
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 11523–11542
November 12-16, 2024 ©2024 Association for Computational Linguistics

Repairs in a Block World: A New Benchmark for Handling User
Corrections with Multi-Modal Language Models

Javier Chiyah-Garcia Alessandro Suglia Arash Eshghi
Heriot-Watt University, Edinburgh, United Kingdom

{fjc3, a.suglia, a.eshghi}@hw.ac.uk

Abstract

In dialogue, the addressee may initially misun-
derstand the speaker and respond erroneously,
often prompting the speaker to correct the mis-
understanding in the next turn with a Third
Position Repair (TPR). The ability to process
and respond appropriately to such repair se-
quences is thus crucial in conversational AI
systems. In this paper, we first collect, analyse,
and publicly release BLOCKWORLD-REPAIRS:
a dataset of multi-modal TPR sequences in an
instruction-following manipulation task that is,
by design, rife with referential ambiguity. We
employ this dataset to evaluate several state-of-
the-art Vision and Language Models (VLM)
across multiple settings, focusing on their ca-
pability to process and accurately respond to
TPRs and thus recover from miscommunica-
tion. We find that, compared to humans, all
models significantly underperform in this task.
We then show that VLMs can benefit from spe-
cialised losses targeting relevant tokens during
fine-tuning, achieving better performance and
generalising better to new scenarios. Our re-
sults suggest that these models are not yet ready
to be deployed in multi-modal collaborative set-
tings where repairs are common, and highlight
the need to design training regimes and objec-
tives that facilitate learning from interaction.
Our code and data are available at www.github.
com/JChiyah/blockworld-repairs

1 Introduction

Unlike its formulation in much of the literature
within NLP (see especially Wang et al., 2018,
2019), Natural Language Understanding (NLU) is
not a unilateral, passive process, but an (inter)active
one (see Schlangen, 2023, for expansive discus-
sion): in everyday conversation, people continu-
ously work together to negotiate shared understand-
ing and coordination in order to move the conver-
sation forward (Clark, 1996; Clark and Brennan,
1991; Goodwin, 1981; Healey et al., 2018; Mills,

Figure 1: Example dialogue from BLOCKWORLD-
REPAIRS: after predicting an incorrect response, VLMs
must accurately interpret the repair to produce the cor-
rect bounding box prediction, a critical skill for human-
robot collaboration tasks.

2007). One of the key interactional processes that
enables this is called repair (Schegloff et al., 1977;
Schegloff, 1992) – see Figure 1: a set of univer-
sal and highly systematised corrective feedback
mechanisms for dealing with miscommunication
when it arises in conversation (Enfield et al., 2013;
Dingemanse et al., 2015).

Therefore, the ability to interpret and generate
effective repair sequences is crucial to robust and
faithful Conversational AI technology. This need
is especially acute in settings where more fine-
grained levels of understanding are required, for
example in embodied human-machine collabora-
tion. Indeed the frequency of miscommunication
in human dialogue is known to vary with both the
overarching task and the medium of communica-
tion (Colman and Healey, 2011).

In this paper, we focus on a particular class of
corrective feedback, so called, Third Position Re-
pairs (henceforth TPR; Schegloff, 1992) in multi-
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modal settings. These occur when the addressee
initially misunderstands the speaker (see Figure 1 at
T1, the trouble source turn), responds based on this
misunderstanding (at T2), which in turn reveals the
misunderstanding to the addressee who then goes
on to correct the misunderstanding (at T3). The
addressee then provides a new response (at T4) to
the original request (at T1) based on the correc-
tion. TPRs have been largely neglected in the NLP
community, likely due to underestimation of the
importance of repair phenomena in dialogue, and
thereby lack of appropriate data and frameworks for
model training and evaluation. Repair is of partic-
ular interest in (multi-modal) language modelling
since it almost invariably involves highly focused
/ specific revisions to the representations already
built by the model (e.g. revisions to the referents of
referring expressions, like in our case here), based
on the context-dependent structure of the corrective
feedback. Repairs can thus be used as probes into
how models represent meaning and the structure
of the overarching task (see Chiyah-Garcia et al.
(2023); Madureira and Schlangen (2023); Benotti
and Blackburn (2021) for different implementa-
tions of this idea). And as we show here, this is
also consequential for how language models should
be trained to process TPRs including the specific
objective functions involved.

Our contributions are thus as follows: 1) we col-
lect and release BLOCKWORLD-REPAIRS (BW-R),
a dataset of collaborative dialogues in a tabletop
manipulation task that, by design, has a high poten-
tial for referential ambiguity and is focused on com-
plex multi-modal task instructions as well as TPRs;
2) we establish a human baseline for the whole task
through an in-person human study where partici-
pants try to solve the task using these dialogues;
3) we show that state-of-the-art Vision Language
Models (VLM) can learn to process TPR sequences
through a specialised training regime, with some
opportunity for generalisation; and 4) considering
the substantial performance gap between the best
models and humans, we present an in-depth error
analysis comparing the two, revealing that models
struggle with references that humans find easy.

2 Background

Communicative Grounding, Miscommunication
and Repair What is often ignored or glossed
over in today’s research on Conversational AI is
that conversation involves collaborative effort from

speakers and addressees to ensure that what is said
is understood sufficiently for the task at hand before
the conversation can move forward: this almost
continuous exchange of both positive and negative
feedback is called communicative grounding1 (see
Clark, 1996, and many others following). This
exchange of feedback enables interactants to coor-
dinate their (linguistic and non-linguistic) actions
in conversation (Eshghi et al., 2022; Mills, 2014),
and enables shared languages to be established and
sustained (Healey et al., 2018). Miscommunication
occurs when one of the interactants detects a prob-
lem in their own, or another’s understanding, and
is usually dealt with immediately using different
forms of corrective feedback, or, as they are col-
lectively called, repair (Schegloff, 1992). These
are classified in the literature based on who ini-
tiates the repair; who performs it; and where the
actual correction takes place. For example, Clari-
ficational Exchanges (CE) whereby the addressee
produces a request for clarification (CR) and the
original speaker provides a response / correction in
the next turn, constitute other-initiated, self-repairs.
On the other hand, TPRs, our focus in this paper,
are self-initiated, self-repairs on the third turn.

Computational Models of Repair Considerable
attention has been paid to computational models
for the interpretation and generation of self-repair
(see Hough and Schlangen, 2015; Hough, 2015;
Shalyminov et al., 2017; Eshghi and Ashrafzadeh,
2023; Buß and Schlangen, 2011; Hough and Purver,
2012, among others): a class of repairs whereby
the speaker corrects themselves on the fly within
the same conversational turn (e.g. “User: I want
to go to London uhm sorry Paris”). Similarly, the
crucial role of generating and responding to CRs
(e.g. “Pardon/what/who?”) in conversational mod-
els has long been recognised (see San-Segundo
et al., 2001; Purver, 2004; Purver and Ginzburg,
2004; Rieser and Moore, 2005; Rodríguez and
Schlangen, 2004; Rieser and Lemon, 2006, among
others), but existing systems either remain limited
(e.g. Curry et al. (2018)) or do not support this at all
– see Purver et al. (2018) for an overview. Recent
work tries to identify when to pose a CR (Addle-
see et al., 2024; Madureira and Schlangen, 2024,
2023; Zhu et al., 2021; Shi et al., 2022; Addlesee
and Eshghi, 2021), but few evaluate the ability of
models to process their responses (Gervits et al.,

1Not to be confused with symbol grounding but see (Lars-
son, 2018) for how the two are related.
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2021; Aliannejadi et al., 2021). Chiyah-Garcia
et al. (2023) show that the ability of Vision and
Language Models (VLM) to effectively process
clarificational exchanges depends on the level of
granularity of the model’s cross-modal representa-
tion, and therefore also the specific objectives used
to train the models.

