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Abstract
Large language models (LLMs) have demon-
strated strong capabilities across various lan-
guage tasks, notably through instruction-tuning
methods. However, LLMs face challenges in
visualizing complex, real-world data through
charts and plots. Firstly, existing datasets
rarely cover a full range of chart types, such
as 3D, volumetric, and gridded charts. Sec-
ondly, supervised fine-tuning methods do not
fully leverage the intricate relationships within
rich datasets, including text, code, and fig-
ures. To address these challenges, we propose
a hierarchical pipeline and a new dataset for
chart generation. Our dataset, Text2Chart31,
includes 31 unique plot types referring to the
Matplotlib library, with 11.1K tuples of de-
scriptions, code, data tables, and plots. More-
over, we introduce a reinforcement learning-
based instruction tuning technique for chart
generation tasks without requiring human feed-
back. Our experiments show that this ap-
proach significantly enhances the model per-
formance, enabling smaller models to outper-
form larger open-source models and be com-
parable to state-of-the-art proprietary models
in data visualization tasks. We make the
code and dataset available at https://github.
com/fatemehpesaran310/Text2Chart31.

1 Introduction

Recently, a range of NLP tasks has been addressed
by leveraging the remarkable ability of Large Lan-
guage Models (LLMs). This advancement has been
possible largely through the process of instruction-
tuning (Ouyang et al., 2022; Yoo et al., 2024),
which fine-tunes LLMs to rely on intuitive natural
language instructions and skillfully solve intricate
tasks, encompassing fields like question answering
(Sanh et al., 2022; Liu and Low, 2023), summariz-
ing (Goyal et al., 2023; Fetahu et al., 2023), and
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# Scatter Plot
sc = ax.scatter(data['Cost’], 
data['Profit'], data['Probability of Success’], 
c=data['Category’], 
s=data['Market Share’], cmap='viridis’)
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the lowest percentage?

A. Media Arts

import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.tri as tri

# Read the data from CSV file
data = pd.read_csv('wind_data.csv')
# Extract the columns
longitude = data['Longitude']
latitude = data['Latitude']
wind_speed = data['Wind Speed (m/s)’]

 . . .

This filled triplot, called 
the "Windy World Map" 
visualizes global wind 
patterns using data 
collected from various 
meteorological stations. 
. . .
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# Scatter Plot
scatter = ax.scatter(data['Cost’],
data['Profit’], data['Probability of Success’],
c=data['Category'].astype('category').cat.codes,
s=data['Market Share'], cmap='viridis’)
. . .
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Figure 1: Illustration of the contributions of our method.
(a): Existing datasets rarely cover a full range of chart
types and primarily focus on QA tasks rather than chart
generation. (b): Our dataset focuses on chart generation
tasks and covers 31 unique plot types with tuples that
combine descriptions, code, data tables, intermediate
reasoning steps, and plots. (c): We further adopt RL-
based instruction tuning method that leverage automated
feedback and cycle consistency.

sentiment analysis (Varia et al., 2023). However,
available LLMs continue to suffer from the difficult
tasks of visualizing complex, fact-based, real-world
data through charts and plots, mainly because of
two challenges.

Firstly, the current datasets (Methani et al., 2020;
Masry et al., 2022; Kahou et al., 2018; Zhu et al.,
2021; Kantharaj et al., 2022; Han et al., 2023) pri-
marily focus on QA in the chart domain rather than
chart generation, and they rarely cover a full range
of chart types and their varied applications. Sev-
eral chart forms like 3D, volumetric, gridded, and
irregularly gridded remain largely unexplored or
insufficiently studied. These forms are important
for evaluating the capabilities of LLMs in under-

11459

https://github.com/fatemehpesaran310/Text2Chart31
https://github.com/fatemehpesaran310/Text2Chart31


standing multidimensional data, spatial data, and
vector field data. Developing such instructional
datasets typically entails significant expenses due
to the complex nature of text-to-chart processes, in-
corporating various data components such as text,
code, and data tables. This complexity, along with
the lack of specific online sources containing these
plot types, makes their collection difficult and time-
consuming. It necessitates human expert interven-
tion to ensure quality, which drives up costs.

Secondly, existing instruction-tuning methods
based on supervised fine-tuning do not fully utilize
the potential of rich datasets; for example, chart
data include multiple components like text descrip-
tions, code, and figures. Supervised fine-tuning
struggles to effectively extract and leverage all the
intricate information and relationships within these
components, leading to suboptimal performance.

To address the first challenge, we propose a
novel hierarchical pipeline for chart generation by
leveraging the advanced linguistic skills of GPT-
3.5-turbo (Ouyang et al., 2022) and code genera-
tion and data analysis capabilities of GPT-4-0613
(OpenAI, 2023). We contribute a dataset encom-
passing 31 unique plot types from the Matplotlib
library (Hunter, 2007), featuring 11.1K tuples that
combine descriptions, code, data tables, and plots,
covering a wide range of use cases. Our pipeline
is structured into the following steps: topic gener-
ation, description creation, code production, data
table and reasoning step formulation, and cycle con-
sistency verification. This approach reduces biases
towards common topics or plot types, and ensures
consistent and accurate generation of multiple data
elements. By minimizing the human supervision
in our proposed pipeline, we can generate a high-
quality large-scale dataset that includes compre-
hensive descriptions, codes, data tables, reasoning
steps, and illustrated graphs.

We further propose a novel reinforcement
learning-based instruction tuning technique to ad-
dress the second challenge. This method is tai-
lored for chart generation tasks without costly hu-
man feedback. We propose two different reward
functions: the preference reward and alignment re-
ward. For the preference reward, we construct a
preference dataset from the supervised fine-tuned
model’s output and the ground truth code. For the
alignment reward, we optimize the model to in-
crease the similarity between ground truth descrip-
tion and regenerated description from the code,
exploiting the cycle consistency between code and

description. We jointly optimize two sequential pol-
icy models using the PPO (Schulman et al., 2017).

Finally, we make the following contributions:

• We develop a novel dataset generation pipeline
that populates data samples and filters out the
low-quality ones, exploiting the cycle consis-
tency in the task. This approach is scalable to
increase the volume of data as needed.

• We introduce the Text2Chart31 dataset, com-
prising 31 plot types with 11.1K tuples that
combine descriptions, code, data tables, inter-
mediate reasoning steps, and plots, covering a
wide range of use cases.

• We introduce an RL-based instruction tuning
method that utilizes novel reward functions
that leverage automated feedback and cycle
consistency. The experiments demonstrate
that our fine-tuned models outperform state-
of-the-art open and closed-source models on
data visualization tasks. To the best of our
knowledge, this is the first work to adopt an
RL-based instruction tuning approach for the
chart generation task.

2 Text2Chart31 Dataset

Our newly contributed Text2Chart31 dataset sup-
ports 31 plot types based on Matplotlib with 11.1K
data points. We outline its key characteristics in
Table 1 comparing with existing datasets in the data
visualization domain. The Text2Chart31 dataset D
consists of 11,128 data points, each of which con-
tains a tuple of (x, c, d, r, y): a textual plot descrip-
tion (x), its corresponding code (c), the resulting
plots (y). For 8,166 data points, we additionally
include a raw data table (d) and intermediate rea-
soning steps (r) to generate descriptions.

For the dataset, we develop a hierarchical plot
generation pipeline leveraging GPT-3.5-turbo and
GPT-4. Despite their impressive capabilities for
text and code generation, collecting high-quality
data points is challenging for two primary reasons:
(1) GPT-3.5-turbo exhibits bias towards particu-
lar topics or narrow plot types that are commonly
represented in its training data, and (2) the text-to-
chart data involves multiple data elements includ-
ing descriptions, code, and data tables, making it
difficult to generate accurate and consistent data
points in a single step. Consequently, we claim that
a hierarchical approach is essential for producing
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higher-quality chart-generation data points. This
pipeline is illustrated in Figure 2.

