Case Study

As shown in Table 10, we can easily localize the
figure numbers of case studies for specific pro-
gramming languages.

L.1 Performance on 9 languages

Table 10: Correlation Table between specific program-
ming language and case study.

Programming
Language

Figure No.

Python 13
Java 14
Go 15
C++ 16
JavaScript 17
C 18
C# 19
php 20
Ruby 21

L.2 Difference of CodeAgent-3.5 and
CodeAgent-4.0

CodeAgent-3.5 and CodeAgent-4.0 in this pa-
per has no difference in general code review, how-
ever, CodeAgent-4.0 is more powerful in pro-
cessing long input sequences and logic reason-
ing. As shown in Figure 22, we take one ex-
ample of consistency detection between commit
and commit message and find that CodeAgent-
4.0 diffs from CodeAgent-3.5 in the detailed ex-
planation. CodeAgent-3.5 output a report with
15k lines while CodeAgent-4.0 outputs a re-
port with more than 17.7k lines. Detailed data is
shown in https://zenodo.org/records/
10607925.

M Ablation study

In this section, we evaluate the performance of
different parts in CodeAgent in vulnerability
analysis. CodeAgent is based on chain-of-
thought (COT) and large language model (a.k.a.
GPT). As shown in Section 4.1, CodeAgent out-
performs baselines (a.k.a. CodeBERT, GPT-3.5,

11299

https://zenodo.org/records/10607925
https://zenodo.org/records/10607925

Table 9: Vulnerable problems (#) found by CodeAgent. Ratemerge means the value of confirmed divided by
the total number in the merged and Rateclose is the value of confirmed divided by the total number in the closed.
Rateavg is the value of the confirmed number divided by the total number of the merged and closed.

CodeAgent Python Java Go C++ JavaScript C C# PHP Ruby
merged (total#) 1,057 287 133 138 280 114 206 173 202
merged (confirmed#) 148 17 11 19 34 9 21 28 20
Ratemerge 14.00% 5.92% 8.27% 13.77% 12.14% 7.89% 10.19% 16.18% 9.90%
closed (total#) 248 97 74 56 112 146 62 105 55
closed (confirmed#) 45 10 5 13 16 26 7 15 5
Rateclose 18.16% 10.31% 6.76% 23.2% 14.29% 17.81% 11.29% 14.29% 9.09%
Total number (#) 1,305 384 207 194 392 260 268 278 257
Total confirmed (#) 193 27 16 32 50 35 28 43 25
Rateavg 14.79% 7.03% 7.73% 16.49% 12.76% 13.46% 10.45% 14.47% 9.73%

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.619

0.770

0.809

0.879

0.719

0.843
0.871

0.923

python
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.579

0.757

0.789

0.858

0.711

0.846
0.871

0.916

java
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.596

0.772

0.816

0.895

0.723

0.854

0.886

0.936

go
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.637

0.784

0.824

0.882

0.730

0.847

0.880

0.918

c++
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.660

0.800

0.847

0.906

0.771

0.872

0.907

0.942

javascript
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.620

0.810

0.850

0.900

0.747

0.885
0.909

0.942

c
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.645

0.828

0.870

0.917

0.760

0.892
0.919

0.948

c#
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.678

0.839

0.879

0.926

0.789

0.903
0.929

0.958

php
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.694

0.847

0.900

0.947

0.800

0.906

0.939
0.967

ruby
Recall
F1

Figure 9: Comparison of models on the merged data across 9 languages on CA task.

11300

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.700

0.817 0.826

0.878

0.808

0.886 0.893

0.926

python
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.596

0.764

0.809

0.865

0.736

0.861
0.889

0.922

java
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.714 0.714
0.696

0.857

0.800 0.800
0.780

0.897

go
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.717 0.717

0.674

0.848

0.805 0.805

0.765

0.907

c++
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.881

0.703

0.653

0.851

0.937

0.816

0.776

0.915

javascript
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.770
0.794

0.714

0.8570.866 0.862

0.811

0.915

c
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.635

0.808

0.885

0.846

0.750

0.884

0.929
0.907

c#
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.696

0.761

0.935

0.859

0.810

0.854

0.966

0.919

php
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.711

0.622

0.800

0.844
0.821

0.757

0.867

0.905

ruby
Recall
F1

Figure 10: Comparison of models on the closed data across 9 languages on CA task.

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.729
0.709

0.759

0.900

0.826
0.802

0.857

0.942

python
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.609

0.717

0.819

0.899

0.755

0.834

0.899

0.947

java
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.615

0.658

0.795

0.897

0.750

0.790

0.882

0.946

go
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.714 0.714

0.908 0.899

0.825 0.825

0.931
0.947

c++
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.687

0.726

0.857

0.897

0.807
0.836

0.911

0.944

javascript
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.667

0.708

0.750

0.896

0.790

0.824
0.852

0.945

c
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.729

0.655

0.887 0.898

0.832

0.781

0.918
0.944

c#
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.724

0.686

0.647

0.897

0.834
0.805

0.783

0.946

php
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es 0.747
0.775

0.708

0.899

0.844
0.868

0.813

0.944

ruby
Recall
F1

Figure 11: Comparison of models on the merged data across 9 languages on FA task.

