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Abstract

Large language and vision models (LLVMs)
have been driven by the generalization power
of large language models (LLMs) and the
advent of visual instruction tuning. Along
with scaling them up directly, these models
enable LLVMs to showcase powerful vision
language (VL) performances by covering di-
verse tasks via natural language instructions.
However, existing open-source LLVMs that
perform comparably to closed-source LLVMs
such as GPT-4V are often considered too large
(e.g., 26B, 34B, and 110B parameters), hav-
ing a larger number of layers. These large
models demand costly, high-end resources for
both training and inference. To address this
issue, we present a new efficient LLVM fam-
ily with 1.8B, 3.8B, and 7B LLM model sizes,
Traversal of Layers ( TroL), which enables
the reuse of layers in a token-wise manner. This
layer traversing technique simulates the effect
of looking back and retracing the answering
stream while increasing the number of forward
propagation layers without physically adding
more layers. We demonstrate that TroL
employs a simple layer traversing approach
yet efficiently outperforms the open-source
LLVMs with larger model sizes and rivals
the performances of the closed-source LLVMs
with substantial sizes. Code is available in
https://github.com/ByungKwanLee/TroL.

1 Introduction

The great success of closed-source large lan-
guage and vision models (LLVMs) such as GPT-
4V (Achiam et al., 2023), Gemini-Pro (Team et al.,
2023), and Qwen-VL-Plus (Bai et al., 2023) has
prompted the world to build open-source LLVMs
using open-source large language models (LLMs)
and visual instruction tuning (Liu et al., 2023c,b,
2024a). These movements are expected to con-
tribute significantly to both research and industry

x

L(x)

L(x)

L(L(x))

TroL-Mixer

Layer

TroL-Layer

Figure 1: Overview of TroL’s layer traversing

through numerous downstream tasks, such as on-
device chatbot systems.

In order to bootstrap their vision language perfor-
mance, several studies have curated high-quality vi-
sual instruction tuning datasets (Chen et al., 2023b,
2024b) by leveraging the power of closed-source
LLVMs. Further, they have physically increased
the model sizes (McKinzie et al., 2024; Li et al.,
2024b; Liu et al., 2024a) to enhance their capability
to understand complex question-answer pairs.

Following these efforts, there has been a recent
rise in techniques for employing additional mod-
ules: mixed vision encoders (Kar et al., 2024; Lu
et al., 2024; Goncharova et al., 2024; Ranzinger
et al., 2023; Zhao et al., 2024), multiple computer
vision models (Chen et al., 2024a; Wang et al.,
2024b; Jiao et al., 2024; Lee et al., 2024b,c), and
mixtures of experts (MoE) for efficiently scaling
LLVMs to fulfill specific purposes (Lin et al., 2024;
Lee et al., 2024c; Li et al., 2024a,c; Guo et al., 2024;
McKinzie et al., 2024; Li et al., 2024b; Gao et al.,
2024; Sun et al., 2024a). In the end, LLVMs com-
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Figure 2: Performances for efficient LLVM family, TroL, across three model sizes: 1.8B, 3.8B, and 7B

bined with these techniques have shown improved
vision language performances, achieving results
comparable to directly scaled-up LLVMs with 26B,
34B, and 110B model sizes. Additionally, some
approaches have demonstrated performances that
surpass those of the closed-source LLVMs.

However, directly scaling the model size up or
using additional modules may not be considered
a fundamental solution to enlarging learning capa-
bilities regarding complex question-answer pairs.
This is because they physically add a considerable
number of training parameters or borrow richer
knowledge from external modules. In other words,
it remains unexplored how LLVMs with smaller
model sizes can effectively enhance learning capa-
bilities despite their inherent physical limitations.

To address this, simply increasing the image res-
olution size (Li et al., 2023a; Bai et al., 2023; Wang
et al., 2023; Ye et al., 2023b; Hu et al., 2024a) and
dynamically dividing images into sub-parts for hi-
erarchical focus (Liu et al., 2024a; McKinzie et al.,
2024; Xu et al., 2024) may be good candidates
to achieve our purpose without employing any ad-
ditional modules mentioned. Nonetheless, these
strategies are mostly intended to embed rich image
information to further improve overall and fine-
grained image understanding. Hence, we need to
focus on how multimodal LLMs can be enhanced
by themselves. Once more efficient LLMs that
perform comparably to closed-source models are
released publicly, it will mitigate the necessity for
high-end GPUs and accelerate significant advance-
ments in various downstream applications, includ-
ing on-device processing.

Therefore, we present a new efficient LLVM fam-
ily with 1.8B, 3.8B, and 7B model sizes, Traversal
of Layers ( TroL), which enables the reuse of
layers in a token-wise manner. To overcome the
inherent limitations of smaller-sized LLVMs, we

opt to increase the number of forward propagations
rather than physically adding more layers, as is nor-
mally done in scaled-up LLVMs. This technique,
which we call layer traversing, allows LLVMs to
retrace and re-examine the answering stream, akin
to human retrospection and careful thought before
responding with an answer. Figure 1 represents
how the layer traversing technique is practically
implemented in TroL-Layer, where TroL-Mixer
serves as the token-wise mixing operation under
lightweight additional parameters: 49K, 98K, and
131K in total layers. This is a significantly tiny
number compared with the 1.8B, 3.8B, and 7B
model sizes.

To successfully apply layer traversing to LLVMs,
we employ a two-step training process, establishing

TroL. The first step involves training a vision
projector and all TroL-Mixers for each TroL-Layer.
This is a crucial step because it not only aligns vi-
sion and language information but also tunes the
TroL-Mixers with the answering stream in back-
bone multimodal LLMs, thereby facilitating the
use of layer traversing. The second training step
includes further training of these components along
with the backbone multimodal LLMs. To achieve
efficient training, we use Q-LoRA (Dettmers et al.,
2023) training for the backbone multimodal LLMs
under 4/8-bit quantization.

In conducting the two-step training, we demon-
strate that TroL is an efficient model, yet it out-
performs open-source LLVMs with larger model
sizes (e.g., 26B, 34B, 72B, and 110B) and closed-
source LLVMs with a substantially vast amount of
parameters, as illustrated in Figures 2 and 3.

Our contribution can be summarized into two
main aspects:

• We introduce a new efficient LLVM fam-
ily—1.8B, 3.8B, and 7B, Traversal of Layers
( TroL), which enables the reuse of layers,
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Figure 3: Overview of vision language performances compared with the TroL and closed-source LLVMs

simulating the effect of retracing the answer-
ing stream.

• TroL proves its superior effectiveness on
various evaluation benchmarks compared with
substantially sized open- and closed-source
LLVMs without directly scaling up the model
size and without any additional modules.

2 Related Works

Large Language and Vision Models. The cura-
tion of visual instruction tuning datasets (Liu et al.,
2023c,b, 2024a; Dai et al., 2023) has significantly
propelled the rapid development of LLVMs (Chen
et al., 2023a; Bai et al., 2023; Zhu et al., 2023; Li
et al., 2023b; Ye et al., 2023a,b; Chen et al., 2023b;
Contributors, 2023; Zhang et al., 2023; Chen et al.,
2023c, 2024d). Building upon this foundation, re-
cent research has further advanced LLVMs’ ca-
pabilities through two key strategies: scaling up
model sizes and designing specialized instruction
tuning datasets. Firstly, increasing model sizes has
emerged as a prominent approach to enhancing
LLVM performance and capacity. For example,
LLVMs (McKinzie et al., 2024; Li et al., 2024b;
Liu et al., 2024a; Wang et al., 2023; Laurençon
et al., 2023; Sun et al., 2023; Gao et al., 2024; Sun
et al., 2024a) deploy larger architectures and more
parameters to enlarge the representational power
of these models. Moreover, the development of
meticulous instruction tuning datasets (Chen et al.,
2023b; Li et al., 2024b; Hu et al., 2024a; Gao et al.,
2023; Wang et al., 2024a; Yue et al., 2023, 2024)
has played a pivotal role in improving LLVMs for

specific tasks or domains.