2.1 Task Definition

Our benchmark is designed to evaluate three tasks.
(1) Description-to-Chart: Given a plot descrip-
tion x, an algorithm generates its corresponding
code c that creates a chart by the Matplotlib li-
brary1(Hunter, 2007). (2) Raw Data-to-Chart:
When provided with only a raw data table d, the
algorithm generates intermediate reasoning steps r
that analyze the raw data and then generates a de-
scription d for the most suitable plot type based
on the characteristics of the data. (3) Code-to-
Description: Given the code c for a plot, the model
generates a detailed description x of the plot.

2.2 Dataset Construction Pipeline

Our pipeline initiates by generating a topic from
which a description x is derived. To ensure both
diversity of the topic and alignment with the in-
tended plot type, each topic is filtered before pro-
ceeding to the next step. We additionally generate
code c, raw data table d and intermediate reason-
ing step r corresponding to the description. Lastly,
we use the cycle-consistency verification to ensure
the high quality of the data points. Please refer to
Appendix C for the detailed process with examples.

Topic generation. We generate distinct topic
pools for five different plot categories: pairwise,
statistical, gridded, irregularly gridded, and 3D/vol-
umetric data. To maintain diversity within each
topic pool, we include only topics with low simi-
larity scores compared to those already being pre-
sented. To assess similarity, the ROUGE-L metric
(Lin, 2004) is employed as a common practice from
previous studies (Wang et al., 2023b).

Description generation. For each plot type,
we start by manually writing 5 to 10 descriptions
as seed points that contain all the necessary infor-
mation for a plot to be illustrated. To generate a
description (x), we randomly sample two descrip-
tions and pair them with a topic from the topic
pool. This assembled data is prompted into GPT-
3.5-turbo, which generates a similar format plot
description for the sampled topic. We remove the
topic from the pool after a new description is gener-
ated to uphold the diversity. Inspired by the studies
on the reasoning capabilities of LLMs (Wei et al.,
2023; Kojima et al., 2023; Wang et al., 2023a), we

1We use Matplotlib 3.8 version.

instruct GPT-4 to self-evaluate the generated de-
scriptions for quality control. This step is crucial to
exclude any incompatible instructions that can lead
to the creation of unsuitable plots, thereby avoiding
computational waste.

Code generation. We input descriptions into
GPT-4, which is instructed to generate Python code
for the Matplotlib library. This code aims to visual-
ize the described plot. We add the generated code
(c) to the dataset only if it successfully generates
the corresponding plot (y) without a runtime error.

Data table and reasoning step generation.
For plots derived from data files in D, GPT-4 is
prompted to generate either a raw data table d or
Python code that can generate the data table. 3D
volumetric, gridded, and irregularly gridded plots
often require specific patterns or mathematical re-
lations between variables; therefore, code is cre-
ated and executed to generate the data table instead
of directly generating it. We further generate in-
termediate reasoning steps r using GPT-4, which
is instructed to analyze the characteristics of the
data and CSV file, explore possible plot types, de-
termine the most suitable plot type, and consider
additional aspects of the description. This process
results in data points (x, c, d, r, y).

Cycle-Consistency verification. We argue that
given the complex and fact-based nature of text-
to-chart datasets, employing human evaluation to
check the quality of generated data points is in-
efficient. To this end, we propose an AI-assisted
method using cycle consistency, to assure the qual-
ity of the data point. This process involves regen-
erating an instruction that describes the plot from
the generated code and comparing it against the
original one. We keep the data only if the regener-
ated description closely aligns with the original one
based on pre-defined criteria, indicating the high
quality of the data. We provide further details on
the cycle consistency method in Appendix D.

2.3 Analysis of Text2Chart31 Dataset
As shown in Table 1, we can effectively balance
the data points per plot type with equal distri-
bution in the dataset, which is quantified by the
Shanon Diversity metric (Friedman and Dieng,
2023). Shannon Diversity is computed through
H = −∑S

i=1 pi log(pi), where S is the total num-
ber of classes in the dataset, and pi is the propor-
tion of instances belonging to the i-th class. Our
Text2Chart31 dataset achieve the highest score of
0.981. Figure 6 in Appendix shows a detailed com-
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# Data # Plot Type Quality Analysis

Dataset Figures
Instruction

Tuning
Description

to Code
Raw Data

to Description
Pairwise&
Stat. Dist.

(Irregularly)
Gridded

3D &
Volumetric Total

Dataset
Balance†

Content
Diversity‡

PlotQA 224.3K 28.9M ✗ ✗ 3 ✗ ✗ 3 0.786 0.038

ChartQA 21.9K 32.7K ✗ ✗ 3 ✗ ✗ 2 0.422 -

FigureQA 180K 2.3M ✗ ✗ 4 ✗ ✗ 4 0.960 -

Unichart 611K 7M ✗ ✗ 3 ✗ ✗ 3 0.821 0.157

AutoChart 10.2K 23.5K ✗ ✗ 3 ✗ ✗ 3 0.978 0.027

Chart-to-Text 44K 44K ✗ ✗ 5 1 ✗ 6 0.327 0.421

ChartLlama 11K 160K 7.8K ✗ 8 2 ✗ 10 0.738 -

ChartX 6K 48K 6K ✗ 13 2 1 16 0.953 0.534

Text2Chart31 11.1K 19.3K 11.1K 8.2K 16 10 5 31 0.980 0.674

Text2Chart31-v2§ 28.2K 50.2K 28.2K 22K 16 10 5 31 0.993 0.696

Table 1: Comparison with other chart datasets: PlotQA (Methani et al., 2020), ChartQA (Masry et al., 2022),
FigureQA (Kahou et al., 2018), Unichart (Masry et al., 2023), Autochart (Zhu et al., 2021), Chart-to-Text (Kantharaj
et al., 2022), ChartLlama (Han et al., 2023), and ChartX (Xia et al., 2024). We report the total number of figures
and instruction tuning data, including the tasks like QA, summarization, code generation, and plot recommendation.
Additionally, we provide the number of data points for the tasks of Description to Chart and Raw Data to Chart,
specifying data for Description to Code (visualization code) and Raw Data Analysis to Description (analyzing raw
data to generate a corresponding description). We also detail the number of plot types in each dataset. †We measure
the dataset balance score using the Shannon Diversity Index (Friedman and Dieng, 2023). ‡We evaluate the content
diversity by calculating average distinct n-grams (n from 1 to 5) (Li et al., 2016). For PlotQA, Chart-to-Text, and
AutoChart, we use chart titles, captions, and descriptions to evaluate content diversity, respectively. For Unichart
and ChartX, we use summarizations. ChartQA and FigureQA are excluded due to lack of descriptions/titles, and
ChartLlama is private. Finally, content diversity of Text2Chart31 is computed using the topics. § Text2Chart31-v2
is constructed and published at the camera ready version of the paper, and the experiment results in this paper
is conducted with Text2Chart31.

parison of the distribution per chart type between
datasets using pie charts. We further evaluate the
content diversity of datasets via Distinct-n score (Li
et al., 2016). Our dataset achieves a score of 0.674,
indicating that our pipeline effectively reassures
the diversity of topics.

3 Instruction Tuning Approach

We discuss our proposed instruction tuning meth-
ods for fine-tuning LLMs to tackle the three data
visualization tasks: (1) Description-to-Chart, (2)
Raw-Data-to-Chart, and (3) Code-to-Description,
using the Text2Chart31 dataset. We respectively
denote three specialized models for the three tasks:
πθ1 , πθ2 , and πθ3 . We train these models with two
phases: supervised fine-tuning (SFT), followed by
reinforcement learning (RL) with two types of re-
ward that are specifically tailored to improve chart
generation performance. Initially, all three tasks
undergo supervised fine-tuning. Afterward, using
PPO algorithm (Schulman et al., 2017), we jointly
optimize πθ1 with the preference reward and πθ3
with the alignment reward that ensures cycle con-
sistency and coherence of outputs. Algorithm 1

summarizes the overall procedure.