Our work here is closest in spirit to that of Balara-
man et al. (2023) who provide the first large dataset
of Third Position Repairs, and use it to evaluate
LLMs. However, they focus only on unimodal
repairs in the context of Conversational Question
Answering, and do not perform any fine-tuning of
the models they evaluate, like we do here.

VLMs for Situated Collaborative Tasks
Thanks to recent advances in the development of
LLMs, there have been many attempts to derive
Vision+Language models that use pretrained visual
encoders to solve vision-language tasks (e.g., (Liu
et al., 2024; Laurençon et al., 2024), inter alia). It
is important to note that most of these models are
trained to follow instructions that can be specified
in a single turn. Many tasks can be included in this
category such as visual question answering (Antol
et al., 2015), image captioning (Lin et al., 2014),
and referential expression resolution (Yu et al.,
2016). To solve these tasks, models are trained to
maximise the likelihood of the responses in the
training data using supervised learning methods
or using reinforcement learning from human feed-
back (Ouyang et al., 2022), ignoring the fact that a
conversation is a process that unfolds over multiple
turns where each of which matters to make correct
decisions. For instance, in tasks such as Visual
Dialogue (Das et al., 2017), it is well-known that a
very limited number of responses are dependent
on the dialogue history (Agarwal et al., 2020),
making them not a suitable benchmark for truly
collaborative tasks requiring the ability to establish
common ground. As highlighted by Suglia
et al. (2024), many Embodied AI benchmarks
(e.g., ALFRED (Shridhar et al., 2020), Simbot
Arena (Gao et al., 2023), etc.) also have similar
issues considering that the level of ambiguity is
reduced to the minimum, minimising the need for
any form of correction. For this reason, BW-R
represents the first benchmark that is aimed at
assessing the ability of current VLMs to resolve
TPRs—an important capability which is essential
for establishing common ground.

3 The BlockWorld-Repair Dataset

We build on top of the Block World dataset by
(Bisk et al., 2016), an instruction-following task
where a robot manipulator has to move blocks on
a virtual board. Humans provided instructions in
natural language referring to a block to pick up and
a new location to drop it with complex visual and
spatial descriptions (i.e., “the block on the top-right
corner moves behind the middle-top block”).

Prior works have struggled to handle the most
ambiguous setting with blank blocks (Tan and
Bansal, 2018; Mehta and Goldwasser, 2019; Dan
et al., 2021). However, here we argue that single-
turn instructions are insufficient to solve highly
ambiguous environments or real-world situations.
Even the most detailed referring expressions in
the Block World may fail to uniquely identify a
referent (see Figure 1), which repairs could alle-
viate by narrowing down the candidate pool and
introducing new information to identify the correct
referent (T3 in Figure 1). Similar to how humans
misinterpret and subsequently repair referential am-
biguities with TPRs, VLMs must also be capable
of handling multi-modal TPRs in dialogues, as they
are essential for mutual coordination.

Differences from the original Block World The
original dataset consists of pairs of images and
single-turn instructions, requiring agents to resolve
inherently ambiguous commands. However, it
does not account for dialogue or clarificational ex-
changes as strategies to overcome environmental
ambiguity, which humans commonly use to repair
miscommunications. To address this, we extend
the dataset by incorporating brief dialogues where
humans interact with the agent and produce Third
Position Repairs. We preserve the original Block
World instructions and test set while adding our
dataset as an extension to explore how humans re-
solve ambiguity through clarification and repair
strategies.

Ecological validity In contrast to more re-
cent photo-realistic simulated environments (e.g.,
AI2Thor (Kolve et al., 2017)), we build BW-R us-
ing the Unity engine to simulate a realistic table-
top manipulation task that gives us the ability to
specifically control for the conditions that require
collaboration between agents to correctly complete
the task. This is also similar to previous works
that sacrifice photo-realistic vision to asses the sys-
tematic generalisation ability of VLMs for tabletop
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manipulation tasks (e.g., VIMA-Bench (Jiang et al.,
2023)), or works that focus on dialogue coordina-
tion in highly ambiguous scenarios (e.g., The Cups
dataset (Dobnik et al., 2020)). Appendix A pro-
vides further comparisons to related datasets.

3.1 Dataset Collection
We built a dialogue interface on Amazon Mechani-
cal Turk (AMT) where workers chat with a robot
agent and provide instructions to move blocks in a
virtual world, similar to the original dataset. The
robot agent is prone to mistakes and verifies its
actions by pointing to blocks or locations. AMT
workers can then collaborate with the robot to cor-
rect misunderstandings via a short dialogue through
complex, context-dependent TPRs, based on the
robot’s indicated position. Figure 1 shows an ex-
ample dialogue.

The robot performs the correct action 70% of
the time2 and selects the appropriate block or lo-
cation after the corresponding repair, irrespective
of the quality of the TPR. Consequently, humans
provided at most one initial instruction specifying
the block to pick and where to place it, one TPR
indicating the source block to move, and one TPR
specifying the target position for the block. The
initial instructions are thus equivalent to the origi-
nal commands.

As a result of this data collection, we obtained
795 dialogues after filtering out low-quality and
problematic ones, which include 795 initial instruc-
tions, 629 source block TPRs and 635 final target
position TPRs, resulting in 2059 total entries. We
provide further details about the AMT setup, task
and dataset statistics in Appendix B.1.

3.2 Quality Control and Human Baselines
Since we used an automated agent to collect the
dialogues and AMT is prone to provide low-quality
data (Saravanos et al., 2021), we validated a data
subset through an in-person study. We recruited
22 participants to take on the robot agent’s role,
following the instructions and repairs previously
given by human workers.

Participants interacted with a similar interface
to the data collection, with a randomly selected
dialogue displayed in the chat window. Their task
was to choose the source block and a target posi-
tion they believed the dialogue referenced within
a large image of the virtual table. They did not

2For comparison, the best models only pick the correct
block 54% of the time (Tan and Bansal, 2018).

have access to the true block configurations and
received no feedback on whether they selected the
correct block/location. Participants did not see re-
peated entries (same dialogue), and at least two
participants annotated each entry. After filtering
out incorrect or problematic entries, we obtained
991 action annotations.

Participants performed well overall and rated the
AMT instructions highly, achieving 68% accuracy
in selecting the correct block to move, rising to
75% after repairs, with similar success in target
position prediction. These results emphasise the
need for models to process TPRs accurately. We
analyse human performance in §6.