11301

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.700

0.737

0.685

0.897

0.805

0.842

0.802

0.943

python
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.707

0.761 0.761

0.859

0.823

0.859 0.859

0.924

java
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.731

0.687

0.866
0.851

0.838
0.807

0.921 0.919

go
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es 0.765

0.706

0.922

0.843
0.867

0.828

0.959

0.915

c++
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.700

0.840

0.780

0.860

0.820

0.910
0.880

0.920

javascript
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.633

0.758

0.703

0.859

0.761

0.851

0.814

0.924

c
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.719

0.684

0.719

0.860
0.837

0.813
0.837

0.925

c#
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.687 0.697

0.778

0.859

0.814 0.821

0.870

0.924

php
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.796

0.755

0.694

0.857
0.876

0.860

0.819

0.923

ruby
Recall
F1

Figure 12: Comparison of models on the closed data across 9 languages on FA task.

GPT-4.0) across 9 different languages. The per-
formance mainly comes from the combination of
COT and QA-Checker. Thus, we design an ad-
ditional version called CodeAgent w/o, which
means CodeAgent without QA-Checker. Then,
we use CodeAgent w/o to do vulnerability anal-
ysis and compare with CodeAgent. We first dis-
cuss about the result of CodeAgent w/o and then
discuss about comparison between CodeAgent
and CodeAgent w/o.

Overview of Vulnerabilities in CodeAgent w/o

Table 11 presents the findings of CodeAgent
w/o, a variant of the original CodeAgent, in
identifying vulnerabilities across different pro-
gramming languages. The table showcases the
number of ‘merged’ and ‘closed’ vulnerabilities
in languages such as Python, Java, Go, C++,
JavaScript, C, C#, PHP, and Ruby. Notably,
Python leads in the ‘merged’ category with a to-
tal of 1,057 cases, of which 140 are confirmed,
yielding a Ratemerge of 13.25%. In contrast, lan-
guages like Go and Ruby show lower vulnerability
counts in both ‘merged’ and ‘closed’ categories.
The table also includes Rateclose and Rateavg, pro-
viding insights into the effectiveness of vulnera-
bility management across these languages.

Detailed Comparison between CodeAgent
and CodeAgent w/o Comparing the findings
in Table 11 with those in Table 9, we observe
some notable differences in vulnerability detection
by CodeAgent and CodeAgent w/o. While
the overall trend of higher ‘merged’ vulnerabili-
ties in Python and lower counts in Go and Ruby
remains consistent, Table 11 shows a slight re-
duction in the Ratemerge for most languages,
suggesting a more conservative confirmation ap-
proach in CodeAgent w/o. Similarly, Rateclose
and Rateavg values in Table 11 generally indi-
cate a lower proportion of confirmed vulnerabili-
ties compared to Table 9, reflecting potentially dif-
ferent criteria or efficacy in vulnerability assess-
ment. These variations highlight the impact of
QA-Checker in CodeAgent.

N Cost statement

As shown in Table 12, CodeAgent-4 has
a higher query time and cost compared to
CodeAgent-3.5 due to its increased complexity
and capabilities. We acknowledge that the integra-
tion of AI models and multi-agent systems may in-
troduce complexity and require specialized knowl-
edge for implementation.

11302

Commit Original
File

Commit
Message

The semantic consistency between the code changes and the commit message is generally good. However, there are a few
inconsistencies that should be addressed. In the 'handle_connect' method, the 'default_info' dictionary is being updated to use
the keys 'user' and 'client' instead of 'user_id' and 'client_id' as mentioned in the commit message. It would be better to update
the commit message to reflect this change or update the code to use the original keys. Additionally, in the 'handle_refresh'
method, the check for 'is_authenticated' has been removed, which is inconsistent with the commit message. It would be helpful
to clarify the reason for this change in the commit message.

CodeAgent Summary

...

Semantic Consistency Analysis

Python

The provided code appears to have some potential security vulnerabilities that should be addressed. Firstly, there is no input
validation or sanitization for user input, which can lead to SQL injection, XSS, and command injection risks... The code should
also be reviewed for proper authentication and authorization processes, as well as the handling of sensitive data to prevent
unauthorized access and data breaches. Proper error handling and exception management should be implemented to avoid
leaking sensitive information and causing service interruptions...