Additionally, recent research has explored more
direct approaches to enhance LLVM’s image per-
ception capabilities, either by modifying visual
input and utilizing additional modules. For ex-
ample, Qwen-VL (Bai et al., 2023), CogVLM
(Wang et al., 2023), and mPLUG family (Ye et al.,
2023b; Hu et al., 2024a) increase image resolu-
tion to enrich visual information in LLVMs. More-
over, few approaches (Liu et al., 2024a; McKinzie
et al., 2024; Li et al., 2024b) improve visual tokens
through image partitioning. Additionally, the in-
tegration of additional vision encoders (Kar et al.,
2024; Lu et al., 2024; Goncharova et al., 2024;
Ranzinger et al., 2023; Zhao et al., 2024) and exter-
nal computer vision modules (Chen et al., 2024a;
Wang et al., 2024b; Jiao et al., 2024; Lee et al.,
2024b,c) augment LLVMs’ image perception capa-
bility, thereby enhancing overall performance on
multimodal tasks.

While these lines of works expand the overall
learning capabilities of LLVMs, they do not neces-
sarily enhance the fundamental capacity of LLVMs.
Consequently, there remains a need for further re-
search into the intrinsic mechanisms of LLVMs
without scaling models or leveraging additional
modules. Thus, we introduce a new LLVM family,

TroL, specifically tailored to enhance the learn-
ing capabilities of LLVMs, where layer traversing
is presented to efficiently reuse layers. This ap-
proach simulates the effect of retracing the answer-
ing stream, offering a focused solution to propel
the advancement of LLVMs.
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Figure 4: Overview of two-step training to build an efficient LLVM Family, TroL

Numerous Efficient Approaches. Despite the re-
markable achievements of LLVMs in a short period
of time, closed-source LLVMs require a significant
number of parameters and resources. For that rea-
son, many LLVMs have been exploring methods
to create more efficient models. These methods
aim to reduce the number of parameters or improve
computational efficiency without significantly com-
promising performance. Numerous methods to re-
ducing the number of parameters involve sharing
specific weights within the model (Thawakar et al.,
2024; Lan et al., 2020; Takase and Kiyono, 2023;
Reid et al., 2021), eliminating weights that con-
tribute less to the performance (Sun et al., 2024b;
Ma et al., 2023; Cao et al., 2023; Frantar and Alis-
tarh, 2023; Men et al., 2024), and employing quan-
tization techniques (Shao et al., 2024a; Li et al.,
2023f; Park et al., 2024a).

These efforts primarily focus on reducing in-
ference time or accelerating training speed while
maintaining performance, rather than fundamen-
tally improving it. In contrast, TroL aims to effi-
ciently enhance the learning capabilities of LLVMs
in understanding complex question-answer pairs.

3 TroL: Traversal of Layers

Model Architecture. As illustrated in Figure 4,
TroL is composed of a vision encoder, a vision

projector, and a backbone multimodal large lan-
guage model (MLLM) based on a pre-trained LLM.
We utilize CLIP-L (Radford et al., 2021) and In-
ternViT (Chen et al., 2023c) for the vision encoder,
which are text-aligned vision encoders based on

image-text contrastive learning with a small text
encoder (CLIP) and QLLaMA-8B (Cui et al., 2023)
(InternViT), respectively. For the vision projector,
we employ two fully-connected layers with the
GELU activation function (Hendrycks and Gimpel,
2016). As for the backbone multimodal LLM, we
use Phi-3-mini (Abdin et al., 2024) with a 3.8B
model size, and InternLM2 (Team, 2023; Cai et al.,
2024) with 1.8B and 7B model sizes. 3.3T and
2T tokens are used during the pre-training of these
LLMs, respectively.

Visual Instruction Tuning Dataset. We gather
a wide range of visual instruction tuning datasets
requiring diverse capabilities such as fundamen-
tal image understanding, common-sense knowl-
edge, non-object concepts (e.g., charts, diagrams,
documents, signs, symbols), math problems, and
their integrated capabilities. This is because we
aim to make TroL encompass diverse capa-
bilities for vision language tasks despite its ef-
ficient model size. To balance the dataset sam-
ples across numerous capabilities, we selectively
choose samples from existing visual instruction tun-
ing datasets: ShareGPT4V-Caption/Instruct (Chen
et al., 2023b), ALLaV4V-Text (Chen et al., 2024b),
MiniGemini-Instruct (Li et al., 2024b), Doc-
Downstream/Reason (Hu et al., 2024a), GLLaVA-
Align/Instruct (Gao et al., 2023), and Math-
Vision/Instruct/Plus (Wang et al., 2024a; Yue et al.,
2023, 2024). In summary, we collect 899K real-
world image/text-only samples, 627K samples for
documents, charts, diagrams, signs, and symbols,
and 747K math samples (180.5K with images and
566.8K text-only). Overall, the number of visual
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LLVMs Q-Bench SQAI AI2D ChartQA SEEDI POPE HallB MME MathVista MMB MMBCN MM-Vet LLaVAW

BLIP2-13B (Li et al., 2023d) - 61.0 - - 46.4 85.3 - 1584 - - - 22.4 -
InstructBLIP-7B (Dai et al., 2023) 56.7 60.5 - - 53.4 - 53.6 - 25.3 36.0 23.9 26.2 -
InstructBLIP-13B (Dai et al., 2023) - 63.1 - - - 78.9 - - - 33.9 - 25.6 -
IDEFICS-9B (Laurençon et al., 2023) 51.5 - - - - 74.6 - 1353 19.8 48.2 25.2 23.7 -
Qwen-VL-7B (Bai et al., 2023) 59.4 67.1 - - - - - - - 38.2 7.4 - -
Qwen-VL-Chat-7B (Bai et al., 2023) 33.8 68.2 - - 58.2 - 56.4 1849 - 60.6 56.7 47.3 -
MiniGPT-4-7B (Zhu et al., 2023) 51.8 - - - - - - - 23.1 23.0 11.9 22.1 -
Otter-7B (Li et al., 2023b) 47.2 - - - - 72.5 - 1599 19.7 48.3 - 24.7 -
UIO-2-XXL-6.8B (Lu et al., 2023a) - 86.2 - - 61.8 87.7 - - - 71.5 - - -
LLaVA-7B (Liu et al., 2023c) - 38.5 - - - 80.2 44.1 1055 - 34.1 14.1 26.7 -
LLaVA1.5-7B (Liu et al., 2023b) 60.1 66.8 - - 58.6 85.9 - 1805 - 64.3 58.3 30.5 63.4
LLaVA1.5-13B (Liu et al., 2023b) 61.4 71.6 54.8 18.2 61.6 85.9 46.7 1826 27.6 67.7 63.6 35.4 -
mPLUG-Owl-7B (Ye et al., 2023a) 58.9 - - - - - - - 22.2 46.6 - - -
mPLUG-Owl2-7B (Ye et al., 2023b) 62.9 68.7 - - - - - - 64.5 60.3 36.2 -
ShareGPT4V-7B (Chen et al., 2023b) 63.4 68.4 - - 69.7 - 49.8 1944 25.8 68.8 62.2 37.6 -
InternLM-XC-7B (Zhang et al., 2023) 64.4 - - - 66.1 - 57.0 1919 29.5 74.4 72.4 35.2 -
Monkey-10B (Li et al., 2023g) - 69.4 - - 68.9 - 58.4 1924 34.8 72.4 67.5 33.0 -
VILA-7B (Lin et al., 2023b) - 68.2 - - 61.1 85.5 - - - 68.9 61.7 34.9 -
VILA-13B (Lin et al., 2023b) - 73.7 - - 62.8 84.2 - - - 70.3 64.3 38.8 -
SPHINX-7B (Lin et al., 2023c) - 70.6 - - 71.6 86.9 - 1797 27.8 65.9 57.9 40.2 -
SPHINX-MoE-7B×8 (Gao et al., 2024) 66.2 70.6 - - 73.0 89.6 - 1852 42.7 71.3 - 40.9 -
SPHINX-Plus-13B (Gao et al., 2024) 66.2 70.6 - - 74.8 89.1 52.1 1741 36.8 71.0 - 47.9 -
LLaVA-NeXT-7B (Liu et al., 2024a) - 70.1 - - 70.2 86.5 - 1851 34.6 69.6 63.3 43.9 72.3
LLaVA-NeXT-8B (Liu et al., 2024a) - - 71.6 69.5 - - - 1972 37.5 72.1 - - 80.1
LLaVA-NeXT-13B (Liu et al., 2024a) - 73.6 70.0 62.2 72.2 86.7 - 1892 35.1 70.0 68.5 47.3 72.3
MM1-7B (McKinzie et al., 2024) - 72.6 - - 69.9 86.6 - 1858 35.9 72.3 - 42.1 -
MM1-MoE-7B×32 (McKinzie et al., 2024) - 74.4 - - 70.9 87.8 - 1992 40.9 72.7 - 45.2 -
MiniGemini-HD-7B (Li et al., 2024b) - - - - - - - 1865 32.2 65.8 - 41.3 -
MiniGemini-HD-13B (Li et al., 2024b) - - - - - - - 1917 37.0 68.6 - 50.5 -