3.1 Supervised Fine-tuning
We perform supervised fine-tuning of πθ1 , πθ2 ,
and πθ3 using the cross-entropy loss with the
Text2Chart31 dataset. For Task 1, the model πθ1
maximizes the probability of outputting the ground
truth code for a given description by minimizing
cross-entropy loss in the Line 3 of Algorithm 1.
For Task 2, we design the model πθ2 to generate
descriptions from raw data in two stages. First,
the model generates a reasoning step r from the
raw data d, which involves analyzing data charac-
teristics and determining the appropriate plot type.
Then, the model is fine-tuned to generate the de-
scription x using the data and the reasoning step as
in the Line 4. Lastly, we fine-tune the model πθ3 for
Task 3 to maximize the probability of predicting the
ground truth description for a given visualization
code as in the Line 5 of Algorithm 1.

3.2 RL via Automatic Feedback
We design two reward functions, which are the pref-
erence reward and the alignment reward, specifi-
cally tailored for the chart generation task. It is
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This 3D surface plot 
visualizes the concentration of 
atmospheric ozone across 
different geographical 
locations. The dataset used for 
this visualization is stored in a 
CSV file named `ozone.csv`  
…

This contour plot shows

This stem plot represents 

import matplotlib.pyplot as plt
import pandas as pd
from scipy.interpolate import griddata
# Load the data
df =pd.read_csv('ozone.csv’)
# Interpolate Z values over the grid
zz = griddata((x, y), z, (xx, yy),
               method='linear’)
...
# Create a figure and 3D axes
fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111,
                     projection='3d’)
# Plot a 3D surface plot
surf = ax.plot_surface(xx, yy, zz)
...

import matplotlib.pyplot as plt

import matplotlib.pyplot as plt

Latitude,Longitude,Ozone
33.445,106.160,3.364
-12.989,38.589,4.525
-44.488,94.997,3.293 ...

1. Characteristics of 
the data and CSV file:
The data is …

2. Possible plot types:
- Contour …

Figure 2: Illustration of our hierarchical chart generation process with an example of a single plot type. The
process begins by randomly selecting a topic from a topic pool. Two instructional samples are then chosen from
an instruction pool and given to GPT-3.5-turbo to generate a new instruction, which undergoes a self-evaluation
process by GPT-4 for qualification. If it meets the criteria, which includes compatibility with the data points and the
plot type, it is added to the instruction pool. Simultaneously, the new instruction is sent to GPT-4 for data table
creation using a long data table format and code generation. Finally, the generated tuple (x, d, c, y) goes through a
final filtering of cycle-consistency to validate the produced data point with high quality and correctness.

worth noting that we remove human supervision
during these processes and solely rely on automatic
feedback.

Preference reward. We propose an automatic
way of designing a preference dataset based on
the output of the supervised fine-tuned model πθ1 .
We define preference dataset Dpref = (c+i , c

−
i )

n
i=1,

where a preferred code c+ is the ground truth code,
while a less preferred one c− is a corresponding
code output of SFT. Afterward, we train a prefer-
ence reward model Rϕ(c) following Ouyang et al.
(2022) and employ this reward model to train πθ1
via proximal policy optimization (PPO) algorithm
(Schulman et al., 2017) as follows:

maximize
θ1

Ex∼D, ĉ∼πθ1
(·|x)

(
Rϕ(ĉ)

)

− βDKL(πθ1 ∥ πθsft1).

Alignment reward. The alignment reward lever-
ages cycle consistency between a chart’s descrip-
tion and code. First, πθ1 generates a code from
the original description, then πθ3 uses this code
to produce a regenerated description. The align-
ment reward is defined as the similarity between the
original and regenerated descriptions, measured by
BertScore (Zhang et al., 2020; Black et al., 2024).
We optimize πθ3 via maximizing the alignment re-
ward R(·, ·) using PPO algorithm as follows:

maximize
θ3

Ex∼D, ĉ∼πθ1
(·|x), x̂∼πθ3

(·|ĉ)

(
R(x, x̂)

)

− βDKL(πθ3 ∥ πθsft3).

4 Experiments

Baselines. For the evaluation of the three target
tasks, we compare with the state-of-the-art open-
source baseline models as follows: (i) Description-
to-Chart: Code Llama Instruct (Rozière et al.,
2024), Llama 3 Instruct (Meta AI, 2024), StarCoder
(Li et al., 2023), and Instruct CodeGen (Nijkamp
et al., 2023), (ii) Raw Data-to-Description: Llama
2 Chat (Touvron et al., 2023) and Llama 3 Instruct
model, and (iii) Code-to-Description: Code Llama,
Llama 2 Chat, and Llama 3 Instruct models. We
also compare with proprietary models including
GPT-3.5-turbo (Ouyang et al., 2022), GPT-4-0613,
GPT-4-turbo-2024-04-09 (OpenAI, 2023), GPT-4o-
2024-05-13 (OpenAI, 2024), and Claude 3 Opus
(Anthropic, 2024).

Evaluation metrics. For the three target tasks,
we report the following evaluation measures.

(i) Description-to-Chart: We report the total er-
ror ratio and plot-type error ratio. The total error ra-
tio indicates the percentage of code executions that
result in errors. We categorize and report plot-type
errors based on Matplotlib classifications. We fur-
ther evaluate the similarity between the predicted
code and the ground truth (GT) code by report-
ing the METEOR (Banerjee and Lavie, 2005) and
CodeBLEU metrics (Ren et al., 2020).

(ii) Raw Data-to-Description: We report the
Jaccard similarity and the Hit Rate. The former
measures the intersection ratio between the recom-
mended plot list derived from generated reasoning
steps and the GT reasoning steps. The latter is the
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Algorithm 1 Chart generation instruction tuning

Require: Description-to-chart policy network πθ1 , Raw data-to-chart policy network πθ2 , code-to-
description policy network πθ3 , Text2Chart31 dataset D

1: for iter = 1, 2, . . . , Nsft do ▷ Supervised fine-tuning
2: Sample data (x, c, d, r, y) from dataset D
3: Optimize Lcode(θ1) = −

∑
t log πθ1(c(t)|x, c(<t))

4: Optimize Lreason(θ2) + Ldesc(θ2) = −
∑

t log πθ2(r(t)|d, r(<t))−
∑

t log πθ2(x(t)|d, r, x(<t))
5: Optimize Ldesc(θ3) = −

∑
t log πθ3(x(t)|x(<t), c, d)

6: end for
7: πθsft1 ← πθ1 , πθsft2 ← πθ2 , πθsft3 ← πθ3
8: Generate automatic preference dataset Dpref from πθsft1 and D
9: Train preference reward model Rϕ(c) from Dpref

10: for iter = 1, 2, . . . , Nrl do ▷ Reinforcement learning (PPO)
11: Sample x from dataset D
12: Generate ĉ from πθ1(·|x), and generate x̂ from πθ3(·|ĉ)
13: Calculate preference reward Rϕ(ĉ)
14: Calculate alignment reward R(x, x̂) = BertScore(x, x̂)

15: Jointly optimize

(
JPPO(θ1) = Rϕ(ĉ)− β log

(
πθ1

(ĉ |x)
πθsft1

(ĉ |x)

)
,

JPPO(θ3) = R(x, x̂)− β log
(

πθ3
(x̂ | ĉ)

πθsft3
(x̂ | ĉ)

))
with PPO

16: end for

percentage of recommended lists containing the GT
plot type. To evaluate the quality of the generated
descriptions, we first use these descriptions to gen-
erate code with both the SFT Llama3 Instruct-8B
model and the GPT-3.5-turbo, and then calculate
the error ratio for the generated codes. Addition-
ally, we report ROUGE-L and BertScore metrics
to assess the similarity between the generated de-
scriptions and the GT descriptions.