Security Analysis

The format of the code is generally consistent with the writing style and format of the original file. However, there are a few
inconsistencies that could impact readability and maintainability. In the 'handle_connect' method, the indentation of the
'self.default_info' dictionary is inconsistent. It would be better to align the indentation to improve code readability. Additionally,
in the 'handle_refresh' method, the comment at the end of the line should be moved to a separate line for better code formatting.
These minor formatting issues can be easily addressed to improve the overall quality of the code.

Format Analysis

Based on the analysis, the following suggestions are provided for code alignment and revisions:1). In the 'handle_connect'
method, update the commit message to reflect the change in keys from 'user_id' and 'client_id' to 'user' and 'client'.
Alternatively, update the code to use the original keys mentioned in the commit message. 2). In the 'handle_refresh' method,
clarify the reason for removing the 'is_authenticated' check in the commit message. If it was intentional, provide an explanation
for the change. 3). Improve input validation and sanitization techniques to prevent SQL injection, XSS, and command injection
risks. Implement parameterized queries for database operations and escape user-generated content displayed in HTML. 4).
Ensure robust memory management practices to avoid buffer overflows in lower-level languages.5). Review and enhance
authentication and authorization processes, as well as the handling of sensitive data, to prevent unauthorized access and data
breaches...

Suggestion

@@ -365,8 +365,8 @@ def handle_connect(self, params):
Welcome to Centrifuge dear Connection!
self.is_authenticated = True
self.default_info = {

- 'user_id': self.user,
- 'client_id': self.uid,
+ 'user': self.user,
+ 'client': self.uid,

'default_info': info,
'channel_info': None

}
@@ -421,9 +421,6 @@ def handle_refresh(self, params):

"""
Handle request with refreshed connection timestamp
"""

- if not self.is_authenticated:
- raise Return((None, self.application.UNAUTHORIZED))
-

project_name = params["project"]
user = params["user"]
timestamp = params["timestamp"]

rename client_id and user_id into client and
user in connection info

...
class Client(object):
 """
 This class describes a single connection of
client.
 """
 application = None

 def __init__(self, sock, info):
 self.sock = sock
 self.info = info
 self.uid = uuid.uuid4().hex
 self.is_authenticated = False
 self.user = None
 self.timestamp = None
 self.channel_info = {}
 self.default_info = {}
 self.project_name = None
 self.channels = None
 self.presence_ping_task = None
 self.expire_timeout = None
...

Figure 13: Example in Python project with sha value: “0d3b94bbd7528ed8649cdab4370a62e508bad82c"

11303

Commit Original
File

Commit
Message

The code changes in the commit do not accurately reflect the description provided in the commit message. The commit message

mentions fixing an issue where onDismiss() did not get called if Snackbar is swiped, but the code changes do not address this

issue. Instead, the code changes seem to be related to dismissing the Snackbar.

@@ -403,7 +403,7 @@ public boolean canDismiss(Object token) {
 @Override
 public void onDismiss(View view, Object token) {
 if (view != null) {
- finish();
+ dismiss(false);
 }}
@@ -512,6 +512,10 @@ private void startTimer(long duration) {
 }
 public void dismiss() {
+ dismiss(mAnimated);
+ }
+
+ private void dismiss(boolean animate) {
 if (mIsDismissing) {
 return;
 }
@@ -522,7 +526,7 @@ public void dismiss() {
 mEventListener.onDismiss(Snackbar.this);
 }
- if (!mAnimated) {
+ if (!animate) {
 finish();
 return;
 }

Fixed issue where onDismiss() did not get
called if Snackbar is swiped.

...
public static Snackbar with(Context context)
{
 return new Snackbar(context);
 }

 /**
 * Sets the type of {@link Snackbar} to be
displayed.
 *
 * @param type the {@link
SnackbarType} of this instance
 * @return
 */
 public Snackbar type(SnackbarType type)
{
 mType = type;
 return this;
 }

 /**
 * Sets the text to be displayed in this
{@link Snackbar}
...

CodeAgent Summary

...

Semantic Consistency Analysis

Java

No security analysis can be performed as the code is not provided.
Security Analysis

The format of the code aligns with the writing style and format of the original file. There are no formatting inconsistencies that
impact the overall readability and maintainability of the project.

Format Analysis

The highest priority comment is regarding the semantic consistency between the code changes and the commit message. The
code changes should address the issue mentioned in the commit message, i.e., fixing the issue where onDismiss() did not get
called if Snackbar is swiped. To fix this issue, the following changes can be made:

Suggestion

Java

Java

public void dismiss() {
 dismiss(mAnimated);
}
private void dismiss(boolean animate) {
 if (mIsDismissing) {
 return;
 }
 mIsDismissing = true;
 if (mEventListener != null) {
 mEventListener.onDismiss(Snackbar.this);
 }
 if (!animate) {
 finish();
 return;
 }
}

1. In the `Snackbar` class, modify the
`dismiss()` method as follows:

2.Please make the above changes to ensure that the code aligns
with the description provided in the commit message.