TroL-7B 73.6 92.8 78.5 71.2 75.3 87.8 65.3 2308 51.8 83.5 81.2 54.7 92.8

Table 1: Comparison with the current existing standard model size open-source LLVMs, evaluating vision language
performances of TroL on numerous evaluation benchmarks: Q-Bench (Wu et al., 2023), SQAI (Lu et al.,
2022), AI2D (Kembhavi et al., 2016), ChartQA (Masry et al., 2022), SEEDI (Li et al., 2023c), POPE (Li et al.,
2023e), HallB (Liu et al., 2023a), MME (Fu et al., 2023), MathVista (Lu et al., 2023b), MMB (Liu et al., 2023d),
MMBCN (Liu et al., 2023d), MM-Vet (Yu et al., 2023), and LLaVAW (Liu et al., 2023c). Note that, LLaVAW is
newly evaluated with GPT-4-0613 because the original evaluator GPT-4-0314 is deprecated.

L(x) L(L(x))

TroL-Mixer

TroL
Gating

L(L(x))w⊙L(x)(1-w)⊙ +

Figure 5: Overview of mix operation in TroL-Mixer

instruction tuning samples we used to build TroL
totals 2.3M samples.

Layer Traversing. To effectively enlarge learn-
ing capabilities with smaller sized LLVMs, we in-
troduce a layer traversing technique that allows the
reuse of layers. As described in Figure 1, once
the input token x ∈ RN×D (i.e., vision language
features), where N denotes the number of tokens
and D denotes the hidden dimension of a layer,
is given, then a layer normally outputs L(x) from
the input token. Layer traversing makes the out-

put of the layer forward in the equal layer once
again: L(L(x)). Subsequently, the outputs L(x)
and L(L(x)) from the equal layer get mixed to fur-
ther improve the vision language features by them-
selves. Here, we present TroL-Mixer that provides
a mixing operation with L(x) and L(L(x)), where
TroL Gating is introduced to determine how much
reused vision language feature L(L(x)) is needed
for the next layer, by looking at the feature status
of the first propagation output L(x). More specifi-
cally, the output L(x) is propagated into the TroL
Gating and it produces a mixing ratio w ∈ RN for
each token. It is used for token-wise multiplication
⊙ with L(x) and L(L(x)). Finally, the mixed out-
put (1 − w) ⊙ L(x) + w ⊙ L(L(x)) in Figure 5
is used to propagate to the next layer and it is con-
tinually operated as it goes layers. By doing this,
we expect the layer traversing to stimulate the ef-
fect of retracing and looking back at the answering
stream once again, thereby enlarging the learning
capabilities by nature.

Training Strategy. TroL-Layer is applied to
backbone multimodal LLMs described in Figure 1
and 4 for application to layer traversing technique.
Thereafter, we conduct a two-step training pro-
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LLVMs Q-Bench SQAI AI2D ChartQA SEEDI POPE HallB MME MathVista MMB MMBCN MM-Vet LLaVAW

UIO-2-XL-3.2B (Lu et al., 2023a) - 87.4 - - 60.2 87.2 - - - 68.1 - - -
Gemini Nano-2-3.2B (Team et al., 2023) - - - - - - - - 30.6 - - - -
MobileVLM-3B (Chu et al., 2023) - 61.2 - - - 84.9 - - - 59.6 - - -
MobileVLM-V2-3B (Chu et al., 2024) - 70.0 - - - 84.7 - - - 63.2 - - -
MoE-LLaVA-2.7B×4 (Lin et al., 2024) - 70.3 - - - 85.7 - - - 68.0 - 35.9 -
LLaVA-Phi-2.7B (Zhu et al., 2024) - 68.4 - - - 85.0 - - - 59.8 - 28.9 -
Imp-v1-3B (Shao et al., 2024b) - 70.0 - - - 88.0 - - - 66.5 - 33.1 -
TinyLLaVA-3.1B (Zhou et al., 2024) - 69.1 - - - 86.4 - - - 66.9 - 32.0 -
TinyLLaVA-Sig-Phi-3.1B (Zhou et al., 2024) - 69.1 - - - 86.4 - - - 66.9 - 32.0 -
Bunny-3B (He et al., 2024) - 70.9 38.2 - 62.5 86.8 - 1778 - 68.6 - - -
MiniCPM-2.4B (Hu et al., 2024b) - - 56.3 - - - - 1650 28.9 64.1 62.6 31.1 -
MiniCPM-V2-2.8B (Hu et al., 2024b) - - 62.9 - - - - 1809 38.7 69.1 66.5 41.0 -
MM1-3B (McKinzie et al., 2024) - 69.4 - - 68.8 87.4 - 1762 32.0 67.8 - 43.7 -
MM1-MoE-3B×64 (McKinzie et al., 2024) - 76.1 - - 69.4 87.6 - 1773 32.6 70.8 - 42.2 -
ALLaVA-3B (Chen et al., 2024b) - - - - 65.2 - - 1623 - 64.0 - 32.2 -
ALLaVA-3B-Longer (Chen et al., 2024b) - - - - 65.6 - - 1564 - 64.6 - 35.5 -

TroL-3.8B 70.0 90.8 73.6 73.8 70.5 86.5 62.2 1980 55.1 79.2 77.1 51.1 76.6

UIO-2-L-1.1B (Lu et al., 2023a) - 78.6 - - 51.1 77.8 - - - 62.1 - - -
MobileVLM-1.7B (Chu et al., 2023) - 57.3 - - - 84.5 - - - 53.2 - - -
MobileVLM-V2-1.7B (Chu et al., 2024) - 66.7 - - - 84.3 - - - 57.7 - - -
DeepSeek-VL-1.3B (Lu et al., 2024) - - - - 66.7 87.6 - - 31.1 64.6 62.9 34.8 -
Mini-Gemini-2B (Li et al., 2024b) - - - - - - - 1653 29.4 59.8 - - -
MoE-LLaVA-1.8B×4 (Lin et al., 2024) - 63.1 - - - 87.0 - - - 59.7 - 25.3 -

TroL-1.8B 68.2 87.5 68.9 64.0 69.0 88.6 60.1 2038 45.4 76.1 74.1 45.1 69.7

Table 2: Comparison with the current existing smaller open-source LLVMs across 1B∼4B model sizes, evaluating
vision language performances of TroL on numerous evaluation benchmarks equally used in Table 1. Note that,
the compared baselines were not validated on Q-Bench, ChartQA, HallB, and LLaVAW, but we measure their
performances to compare with the baselines mentioned in Table 1.

cess to effectively implement layer traversing using
LLVMs, creating a new efficient LLVM family
named TroL. In the first training step, we focus
on training a vision projector and all TroL-Mixers
for every TroL-Layer. This step is essential as
it aligns vision and language information while
synchronizing the TroL-Mixers with the response
stream in the backbone multimodal LLMs, thus fa-
cilitating the understanding of layer traversing oper-
ation. The subsequent second training step involves
additional training of these elements alongside the
backbone multimodal LLMs together.

