@inproceedings{tang-etal-2024-codeagent,
title = "{C}ode{A}gent: Autonomous Communicative Agents for Code Review",
author = "Tang, Xunzhu and
Kim, Kisub and
Song, Yewei and
Lothritz, Cedric and
Li, Bei and
Ezzini, Saad and
Tian, Haoye and
Klein, Jacques and
Bissyand{\'e}, Tegawend{\'e} F.",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.632/",
doi = "10.18653/v1/2024.emnlp-main.632",
pages = "11279--11313",
abstract = "Code review, which aims at ensuring the overall quality and reliability of software, is a cornerstone of software development. Unfortunately, while crucial, Code review is a labor-intensive process that the research community is looking to automate. Existing automated methods rely on single input-output generative models and thus generally struggle to emulate the collaborative nature of code review. This work introduces CodeAgent, a novel multi-agent Large Language Model (LLM) system for code review automation. CodeAgent incorporates a supervisory agent, QA-Checker, to ensure that all the agents' contributions address the initial review question. We evaluated CodeAgent on critical code review tasks: (1) detect inconsistencies between code changes and commit messages, (2) identify vulnerability introductions, (3) validate code style adherence, and (4) suggest code revisions. The results demonstrate CodeAgent`s effectiveness, contributing to a new state-of-the-art in code review automation. Our data and code are publicly available (\url{https://github.com/Daniel4SE/codeagent})."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tang-etal-2024-codeagent">
<titleInfo>
<title>CodeAgent: Autonomous Communicative Agents for Code Review</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xunzhu</namePart>
<namePart type="family">Tang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kisub</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yewei</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cedric</namePart>
<namePart type="family">Lothritz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bei</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saad</namePart>
<namePart type="family">Ezzini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haoye</namePart>
<namePart type="family">Tian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jacques</namePart>
<namePart type="family">Klein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tegawendé</namePart>
<namePart type="given">F</namePart>
<namePart type="family">Bissyandé</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Code review, which aims at ensuring the overall quality and reliability of software, is a cornerstone of software development. Unfortunately, while crucial, Code review is a labor-intensive process that the research community is looking to automate. Existing automated methods rely on single input-output generative models and thus generally struggle to emulate the collaborative nature of code review. This work introduces CodeAgent, a novel multi-agent Large Language Model (LLM) system for code review automation. CodeAgent incorporates a supervisory agent, QA-Checker, to ensure that all the agents’ contributions address the initial review question. We evaluated CodeAgent on critical code review tasks: (1) detect inconsistencies between code changes and commit messages, (2) identify vulnerability introductions, (3) validate code style adherence, and (4) suggest code revisions. The results demonstrate CodeAgent‘s effectiveness, contributing to a new state-of-the-art in code review automation. Our data and code are publicly available (https://github.com/Daniel4SE/codeagent).</abstract>
<identifier type="citekey">tang-etal-2024-codeagent</identifier>
<identifier type="doi">10.18653/v1/2024.emnlp-main.632</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.632/</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>11279</start>
<end>11313</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CodeAgent: Autonomous Communicative Agents for Code Review
%A Tang, Xunzhu
%A Kim, Kisub
%A Song, Yewei
%A Lothritz, Cedric
%A Li, Bei
%A Ezzini, Saad
%A Tian, Haoye
%A Klein, Jacques
%A Bissyandé, Tegawendé F.
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F tang-etal-2024-codeagent
%X Code review, which aims at ensuring the overall quality and reliability of software, is a cornerstone of software development. Unfortunately, while crucial, Code review is a labor-intensive process that the research community is looking to automate. Existing automated methods rely on single input-output generative models and thus generally struggle to emulate the collaborative nature of code review. This work introduces CodeAgent, a novel multi-agent Large Language Model (LLM) system for code review automation. CodeAgent incorporates a supervisory agent, QA-Checker, to ensure that all the agents’ contributions address the initial review question. We evaluated CodeAgent on critical code review tasks: (1) detect inconsistencies between code changes and commit messages, (2) identify vulnerability introductions, (3) validate code style adherence, and (4) suggest code revisions. The results demonstrate CodeAgent‘s effectiveness, contributing to a new state-of-the-art in code review automation. Our data and code are publicly available (https://github.com/Daniel4SE/codeagent).
%R 10.18653/v1/2024.emnlp-main.632
%U https://aclanthology.org/2024.emnlp-main.632/
%U https://doi.org/10.18653/v1/2024.emnlp-main.632
%P 11279-11313
Markdown (Informal)
[CodeAgent: Autonomous Communicative Agents for Code Review](https://aclanthology.org/2024.emnlp-main.632/) (Tang et al., EMNLP 2024)
ACL
- Xunzhu Tang, Kisub Kim, Yewei Song, Cedric Lothritz, Bei Li, Saad Ezzini, Haoye Tian, Jacques Klein, and Tegawendé F. Bissyandé. 2024. CodeAgent: Autonomous Communicative Agents for Code Review. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 11279–11313, Miami, Florida, USA. Association for Computational Linguistics.