...

private void startTimer(long duration) {
 // implementation
}
public void dismiss() {
 dismiss(mAnimated);
}
private void dismiss(boolean animate) {
 if (mIsDismissing) {
 return;
 }
 mIsDismissing = true;
 if (mEventListener != null) {
 mEventListener.onDismiss(Snackbar.this);
 }...

Java

Figure 14: Example in Java project with sha value: “6e3c6d17d943f5ac70b421653eb167e0c34b119f"

11304

01/02/2024, 22:58 codeagent-casestudy

file:///Users/danieltang/Downloads/codeagent-casestudy.drawio (3).html 1/1

Commit Original
File

Commit
Message

Based on the provided commit message and code changes, there is a semantic inconsistency. The commit message states that
the script is being cleaned, but the code changes do not reflect any cleaning actions. To improve semantic consistency, the code
changes should align with the description provided in the commit message. I suggest revising the code to include the cleaning
actions mentioned in the commit message.

CodeAgent Summary

...

Semantic Consistency Analysis

Go

After reviewing the code, I found that there are no explicit security vulnerabilities present....

Security Analysis

The format of the code does not align with the writing style and format of the original file. Inconsistent formatting can
negatively impact the readability and maintainability of the project. To improve the format consistency, I suggest following the
original file's formatting conventions. This includes consistent indentation, proper spacing, and adhering to any specific style
guidelines.

Format Analysis

Based on the semantic inconsistency and format analysis, I recommend the following revisions:
1. Update the code changes to reflect the cleaning actions mentioned in the commit message.
2. Ensure that the code follows the formatting conventions of the original file.

Suggestion

fix: clean integration-test script

#!/usr/bin/env bash
set -e

export DEST=.

echo "Testing against..."
docker version

shellcheck disable=SC2086
shellcheck disable=SC2048
go test ./integration -test.timeout=20m -
failfast -v ${TESTFLAGS[*]}

Go

Go

@@ -3,12 +3,9 @@ set -e

 export DEST=.

-TESTFLAGS+=("-test.timeout=20m -failfast -v")
-
-cd integration
 echo "Testing against..."
 docker version

 # shellcheck disable=SC2086
 # shellcheck disable=SC2048
-go test -v ${TESTFLAGS[*]}
+go test ./integration -test.timeout=20m -failfast -v ${TESTFLAGS[*]}

#!/usr/bin/env bash
set -e
export DEST=.
echo "Testing against..."
docker version
shellcheck disable=SC2086
shellcheck disable=SC2048
go test ./integration -test.timeout=20m -failfast -v ${TESTFLAGS[*]}

Revised code

Go

Figure 15: Example in Go project with sha value: “a6b00b097b1a8140bd8b60177247dc830374c8ed"

11305

Commit Original
File

Commit
Message

The code changes in the provided code are not consistent with the description provided in the commit message. The commit
message mentions the removal of the "/analytics/events/:name" endpoint, but this change is not reflected in the code. It is
important to ensure that the code accurately reflects the changes described in the commit message to avoid confusion and
potential issues.

CodeAgent Summary

...

Semantic Consistency Analysis

C++

The provided code appears to have some potential security vulnerabilities that should be addressed. Firstly, there is no input
validation or sanitization for user input, which can lead to SQL injection, XSS, and command injection risks... The code should
also be reviewed for proper authentication and authorization processes, as well as the handling of sensitive data to prevent
unauthorized access and data breaches. Proper error handling and exception management should be implemented to avoid
leaking sensitive information and causing service interruptions...

Security Analysis

The format of the code does not align with the writing style and format of the original file. There are inconsistencies in
indentation and spacing, which can impact the overall readability and maintainability of the project. It is recommended to
follow a consistent coding style throughout the codebase to improve readability and make it easier for developers to understand
and maintain the code.

Format Analysis

1. Remove the "/analytics/events/:name" endpoint as mentioned in the commit message.
2. Ensure consistent indentation and spacing throughout the code to improve readability.
3. Consider organizing the code into logical sections or modules to enhance maintainability.

Suggestion

remove end-point to get events

...
//analytics events
 server->post("/analytics/events",
post_create_event);
 server->post("/analytics/events/replicate",
post_replicate_events);
 server->get("/analytics/query_hits_counts",
get_query_hits_counts);

 // meta
 server->get("/metrics.json",
get_metrics_json);
 server->get("/stats.json", get_stats_json);
 server->get("/debug", get_debug);
 server->get("/health", get_health);
...