4 Experiments

This section evaluates the ability of VLMs to
process instructions and repairs in an instruction-
following task within a situated context. The repair
turns in the BW-R are meaningful only when in-
terpreted alongside the robot’s pointing position at
the time of the repair, based on the first instruction;
thus, they are incomplete on their own. Conse-
quently, we have dialogue triplets that are intrin-
sically connected and can only be comprehended
as a whole: the initial instruction, the incorrect
candidate prediction, and the repair. We argue that
more general models must be able to process both
initial instructions and any subsequent repairs.

4.1 Experimental Setup
4.1.1 Dataset
We combine the Block World and BW-Rdata (70/30
train/test), which contains two types of entries:
single-instructions (1 turn) and TPRs (3 turns: in-
struction, candidate response, repair). We ablate
the data during our experiments to analyse fine-
grained information about the models’ capabilities.
Refer to Appendix B for further dataset details.

4.1.2 Tasks
Inspired by Bisk et al. (2016), we evaluate models
on two prediction tasks: 1) Source block prediction,
which consists of predicting the block to pick up
out of the 10 candidates in the virtual world; and
2) Target position prediction, which consists of
predicting where to drop the block on the table.

Previous works have formulated these tasks to
aid the prediction, such as finding a reference
block and an offset distance from it (Bisk et al.,
2016) or quadrants in a board (Mehta and Gold-
wasser, 2019). For our experiments, and follow-
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ing common visual grounding objectives in VLMs
(Wang et al., 2022; Liu et al., 2024; Chen et al.,
2023), we prompt models to generate the coordi-
nates of the bounding box for the block or loca-
tion ([xmin, ymin, xmax, ymax]) in the range of 0-1,
which we then scale to the image size. Predictions
not matching this format during parsing are marked
as out of distribution and removed. We use specific
prompts for each model to match their training
prompting strategy (see Appendix C).

4.1.3 Metrics
For evaluation, we use the metrics originally pro-
posed in the Block World (Bisk et al., 2016). For
source block accuracy, we use Intersection over
Union and select blocks above a threshold. We
compute block distances by converting bounding
boxes to their respective XYZ coordinates in the
virtual world and then calculating the distance in
blocks between the predicted and true locations.

4.1.4 Models
We experiment with two state-of-the-art open-
source models: Idefics2 8B (Laurençon et al.,
2024), and LLaVA 1.5 7B (Liu et al., 2023). Both
models have strong visual-textual cross-modality
grounding capabilities and have been pre-trained
on a mix of relevant vision and language objec-
tives which facilitate bounding box generation. Af-
ter preliminary tests with the “chatty” version of
Idefics2, we decided to use the instruction-tuned
version in all our experiments. We also provide
zero-shot evaluations for GPT-4o (OpenAI, 2024),
a frontier VLM model 3.

4.2 Evaluating Models on TPRs

VLMs should inherently be able to process TPRs
as they are fundamental components of human dia-
logues. We initially assess the VLMs’ out-of-the-
box capabilities in a zero-shot setting, and then pro-
ceed to distil these capabilities through fine-tuning.
In both cases, we prompt the models with the task
instruction, followed by the conversation and pro-
vide the relevant image of the blocks. We fine-
tune for 1 epoch using parameter-efficient methods
(e.g., LoRA (Hu et al., 2021)) following the recom-
mended hyperparameters for each model. We train
a different model for each sub-task so models can
fully leverage the input prompt and avoid interfer-
ence between the two tasks (i.e., source block and

3To facilitate further analysis, we will release its predic-
tions as part of our code release.

target position prediction).

Test Train Model Source Target
Data Data Acc ↑ Mean (SD) ↓ Mean (SD) ↓

Idefics2-zs 0.18 5.06 (±3.5) 9.55 (±2.5)
LLaVA-zs 0.24 4.40 (±3.3) 5.74 (±3.0)

IO Idefics2-ft 0.33 3.33 (±3.0) 4.93 (±2.6)
IO LLaVA-ft 0.25 3.77 (±2.9) 5.06 (±2.9)
RO Idefics2-ft 0.21 4.36 (±3.1) 5.38 (±2.4)
RO LLaVA-ft 0.12 5.05 (±3.1) 6.32 (±2.9)
Full Idefics2-ft 0.30 3.39 (±2.9) 4.75 (±2.6)
Full LLaVA-ft 0.22 3.82 (±2.9) 4.46 (±2.4)In

st
ru
ct
io
ns

GPT-4o-zs 0.30 3.83 (±3.3) 4.22 (±2.6)

Idefics2-zs 0.00 3.74 (±1.9) 4.13 (±2.1)
LLaVA-zs 0.13 3.29 (±2.1) 3.45 (±1.2)

IO Idefics2-ft 0.21 4.19 (±2.7) 5.11 (±2.6)
IO LLaVA-ft 0.18 3.43 (±2.4) 3.49 (±1.3)
RO Idefics2-ft 0.58 2.19 (±3.1) 7.07 (±2.7)
RO LLaVA-ft 0.07 3.20 (±1.7) 3.67 (±1.3)
Full Idefics2-ft 0.26 3.43 (±2.4) 5.81 (±2.3)
Full LLaVA-ft 0.44 2.66 (±2.8) 3.69 (±2.2)

Re
pa
ir
s

GPT-4o-zs 0.41 2.75 (±3.1) 2.95 (±2.2)

Random Baseline 0.10 6.50 (±3.0) 6.26 (±2.9)

Table 1: Model performance on source selection and
target position prediction tasks on zero-shot (zs) or
fine-tuned (ft) on data subsets: Instructions-Only (IO),
Repairs-Only (RO) and Full. We compare source block
accuracy (↑) and mean block distances (↓). Lower dis-
tances indicate predictions closer to the correct location.

Results Table 1 shows the performance of test-
ing the VLMs on either instruction or repair-only
data subsets with a mix of training BW-R data.
Zero-shot models typically perform above the ran-
dom baseline, initially demonstrating their visual-
grounding capabilities. Fine-tuned models exhibit
more nuanced results: they partially learn the task
through training, particularly when trained and
tested on the same type of entries (instructions or
repairs). However, employing the full dataset does
not consistently enhance performance: Idefics2 ap-
pears to adapt well to the training data or shows
greater data efficiency, whereas LLaVA achieves
better results with the full data and therefore sug-
gests stronger generalisation capabilities.

Overall, the models struggle to exploit TPRs, es-
pecially in zero-shot settings. Intuitively, repairs
should facilitate the task by introducing new in-
formation that refines the candidate pool. How-
ever, because repairs are often context-dependent
(i.e., based on the candidate response), models re-
quire strong object-centric representations (Bengio
et al., 2013; Seitzer et al., 2023) and a deeper un-
derstanding of relational dynamics between objects
to effectively leverage TPRs (e.g., “the block to
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the right”) (Ilinykh and Dobnik, 2021). This is
a particular issue of current vision transformers,
which frequently struggle with positional concepts
such as spatial understanding (Ilinykh and Dob-
nik, 2022; Pantazopoulos et al., 2024), and tend to
rely on language biases (Salin et al., 2022). GPT-
4o is unique in its ability to process these repairs
effectively and improve its performance with in-
structions. We see that models can learn to process
TPRs with some training, and the following section
explores methods to further distil this capability.