(iii) Code-to-Description: We measure ROUGE-
1/2/L and BertScore to evaluate the similarity be-
tween the generated descriptions and the GTs.
Lastly, as done for Task 2, we generate the code by
giving the predicted descriptions to the GPT-3.5-
turbo and report the error ratio.

Training setup. We begin the supervised fine-
tuning using LoRA fine-tuning (Hu et al., 2021).
When we further fine-tune the model with RL, we
merge the original SFT LoRA parameters into the
base model and fine-tune separate LoRA param-
eters. For SFT, we utilize a total of 11.1K data
points for Task 1, 3, and 7.84K for Task 2. On
the other hand, RL fine-tuning is conducted us-
ing 0.5K randomly selected data points, represent-
ing 4.8% of our Dpref dataset. For SFT, we use 2
RTX A6000 GPUs and the training requires 6 to
12 hours, depending on the tasks. For RL, we use 6

RTX A6000 GPUs and the training takes less than
12 hours. Further details of the experiments can be
found in Appendix B.

4.1 Results of Description-to-Chart

Table 2 presents the results for the Description-
to-Chart task. We fine-tune Llama 3 Instruct-8B
and Code Llama Instruct-13B on our Text2Chart31
dataset for five epochs. We run RL fine-tuning on
the Llama 3 Instruct and Code Llama Instruct-13B
using preference reward, denoted as RLpref . The
results show that our fine-tuned models outperform
all open-source baselines that we compared. Specif-
ically, the 13B model with SFT and RL achieves
even a lower total error ratio than the state-of-the-
art closed-source models like GPT-3.5-turbo, GPT-
4, GPT-4-turbo, GPT-4o, and Claude 3 Opus. The
RL fine-tuning reduces the total error ratio of the
Llama 3 Instruct-8B model from 16.09 to 14.55,
making it superior to the Claude 3 Opus. Particu-
larly, our models excel in generating underexplored
plot types such as gridded, irregularly gridded, and
3D and volumetric plots, compared to open-source
models.

Human evaluation. We additionally conduct
human evaluation to check the correctness of the
generated plot and its alignment with the descrip-

11464



Error ratio (%) ↓ Code similarity ↑
Statistical (Irregularly) 3D &

Model Pairwise distribution gridded Volumetric Total METEOR CodeBLEU

Open-source

CLI-7B 22.67 29.42 77.94 52.20 41.32 0.485 0.402
L3I-8B 20.76 28.98 66.76 34.59 35.91 0.519 0.437
[SFT] L3I-8B 19.07 13.27 13.53 20.75 16.09 0.562 0.464
[SFT+RLpref] L3I-8B 13.14 11.50 15.00 26.42 14.55 0.567 0.461

CLI-13B 18.86 29.42 71.76 57.23 39.14 0.489 0.413
StarCoder-15.5B 23.31 32.08 51.18 25.16 32.89 0.347 0.328
Instruct CodeGen-16B 38.56 45.13 62.94 40.25 46.66 0.388 0.330
[SFT] CLI-13B 6.36 6.19 12.06 22.64 9.49 0.581 0.481
[SFT+RLpref] CLI-13B 6.36 5.53 12.35 21.38 9.21 0.566 0.467

Closed-source

GPT-3.5-turbo 11.02 13.50 28.82 19.59 18.62 0.524 0.453
GPT-4-0613 13.56 11.06 28.53 39.62 19.26 0.535 0.441
GPT-4-turbo 11.02 14.16 11.76 29.56 14.27 0.540 0.448
GPT-4o 13.98 6.86 13.53 26.42 13.00 0.552 0.450
Claude 3 Opus 7.84 7.74 30.59 23.27 14.90 0.515 0.435

Table 2: Results of the Description-to-Chart task. The plot type error ratio is categorized based on Matplotlib
classifications (Hunter, 2007). CLI and L3I stand for Code Llama Instruct and Llama 3 Instruct, respectively. SFT
and RL∗ indicate our fine-tuned models.

Error ratio (%) ↓ Plot type ↑ Desc. sim. ↑
Method w/ GPT w/ SFT HitRate Jac. R-L BertScore

Open-source

L2C-7B 40.82 56.45 0.175 0.359 0.232 0.820
L2C-13B 35.64 37.99 0.205 0.384 0.237 0.825
L3I-8B 27.25 38.48 0.269 0.406 0.196 0.800
[SFT] L2C-7B 15.92 15.82 0.329 0.396 0.381 0.903
[SFT] L3I-8B 15.53 15.62 0.413 0.432 0.389 0.905

Closed-source

GPT-3.5-turbo 21.00 29.10 0.239 0.412 0.232 0.816
GPT-4 16.41 34.67 0.286 0.428 0.202 0.829
GPT-4-turbo 27.05 37.01 0.313 0.461 0.184 0.808
GPT-4o 15.82 31.64 0.339 0.436 0.170 0.786
Claude 3 Opus 15.62 27.34 0.294 0.451 0.188 0.813

Table 3: Results of the Raw Data-to-Chart task. Descrip-
tion similarity, error ratio, and plot type prediction are
compared for various open-source and closed-source
methods. The error ratio is evaluated using SFT L3I-
8B from Task 1 denoted as ’w/ SFT’, or GPT-3.5-turbo
denoted as ’w/ GPT’. SFT indicates our fine-tuned mod-
els. L2C and L3I stand for Llama 2 Chat and Llama 3
Instruct, respectively.

tion. We randomly sample a subset of 155 data
points, consisting of 5 samples from each of the 31
plot types. For each sample, three crowd workers
are recruited to compare the generated plot images
with the GT reference plot images based on chart
type, data representation, and visual appearance. If
both images are equally similar or neither is simi-
lar, it is voted as a tie. More details can be found

Description similarity ↑ Err. ratio (%) ↓
Method R-1 R-2 R-L BertScore w/ GPT

Open-source

L2C-7B 0.419 0.182 0.260 0.812 38.86
CLI-7B 0.411 0.173 0.260 0.823 42.73
L3I-8B 0.453 0.206 0.276 0.834 36.82
[SFT] L3I-8B 0.592 0.343 0.436 0.881 21.36
[SFT+RLalgn] L3I-8B 0.594 0.346 0.440 0.884 20.31

Closed-source

GPT-3.5-turbo 0.463 0.212 0.286 0.845 45.26
GPT-4 0.426 0.175 0.252 0.809 23.12
GPT-4-turbo 0.416 0.168 0.242 0.795 29.80
GPT-4o 0.442 0.198 0.269 0.775 11.81
Claude 3 Opus 0.453 0.207 0.276 0.827 19.33

Table 4: Results of the Code-to-Description task. SFT
and RL∗ indicate our fine-tuned models. L2C and L3I
stand for Llama 2 Chat and Llama 3 Instruct-8B, respec-
tively.

in Appendix E. Figure 3 presents the results of
human evaluation. The inter-annotator agreement
is measured using Krippendorff’s α, whose value
is 0.519 for the three classes (win, lose, and tie).
Our fine-tuned models consistently have higher
win rate compared to Llama 3 Instruct-8B and
GPT-3.5-turbo. Specifically, SFT CLI-13B model
has the higher win rate (47.7%) against L3I-8B,
while also achieving a lower lose rate (4.5%). Our
SFT+RLpref L3I-8B model wins over GPT-3.5-
turbo with 25.2% win rate and 20.6% lose rate.
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Figure 3: Human evaluation results on a randomly sam-
pled subset of the test set. We compare SFT+RLpref
L3I-8B and SFT CLI-13B with GPT-3.5-turbo and L3I-
8B.

4.2 Results of Raw Data-to-Chart

Table 3 presents the results of the Raw Data-
to-Chart task. We fine-tune Llama 2 Chat-7B
and Llama 3 Instruct-8B using our Text2Chart31
dataset. We report the error ratio after visualiz-
ing the generated descriptions using our supervised
fine-tuned Llama 3 Instruct-8B (w/ SFT) from task
1 and GPT-3.5-turbo (w/ GPT). Notably, our fine-
tuned Llama 3 Instruct-8B outperforms all open-
source models across all metrics. Furthermore,
this model surpasses closed-source models (GPT-
3.5-turbo, GPT-4-turbo) in terms of error ratio and
generated description similarity.