C++

C++

C++

@@ -83,7 +83,6 @@ void master_server_routes() {
 //analytics events
 server->post("/analytics/events", post_create_event);
 server->post("/analytics/events/replicate", post_replicate_events);
- server->get("/analytics/events/:name", get_analytics_events, false, true);
 server->get("/analytics/query_hits_counts", get_query_hits_counts);

 // meta

Figure 16: Example in C++ project with sha value: “09e88c7c20347cdf513323fa8c616aba0a1b9ea7"

Table 11: Vulnerable problems (#) found by CodeAgent w/o

CodeAgent Python Java Go C++ JavaScript C C# PHP Ruby
merged (total#) 1,057 287 133 138 280 114 206 173 202
merged (confirmed#) 140 17 10 12 28 9 21 28 17
Ratemerge 13.25% 5.92% 7.52% 8.70% 10.00% 7.89% 10.19% 16.18% 8.42%
closed (total#) 248 97 74 56 112 146 62 105 55
closed (confirmed#) 36 9 5 12 16 26 7 15 5
Rateclose 14.52% 9.28% 6.76% 21.43% 14.29% 17.81% 11.29% 14.29% 9.09%
Total number (#) 1,305 384 207 194 392 260 268 278 257
Total confirmed (#) 176 26 15 24 44 35 28 43 22
Rateavg 13.49% 6.77% 7.25% 12.37% 11.22% 13.46% 10.45% 15.47% 8.56%

11306

Commit Original
File

Commit
Message

The semantic consistency between the code changes and the commit message is generally good. The changes accurately reflect
the description provided in the commit message. However, there is one inconsistency in the code. In the added `replaceWith`
function, there is a missing check for the `val` parameter being a function. Currently, the code assumes that `val` will always be
a function or a string. It would be better to add a check for the function type and handle it accordingly. This will ensure that the
code is more robust and can handle different types of input.

@@ -225,6 +225,22 @@ window['$'] = window['jquip'] = (function(){
 }
 return this;
 };
+ p['replaceWith'] = function(val){
+ if (isF(val)) {
+ return this['each'](function(i) {
+ var self = $(this), old = self.html();
+ self.replaceWith(val.call(this, i, old));
+ });
+ } else if (isS(val)) {
+ val = $(val).detach();
+ }
+ return this['each'](function() {
+ var next = this.nextSibling,
+ parent = this.parentNode;
+ parent.removeChild(this);
+ (next ? $(next).before(val) : $(parent).append(val));
+ });
+ };
 p['hide'] = function(){
 return this['each'](function(){
 cache(this, "display", this.style.display);

Addeed .replaceWith()

...
p['after'] = function(){
 if (this[0] && this[0].parentNode){
 return this.dm(arguments, false,
function(el){
 this.parentNode.insertBefore(el,
this.nextSibling);
 });
 }
 return this;
 };
 p['replaceWith'] = function(val){
 if (isF(val)) {
 return this['each'](function(i) {
 var self = $(this), old = self.html();
 self.replaceWith(val.call(this, i, old));
 });
 } else if (isS(val)) {
 val = $(val).detach();
 }
...

CodeAgent Summary

...

Semantic Consistency Analysis

Javascript

The security analysis of the provided code reveals some potential vulnerabilities. The code does not validate user input, which
can lead to SQL injection, XSS, and command injection risks. It is crucial to implement input validation and sanitization
techniques to prevent these vulnerabilities....

Security Analysis

The format of the code aligns with the writing style and format of the original file. There are no formatting inconsistencies that
impact the overall readability and maintainability of the project. The code follows a consistent indentation style and uses
appropriate naming conventions. However, it is recommended to add comments to explain the purpose and functionality of
complex code sections to improve code understandability.

Format Analysis

1. In the `replaceWith` function, add a check for the `val` parameter being a function and handle it accordingly.
2. Implement input validation and sanitization techniques to prevent SQL injection, XSS, and command injection risks.
3. Improve error handling mechanisms to avoid sensitive information leakage and service interruptions.
4. Review the code for any deprecated functions, hardcoded sensitive data, or code leakages.
5. Add comments to explain the purpose and functionality of complex code sections.

Suggestion

window['$'] = window['jquip'] = (function(){
 var win = window,
 queryShimCdn = "http://cdnjs.cloudflare.com/ajax/libs/sizzle/1.4.4/sizzle.min.js",
 queryEngines = function(){ return win["Sizzle"] || win["qwery"]; },
 doc = document, docEl = doc.documentElement,
 scriptFns=[], load=[], sLoaded,
 runtil = /Until$/, rmultiselector = /,/,
 rparentsprev = /^(?:parents|prevUntil|prevAll)/,
 rtagname = /<([\w:]+)/,
...

Revised Code

Figure 17: Example in JavaScript project with sha value: “6e9a80d93b470aef4978677ed0b7c9996fddbe20"

11307

Commit Original
File

Commit
Message

Based on the provided code and commit message, the semantic consistency analysis reveals that the changes in the code
accurately reflect the description provided in the commit message. There are no inconsistencies or potential hidden malicious
code identified.