4 Experiment

Implementation Detail. To ensure successful re-
producibility, we present four key technical aspects
of TroL: the detailed structure of (a) backbone
multimodal LLMs, (b) vision encoder, vision pro-
jectors, TroL Gating. In addition, the detailed pro-
cedures of (c) training and inference are described.

(a) For backbone multimodal LLMs, we em-
ploy Phi-3-mini (Abdin et al., 2024) and In-
ternLM2 (Team, 2023; Cai et al., 2024), where
Phi-3-mini 3.8B model consists of 32 layers with
hidden dimension of 3072, while InternLM2-1.8B
| 7B features 24 | 32 layers with hidden dimension
of 2048 | 4096, respectively.

(b) We use CLIP-L (Radford et al., 2021) and
InternViT (Chen et al., 2023c) as vision encoders,

each comprising 428M | 300M parameters, with
24 layers and hidden dimension of 1024. When
investigating best structural combination, we con-
sider CLIP-L for 1.8B and 7B model and consider
InternViT for 3.8B model. The vision projector
consists of an MLP that adjusts the hidden dimen-
sion from 1024 to 2048 | 3072 | 4096 to match
the hidden dimension of backbone multimodal
LLMs. This MLP contains two fully-connected
layers with GELU activation (Hendrycks and Gim-
pel, 2016). TroL Gating employs a single fully-
connected layer that converts the hidden dimension
from 2048 | 3072 | 4096 to 1, resulting in a to-
tal of 2048 × 24 =49K, 3072 × 32 =98K, and
4096 × 32 =131K parameters for TroL Gating
each, which are minimal compared to the 1.8B,
3.8B, and 7B model sizes.

(c) The training and evaluation of TroL are
conducted in a computing environment with
8×NVIDIA Tesla A100 80GB and 8×NVIDIA
RTX A6000 48GB, each. To optimize the train-
ing process, we use one epoch of training for each
step under 4/8-bit quantization and bfloat16 data
type (Kalamkar et al., 2019) for each backbone
multimodal LLM: TroL-1.8B (4-bit), TroL-
3.8B (8-bit), and TroL-7B (4-bit). The 4-bit
quantization employs double quantization and nor-
malized float 4-bit (nf4)(Dettmers et al., 2023). Ad-
ditionally, QLoRA (Hu et al., 2021; Dettmers et al.,
2023) is used to train the multimodal LLMs with
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Benchmarks OmniFusion-7B DeepSeek-VL-7B MoVA-7B ASMv2-7B LAF-7B CoLLaVO-7B MoAI-7B TroL-1.8B TroL-3.8B TroL-7B

POPE 87.2 88.1 88.6 86.3 88.8 87.2 87.1 88.6 86.5 87.8
SQA-IMG 69.2 57.7 74.4 87.1 - 80.7 83.5 87.5 90.8 92.8
LLaVA-W - - - 78.9 - 69.5 71.9 69.7 76.6 92.8
MM-Vet 39.4 41.5 - 41.3 38.9 40.3 43.7 45.1 51.1 54.7
MMStar - - - - - 42.1 48.7 45.5 46.5 51.3

(a) Comparison with LLVMs using additional modules: OmniFusion (Goncharova et al., 2024), DeepSeek-VL (Lu
et al., 2024), MoVA (Kar et al., 2024), ASMv2 (Wang et al., 2024b), LAF (Jiao et al., 2024), CoLLaVO (Lee et al.,
2024b), and MoAI (Lee et al., 2024c)

LLVMs Recognition OCR Knowledge Language Generation Spatial Awareness Math Problems Avg

CoLLaVO-7B (Lee et al., 2024b) 45.6 31.1 29.8 30.2 37.9 5.8 41.0
MoAI-7B (Lee et al., 2024c) 48.3 34.8 33.5 33.0 39.7 7.7 43.7

TroL-1.8B 42.0 48.2 31.9 29.0 47.1 41.2 45.1
TroL-3.8B 45.7 56.6 37.0 40.6 56.5 48.1 51.1
TroL-7B 54.2 54.6 42.4 49.3 52.7 53.8 54.7

(b) Evaluating sub-benchmark in MM-Vet (Yu et al., 2023) with LLVMs utilizing computer vision models
LLVMs CP FP IR LR ST MA Avg

Yi-VL-34B (Young et al., 2024) 53.2 31.2 52.0 32.4 12.4 35.2 36.1
CogVLM-Chat-17B (Wang et al., 2023) 66.8 36.8 49.2 31.2 23.6 11.6 36.5
SPHINX-MoE-7B×8 (Gao et al., 2024) 58.4 40.8 47.6 35.2 19.2 32.0 38.9
InternVL1.2-40B (Chen et al., 2023c) 67.6 43.2 61.2 47.2 24.0 19.2 43.7
LLaVA-NeXT-34B (Liu et al., 2024a) 66.4 52.0 62.4 46.0 32.4 53.6 52.1

TroL-1.8B 63.2 41.6 59.2 47.2 30.0 31.6 45.5
TroL-3.8B 61.2 40.0 54.0 43.2 31.2 49.6 46.5
TroL-7B 69.2 47.6 65.6 45.2 37.2 42.8 51.3

(c) MMStar (Chen et al., 2024c)

LLVMs TD TL TO VI VD VO Avg

G-LLaVA-7B (Gao et al., 2023) 20.9 20.7 21.1 17.2 16.4 9.4 16.6
LLaVA-NeXT-13B (Liu et al., 2024a) 12.8 12.0 9.9 10.7 9.7 6.3 10.3
ShareGPT4V-13B (Chen et al., 2023b) 16.2 16.2 6.6 15.5 13.8 3.7 13.1
SPHINX-Plus-13B (Gao et al., 2024) 13.9 11.6 14.9 11.6 13.5 10.4 12.2
SPHINX-MoE-7B×8 (Gao et al., 2024) 26.2 17.4 26.7 16.7 12.5 11.1 16.8

TroL-1.8B 26.1 26.5 25.5 25.6 25.6 14.8 24.0
TroL-3.8B 42.3 38.8 40.6 35.5 35.9 21.4 35.8
TroL-7B 37.8 34.1 36.9 32.1 32.1 19.5 32.1

(d) MathVerse (Zhang et al., 2024)

LLVMs
Website Element Action

Average
Caption WebQA HeadOCR OCR Ground Prediction Ground

InstrcutBLIP-13B (Dai et al., 2023) 11.6 5.2 7.6 6.0 11.4 11.4 17.5 10.1
Yi-VL-6B (Young et al., 2024) 8.0 14.3 43.8 3.5 16.2 13.9 13.6 16.2
LLaVA1.5-7B (Liu et al., 2023b) 15.3 13.2 41.0 5.7 12.1 17.8 13.6 17.0
LLaVA1.5-13B (Liu et al., 2023b) 20.0 16.2 41.1 11.8 15.0 22.8 8.7 19.4
CogVLM-17B (Wang et al., 2023) 16.6 30.6 65.9 10.0 17.7 11.7 23.3 25.1
VILA-13B (Lin et al., 2023b) 12.7 28.8 67.9 12.6 16.5 36.3 16.5 27.3
DeepSeek-VL-7B (Lu et al., 2024) 18.1 30.0 63.4 18.1 16.2 35.2 15.5 28.1
LLaVA-NeXT-7B (Liu et al., 2024a) 27.0 39.8 57.3 54.8 31.7 30.6 10.7 36.0
LLaVA-NeXT-13B (Liu et al., 2024a) 26.5 44.5 52.8 56.1 31.7 48.4 15.5 39.4
LLaVA-NeXT-34B (Liu et al., 2024a) 24.3 48.2 67.1 71.9 43.1 74.0 25.2 50.5