4.3 Results of Code-to-Description

Table 4 presents the results on the Code-to-
Description task. We fine-tune the Llama 3 Instruct-
8B using our dataset and evaluate the descrip-
tion similarity with ROUGE and BertScore. Our
fine-tuned model outperforms all open-source and
closed-source models across Description similar-
ity. Furthermore, RL fine-tuning with alignment
reward consistently increases the description simi-
larity across all metrics. We also provide the gener-
ated descriptions to GPT-3.5-turbo and report the
error ratio to highlight the quality of the descrip-
tions produced by our fine-tuned models. After RL
fine-tuning, the error ratio decreases from 21.36%
to 20.31%, and the description similarity consis-
tently improves.

5 Related Work

Chart datasets. There are several existing chart
datasets, including PlotQA (Methani et al., 2020),
ChartQA (Masry et al., 2022), FigureQA (Kahou
et al., 2018), Unichart (Masry et al., 2023), Au-
tochart (Zhu et al., 2021), Chart-to-Text (Kan-

tharaj et al., 2022). These datasets primarily focus
on question and answer (QA) tasks on a limited
range of plot types. More recently, ChartLlama
(Han et al., 2023) proposes a text-to-chart dataset
that includes QA tasks and generates visualization
code from provided descriptions. However, these
datasets still lack coverage in certain plot categories
such as 3D/volumetric plots and vector field plots,
and they do not cover the use case of analyzing
the raw data and predicting the most suitable plot
types. On the other hand, our Text2Chart31 dataset
encompasses 31 plot types with 11.1K tuples that
combine descriptions, code, data tables, and plots,
thereby covering a wide range of use cases.

Instruction tuning. Employing reinforcement
learning with human feedback is a prevalent strat-
egy for enhancing (un)supervised finetuned models,
whether by integrating human feedback into the
learning loop (Arakawa et al., 2018; Arumugam
et al., 2019) or by leveraging preference data gener-
ated by human (Ouyang et al., 2022; Glaese et al.,
2022; Bai et al., 2022; Stiennon et al., 2022). How-
ever, we argue that this methodology might not
offer the most practical solution for plot visual-
ization tasks, given the intricate and fact-intensive
nature of plot types. Moreover, considering the
limitations of human cognition, there is a risk of
overlooking crucial small details essential for vali-
dating the accuracy of generated plots. To address
this, we propose a novel automatic method that
constructs a preference dataset using supervised
fine-tuned output.

Cycle consistency. Exploiting cycle consistency
to enhance the performance of the generative model
has been mainly studied in the image domain (Zhu
et al., 2020). Recently, DDPO (Black et al., 2024)
adopts the LLaVA model (Liu et al., 2023) to in-
crease the alignment between the image and the
text. Following this line of research, we propose an
alignment reward that exploits cycle consistency
between description and code to improve LLM
for chart generation tasks. This is made possi-
ble because of the rich nature of our Text2Chart31
dataset, which consists of diverse textual modali-
ties, including visualization code and description.

6 Conclusion

We introduce a novel hierarchical pipeline and a
comprehensive dataset for chart generation. The
proposed Text2Chart31 dataset, encompassing 31
unique plot types, provides a robust foundation for
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diverse visualization tasks with its 11.1K tuples of
descriptions, code, data tables, and plots. Addition-
ally, we proposed an RL-based instruction tuning
technique employing preference and alignment re-
wards, improving LLMs in data visualization.

Limitations

There are certain considerations to note. First, our
dataset is based on Matplotlib version 3.8. As such,
if earlier versions of Matplotlib are used where
function names may have changed, the generated
code could potentially cause errors. This is a nat-
ural consequence of advancements and updates in
software libraries. Additionally, the descriptions
provided are exclusively in English. This focus en-
sures clarity and consistency in our current scope
but can be expanded to include multiple languages
in future iterations. Lastly, our primary focus was
on chart generation through large language models
(LLMs), rather than on question answering. How-
ever, exploring question answering capabilities is a
promising direction for future research.

Ethics Statement

All data points generated in Text2Chart31 were cre-
ated using large language models (LLMs) and are
intended solely for visualization purposes. These
data points do not represent real-world facts and
should not be referenced as accurate depictions of
actual data distributions. Furthermore, they do not
contain offensive contents. Matplotlib library is
based on PSF license. We have used open source
models, libraries, and closed source models for
their intended uses, and not use other than research
purposes.
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A Details of Text2Chart31 Dataset

In this section, we provide a comprehensive overview of the Text2Chart31 dataset, including its categories,
examples, summary statistics, topic distribution and plot type distribution.

A.1 Categories and Examples
Figure 4 illustrates the diverse range of plot types included in the Text2Chart31 dataset. The dataset covers
31 different plot types, grouped into 5 categories: Pairwise Chart, Statistical Distribution Chart, Gridded
Chart, Irregularly Gridded Chart, and 3D & Volumetric Chart. The examples provided for each plot type
illustrate the variety of data and plot types present in the dataset.

Pairwise Chart

Statistical Distribution Chart

Irregularly Gridded Chart

3D & Volumetric Chart

3D Scatter 3D Surface 3D Triangular Surface 3D Voxel 3D Wireframe

Contour Filled Contour

Imshow

Pcolormesh Quiver Barb

Triangular Contour Filled Triangular Contour Triangular plot Triangular Plot Colored

Bar Fill Between Line Scatter

Stacked

Stair Stem

2D Histogram Box

ECDFError Event

HistogramHexbin

Pie

Violin

Gridded Chart

Figure 4: Examples from the 31 plot types in Text2Chart31 dataset, grouped into 5 chart categories.
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A.2 Dataset Summary
The Text2Chart31 dataset consists of 11,128 data points, with 9,705 in the training set and 1,423 in the test
set. The dataset is categorized into five categories of charts: Pairwise, Statistical Distribution, Gridded,
Irregularly Gridded, and Statistical Distribution and 3D & Volumetric chart. Among the total data points,
8,166 include both data tables (d) and reasoning steps (r), with 7,142 in the training set and 1,024 in the
test set.

Train Test Total

Pairwise Chart 3026 (1557) 472 (241) 3498 (1798)
Statistical Distribution Chart 2878 (1784) 452 (284) 3330 (2068)
Gridded Chart 1305 (1305) 192 (192) 1497 (1497)
Irregularly Gridded Chart 1145 (1145) 148 (148) 1293 (1293)
3D & Volumetric Chart 1351 (1351) 159 (159) 1510 (1510)

Total 9705 (7142) 1423 (1024) 11128 (8166)

Table 5: Summary of the Text2Chart31 dataset. The numbers in parentheses indicate the data points that include
both data tables (d) and reasoning steps (r).

A.3 Topic Distribution
Figure 5 shows the distribution of keywords within the topic pool extracted using BERTopic(Grootendorst,
2022). The generated topic pool encompasses a diverse range of fact-based and natural topics, ensuring
comprehensive coverage across various subject areas.

Figure 5: Distribution of keywords within the topic pool, showcasing the diverse and balanced coverage of topics in
the Text2Chart31 dataset.
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A.4 Plot Type Distribution
As shown in Figure 6, our dataset, Text2Chart31, exhibits the most diverse and well-balanced distribution
across various plot types when compared to other existing datasets. While existing datasets have primarily
focused on common plot types such as bar charts and line charts, our dataset provides comprehensive
coverage across a diverse range of plot types. This includes more complicated plot types like 3D surface
plots and contour plots.