5 Learning to Process TPRs

During training, models encountered two types of
entries: single-turn instructions or dialogues up
to the TPR. In human conversations, we can ef-
fortlessly manage both scenarios; therefore it is
reasonable to expect that models trained to predict
bounding boxes from a single instruction should
also be capable of handling repairs to their predic-
tions. However, our previous results indicate that
achieving both capabilities simultaneously is chal-
lenging, and that generalization incurs a cost, even
when models address the same task.

To handle repairs, models cannot rely only on
the last turn but must consider the context from the
initial user instruction and the following candidate
output. The intermediate predicted bounding box,
even if inaccurate, also provides crucial informa-
tion within the context of the TPR, as repairs rarely
repeat a fully-formed instruction (i.e., “The right
one!”). In the case of BW-R, repairs are relative
to where the robot is currently pointing and often
provide partial information to correct the robot’s
action. During fine-tuning, following common ap-
proaches in VLM training (Laurençon et al., 2024),
VLMs calculate the cross-entropy loss for all the
tokens in the input including both the intermedi-
ate (wrong) and last (correct) generation. Thus,
the models from §4.2 are learning from incorrect
tokens, and therefore these tokens are somehow
affecting the quality of the VLMs generations.

5.1 Masking Token Loss

To encourage VLMs to process and correctly han-
dle TPRs, we experiment with different training
regimes during fine-tuning. Specifically, as shown
in Figure 2, we define different masking criteria
for the cross-entropy loss and assess their effect on
downstream performance.
Default loss, VLM’s default cross-entropy applied

to all tokens (Laurençon et al., 2024).
User-turn loss, we only calculate the loss for the
user turns and the completion target. In this case,
the intermediary prediction would not influence
the overall loss but models could still benefit from
learning instructions and the task format.
Completion-only loss to focus solely on the gen-
erated tokens and ignore all previous user and as-
sistant turns in the entry. We expect these models
to have the strongest generalisation capabilities, at
the cost of not learning about the input instructions
or corrections.

We follow the same procedure for fine-tuning
as in Section 4.2, training one model per sub-task
with the default hyperparameters.

Figure 2: Masking criteria for the cross-entropy loss.

5.2 Results

Table 2 shows the fine-tuned VLMs on the full data
across different masking criteria4. We first observe
that applying a mask on all tokens but completions
has large benefits for both VLMs for repairs in
source prediction, with strong improvements par-
ticularly when fine-tuning with repairs-only or the
full dataset. This loss allows models to learn from
TPRs and transfer some task knowledge from in-
structions to repairs when using the full data. In
other settings, this loss has small negative effects
on the VLM’s performance, especially when mod-
els are trained and tested on the same data. This is
somewhat expected as calculating the loss for the
complete input has benefits, such as using many
more tokens during training, learning the input for-
mat and quickly adapting to the task. However,
these models do not seem to learn the task well and
thus do not generalise.

One of our assumptions is that the intermediate
predictions hurt models, as these would calculate
losses for incorrect tokens. The results of masking
these tokens in the loss (user-turns only) suggest
that this loss does not help the VLMs as much as

4All model results are provided in Appendix E.
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Model Loss Source Target
Acc ↑ Mean (SD) ↓ Mean (SD) ↓

Idefics2
Default 0.30 3.39 (±2.9) 4.75 (±2.6)
User-turn 0.36 3.12 (±3.0) 4.59 (±2.6)
Completion 0.33 3.33 (±3.0) 4.52 (±2.6)
Default 0.22 3.82 (±2.9) 4.46 (±2.5)
User-turn 0.24 3.65 (±2.9) 4.60 (±2.5)

In
st
ru
ct
io
ns

LLaVA
Completion 0.19 3.93 (±2.7) 4.51 (±2.8)

Idefics2
Default 0.26 3.43 (±2.4) 5.81 (±2.4)
User-turn 0.32 2.94 (±2.6) 6.00 (±2.0)
Completion 0.47 2.29 (±2.4) 5.90 (±2.7)
Default 0.44 2.66 (±2.8) 3.69 (±2.2)

LLaVA
User-turn 0.37 2.69 (±2.5) 4.04 (±2.4)Re

pa
ir
s

LLaVA
Completion 0.54 2.01 (±2.5) 4.56 (±2.7)

Table 2: Fine-tuned VLMs with different loss criteria.

completion loss, and has a mixed bag of effects
(positive or negative).

Most of the improvements with either of the
losses only apply to source prediction. The models
struggle with target position predictions and do not
show clear benefits from these losses. Although
these sub-tasks expect a similar output, predicting
a target location is much harder, as it does not
depend on a particular salient object in the image
(i.e., a block) but on spaces between objects. It
is thus unsurprising that VLMs pre-trained with
visual grounding objectives (e.g., RefCOCO (Yu
et al., 2016)) do not perform well when we are
not referring to an object. In these cases, it seems
that the additional prompt tokens are helpful for
models to learn the task and masking them hurts
their performance.

Furthermore, we see that models fine-tuned on
instructions alone, with or without masking, ac-
quire some task capabilities, but do not generalise
well to repairs, and vice-versa. When trained with
the full data and completion-only loss, VLMs learn
what is important regardless of the conversation,
and reach their best results, learning what is impor-
tant particularly for repairs.

During these fine-tuning experiments, we iden-
tify two main factors at play: 1) the size of the train-
ing data; and 2) the incorrect candidate responses.
When training on repairs, the size (i) becomes the
bigger issue as masking considerably reduces the
available tokens during training, which is crucial
when data is smaller. Models do better when there
is more training data, as happens with instructions,
but they train on incorrect bounding boxes from the
intermediate system turn (ii), hurting their perfor-
mance. Handling repairs allows us to evaluate the
models’ ability to interpret the initial instruction,

Model Source Target
Acc ↑ Mean (SD) ↓ Mean (SD) ↓

In
st
.

Idefics2 - ft 0.21 3.97 (±4.0) 5.52 (±3.1)
LLaVA - ft 0.16 4.08 (±4.1) 4.63 (±3.4)
GPT-4o 0.26 4.60 (±4.6) 4.30 (±3.4)
Human Participants 0.68 1.59 (±1.6) 3.64 (±3.4)

Re
pa
ir
s Idefics2 - ft 0.43 2.46 (±2.5) 5.80 (±2.7)

LLaVA - ft 0.60 1.82 (±1.8) 4.82 (±2.7)
GPT-4o 0.50 2.78 (±2.8) 2.58 (±1.8)
Human Participants 0.75 1.41 (±1.4) 2.77 (±2.8)

Table 3: Humans compared to the best models for the
BW-R test subset with human annotations.

candidate response, and repair turns. Calculating
losses on completions only ensures that models
learn a more robust prompt representation that is
useful when generalising across both types of data.