TroL-1.8B 14.2 38.3 58.5 29.5 24.7 14.2 29.1 29.8
TroL-3.8B 22.5 65.3 70.2 63.0 69.7 20.3 39.8 50.1
TroL-7B 23.6 44.7 74.4 38.6 40.9 16.0 32.3 38.6

(e) Evaluating sub-benchmark in VisualWebBench (Liu et al., 2024b) with numerous open-source LLVMs.
Table 3: Detailed comparison of TroL across challenging evaluation benchmarks. Note that, the sub-benchmark
category names in (c) and (d) are represented in Appendix A. Note that, Phi-3-mini (Abdin et al., 2024) built in
TroL-3.8B has shown excellent benefits for understanding web pages and solving human-level math problems.

64 rank and 64 alpha parameters. We apply the
AdamW optimizer (Loshchilov and Hutter, 2019)
and use cosine annealing to schedule the learning
rate from 1e-4 to 1e-6 in each training step. We
also utilize gradient checkpointing (Sohoni et al.,
2019) for efficient memory usage. With a gradient
accumulation of 6, batch sizes are totally set to 768
for each training step, and each step takes approx-
imately one to three days according to the model
sizes. For efficient inference, we validate TroL
under the same quantization bit during training,
and we employ deterministic beam search (Freitag
and Al-Onaizan, 2017) (n = 5) for text generation.
Moreover, in inference, we apply layer traversing
technique only to the user questions in order to

avoid dramatically increased inference time. Note
that, TroL is implemented on the efficient prop-
agation, FlashAttention2 (Dao et al., 2022; Dao,
2023) for speed-up attention computation.

Validation on Evaluation Benchmarks. We
have demonstrated super vision language perfor-
mances of TroL, despite its limited model size,
as depicted in Table 1, Table 2, and Table 3. This
is attributed to the enhanced learning capabilities
by layer traversing. Furthermore, Table 4 have
shown several ablation studies to clearly corrobo-
rate the effectiveness of TroL in light of seven
factors: (a) backbone pre-trained LLMs, (b) the use
of layer traversing, (c) the structure of TroL Gating,
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LLMs Param MMStar MM-Vet

Gemma 2B 44.6 42.8
InternLM2 1.8B 45.5 45.1
Qwen1.5 4B 45.5 49.9
Phi-3-mini 3.8B 46.5 51.1
Mistral 7B 49.7 53.2
InternLM2 7B 51.3 54.7

(a) Backbone pre-trained LLMs

Operation MMStar MM-Vet

(1− w)⊙ L(x) 40.8 45.4
w ⊙ L(L(x)) 44.3 48.1
Random w 40.3 37.0
Uniform w 41.4 46.3
Learnable w 46.7 49.9
Figure 5 51.3 54.7

(d) Mixing operation

Family Lay-Trav MMStar MM-Vet

TroL-1.8B ✗ 36.0 34.6
TroL-1.8B ✓ 45.5 45.1

TroL-3.8B ✗ 37.4 43.5
TroL-3.8B ✓ 46.5 51.1

TroL-7B ✗ 41.2 45.8
TroL-7B ✓ 51.3 54.7

(b) Use of layer traversing

Percent MMStar MM-Vet

10% 39.9 41.5
30% 46.3 48.2
50% 50.8 54.0
70% 51.2 54.4
90% 51.3 54.6
100% 51.3 54.7

(e) Training percentage

Structure Param MMStar MM-Vet

PR ×2 13B 52.3 57.4
PR 6B 52.2 57.1
MHA×2 + FC 5B 51.8 56.8
MHA + FC 2B 51.7 56.6
FC×2 537M 51.3 54.8
FC 131K 51.3 54.7

(c) TroL Gating

LLVMs VRAM Time Ratio

InternLM2-1.8B 6GB 1.0
+CLIP-L (Image Tokens) +1GB 1.1
+Layer Traversing +1GB 1.3

Phi-3-mini-3.8B 7GB 1.0
+InternViT (Image Tokens) +1GB 1.2
+Layer Traversing +1GB 1.4

(f) Inference speed

Table 4: Ablation studies to identify the effectiveness of TroL by controlling the six main factors.
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Figure 6: Visualization of layer traversing activated degree in each layer where mixing ratios of w in token-wise
manner are shown as the colors in color bar. To clearly discriminate where the layer traversing mostly occurs, they
are applied to min-max normalization in each layer. (i.e., The brighter they are, the more layer traversing happens)

(d) mixing operation of TroL-Mixer, (e) training
percentage of visual instruction tuning, and (f) ra-
tio of measured time for inference speed. Note
that, in Table 4(c), ‘FC’ denotes a fully-connected
layer, and ‘MHA’ denotes a multi-head attention
block, and ‘PR’ denotes the structure of Perceiver
Resampler (Alayrac et al., 2022). Through the
ablation, we consider the efficiency of the model
structure and performance on vision language tasks
to build the current architectures of TroL, includ-
ing the pre-trained LLM, TroL Gating architecture,
and the TroL-Mixer operation. Additionally, layer
traversing focusing on user’s questions during in-
ference makes text generation speed comparable to
the baselines we used for pre-trained LLM. Note
that, all descriptions of the evaluation benchmarks
used in this paper are explained in Appendix A,
and we show diverse samples for TroL’s text
generation quality in Appendix B. In addition, Ap-
pendix C provides further ablation studies to check
more various factors.

5 Discussion and Conclusion

A new LLVM family, TroL, has demonstrated
significant advancements in vision language per-

formance despite its inherent limitation of having
smaller layers compared to larger model sizes in
both open- and closed-source LLVMs. Table 3 sug-
gests that reusing layers through layer traversing
can be an effective alternative to incorporating ad-
ditional modules. We expect TroL to remain an
efficient option in the rapidly evolving field, solidi-
fying its place in the landscape of efficient LLVMs.

Interestingly, when analyzing all mixing ratios
for each layer, we observed in Figure 6 that the
layer traversing event of looking back and retracing
the answering stream mostly occurs in shallower
layers, while the deeper layers are not involved in
traversing. This suggests that recursively enhanc-
ing vision language features continues until they
are fully matured; once matured, no need for any-
more. Further, we plan to explore further methods
in the shallower and deeper layers, which signif-
icantly enhance learning capabilities by virtually
increasing the hidden dimension without physically
enlarging it. We believe this approach, combined
with layer traversing, could be one of the crucial
keys serving as efficient LLVMs, potentially pro-
pelling TroL to the forefront within 1∼3B.
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6 Limitations

TroL, like several other LLVMs, naturally
faces the challenge of the training computational
burden. For building TroL, we used high-
end GPUs (8×NVIDIA Tesla A100 80GB) and
take at most three days in training despite us-
ing them. Practically, this challenge might be
mitigated using numerous optimization tools and
techniques (Xue et al., 2024), such as PagedAt-
tention (Kwon et al., 2023), ChunkAttention (Ye
et al., 2024), optimized CUDA kernel & HIP graph,
GPTQ (Frantar et al., 2022), AWQ (Lin et al.,
2023a), SqueezeLLM (Kim et al., 2023c), dynamic
KV cache, FP8 KV cache, and prefix caching.
However, these techniques mentioned tend to be
more applicable during the inference phase. There-
fore, advanced techniques beyond quantization for
reducing the training computational burden should
be further developed to enable the AI community
to handle large models more effectively. Beyond
that, we expect TroL to be equipped with numer-
ous bootstrapping methods (Lee, 2020; Lee et al.,
2021; Kim et al., 2021; Lee et al., 2022; Kim et al.,
2023b; Lee et al., 2023; Kim et al., 2023a,d; Lee
et al., 2024a; Park et al., 2024c,b; Kim et al., 2024),
providing a wide range of variations for both gen-
eral and specific tasks.
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2024b; Hu et al., 2024a; Gao et al., 2023; Wang
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foster trust and integrity within AI community.
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A Evaluation Benchmarks

• Q-Bench (Wu et al., 2023) is designed to evaluate the low-level visual abilities of Multi-modality
Large Language Models (MLLMs). It is segmented into three primary categories: perception,
description, and assessment. The perception section focuses on the ability of MLLMs to identify and
interpret basic image attributes. The description section checks the precision and completeness of
how MLLMs can articulate these attributes. The assessment section measures the extent to which
MLLMs’ evaluations of image quality match human judgments. The dataset contains a total of
81,284 samples.