@@ -757,9 +757,9 @@ <h4>

 <footer class="main-footer">
 <div class="pull-right hidden-xs">
- <b id="plugson_build_date">20231014 18:52:12
+ <b id="plugson_build_date">20231014 18:52:12
 </div>
- <a href="https://www.ventoy.net"
target="_blank">https://www.ventoy.net
+
 </footer>

 <!-- Control Sidebar -->

remove ventoy.net in grub UI

...
 <footer class="main-footer">
 <div class="pull-right hidden-xs">
 <b
id="plugson_build_date">20231014
18:52:12
 </div>

 </footer>

 <!-- Control Sidebar -->
 <!-- /.control-sidebar -->
 <!-- Add the sidebar's background. This
div must be placed
 immediately after the control sidebar --
>
 <div class="control-sidebar-bg"
style="position: fixed; height: auto;"></div>

 </div>
 <!-- ./wrapper -->
...

CodeAgent Summary

...

Semantic Consistency Analysis

C

The security analysis of the provided code reveals several potential vulnerabilities. Firstly, there is no validation of user input,
which can lead to SQL injection, XSS, and command injection risks. It is recommended to implement proper input validation
and sanitization techniques to prevent these vulnerabilities. Additionally, the code does not handle errors and exceptions
properly, which can result in sensitive information leakage and service interruptions...

Security Analysis

The format analysis reveals that the code formatting is inconsistent with the writing style and format of the original file. This
inconsistency can impact the overall readability and maintainability of the project. It is recommended to align the code
formatting with the original file's style and format to improve code quality.

Format Analysis

1. Implement input validation and sanitization techniques to prevent SQL injection, XSS, and command injection risks.
2. Improve error handling mechanisms to avoid sensitive information leakage and service interruptions.
3. Review the code for any deprecated functions, hardcoded sensitive data, or code leakages.
4. Conduct a thorough review of all dependencies, APIs, and configurations, including third-party libraries
5. Align the code formatting with the writing style and format of the original file to improve code quality and maintainability.

Suggestion

C

C

C

Figure 18: Example in C project with sha value: “5f93cf43dd6f809d7927abb79884285ad77e8a58"

11308

Commit Original
File

Commit
Message

The semantic consistency between the code changes and the commit message is generally good. The code changes accurately
reflect the description provided in the commit message. However, there is one inconsistency in the code. In the
`InitializeKernel` method, the `_logger` field is changed from `ILoggerFactory` to `XunitLogger<Kernel>`. The commit
message does not mention this change, which could lead to confusion for other developers. It is recommended to update the
commit message to include this change.

@@ -148,7 +148,7 @@ private Kernel InitializeKernel()

 private readonly RedirectOutput _testOutputHelper;
 private readonly IConfigurationRoot _configuration;
- private readonly ILoggerFactory _logger;
+ private readonly XunitLogger<Kernel> _logger;

 public void Dispose()
 {

change logger to concrete type

...
builder.AddOpenAIChatCompletion(
 modelId:
openAIConfiguration.ModelId,
 apiKey:
openAIConfiguration.ApiKey);

 var kernel = builder.Build();

 return kernel;
 }

 private readonly RedirectOutput
_testOutputHelper;
 private readonly IConfigurationRoot
_configuration;
 private readonly XunitLogger<Kernel>
_logger;
...

CodeAgent Summary

...

Semantic Consistency Analysis

C#

The security analysis of the provided code reveals several potential vulnerabilities. Firstly, there is no validation of user input to
prevent SQL injection, XSS, and command injection risks. ..

Security Analysis

The format of the code aligns well with the writing style and format of the original file. There are no significant formatting
inconsistencies that impact the overall readability and maintainability of the project.

Format Analysis

In the `InitializeKernel` method, the `_logger` field should be updated to use the concrete type `XunitLogger<Kernel>`
instead of the abstract type `ILoggerFactory`. This change should be reflected in the commit message as well.

Suggestion

C#

C#

C#

Figure 19: Example in C# project with sha value: “0e231c7a81b318e9eade972f7b877e66128ed67d"

11309

Commit Original
File

Commit
Message

The semantic consistency between the code changes and the commit message seems to be accurate. The changes made in the
code align with the description provided in the commit message. There are no inconsistencies or potential hidden malicious
code identified in this aspect.

...function get_posts($args = null) {
@@ -2425,6 +2425,7 @@ function get_posts($args = null) {
 'meta_value' => '',
 'post_type' => 'post',
 'suppress_filters' => true,
+ 'get_post_meta' => false
);
 $parsed_args = wp_parse_args($args, $defaults);
@@ -2449,7 +2450,20 @@ function get_posts($args = null) {
 $parsed_args['no_found_rows'] = true;

 $get_posts = new WP_Query();
- return $get_posts->query($parsed_args);
+ $get_posts = $get_posts->query($parsed_args);
+
+ if (!empty($parsed_args['get_post_meta'])) {
+ foreach ($get_posts as $post) {
+ $post_meta = [];
+ foreach (get_post_meta($post->ID) as $key => $value) {
+ $post_meta[$key] = $value[0];}
+ $post->meta_data = $post_meta;
+ $get_posts[] = $post;
+ }
+ };
+
+ return $get_posts;
 }

add get_post_meta args to get_posts()