6 Error Analysis

We want models that can collaborate with humans
even when misunderstandings arise, and thus we
need to understand the differences in how models
and humans solve the same visual-grounding task.
This section attempts to analyse models beyond
performance metrics and provides insight into the
models’ behaviour, such as where mismatches arise
compared to how humans process TPRs. We use
the best models from §5 trained on the whole data
using completions-only loss.

6.1 Human Comparison

To compare models with humans on this task, we
use the data samples that we collected from our
in-person human study, in which participants saw
the same data that models are evaluated on. The re-
sults in Table 3 show clear differences, with models
struggling to reach human performance but demon-
strating significant benefits from TPRs after train-
ing. We can see that, despite Idefics2 and LLaVA
having lower source accuracy for instructions, they
both beat GPT-4o on distance for source. In this
case, accuracy fails as a metric for prediction qual-
ity, since lower distances better reflect true prox-
imity. We also see impressive results for LLaVA
processing TPRs after our training for source pre-
diction. Regarding target position, this task is con-
siderably more challenging for humans and mod-
els, reflected in worse scores overall. LLaVA and
Idefics2 struggle to process repairs related to target
locations, in contrast to GPT-4o which outperforms
the human participants.
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Difficulty Model Source Target
Acc ↑ Mean (SD) ↓ Mean (SD) ↓

Easy Idefics2 0.35 3.09 (±3.1) 5.72 (±3.1)
LLaVA 0.41 2.62 (±2.6) 3.98 (±2.5)
GPT-4o 0.45 3.50 (±3.5) 2.18 (±1.3)
Humans 1.00 .00 (±.0) .81 (±.5)

Medium Idefics2 0.37 2.32 (±2.3) 5.30 (±2.3)
LLaVA 0.42 2.19 (±2.2) 4.54 (±3.0)
GPT-4o 0.42 3.05 (±3.1) 2.86 (±2.0)
Humans 0.50 2.24 (±2.2) 2.28 (±1.3)

Hard Idefics2 0.22 3.82 (±3.8) 6.00 (±3.2)
LLaVA 0.25 4.30 (±4.3) 5.77 (±3.3)
GPT-4o 0.16 4.46 (±4.5) 5.30 (±3.7)
Humans 0.00 5.62 (±5.6) 6.25 (±3.3)

Table 4: Model performances across subsets with in-
creasing levels of complexity (easy, medium, hard).

6.2 Impact of Task Difficulty

To better pinpoint the strengths and weaknesses of
the different models, we categorise the BW-R data
into difficulty levels according to human perfor-
mance5. We use lower human performance as an
indirect proxy for the complexity of the example,
and define three levels as follows: 1) Easy: both
human annotators for the same entry correctly pre-
dicted the block (100% source accuracy) or their
target position was within 1 block unit distance
away from the true location; 2) Medium: at least
one out of the two annotators correctly predicted
the block (50% source accuracy) or their target po-
sition was below the human’s mean distance away
from the location (between 1 and 3.22 units away);
3) Hard: neither of the annotators correctly pre-
dicted the block (0% source accuracy) or their tar-
get position was further than the human’s mean
distance (above 3.22 units).

The results of evaluating VLMs on these diffi-
culty subsets (Table 4) indicate that models and hu-
mans do not struggle on the same entries. Models
show a more uniform distribution of performance,
with improvements over humans in the most diffi-
cult subset but significantly underperforming with
easier references. This behaviour seems to follow
the trend with the average word number in the sub-
sets6, suggesting that easy examples (most words)
may employ longer, more complex terms to de-
scribe references, whereas hard examples (fewest
words) may have easier terms for models, but are
too underspecified for humans.

5We provide this analysis according to GPT-4o perfor-
mance in Appendix D.

6See Appendix D.

(a) Source block selection

(b) Target position prediction

Figure 3: Two medium-difficulty dialogues with the
bounding boxes predicted by the VLMs and humans.

6.3 Qualitative Analysis

We further analyse 50 BW-R dialogues to under-
stand the proficiency differences of VLMs with
that of human participants (see Figure 3 for some
examples). We find that humans and GPT-4o tend
to have similar predictions when processing candi-
date responses and their repairs. Models are usu-
ally able to process simple spatial repairs (i.e., left,
right, above) (Chiyah-Garcia et al., 2023), however,
they particularly struggle with more abstract con-
cepts (i.e., rows, columns) (Ilinykh et al., 2022). In
that regard, both Idefics2 and LLaVA exhibit com-
prehension of the simpler referring expressions,
but have a challenging time with longer or more
complex sequences. Idefics2 also seems prone to
over-correct (e.g., right pushes predictions to the
absolute right). We also notice that VLMs some-
times predict bounding boxes that do not align with
blocks in the source prediction task, which is un-
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expected given their pre-training (and fine-tuning)
with referring expression objectives. For the target
prediction task, VLMs significantly struggle and do
not process repairs. GPT-4o is the only exception,
which shows a more fine-grained understanding of
the task yet falls behind on more difficult dialogues.

7 Conclusion

This paper explores VLM’s capabilities of han-
dling repairs with a new dataset, BLOCKWORLD-
REPAIRS. We collect 795 collaborative dialogues
in a highly ambiguous tabletop manipulation en-
vironment that requires complex multi-modal task
instructions as well as repairs. In these scenarios,
referential ambiguities are common and thus being
able to process TPRs becomes essential to com-
plete the task. We validate these dialogues through
an in-person human study where participants at-
tempt to solve the task, providing a baseline for
model performance.

We then show that VLMs struggle to process
TPRs alongside other dialogues out of the box
and propose improving their fine-tuning regime
with different loss criteria. Our results indicate that
VLMs benefit from partially masking the input to-
kens when learning to process TPRs along with
the task, resulting in more generalisable models
across single-turn instructions and TPRs for one of
the tasks. However, this needs to be balanced as
masking too many tokens hurts models when data
is smaller due to a lack of training signal.

We finish with an error analysis comparing these
models and human participants, finding stark dif-
ferences in how they process repairs. Surprisingly,
models struggle with the dialogues that human par-
ticipants found easiest, highlighting a large gap in
their ability to process TPRs, despite these being
fundamental to effective dialogue coordination. We
believe that future research should focus on two
major improvements for VLMs: 1) design training
objectives that facilitate learning from interaction,
including TPRs; 2) equip models with more object-
centric visual representations that facilitate visual
grounding tasks (Parekh et al., 2024) which are of
paramount importance for situated collaborative
tasks.

8 Limitations

One of the limitations of the paper is that we col-
lected the data for the dataset as an annotation task.
This allowed us to divide the task into instances

that participants could annotate separately (instruc-
tions or corrections), which makes the annotation
conceptually easier to carry out and mimics how
the initial Block World instructions were collected.
This allowed us to focus on the dialogue phenom-
ena that we care about, corrections in situated con-
texts, at the cost of the overall collaborative nature
of the task. Ideally, it would be better to design
a Wizard-of-Oz or human-human experiment to
collect the annotations during the interaction, at a
much greater time and cost.