• SQA-IMG (SQAI) (Lu et al., 2022) is part of the broader ScienceQA (SQA) dataset, which aims
to improve reasoning and interpretability in AI systems through science-based question answering.
This dataset covers a wide range of science disciplines, featuring 26 different topics in natural, social,
and language sciences, all accompanied by annotated answers, lectures, and explanations. SQA-IMG
includes image-related samples, amounting to 10,332 question-answer pairs.

• AI2D (Kembhavi et al., 2016) or AI2 Diagrams, addresses diagram interpretation and reasoning
challenges, focusing on syntactic parsing and semantic understanding. It supports research into
diagram structure and element relationships, critical for tasks like diagram-based question answering.
This collection includes over 5,000 diagrams from elementary science topics, along with over 15,000
multiple-choice questions.

• ChartQA (Masry et al., 2022) develops to challenge and improve question answering systems that
deal with data visualizations like bar charts, line charts, and pie charts. This dataset tests systems
on questions requiring arithmetic and logical reasoning and includes both human-generated and
machine-created question-answer pairs. It comprises 32,719 samples in total.

• SEED-IMG (SEEDI) (Li et al., 2023c), a subset of SEED-Bench, evaluates the generative compre-
hension skills of multimodal large language models (MLLMs) with a focus on spatial and temporal
understanding. It offers several subsets mapped to 12 evaluation dimensions across image and video
modalities, with SEED-IMG specifically concentrating on images.

• POPE (Li et al., 2023e) introduces a method to systematically assess the tendency of LLVMs
to falsely generate nonexistent objects in images. This method turns the evaluation into a binary
classification task using polling questions, providing a fair and adaptable approach.

• HallusionBench (HallB) (Liu et al., 2023a) is crafted to evaluate and explore visual illusions and
knowledge hallucinations in large language and vision models (LLVMs). This benchmark uses
carefully crafted example pairs to identify model failures, featuring diverse visual-question pairs
including subsets focused on illusions, math, charts, tables, maps, and OCR. It includes 346 images
and 1,129 questions.

• MME (Fu et al., 2023) serves as a comprehensive evaluation framework for Multimodal Large
Language Models (MLLMs), focusing on various perception and cognition tasks through 14 sub-
tasks like coarse and fine-grained recognition, OCR, and commonsense reasoning. This benchmark
aims to address existing evaluation gaps and ensures a thorough testing environment for MLLMs.

• MathVista (Lu et al., 2023b) is an extensive benchmark designed to test visual-based mathematical
reasoning in AI models. It integrates visual understanding in evaluating models’ abilities to solve
math problems that involve visuals. The dataset consists of three subsets: IQTest, FunctionQA, and
PaperQA, totaling 6,141 examples.

• MMB, MMB-Chinese (MMBCN) (Liu et al., 2023d) aims to establish a robust evaluation standard
for vision language models by covering a broad spectrum of necessary multimodal comprehension
skills (20 fine-grained abilities) in both English and Chinese. This benchmark consists of 3,217
questions gathered from various sources to challenge different facets of LLVMs.
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• MM-Vet (Yu et al., 2023) is designed to systematically evaluate LMMs on complex tasks requiring
multiple vision language (VL) capabilities. It tests recognition, knowledge, OCR, spatial awareness,
language generation, and math, integrating these abilities into 16 different task combinations. The
dataset includes 200 images and 218 questions, each requiring the integration of multiple capabilities.

• LLaVA Bench in the Wild (LLaVAW) (Liu et al., 2023c) assesses large multimodal models (LMM)
on complex tasks and new domains through a collection of 24 images with 60 questions. This
dataset features diverse settings, including indoor, outdoor, artworks, and memes, with each image
accompanied by detailed descriptions and curated questions.

• MMStar (Chen et al., 2024c) is crafted to precisely evaluate the true multimodal capabilities of
LLVMs by ensuring that each sample critically relies on visual content for accurate answers while
minimizing data leakage. It comprises 1,500 meticulously selected samples and is organized into six
primary sub-benchmarks as follows:

– Coarse perception (CP), which pertains to the ability to grasp and interpret the overarching
features and themes of an image without focusing on minute details,

– Fine-grained perception (FP), which denotes a detailed level of image comprehension that
emphasizes the intricate and nuanced aspects of visual content,

– Instance reasoning (IR), which encompasses advanced cognitive abilities aimed at understand-
ing and interpreting individual and collective object attributes and their interrelations within an
image,

– Logical reasoning (LR), which involves a sophisticated framework of cognitive processes
designed to interpret, deduce, and infer conclusions from visual content through a structured
approach to logic and reasoning,

– Science & technology (ST), which includes a comprehensive framework for the application
and integration of knowledge across a wide range of scientific and technological domains,

– Math (MA), which is a fundamental pillar of logical and analytical reasoning and includes a
broad spectrum of skills essential for understanding, applying, and interpreting quantitative and
spatial information.

• MathVerse (Zhang et al., 2024) assesses the capabilities of Multi-modal Large Language Models
(MLLMs) in visual mathematical reasoning, particularly their ability to understand visual diagrams
and mathematical expressions. This dataset is categorized into three primary areas: plane geom-
etry, solid geometry, and functions, and further detailed into twelve types like length and area,
encompassing 2,612 visual mathematical challenges.

To investigate how MLLMs process visual diagrams in mathematical reasoning, the creators of
MathVerse developed six distinct versions of each problem, each version presenting different levels
of multi-modal information. They initially established three specific classifications for the text
content within the problems:

– Descriptive Information, which includes content that is directly visible and explicitly depicted
in the diagrams,

– Implicit Property, which encompasses details that demand a more advanced visual perception
yet less mathematical knowledge to interpret from the diagram,

– Essential Condition, which pertains to crucial numerical or algebraic data necessary for solving
the problem that cannot be inferred solely from the visual diagram.

Based on these categories, to thoroughly assess the true visual understanding capabilities of MLLMs
and their utility in multi-modal mathematical contexts, the researchers created six versions or
sub-benchmarks of each problem in MathVerse, described as follows:

– Text dominant (TD) version, which preserves all textual elements, including the three textual
categories and the main question, prompting MLLMs to primarily depend on textual information.
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– Text lite (TL) version reduces the Descriptive Information from the Text dominant version,
promoting reliance on the diagram for elementary data.

– Text only (TO) version removes the visual elements entirely, focusing on textual content to
discern where MLLMs predominantly derive contextual information for problem solving.

– Vision intensive (VI) further excludes Implicit Property from the Text lite version, urging
MLLMs to intensify their visual analysis to gather essential cues for mathematical reasoning.

– Vision dominant (VD), evolving from the Text lite version, omits Essential Condition from the
textual information and instead visually annotates these details in diagrams, compelling MLLMs
to identify and accurately link these essential conditions solely through visual examination.