(a) Text2Chart31 (ours)

(b) PlotQA (Methani et al., 2020) (c) ChartQA (Masry et al., 2022) (d) FigureQA (Kahou et al., 2018)

(e) Autochart (Zhu et al., 2021) (f) Chart-to-Text (Kantharaj et al., 2022)

(g) ChartLlama (Han et al., 2023) (h) ChartX (Xia et al., 2024)

Figure 6: Comparison of the distribution of chart types with other datasets. Each pie chart shows the distribution of
the plot types for each dataset, respectively.
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A.5 Example of Text2Chart31
This section shows example from the Text2Chart31 dataset, providing a overall view of the data point
including description, code, reasoning step, and data table, as shown in Table 6.

Description

This contour plot showcases the temperature variations along a coastal region using the dataset ’coastal_temperature.csv’. The dataset includes information on
latitude, longitude, and temperature (in degrees Celsius) for different coastal locations.
By establishing a grid of points (X, Y) representing latitude and longitude, we can model the temperature variations using the equation ’Z = a*X + b*Y + c’, where a
and b are regression coefficients determined through analysis.
Here are the first six rows of the dataset:
Latitude, Longitude, Temperature (°C)
40.7128, -74.0060, 15
48.8566, 2.3522, 10
37.7749, -122.4194, 18
51.5074, -0.1278, 12
35.6895, 139.6917, 20
42.3601, -71.0589, 14
Visualizing this data on a contour plot helps us analyze the spatial distribution of temperature along the coast. The contour lines indicate regions with similar
temperature values, enabling us to identify temperature patterns and variations based on geographical location. This plot can be useful for understanding coastal
climate, identifying areas with specific temperature ranges, and providing insights for planning activities related to beach tourism, coastal agriculture, and coastal
development.

Code

...
# Define the grid over which we will interpolate the data
x_range = np.linspace(data[’Longitude’].min(), data[’Longitude’].max(), len(data[’Longitude’].unique()))
y_range = np.linspace(data[’Latitude’].min(), data[’Latitude’].max(), len(data[’Latitude’].unique()))
x, y = np.meshgrid(x_range, y_range)

# Interpolate the measured temperature data onto the defined grid
z = griddata((data[’Longitude’], data[’Latitude’]), data[’Temperature (°C)’], (x, y), method=’cubic’)

# Configure the contour plot
plt.figure(figsize=(10, 6))
contours = plt.contourf(x, y, z, cmap=’RdYlBu_r’)
plt.colorbar(contours)
...

Reasoning Step

1. Characteristics of the data and CSV file:
- The data includes three columns: Latitude, Longitude, and Temperature (°C).
- Latitude and Longitude are geographical coordinates specifying north-south and east-west positioning on the Earth’s surface.
- Temperature is a numerical measure indicating the amount of heat energy.
- The data thus represents the temperature at different geographical locations around the world. ....

2. Possible plot types:
- **Map-based plots**: Utilizing the latitude and longitude values to plot geographical data on a global map.
- **Scatter Plot**: To visualize how temperature varies with latitude or longitude.
- **Contour or Heatmap**: Can be plotted over a map to show temperature distributions.
- **3D Surface Plot**: Making use of X (Longitude), Y (Latitude), and Z (Temperature) to form a 3D visualization of temperature variations.

3. Most suitable plot type:
- **Map-based Heatmap or Contour Map**: This is especially suitable due to the geographical nature of the data (latitude and longitude) combined with a third
variable (temperature). This type of visualization will allow viewers to easily understand temperature distributions across various geographical locations. ...

4. Further considerations for the description:
- Verify the accuracy and intent of the negative temperature values. If these are anomalies, it must be clearly stated to avoid misinterpretation. - Include proper color
scales to represent temperature values, ensuring that the map is accessible and readable.
- Consider adding interactive elements such as tooltips or zoom features if the visualization is digital, to enable detailed inspection of data at specific locations. ...

Data Table

Latitude,Longitude,Temperature (°C)
5.2927,-173.8335,31.8
-12.0503,72.5485,-39.1
86.2247,137.7667,27.6
-43.7762,-120.4625,44.5
16.645,-132.0993,-48.7
23.3972,-46.3823,-9.7
...

Table 6: An example data point in Text2Chart31, comprising a description, code, reasoning step, and CSV data table
(top to bottom). The description elucidates the contour plot, coastal_temperature.csv dataset, and insights from
the visualization. The code utilizes Matplotlib for generating the contour plot. The reasoning step delineates the
rationale behind crafting the data table and visualization, factoring in data characteristics, plot types, and additional
consideration. Finally, the data table shows the dataset columns: Latitude, Longitude, and Temperature (°C).
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B Experimental Details

Training setup and hyperparameters We report the hyperparameters for training supervised fine-
tuning and joint reinforcement learning based fine-tuning in Table 7 and Table 8. For supervised fine-
tuning, we fine-tune base model with LoRA adapter with the configuration in Table 7. For reinforcement
learning-based fine-tuning, we start with the supervised fine-tuned model and merge the LoRA parameters
into the original model parameters. Then, we apply an additional LoRA adapter according to the
configuration in Table 8. Finally, we fine-tune both Task 1 and Task 3 models jointly using the PPO
algorithm.

Task 1 Task 2 Task 3

Model L3I-8B CLI-13B L2C-7B L3I-8B L3I-8B

Training epochs 5 5 5 5 5
Training set size 9705 9705 7142 7142 9705
Batch size 16 16 16 16 16
Optimizer AdamW AdamW AdamW AdamW AdamW
Learning rate 5e-4 5e-4 5e-5 5e-5 5e-4
Learning rate scheduling Constant Constant Constant Constant Constant
Mixed precision BF16 BF16 BF16 BF16 BF16
LoRA rank 16 16 32 32 32
LoRA alpha 16 16 32 32 32
LoRA dropout 0.1 0.1 0.1 0.1 0.1

Table 7: Training hyperparameters for supervised fine-tuning. L3I-8B, CLI-13B, and L2C-7B denote Llama 3
Instruct-8B, Code Llama Instruct-13B, and Llama 2 Chat-7B, respectively.

Task 1 Task 3

Model L3I-8B CLI-13B L3I-8B

Batch size 8 8 8
Training steps 63 94 63
Training data size 504 752 504
Optimizer Adam Adam Adam
Learning rate 1.41e-5 7.05e-6 1.41e-5
Learning rate scheduling Constant Constant Constant
Mixed precision BF16 BF16 BF16
LoRA rank 16 16 32
LoRA alpha 16 16 32
LoRA dropout 0.1 0.1 0.1

Table 8: Training hyperparameters for RL fine-tuning. L3I-8B and CLI-13B denote Llama 3 Instruct-8B and Code
Llama Instruct 13B, respectively.
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C Cycle Consistency Details

This method leverages the capabilities of language models to verify the consistency between the original
plot description and the generated code, without the need for manual human evaluation. Figure 7 and
Figure 8 illustrate examples of data points that fail and pass the cycle consistency verification, respectively.
By employing this method, we ensure that the generated code and plot are well aligned with the intended
visualization described in the original description, maintaining the quality of the Text2Chart31 dataset.

import pandas as pd
import matplotlib.pyplot as plt

# Reading data
data = pd.read_csv('sales_by_quarter.csv')

# Defining x and y
x = data['Quarter']
y = data['Revenue (in $)'].astype(float)

# Create bar chart
plt.bar(x, y)

# Adding labels and title
plt.xlabel('Quarter')
plt.ylabel('Revenue (in $)')
plt.title('Revenue by Quarter')

# Displaying the plot
plt.show()

Description Code Regenerated Description
Explore the quarterly sales performance 
through a captivating 2D histogram based 
on the dataset 'sales_by_quarter.csv'. This 
visualization adventure delves into the 
dynamics of sales figures across distinct 
business quarters, showcasing the interplay 
between `Quarter` and `Revenue (in $)` 
metrics. Here are the initial rows of the 
dataset:

Quarter, Revenue (in $)
Q1,25000 
Q2,32000 
Q3,28000
Q4,31000 
Q1,26000 
Q2,33000
By juxtaposing the `Quarter` labels on the 
x-axis and the corresponding `Revenue (in 
$)` values on the y-axis, this 2D 
histogram ... 