We also acknowledge that our environment is vi-
sually simple compared to images that can be found
on the Internet which are commonly used for pre-
training VLMs. However, we don’t consider this as
a weakness but as a strength: our BLOCKWORLD-
REPAIRS is built using the Unity game engine and
allows us to test models’ ability to process TPRs
ignoring other confounding variables such as pro-
cessing complex visual scenes.

Another limitation of our work is that we do not
attempt to model the entire spectrum of a robotic
manipulation task (e.g., Octo Model Team et al.,
2024). Instead, we follow previous work in Em-
bodied AI (e.g., ALFRED (Shridhar et al., 2020),
Simbot Arena (Gao et al., 2023), inter alia) which
casts object manipulation as API call generation
of an action label combined with a bounding box
around the object to be manipulated. Although
we don’t generate actions, the prediction tasks that
we explore in BW-R involve generating the coor-
dinates of a bounding box that can be used for
picking up a specific block or putting it down onto
a specific box on the board.

To the best of our knowledge, we have used
state-of-the-art VLMs that are open-weight and
can be easily used for fine-tuning and inference.
However, due to the fast pace of research in this
space, it is possible that by the time reviewers read
this manuscript, a new open-weight VLM will be
announced. For this reason, we decided to also
report the performance of a frontier model such as
GPT-4o which has superior performance to many
text-only as well as visual+language tasks.

9 Potential Risks

Embodied AI and human-robot collaboration of-
fer exciting possibilities, but also introduce a new
range of potential risks. Embodied AI systems
must be designed and implemented with rigorous
safety protocols to minimise the risk of accidents
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for human workers. This includes robust sensor
systems, clear communication protocols, and fail-
safe mechanisms to prevent harm in case of mal-
functions. In this paper, we do not use an actual
robot but we simulate the use case of a robot arm
operating in a factory and collaborating with a user
to complete a pick&place task. In this scenario,
we argue that it is essential that the robot is able
to process clarification exchanges, and TPRs are
an important mechanism to ensure that models can
robustly correct mistakes when they arise.
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A Related Datasets

We compare BLOCKWORLD-REPAIRS with re-
lated works in Table 5. Our work builds on
a robotic manipulation task involving common
pick&place actions and rich referring expressions
in a situated dialogue. Similar to our benchmark,
both TEACh (Padmakumar et al., 2022) and Dial-
FRED (Gao et al., 2022) extend the popular AL-
FRED (Shridhar et al., 2020) to include dialogues
with clarificational exchanges. From a high-level
ALFRED directive (e.g., “prepare coffee”), these
works crowd-source possible questions for low-
level actions that may be underspecified in the
original task (e.g., “where is the coffee mug?”).
Thus, they often operate on the last level of Clark’s
(1996) joint action ladder, action and considera-
tion, where the goal is already clear and lack of
knowledge (underspecified location of objects or
actions available) represents the primary ambiguity
(e.g., VIMA-Bench; Jiang et al., 2023)). These
works rarely feature bi-directional information flow
(human ⇆ agent) in their dialogues, unlike BW-
R which ensures dialogue dependency with partial
robot movements and candidate responses. Dial-
FRED, Alexa Arena (Gao et al., 2023) and Co-
Draw iCRs (Madureira and Schlangen, 2023) con-
tain questions for underspecified actions/objects
(e.g., “Which spoon should I pick up?”) but, in
these situations, the ambiguity is reduced to a min-
imum so that candidates are easily distinguishable
with strong visual representations (e.g., “yellow or
blue spoon?” or “left or right?”).

By contrast, SIMMC 2.0 (Kottur et al., 2021)
includes a large number of visually ambiguous ob-
jects (e.g., 5 identical red t-shirts in view) within
long dialogues that reference multiple items (aver-
aging 4.5±2.4 unique objects per dialogue). This
makes it rich in cross-modal coordination phenom-
ena, with terse referring expressions that mix spa-
tial, historical and visual cues (e.g., “Pick the red
shirt. Which one? The one on the right wardrobe,
above the blue jumper”). Similarly, Cups (Dobnik
et al., 2020) aligns with our work, as it also explores
coordination in highly ambiguous environments
where many objects share the same shape/colour
but are in different positions, requiring complex
referring expressions. However, Cups focuses on
Frame of Reference coordination rather than manip-
ulation or resolving coreferences. BW-R is aimed
at exploring this coordination as part of a collabo-
rative human-robot tabletop manipulation task.

B BLOCKWORLD-REPAIRS

This section provides additional details about the
dataset.

B.1 AMT Collection

Each task or Human Intelligence Task (HIT) in
AMT consisted of 4 dialogues, with an initial easier,
training dialogue that workers were free to experi-
ment with. AMT workers could repeat the task for
as long as there were block configurations they had
not seen before. The instructions are in Figure 4,
with the user interface of the task itself in Figure 5.
We introduced many attention checks, particularly
with the repairs, where workers were asked to se-
lect whether the robot had performed the correct
action (Yes/No) before entering free-text repairs.
If their answer did not match the expected answer
too many times, they would get a warning and be
limited from submitting any subsequent HITs. We
used the CRWIZ framework (Chiyah Garcia et al.,
2020) to control many of these details, including
the robot’s non-verbal actions (i.e., movements,
pointing), effectively running a simulation or se-
quence of events different to each worker in AMT.

Figure 4: Instructions that AMT workers saw in the
landing page of the HIT.

At the end of the task, workers gave free-form
comments and feedback in scales about how easy
the task was and the Godspeed Questionnaire IV
for Perceived Intelligence (Bartneck et al., 2009)
to ensure that the task was not too difficult and
that the agent was not too unintelligent (due to the
continuous “misunderstandings”).

We limited HITs to 30 minutes and the mean
elapsed time for all the HITs was 12 minutes
(SD=4.5 minutes), or 4 minutes per dialogue. The
payment was $1.8 per HIT, so workers were paid,
on average, a rate of $9.0/hr. This pay is above
the Federal minimum wage in the US ($7.25/hr or
$0.12/min) at the time of the data collection from
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Related Work Manipulation Ref Exp Dialogue Repairs Miscommunication

VIMA-Bench (Jiang et al., 2023) ✓ R ✗ ✗ -

ALFRED (Shridhar et al., 2020) ✓ R ✗ ✗ -

TEACh (Padmakumar et al., 2022) ✓ V R ✓ ✓ (4) Action

DialFRED (Gao et al., 2022) ✓ V R ✓ ✓ (4) Action

Alexa Arena (Gao et al., 2023) ✓ V R ✓ ✗ (4) Action

SIMMC 2.0 (Kottur et al., 2021) ✗ V R D ✓ ✓ (3) Understanding

CoDraw iCR (Madureira and Schlangen, 2023) ✗ V R ✓ ✓ (4) Action

Cups (Dobnik et al., 2020) ✗ V R D ✓ ✓ (3) Understanding

Block World (Bisk et al., 2016) ✓ V R ✗ ✗ -

BLOCKWORLD-REPAIRS (Ours) ✓ V R ✓ ✓ (3) Understanding

Table 5: Comparison of related works to our dataset BW-R. Columns describe whether the datasets have: (1
Manipulation) robotic manipulation as a task (i.e., pick&place); (2 Ref Exp) referring expression type following
(Chiyah-Garcia et al., 2023), R for relational expressions (e.g., “the left one”), V for references to visual properties
(e.g., “the green one”) or D when referring to the dialogue history (e.g., “the one I mentioned”); (3 Dialogue)
dialogue with multiple turns for the same action; (4 Repairs) explicit repairs in the data (i.e., clarifications or
corrections); and (5 Miscommunication) the miscommunication level based on Clark’s (1996) joint action ladder.