– Vision only (VO) eliminates all textual descriptions, presenting the problem exclusively through
visual means and challenging MLLMs to decode and identify mathematical queries purely
based on visual data, serving as the ultimate test of their visual reasoning skills in mathematics.

• VisualWebBench (Liu et al., 2024b) assesses the capabilities of multimodal large language models
(MLLMs) specifically in the web domain. It is designed to address the lack of a comprehensive
benchmark that evaluates the unique characteristics of web pages and measures fine-grained abilities
such as OCR, understanding, and grounding in text-rich and interactive web environments. It covers
a wide range of domains, including science, travel, sports, engineering, and government, and tasks
such as captioning, WebQA, heading OCR, element grounding, and action prediction, containing a
total of 1,534 instances.
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B TroL Generation Quality

User: What is the significance of this scene in the context of the movie?

TroL: This scene, featuring Leonardo DiCaprio and Kate Winslet from the movie 
"Titanic" (1997), is significant for several reasons:

1. Romantic Moment: The scene captures a romantic moment between the two 
main characters, Jack Dawson and Rose DeWitt Bukater, as they share a dance on 
the deck of the Titanic. This moment is symbolic of their connection and the 
beginning of their romantic relationship.

2. Historical Context: The scene is set against the backdrop of the sinking of the 
Titanic, a historical event that occurred in 1912. The juxtaposition of the 
romantic moment with the impending disaster adds a layer of drama and tension 
to the scene.

3. Cultural Impact: This scene has become iconic and is widely recognized as one 
of the most memorable moments in cinematic history. It has been parodied, 
referenced, and celebrated in popular culture.

4. Awards and Recognition: The scene won an Academy Award for Best Original 
Song for "My Heart Will Go On" by Celine Dion. The song has since become an 
enduring classic.

Overall, this scene in "Titanic" is significant for its emotional impact, historical 
context, cultural influence, and recognition in the film industry.
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User: Show the detailed recipe for this dish.

TroL: Sure, here's a detailed recipe for grilled lobster tails:### Ingredients:
- 4 lobster tails (about 1 pound each)
- 1/4 cup unsalted butter, melted
- 2 cloves garlic, minced
- 1 tablespoon chopped fresh parsley
- 1 tablespoon chopped fresh chives
- 1/2 teaspoon salt
- 1/4 teaspoon black pepper
- Lemon wedges, for serving

Instructions:

1. Preheat the Grill:
- Preheat your grill to medium-high heat (around 400°F to 450°F).

2. Prepare the Lobster Tails:
- Using kitchen shears, cut down the top of the shell of each lobster tail, 
following the natural curve of the shell. Be careful not to cut through the meat.
- Gently pull the shell apart to create a pocket for the butter mixture.

3. Make the Butter Mixture:
- In a small bowl, mix together the melted butter, minced garlic, chopped 
parsley, chopped chives, salt, and black pepper.

4. Stuff the Lobster Tails:
- Brush the inside of each lobster tail with the butter mixture.

5. Grill the Lobster Tails:
- Place the lobster tails on the grill, meat side up. Close the lid and grill for about 
12-15 minutes, or until the lobster meat is opaque and the shells are bright red.

6. Serve:
- Remove the lobster tails from the grill and let them rest for a few minutes.
- Serve the lobster tails with lemon wedges on the side for squeezing over the 
meat.

Enjoy your delicious grilled lobster tails!
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User: What are the meals that I can cook with these?

TroL: With the items in the refrigerator, you can prepare a variety of meals. 
Here are some suggestions:

1. Fruit Salad:
- Use the strawberries, blueberries, and grapes to make a refreshing fruit salad.

2. Yogurt Parfait:
- Layer yogurt, granola, and fruit in a glass for a healthy and delicious breakfast 
or snack.

3. Strawberry Yogurt Smoothie:
- Blend yogurt, frozen strawberries, and a splash of milk for a quick and 
nutritious smoothie.

4. Blueberry Muffins:
- Use the blueberries to make a batch of blueberry muffins for breakfast or a 
snack.

5. Strawberry Spinach Salad:
- Toss baby spinach with sliced strawberries, crumbled feta cheese, and a 
balsamic vinaigrette for a light and flavorful salad.

6. Blueberry Oatmeal:
- Add blueberries and a drizzle of honey to a bowl of oatmeal for a hearty 
breakfast.

7. Strawberry Banana Smoothie:
- Blend yogurt, frozen strawberries, frozen bananas, and a splash of milk for a 
creamy and nutritious smoothie.

8. Blueberry Pancakes:
- Fold blueberries into pancake batter and cook for a delicious breakfast treat.

9. Strawberry Yogurt Popsicles:
- Blend yogurt, frozen strawberries, and a touch of honey, then pour into 
popsicle molds and freeze for a cool summer treat.

10. Blueberry Yogurt Parfait:
- Layer yogurt, granola, and blueberries in a glass for a quick and healthy snack or 
breakfast.

User: Describe this sketch in detail.

TroL: This sketch appears to be a handwritten outline for a joke website. Here's 
a detailed description:

1. Title:
- The title of the sketch is "My Joke website."

2. Joke Outline:
- The sketch outlines two jokes:
- Joke 1:
- Setup: "Really funny joke 1"
- Punchline: "Push to reveal punchline"
- Joke 2:
- Setup: "Same but joke 2"
- Punchline: "Push to reveal punchline"

3. Date:
- The sketch is dated "OpenAI 2023."

11334



User: What is the answer to the second last equation on the right?

TroL: The second last equation on the right is (15 + a = 17)

Solving for (a)

[a = 17 - 15]
[a = 2]

So, the answer to the second last equation on the right is (a = 2).

User: What are the appliances in the kitchen in this floorplan?

TroL: The kitchen in this floorplan includes the following appliances:

1. Oven
2. Dishwasher (DW)
3. Refrigerator (Fridge)

User: Can you give a short introduction to this person?

TroL: Certainly! The person depicted in the painting is Christopher Columbus, an 
Italian explorer who is best known for his expeditions to the Americas in the late 15th 
century. He is credited with leading the first European contact with the Caribbean, 
Central America, and South America. Columbus's voyages, sponsored by the Catholic 
Monarchs of Spain, were the first European contact with the Caribbean, Central 
America, and South America. His expeditions, sponsored by the Catholic Monarchs of 
Spain, opened the way for widespread European exploration, conquest, and 
colonization of the Americas.
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User: Which department is the person who has the highest salary from?

TroL: Wilkins is earning $2,500.

User: Based on the table, how much is Wilkins earning?

TroL : Australia has a below-average profit margin at 19.4%.

User: Can you give a short introduction to this movie?

TroL: Certainly! The image is from the 2003 film "The Lord of the Rings: The 
Fellowship of the Ring," directed by Peter Jackson. This film is the first installment in 
the "Lord of the Rings" trilogy, based on the novel of the same name by J.R.R. Tolkien. 
The story revolves around hobbit Frodo Baggins (Elijah Wood) who inherits a ring of 
great power from his uncle Bilbo that grants its wearer invisibility but also corrupts 
those who wield it. The ring is actually the One Ring, created by the Dark Lord Sauron, 
and it has the power to control all the other Rings of Power. The film follows Frodo and 
his companions as they embark on a perilous journey to Mordor, the land from which 
Sauron rules, to destroy the ring by casting it into the fires of Mount Doom in Mordor.
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User: You are given a screenshot of a webpage. Please generate the meta web description information of this webpage, i.e., 
content attribute in <meta name="description" content=""> HTML element.

TroL: <meta name="description" content="arXiv is a free distribution service and an open-access archive for nearly 2.4 
million scholarly articles in the fields of physics, mathematics, computer science, quantitative biology, quantitative finance, 
statistics, electrical engineering and systems science, and economics. Materials on this site are not peer-reviewed by arXiv.">
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User: You are given a screenshot of a webpage. Please generate the meta web description information of this webpage, i.e., 
content attribute in <meta name="description" content=""> HTML element.