The x-axis represents the different 
quarters which are read from the 
'Quarter' column of the CSV file, which 
is 'sales_by_quarter.csv'. The specific 
value for each quarter isn't defined in the 
provided code, but would be expected to 
be a series of time periods, probably 
labeled Q1, Q2, Q3, and Q4, representing 
the four quarters of a standard fiscal year.

The y-axis represents the total revenue 
obtained in each quarter, read from the 
'Revenue (in $)' column in the CSV file. 
These values are cast into float data type 
for creating bar chart. Each bar in the 
chart corresponds to a given quarter (x-
axis) and their heights represent the 
revenue gained for each respective 
quarter (y-axis). The bar chart thus 
serves to compare revenues across 
different quarters. ...

Criteria 1. Plot type should be equivalent. No
Criteria 2. Data points should be equivalent. Yes 
Criteria 3. All key elements and details of the plot should be consistent between the two descriptions. Yes

Cycle-Consistency Verification Result

Is data point qualified? X

Figure 7: Example of cycle consistency verification for a description and generated code, showcasing inconsistency
in the plot type (2D histogram vs. bar chart) despite consistent data source and sufficient detail in both descriptions.

# Including necessary libraries
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

# Reading data from CSV
data = pd.read_csv('crystal_art.csv')

# Extracting necessary columns
projection_position = data['Projection Position']
height_from_ground = data['Height from Ground']
glow_intensity = data['Glow Intensity']

# Creating 3D scatter plot
fig = plt.figure(figsize=(10, 7))
ax = fig.add_subplot(111, projection='3d')

# Adding data points to the scatter plot
scatter = ax.scatter(projection_position, 
height_from_ground, glow_intensity, 
c=glow_intensity)

# Adding labels to the axes
ax.set_xlabel("Projection Position on Wall")
ax.set_ylabel("Height from Ground")
ax.set_zlabel("Glow Intensity")

. . .

# Displaying the plot
plt.show()

Description Code Regenerated Description
This 3D scatter plot portrays the 
mesmerizing beauty of glowing crystal art 
projections. The data for this visualization is 
retrieved from the 'crystal_art.csv' file, 
which contains information about the 
different crystal art pieces.  ...

Projection Position, Height from Ground, 
Glow Intensity
1, 2, 4.3
2, 3, 9.1
3, 1, 5.8
4, 4, 3.2
5, 2, 6.7
6, 3, 8.9

This 3D scatter plot aims to capture the 
enchanting visual experience of glowing 
crystal art projections by providing an 
immersive representation, enabling viewers 
…

The plot generated by the Python script is 
a three-dimensional scatter plot, aimed 
at representing the correlation between the 
projection positions of crystal art pieces, 
their height from the ground, and their 
glow intensity. The data for the plot is 
derived from a CSV file named 
'crystal_art.csv'.
In the context of the plot, the 'Projection 
Position' refers to where the crystal art 
piece projects on the wall, 'Height from 
Ground' corresponds to the height at which 
the art piece is positioned, and 'Glow 
Intensity' denotes the intensity of the light 
that the crystal art emits.
…

The X-axis represents the 'Projection 
Position on Wall', the Y-axis represents 
'Height from Ground', and the Z-axis 
corresponds to 'Glow Intensity'.

Criteria 1. Plot type should be equivalent. Yes
Criteria 2. Data points should be equivalent. Yes 
Criteria 3. All key elements and details of the plot should be consistent between the two descriptions. Yes

Cycle-Consistency Verification Result

Is data point qualified? O

Figure 8: Example of cycle consistency verification for a description and generated code, showcasing consistency in
the plot type (3D scatter plot), data source (crystal_art.csv), and sufficient detail in both descriptions to accurately
redraw the plot.
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D Prompt Template

D.1 Prompt Template used for Data Generation
This section presents the prompt templates used for various stages of the data generation process in
the Text2Chart31 dataset. Figure 9 illustrates the prompt template used for topic generation, while
Figure 10 shows the template for description generation. Figure 11 presents the template for description
self-evaluation, and Figure 12 illustrates the template for code generation. Figure 13 shows the template
used for cycle consistency verification, and Figure 14 presents the template for data table generation.
Figure 15 illustrates the template for generating code that creates the data table, and Figure 16 shows the
template for reasoning step generation.

"system” : 
You are good at thinking about different topics. I am going to write different topics suitable for types like 3D wireframe 
plots, 3d tri-surface plots, 3d voxel plots, 3d scatter plots, 3d surface plots and more, that can be used in generating 
descriptions for plots that illustrate 3D data or volumetric data types.
"user” :
Write 5 different topics that are commonly used for making 3D plots. Keep each topic to 8 words or less and be creative.
"assistant” : 
Topic 1. {topic 1} Topic 2. {topic 2} Topic 3. {topic 3} Topic 4. {topic 4}  Topic 5. {topic 5}
"user” : 
Generate 5 more plots, 3D surface plots and more. Keep each topic under 8 words. creative topics for 3D data or volumetric 
data, suitable for 3D wireframe plots, 3D tri-surface plots, 3D voxel plots, 3D scatter 

Topic Generation Prompt Template 

Figure 9: Prompt template used for topic generation

"system”:
You are good at describing various/different 3D Surface Plots for data visualization. Make sure when you describe a graph, 
mention the data points that are going to be used; otherwise, we won't be able to sketch the plot.
"user” : 
Write 5 descriptions that describe a 3D Surface Plot. You can write code to illustrate the 3D Surface Plot based on the given 
description
"assistant” : 
Description 1. {description 1} Description 2. {description 2}  Description 3. {description 3} 
Description 4. {description 4} Description 5. {description 5}
"user” : 
Write a description for a 3D Surface Plot based on the given topic. You can write code to illustrate the 3D Surface Plot 
based on the description. Include the FIRST 6 ROWS of DATA POINTS from the CSV file that will be used, along with the 
name of the CSV file. Without this information, we won't be able to draw the plot. Do not use ellipsis (...) to represent 
omitted data. Ensure column names are readable if necessary.
Please include a meaningful and interpretable pattern describing how the dependent variable Z changes with respect to the 2 
independent variables X and Y across a two-dimensional space. 

Topic: {topic}
Generated Description : 

Description Generation Prompt Template 

Figure 10: Prompt template used for description generation

"system”: 
You are an expert in data visualization.
"user” :  
Please check the correctness of given description for the given criteria. 
Criteria 1. Check if the Data type in the description suits the Plot type (compatible).
Criteria 2. Check if the mentioned mathematical relation between variables suits the plot type.
Description : {description}
Answer if it satisfies each criteria in the following format:
“Criteria 1 : Yes/No”
“Criteria 2 : Yes/No”

Description Self-Evaluation Prompt Template 

Figure 11: Prompt template used for description self-evalution
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"system”: 
You are an expert in python.
"user” :  
Please write a python code to illustrate the plot in the given description. Make sure to include all the necessary libraries.
Make sure to include all the necessary libraries. Please make labels in the plot readable if necessary. Please generate the 
python code in ``` ``` format.

Description : {description}
Generated Code : 

Code Generation Prompt Template

Figure 12: Prompt template used for code generation

Step 1. Regenerating the description given the code 

The code generates a plot. Please generate a detailed and clear description of the plot.
Make sure to follow the following criteria:
1. The description should be detailed enough for one to redraw the plot using only the description.
2. Include every data point used in the plot in the description (or the CSV filename if mentioned).
3. Do not omit any detail from the plot.
Code : {code}
Generated Description :

Step 2. Comparing the original description with the regenerated description

Please determine if these two descriptions describe the same plot by considering the following criteria:
Criteria 1. Plot type should be equivalent.
Criteria 2. Data points should be equivalent.
Criteria 3. All key elements and details of the plot should be consistent between the two descriptions.