Figure 5: User interface for the data collection. The
images of the robot and blocks would change depending
on the task or the instructions given. The left has the
chat and a text box to send messages whereas the right
shows how the final placement should look in the end.

May to September 2021. 178 unique AMT work-
ers submitted HITs for our task (58 female, 106
male, and 12 rest) and we limited our task to be
only available in the United States. We manually
checked data subsets for offensive, toxic language,
or personal information. Participants signed a vir-
tual consent with details about the data collection,
how the data would be used and how they could
withdraw if they wished to do so. We did not col-
lect any personal or sensitive information. Ethics
approval for this collection was provided by our
institution’s ethics committee.

B.2 Human Baselines

Participants interacted with the interface shown in
Figure 6, where the chat was already filled by a ran-
domly selected dialogue. Participants had to read
the instructions and repairs and provide their best
interpretation of which block the instructions re-
ferred to and where to place it. Once satisfied with
their choice, they would confirm and proceed to the
next dialogue until the session ended. This inter-
face uses the Unity engine (v2022.3)7 and (De Pel-
legrin and Petrick, 2024) to generate environments
based on the original Block World configurations.

The study ran from January to April 2024 and it
lasted around 40 minutes. We recruited a total of 22
participants (5 female, 17 male, most common age
range was 23-29 and above undergraduate educa-
tion level) through internal institution mailing lists.
12 were native English speakers and most partici-
pants self-reported a near bilingual level of English
proficiency. On average, participants annotated 50
dialogues each and received £10 for taking part in
the study (a rate of £15/hour). This pay is above the
minimum wage in the UK at the time of the study
(£11.44/hour). Participants signed consent forms
with details about how the data would be used and
published as well as the procedure to withdraw if
they wished so. We did not collect any personal
or sensitive information. Ethics approval for this
study was provided by our institution’s ethics com-
mittee.

7https://unity.com/
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Figure 6: User interface for the human validation. Par-
ticipants had to click on the large image at the bottom
where they thought that the instructions referred to, both
for the source block and the target position.

We collected 991 after discarding 61 low-quality
annotations. The annotations are split as follows:
343 for instructions (34.6%), 327 for source block
TPRs (33.0%) and 321 for target position TPRs
(32.4%).

B.3 Dataset Statistics
Table 6 provides additional statistics for the
BLOCKWORLD-REPAIRS dataset.

Attribute Value

Instructions 795 (38.6%)
Source TPRs 629 (30.5%)
Target TPRs 635 (30.8%)

Total Entries 2059

Table 6: Summary of collected entries in BW-R.

For our experiments, we join the instructions
from the original Block World with the collected
entries to obtain a larger dataset, see Table 7. The
initial instructions in our dialogues are the same as
in (Bisk et al., 2016), as they contain both which
block to move and where to move it. We also
use the same block arrangements as in the original
dataset, respecting train/test splits. Block configu-
rations are unique across train-test splits, so models
are tested on unseen world arrangements.

C Experimental Setup

C.1 Prompts
Each task has its own slightly different prompt, see
Table 8. We also provide example full prompts
used during zero-shot and fine-tuning in Table 9.

When parsing model generations, we try to parse
a bounding box with 4 decimal numbers. However,
models sometimes generate invalid boxes or addi-
tional tokens, particularly in zero-shot settings. In
these cases, less than 3%, we count this prediction
as ‘failed’ and use the output of the random base-
line to calculate other metrics. Idefics2 and GPT-4o
are more prone to generate additional tokens.

C.2 Model Fine-Tuning
For our experiments, we use the default hyperpa-
rameters for each model (Idefics2 and LLaVA). We
train for 1 epoch as we did not observe benefits
from training for longer. Images had the size of
1024x576 pixels, and we used the model’s default
image processing pipelines. Training batches had
both instruction and repair examples, sampled at
random. We did not use custom sampling to bal-
ance the type of entries in batches and leave this
for future work.

We fine-tune the VLMs with the recommended
parameter-efficient methods: LoRA (Hu et al.,
2021) for LLaVA and QLoRA (Dettmers et al.,
2023) for Idefics2. We used 2x NVIDIA A40
(40GB) at most and set the maximum sequence
length to 2048. Each experiment (training and test-
ing) takes around 1 hour to fully complete. The
final table of experiments takes approximately 30
GPU hours to run.

D Additional Error Analysis

As mentioned in Section 6, it seems that easier re-
ferring expressions or TPRs have a lower number of
words on average than harder ones (see Table 10).

We also provide in Table 11 the results of select-
ing GPT-4o performance as the proxy for example
difficulty. Since we only have 1 prediction value
for each BW-R entry and we cannot do the average
as with the human annotations, we instead order
the data by distance (source and target separately)
and divide it into three equal sizes at the 33rd and
66th percentiles: 1) Easy category contains the top
33% of entries (shortest distance to source/target);
2) Medium contains entries that are between the
33% and 66% distances; and 3) Hard is reserved
for the worst performing 33% entries.
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Split Train Dev Test Total

Block World (Bisk et al., 2016) 2403 (66.5%) 360 (100.0%) 810 (48.8%) 3573
BLOCKWORLD-REPAIRS 1210 (33.5%) 0 (0.0%) 849 (51.2%) 2059

Experiment Data 3613 360 1659 5632

Table 7: Data used in this paper. We use the train/test sets during our experiments of Sections 4, 5 and 6.

Task Task Instruction

Source
Block
Selection

Answer only with the bounding
box of the block mentioned. The
bounding box consists of 4 val-
ues between 0 and 1. Here is an
example: [0.000, 0.123, 0.075,
0.204]

Target
Position
Prediction

Answer only with the final
bounding box location men-
tioned. The bounding box con-
sists of 4 values between 0 and
1. Here is an example: [0.000,
0.123, 0.075, 0.204]

Table 8: Task instructions used to prompt models.

We find that Idefics2 and LLaVA have low per-
formance on all levels, whilst GPT-4o only sur-
passes humans on easy dialogues (not surprising),
but quickly deteriorates to distances worse than
random on hard dialogues. Interestingly, humans
perform well across all difficulties except the hard
target predictions. We also observe that the mean
word trends get stronger (Table 10), although we
leave the analysis to prove a correlation for future
work. These results further show that models do
not process TPRs as consistently as humans.

E Additional Experimental Results

We completed a comprehensive set of ablations
testing for different ways of masking (as defined
in the main paper), different VLMs, and different
data regimes as well. Table 12 presents the full set
of results.