...
function get_posts($args = null) {
 $defaults = array(
 'numberposts' => 5,
 'category' => 0,
 'orderby' => 'date',
 'order' => 'DESC',...
);
 $parsed_args = wp_parse_args($args,
$defaults);
 if (empty($parsed_args['post_status'])) {
 $parsed_args['post_status'] = (
'attachment' === $parsed_args['post_type']) ?
'inherit' : 'publish';
 }
 if (! empty($parsed_args['numberposts'])
&& empty($parsed_args['posts_per_page'])
) {
 $parsed_args['posts_per_page'] =
$parsed_args['numberposts'];
 }
...

CodeAgent Summary

...

Semantic Consistency Analysis

PHP

The provided code requires a comprehensive security review to identify potential vulnerabilities. The analysis should focus on
the following areas:......Based on the provided code, it is difficult to perform a comprehensive security analysis. However, it is
recommended to conduct a thorough security review considering the above points to identify any potential vulnerabilities.

Security Analysis

The format of the code does not align with the writing style and format of the original file. There are inconsistencies in
indentation, spacing, and line breaks. These formatting inconsistencies can impact the overall readability and maintainability of
the project. It is recommended to follow a consistent coding style and use proper indentation and spacing throughout the
codebase.

Format Analysis

1. In the `get_posts` function, the `get_post_meta` argument is not aligned properly with the other arguments.
It should be aligned with the other arguments for better readability.
2. In the `get_posts` function, the `get_posts` variable is overwritten with a new value.
It is recommended to use a different variable name to avoid confusion.
3. In the `get_posts` function, the code block inside the `if` condition can be
simplified by using a dictionary comprehension. Instead of manually iterating
 over `get_post_meta`, you can use a dictionary comprehension to create the `post_meta` dictionary.

Suggestion

PHP

PHP

PHP

Figure 20: Example in PHP project with sha value: “6679f059b9a0972a90df198471188da652f5c547"

11310

Commit Original
File

Commit
Message

The semantic consistency between the code changes and the commit message seems to be accurate. The changes made in the
code align with the description provided in the commit message. There are no inconsistencies or potential hidden malicious
code identified in this aspect.

...function get_posts($args = null) {
@@ -2425,6 +2425,7 @@ function get_posts($args = null) {
 'meta_value' => '',
 'post_type' => 'post',
 'suppress_filters' => true,
+ 'get_post_meta' => false
);
 $parsed_args = wp_parse_args($args, $defaults);
@@ -2449,7 +2450,20 @@ function get_posts($args = null) {
 $parsed_args['no_found_rows'] = true;

 $get_posts = new WP_Query();
- return $get_posts->query($parsed_args);
+ $get_posts = $get_posts->query($parsed_args);
+
+ if (!empty($parsed_args['get_post_meta'])) {
+ foreach ($get_posts as $post) {
+ $post_meta = [];
+ foreach (get_post_meta($post->ID) as $key => $value) {
+ $post_meta[$key] = $value[0];}
+ $post->meta_data = $post_meta;
+ $get_posts[] = $post;
+ }
+ };
+
+ return $get_posts;
 }

add get_post_meta args to get_posts()

...
function get_posts($args = null) {
 $defaults = array(
 'numberposts' => 5,
 'category' => 0,
 'orderby' => 'date',
 'order' => 'DESC',...
);
 $parsed_args = wp_parse_args($args,
$defaults);
 if (empty($parsed_args['post_status'])) {
 $parsed_args['post_status'] = (
'attachment' === $parsed_args['post_type']) ?
'inherit' : 'publish';
 }
 if (! empty($parsed_args['numberposts'])
&& empty($parsed_args['posts_per_page'])
) {
 $parsed_args['posts_per_page'] =
$parsed_args['numberposts'];
 }
...

CodeAgent Summary

...

Semantic Consistency Analysis

PHP

The provided code requires a comprehensive security review to identify potential vulnerabilities. The analysis should focus on
the following areas:......Based on the provided code, it is difficult to perform a comprehensive security analysis. However, it is
recommended to conduct a thorough security review considering the above points to identify any potential vulnerabilities.

Security Analysis

The format of the code does not align with the writing style and format of the original file. There are inconsistencies in
indentation, spacing, and line breaks. These formatting inconsistencies can impact the overall readability and maintainability of
the project. It is recommended to follow a consistent coding style and use proper indentation and spacing throughout the
codebase.