TroL: <meta name="description" content="Equibase offers comprehensive horse racing news, results, and statistics. Explore 
the Racing Yearbook, Graded Stakes Entries, Graded Stakes Results, and The Leaderboard sponsored by FanDuel Racing. Stay 
up-to-date with the latest horse racing news and events.">
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User: What is the minimum horsepower range available for tractors listed under 'Find by Category’?

TroL: Under 40 HP

User: What type of equipment is listed first under the 'Specialty Crops' category?

TroL: Cotton
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C Further Ablation Studies

Methods Added Params MMStar MM-Vet LLaVAW

TroL-1.8B w.o. Lay-Trav 0 36.0 34.6 75.0
TroL-1.8B w. MoE (4 Experts, Top k=3) 402M 39.1 38.8 80.2
TroL-1.8B w. Lay-Trav 49K 45.5 45.1 87.5

TroL-3.8B w.o. Lay-Trav 0 37.4 35.3 81.4
TroL-3.8B w. MoE (4 Experts, Top k=3) 1.2B 39.9 41.1 83.4
TroL-3.8B w. Lay-Trav 98K 46.5 51.0 90.8

TroL-7B w.o. Lay-Trav 0 41.2 45.8 82.7
TroL-7B w. MoE (4 Experts, Top k=3) 2.1B 45.6 50.5 86.6
TroL-7B w. Lay-Trav 131K 51.3 54.7 92.8

Table 5: Performance comparison of TroL across various benchmarks.

Inspired by the Mixture of Experts (MoE) concept (Shazeer et al., 2017; Lin et al., 2024), we designed
the architecture of TroL-Gating and TroL-Mixer. The primary advantage of using MoE is achieving
significant performance improvements without adding many physical layers or significantly increasing
model sizes.

The paragraph below Equation 2 in Shazeer et al. (2017) states: ‘A simple choice of non-sparse gating
function is to multiply the input by a trainable weight matrix and then apply the Softmax function.’ Here,
the concept of a ‘gating function’ is analogous to TroL-Gating. Similarly, Equation 6 in Lin et al. (2024)
performs a weighted average on the features obtained from each expert module, which is akin to the
weighted average operation in TroL-Mixer.

The only difference between traditional MoE and TroL is whether multiple expert modules are physically
used. In TroL, the first propagation and the second propagation are implicitly considered as two expert
modules in MoE. We believe this iterative propagation introduces a broader range of vision-language
knowledge, as layer traversing handles more parameters than MoE. Table 5 below compares the MoE and
layer traversing techniques.

Therefore, we conclude that the layer traversing technique embeds more vision-language knowledge
than MoE without adding many physical layers or significantly increasing model sizes. This explains
why layer traversing performs well across general tasks. Moreover, this approach intuitively matches the
human process of retracing answering stream. We hope the layer traversing technique will be regarded as
a promising direction for future MoE research.

Methods Lay-Trav MMStar MM-Vet LLaVAW

DeepSeek-VL-1.3B ✗ 39.9 34.8 51.1
DeepSeek-VL-1.3B ✓ 45.9 46.2 60.5
MiniCPM-2.8B ✗ 39.1 41.0 69.2
MiniCPM-2.8B ✓ 47.4 50.2 80.8
LLaVA-NeXT-7B ✗ 40.2 43.9 72.3
LLaVA-NeXT-7B ✓ 49.8 52.7 84.4

Table 6: Performance comparison of various models with and without Lay-Trav across benchmarks.

In Table 6, we have applied layer traversing to other LLVMs such as DeepSeek-VL-1.3B, MiniCPM-
V2-2.8B, and LLaVA-NeXT-7B. This adjustment aims to validate the effectiveness of layer traversing
under a fairer comparison setting, using the same TroL visual instruction tuning dataset.
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Methods Lay-Trav Training MMStar MM-Vet LLaVAW

TroL-1.8B (Backbone Model) ✗ ✗ 25.1 21.4 44.6
TroL-1.8B (Backbone Model) ✓ ✓ 24.8 15.9 36.0
TroL-1.8B ✗ ✗ 36.0 34.6 75.0
TroL-1.8B ✓ ✓ 45.5 45.1 87.5

TroL-3.8B (Backbone Model) ✗ ✗ 26.6 22.3 45.4
TroL-3.8B (Backbone Model) ✓ ✓ 25.2 16.0 36.1
TroL-3.8B ✗ ✗ 37.4 43.5 78.4
TroL-3.8B ✓ ✓ 46.5 51.1 90.8

TroL-7B (Backbone Model) ✗ ✗ 27.3 21.1 51.3
TroL-7B (Backbone Model) ✓ ✓ 24.1 15.3 37.1
TroL-7B ✗ ✗ 41.2 45.8 82.7
TroL-7B ✓ ✓ 51.3 54.7 92.8

Table 7: Performance comparison of TroL with and without Lay-Trav and different training setups.

In Table 7, we evaluated the experiments you asked in the table below. Without any training, layer
traversing technique confuses LLM performances because it never see this kind of features.

Methods Num of Prop MMStar MM-Vet LLaVAW

TroL-1.8B 2 45.5 45.1 87.5
TroL-1.8B 3 45.7 45.6 87.8
TroL-1.8B 4 45.8 45.9 88.0

TroL-3.8B 2 46.5 51.1 90.8
TroL-3.8B 3 46.6 51.4 91.1
TroL-3.8B 4 46.9 51.8 91.2

TroL-7B 2 51.3 54.7 92.8
TroL-7B 3 51.7 55.0 93.2
TroL-7B 4 52.0 55.2 93.3

Table 8: Performance comparison of TroL across different numbers of propositions.

The reason we use the second propagation instead of the third propagation is that marginal improvements
are observed when using more than two propagation. Table 8 shows the performance across the propagation
numbers from 2 to 4.

Methods Avg Time Ratio MMStar MM-Vet LLaVAW

TroL-1.8B (Question) 1.0 45.5 45.1 87.5
TroL-1.8B (Question-Answer) 4.9 46.3 47.2 89.2

TroL-3.8B (Question) 1.0 46.5 51.1 90.8
TroL-3.8B (Question-Answer) 5.1 47.9 53.4 92.1

TroL-7B (Question) 1.0 51.3 54.7 92.8
TroL-7B (Question-Answer) 5.7 52.5 56.2 94.3

Table 9: Performance comparison of TroL across question and question-answer setups.

The primary reason for not applying layer traversing to the answer part is the huge increase in answering
time complexity. Fortunately, turning layer traversing on or off for the answer part during inference shows
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a little significant performance gap in Table 9, therefore it is better for us to deal with only question part
in efficient inference.

Methods Lay-Trav in Training MMStar MM-Vet LLaVAW

TroL-1.8B ✗ 36.0 34.6 75.0
TroL-1.8B (Nothing) ✓ 42.1 41.0 82.8
TroL-1.8B (Question) ✓ 45.5 45.1 87.5
TroL-1.8B (Question-Answer) ✓ 46.3 47.2 89.2

TroL-3.8B ✗ 37.4 43.5 78.4
TroL-3.8B (Nothing) ✓ 43.8 46.3 86.3
TroL-3.8B (Question) ✓ 46.5 51.1 90.8
TroL-3.8B (Question-Answer) ✓ 47.9 53.4 92.1

TroL-7B ✗ 41.2 45.8 82.7
TroL-7B (Nothing) ✓ 47.0 50.8 88.9
TroL-7B (Question) ✓ 51.3 54.7 92.8
TroL-7B (Question-Answer) ✓ 52.5 56.2 94.3

Table 10: Performance comparison of TroL with Lay-Trav in training and various configurations.

In Table 10, thanks to layer traversing together with visual instruction tuning, we observed that vision
language performance improves even when question and answer traversing are turned off.
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