Description 1: {original description}
Description 2: {regenerated description}

Answer if each criterion is satisfied using the following format:
“Criteria 1 : Yes/No”
“Criteria 2 : Yes/No”
“Criteria 3 : Yes/No”

Cycle-Consistency Verification Prompt Template 

Figure 13: Prompt template used for cycle consistency verification

"system”: 
You are an expert in generating data tables
"user” :  
Please write a Python script that generates a CSV file based on the given description. Ensure that the data points provided in 
the description are included in the generated CSV file. The column and row names should be relevant to the data being 
represented. 
Focus on generating the code for the CSV file in this section and do not include any code related to chart generation. The 
output of the code should generate a set of random data points, consisting of {number} data points, that you believe would 
be suitable for the plot described in the description. Please generate the python code in ``` ``` format.

Description : {description}
Generated Code for CSV file: 

Data Table Generation Prompt Template

Figure 14: Prompt template used for data table generation

"system”: 
You are an expert in python.  
"user” :  
Please generate a CSV file based on the given description. Generate {number} random data points. Ensure that the data 
points provided in the description are included in the generated CSV file. The column and row names should be relevant to 
the data being represented. Do not use ellipsis (...) to represent omitted data. Please generate the CSV file in ``` ``` format.

Description : {description}
Generated CSV : 

Code for Data Table Generation Prompt Template 

Figure 15: Prompt template used for code used for data table generation
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"system”: 
You are an expert in data visualization.
"user” :  
I need an intermediate logical flow explaining why the following raw data table is best visualized using the provided 
description. Please write a proper intermediate reasoning step in the following format.
1. Characteristic of data and CSV file: 
2. Possible plot types:
3. Most suitable plot type:
4. Further considerations for the description:

Description: {description}
Raw Data Table :{data table}
Reasoning Steps: 

Reasoning Step Generation Prompt Template 

Figure 16: Prompt template used for reasoning step generation
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D.2 Prompt Template for Tasks
This section presents the prompt templates used for three tasks using the Text2Chart31 dataset, including
description-to-chart, raw data-to-chart, and chart-to-description tasks. Figure 17 illustrates the prompt
template used for the description-to-chart task, Figure 18 shows the template for the raw data-to-chart
task, and Figure 19 presents the template used for the chart-to-description task.

"system": 
You are good at generating complete python code from the given chart description.
"user" :  
Your task is to generate a complete python code for the given description. Make sure to include all necessary libraries. 
Description: {description}
Please generate the corresponding code that generates the plot that has the above description. 
"assistant" :
Code: 
```Python
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

Task 1: Description-to-Chart Task Prompt Template 

"system": 
You an expert in chart generation and data visualization.
"user":
Given the Raw Data Table, generate the reasoning steps to determine the most suitable plot for visualizing the data, taking 
into account the characteristics of the data.
Raw Data Table in {name of CSV file}:
{data table}
Provide the reasoning steps in the following format: 
1. Characteristics of the data and CSV file:
2. Possible plot types:
3. Most suitable plot type: 
4. Further considerations for the description: 
"assistant" : 
Reasoning Steps : {reasoning step}
"user":
Given the reasoning step above and the raw data table in {name of CSV file}.
Please describe the plot you would generate to visualize this data, including:
Plot type, CSV file name, First 6 rows of the raw data table, Variables assigned to each axis and Any styling, formatting, or 
additional elements you would include.
Description : 

Task 2: Raw Data-to-Chart Task Prompt Template 

"system”: 
You are good at describing about the given data visualization code. Make sure when you describe a graph, mention the data 
points or csv file that are going to be used; otherwise, we won't be able to sketch the graph.
"user":
Your task is to generate a description of the chart based on the provided code, please make sure to include labels from the 
graph. 
Code: {code}
Please generate the corresponding description.
”assistant":
Description:

Task 3: Chart-to-Description Task Prompt Template 

Figure 17: Prompt template used for description to chart task

"system": 
You are good at generating complete python code from the given chart description.
"user" :  
Your task is to generate a complete python code for the given description. Make sure to include all necessary libraries. 
Description: {description}
Please generate the corresponding code that generates the plot that has the above description. 
"assistant" :
Code: 
```Python
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

Task 1: Description-to-Chart Task Prompt Template 

"system": 
You an expert in chart generation and data visualization.
"user":
Given the Raw Data Table, generate the reasoning steps to determine the most suitable plot for visualizing the data, taking 
into account the characteristics of the data.
Raw Data Table in {name of CSV file}:
{data table}
Provide the reasoning steps in the following format: 
1. Characteristics of the data and CSV file:
2. Possible plot types:
3. Most suitable plot type: 
4. Further considerations for the description: 
"assistant" : 
Reasoning Steps : {reasoning step}
"user":
Given the reasoning step above and the raw data table in {name of CSV file}.
Please describe the plot you would generate to visualize this data, including:
Plot type, CSV file name, First 6 rows of the raw data table, Variables assigned to each axis and Any styling, formatting, or 
additional elements you would include.
Description : 

Task 2: Raw Data-to-Chart Task Prompt Template 

"system”: 
You are good at describing about the given data visualization code. Make sure when you describe a graph, mention the data 
points or csv file that are going to be used; otherwise, we won't be able to sketch the graph.
"user":
Your task is to generate a description of the chart based on the provided code, please make sure to include labels from the 
graph. 
Code: {code}
Please generate the corresponding description.
”assistant":
Description:

Task 3: Chart-to-Description Task Prompt Template 
Figure 18: Prompt template used for raw data-to-chart task

"system": 
You are good at generating complete python code from the given chart description.
"user" :  
Your task is to generate a complete python code for the given description. Make sure to include all necessary libraries. 
Description: {description}
Please generate the corresponding code that generates the plot that has the above description. 
"assistant" :
Code: 
```Python
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

Task 1: Description-to-Chart Task Prompt Template 

"system": 
You an expert in chart generation and data visualization.
"user":
Given the Raw Data Table, generate the reasoning steps to determine the most suitable plot for visualizing the data, taking 
into account the characteristics of the data.
Raw Data Table in {name of CSV file}:
{data table}
Provide the reasoning steps in the following format: 
1. Characteristics of the data and CSV file:
2. Possible plot types:
3. Most suitable plot type: 
4. Further considerations for the description: 
"assistant" : 
Reasoning Steps : {reasoning step}
"user":
Given the reasoning step above and the raw data table in {name of CSV file}.
Please describe the plot you would generate to visualize this data, including:
Plot type, CSV file name, First 6 rows of the raw data table, Variables assigned to each axis and Any styling, formatting, or 
additional elements you would include.
Description : 

Task 2: Raw Data-to-Chart Task Prompt Template 

"system”: 
You are good at describing about the given data visualization code. Make sure when you describe a graph, mention the data 
points or csv file that are going to be used; otherwise, we won't be able to sketch the graph.
"user":
Your task is to generate a description of the chart based on the provided code, please make sure to include labels from the 
graph. 
Code: {code}
Please generate the corresponding description.
”assistant":
Description:

Task 3: Chart-to-Description Task Prompt Template 

Figure 19: Prompt template used for chart-to-description task
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E Details on Human Evaluation

Figure 20 illustrates the user interface designed for the human evaluation task. The interface presents the
crowd workers with a reference plot image and two generated plot images (Image 1 and Image 2) from
different models, where the order of the generated images is randomly determined. The workers are asked
to select one of the following options: Image 1 (Left) is more similar to the reference image, Image 2
(Right) is more similar to the reference image, both images are equally similar to the reference image, or
neither image is similar to the reference image. The workers make their selection based on the similarity
of the generated images to the reference image in terms of chart type, data representation, and visual
appearance. We use Amazon Mechanical Turk and gather annotators from English speaking countries.
We pay maximum $0.4 per HIT. We explain annotators that the provided answers are going to be used as
a research purpose in our qualification HIT.

Figure 20: User interface for human evaluation comparing generated plot images.
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