Format Analysis

1. In the `get_posts` function, the `get_post_meta` argument is not aligned properly with the other arguments.
It should be aligned with the other arguments for better readability.
2. In the `get_posts` function, the `get_posts` variable is overwritten with a new value.
It is recommended to use a different variable name to avoid confusion.
3. In the `get_posts` function, the code block inside the `if` condition can be
simplified by using a dictionary comprehension. Instead of manually iterating
 over `get_post_meta`, you can use a dictionary comprehension to create the `post_meta` dictionary.

Suggestion

PHP

PHP

PHP

Figure 21: Example in Ruby project with sha value: “584f72e7f4c65066ccbd2183af76bf380b6eb974"

11311

02/02/2024, 00:22 codeagent-casestudy

file:///Users/danieltang/Downloads/codeagent-casestudy.drawio (5).html 1/1

Commit Original
File

Commit
Message

The code changes in the commit do not accurately reflect

the description provided in the commit message. The

commit message mentions fixing an issue where

onDismiss() did not get called if Snackbar is swiped, but

the code changes do not address this issue. Instead, the

code changes seem to be related to dismissing the

Snackbar.

@@ -403,7 +403,7 @@ public boolean canDismiss(Object token) {
 @Override
 public void onDismiss(View view, Object token) {
 if (view != null) {
- finish();
+ dismiss(false);
 }}
@@ -512,6 +512,10 @@ private void startTimer(long duration) {
 }
 public void dismiss() {
+ dismiss(mAnimated);
+ }
+
+ private void dismiss(boolean animate) {
 if (mIsDismissing) {
 return;
 }
@@ -522,7 +526,7 @@ public void dismiss() {
 mEventListener.onDismiss(Snackbar.this);
 }
- if (!mAnimated) {
+ if (!animate) {
 finish();
 return;
 }

Fixed issue where onDismiss() did not get called if Snackbar
is swiped.

...
public static Snackbar with(Context context) {
 return new Snackbar(context);
 }

 /**
 * Sets the type of {@link Snackbar} to be displayed.
 *
 * @param type the {@link SnackbarType} of this instance
 * @return
 */
 public Snackbar type(SnackbarType type) {
 mType = type;
 return this;
 }

 /**
 * Sets the text to be displayed in this {@link Snackbar}
...

Semantic Consistency Analysis

Java

No security analysis can be performed as the code is not
provided.

Security Analysis

The format of the code aligns with the writing style and
format of the original file. There are no formatting
inconsistencies that impact the overall readability and
maintainability of the project.

Format Analysis

The highest priority comment is regarding the semantic
consistency between the code changes and the commit
message. The code changes should address the issue
mentioned in the commit message, i.e., fixing the issue
where onDismiss() did not get called if Snackbar is swiped.
To fix this issue, the following changes can be made:

Suggestion

Java

Java

655 lines

CodeAgent-3.5CodeAgent-3.5 CodeAgent-4.0

The commit message states "Fixed issue where onDismiss() did not get called if

Snackbar is swiped." The code changes reflect this accurately. The

`onDismiss()` method has been modified to call `dismiss(false)`, which will

dismiss the Snackbar without animation when it is swiped. A new `dismiss()`

method has also been added which takes a boolean parameter to determine

whether to animate the dismissal or not. The changes in the code are consistent

with the commit message.

Semantic Consistency Analysis

The provided code does not seem to have any security vulnerabilities. It does
not handle any user input directly, so there is no risk of SQL injection, XSS, or
command injection. It does not use any lower-level languages, so buffer
overflows are not a concern. The code does not manage any sensitive data, so
there is no risk of unauthorized access or data breaches. The code does not use
any third-party libraries, so there are no potential vulnerabilities from
dependencies. The code does not have any deprecated functions, hardcoded
sensitive data, or code leakages. However, this is a preliminary analysis and a
more thorough review would be needed to confirm these findings

Security Analysis

The format of the code aligns with the writing style and format of the original
file. The code uses the same indentation, naming conventions, and comment
style as the original file. There are no formatting inconsistencies that would
impact the readability or maintainability of the project.

Format Analysis

The code changes are well-aligned with the rest of the codebase. The new
`dismiss()` method follows the same naming conventions and style as the
existing methods. The changes to the `onDismiss()` method are minimal and
maintain the original structure of the method. No revisions are necessary.

Suggestion

Figure 22: Comparison of code review between CodeAgent-3.5 and CodeAgent-4.0 on one Java project with
sha value: “6e3c6d17d943f5ac70b421653eb167e0c34b119f"

11312

Table 12: Summarizes the average query time
and cost per code review for CodeAgent-3.5 and
CodeAgent-4.

Model Query Time(min) Cost in USD
CodeAgent-3.5 3 0.017
CodeAgent-4 5 0.122

O Tool

We develop a website for CodeAgent, which is
shown in Figure 23, and it is also accessable by
visiting following link:

https://code-agent-new.vercel.
app/index.html

Figure 23: website of CodeAgent

11313

https://code-agent-new.vercel.app/index.html
https://code-agent-new.vercel.app/index.html