F Other Notes

Object detection and predictions Splitting the
task into object detection and then prediction out of
a list of candidates did not show any advantages in
our initial tests, possibly because these models are
already pretrained with object detection objectives
(Liu et al., 2023; Laurençon et al., 2024). We al-

ready see better performance with source block pre-
diction than with target location prediction. Thus,
we unified both tasks into a single common task
format (bounding box prediction) for easier com-
parison. Additionally, we would like to point out
that target prediction would be a harder task be-
cause it requires the model to derive a bounding
box for an empty board location, which models
particularly struggle as shown in Section 6.

Repairs facilitate the task Repairs are funda-
mental capabilities in human conversations, which
our human study further shows with the increasing
performance with TPRs (see Table 3). TPRs have
the dual role of narrowing down the candidate pool
(ie., “not this block”) and providing new informa-
tion to uniquely identify the correct referent (ie.,
“just left of there”). Our paper shows that current
out-of-the-box models do not have the capabilities
to exploit repairs to facilitate the task (unlike hu-
mans), but we should try to distil these skills with
alternative training regimes that facilitate learning
from interaction data. Handling TPRs is essential
for real-world human-robot collaboration in novel
scenarios and this paper explores this gap between
models and humans.
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Model Sample

Idefics2 8B User: <image> Answer only with the bounding box of the block mentioned. The
bounding box consists of 4 values between 0 and 1. Here is an example: [0.000,
0.123, 0.075, 0.204]. take the block in the very middle and move it slightl left and
down.<end_of_utterance>
Assistant: location bounding box [0.329, 0.724, 0.339, 0.741] I recall you wanting
the block here, is this correct?<end_of_utterance>
User: move it to the right a little<end_of_utterance>
Assistant:
Model generation: location bounding box [0.394, 0.585, 0.436, 0.682]

LLaVA v1.5 7B <s> A chat between a curious user and an artificial intelligence assistant. The
assistant gives helpful, detailed, and polite answers to the user’s questions. Answer
only with the bounding box of the block mentioned. The bounding box consists of 4
values between 0 and 1. Here is an example: [0.000, 0.123, 0.075, 0.204].
USER: <image> There is a block in the center of the board. Take that block and
move it to the left in front of the other block.
ASSISTANT: block bounding box block bounding box [0.391, 0.635, 0.434, 0.735]
Can you confirm it is this block?</s>
USER: The block that is a row closer to you and to the right.
ASSISTANT:
Model generation: block bounding box [0.391, 0.635, 0.434, 0.735]

GPT-4o System: You are a helpful assistant that responds with only with the bounding box
of the location mentioned. The bounding box consists of 4 values between 0 and 1.
Here is an example: [0.000, 0.123, 0.075, 0.204].
User: <image> Take the block that is furthest to the right in the fourth row and place
it in front of all the blocks on the table.
Assistant: block bounding box [0.749, 0.714, 0.800, 0.818] Is it this block?
User: Take the block that is directly above this block and to the left of it.
Model generation: block bounding box [0.624, 0.571, 0.675, 0.675]

Table 9: Full prompts given to models, including special tokens.

Difficulty Level Source Block Target Position

Human Performance
Easy 28.69 (±12.20) 32.19 (±14.66)
Medium 28.80 (±12.97) 31.27 (±12.86)
Hard 27.62 (±12.19) 27.46 (±12.35)

GPT-4o Performance
Easy 29.95 (±12.09) 34.29 (±13.81)
Medium 29.62 (±12.02) 31.46 (±12.45)
Hard 26.52 (±12.31) 24.54 (±11.73)

Table 10: Mean and Standard Deviation (SD) for test
dialogues in BW-R by difficulty level and task. We
differentiate between using human performance (Sec-
tion 6) and GPT-4o performance (Appendix D) as the
difficulty proxies.

Difficulty Model Source Target
Acc ↑ Mean (SD) ↓ Mean (SD) ↓

Easy Idefics2 0.43 2.60 (±2.6) 6.11 (±2.9)
LLaVA 0.48 2.02 (±2.0) 4.20 (±2.9)
Humans 0.78 1.07 (±1.1) 2.05 (±2.1)
GPT-4o 0.93 .00 (±.0) 1.27 (±.5)

Medium Idefics2 0.47 2.29 (±2.3) 4.97 (±2.6)
LLaVA 0.47 2.01 (±2.0) 4.25 (±2.7)
Humans 0.77 1.05 (±1.1) 2.23 (±2.3)
GPT-4o 0.58 1.26 (±1.3) 2.63 (±.4)

Hard Idefics2 0.04 4.91 (±4.9) 5.92 (±3.1)
LLaVA 0.22 4.61 (±4.6) 5.69 (±3.4)
Humans 0.64 2.52 (±2.5) 4.84 (±3.7)
GPT-4o 0.00 8.33 (±8.3) 6.31 (±3.1)

Table 11: Model performances across subsets with in-
creasing levels of complexity (easy, medium, hard) us-
ing GPT-4o performance as the difficulty proxy.
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Test Train Model Loss Source Target
Data Data Accuracy ↑ Mean Distance (SD) ↓ Mean Distance (SD) ↓

Idefics2 8B zeroshot Default 0.18 5.06 (±3.50) 9.55 (±2.50)

In
st

ru
ct

io
ns

Instructions Idefics2 8B Default 0.33 3.33 (±3.02) 4.93 (±2.64)
Instructions Idefics2 8B User-turn 0.33 3.33 (±3.02) 4.93 (±2.64)
Instructions Idefics2 8B Completions 0.32 3.44 (±3.04) 4.75 (±2.62)
Repairs Idefics2 8B Default 0.21 4.36 (±3.13) 5.38 (±2.44)
Repairs Idefics2 8B User-turn 0.22 4.59 (±3.25) 8.03 (±3.21)
Repairs Idefics2 8B Completions 0.14 4.88 (±3.07) 6.19 (±2.97)
Full Idefics2 8B Default 0.30 3.39 (±2.92) 4.75 (±2.60)
Full Idefics2 8B User-turn 0.36 3.12 (±3.00) 4.59 (±2.59)
Full Idefics2 8B Completions 0.33 3.33 (±2.99) 4.52 (±2.58)

LLaVA v1.5 7B zeroshot Completions 0.24 4.40 (±3.34) 5.74 (±3.08)
Instructions LLaVA v1.5 7B Default 0.25 3.77 (±2.99) 5.06 (±2.92)
Instructions LLaVA v1.5 7B User-turn 0.27 3.79 (±3.03) 5.02 (±2.86)
Instructions LLaVA v1.5 7B Completions 0.27 3.76 (±3.00) 4.40 (±2.69)
Repairs LLaVA v1.5 7B Default 0.14 4.97 (±3.24) 6.24 (±2.91)
Repairs LLaVA v1.5 7B User-turn 0.18 4.19 (±2.82) 6.37 (±2.91)
Repairs LLaVA v1.5 7B Completions 0.09 5.12 (±3.00) 6.27 (±2.86)
Full LLaVA v1.5 7B Default 0.22 3.82 (±2.91) 4.46 (±2.49)
Full LLaVA v1.5 7B User-turn 0.24 3.65 (±2.86) 4.60 (±2.54)
Full LLaVA v1.5 7B Completions 0.19 3.93 (±2.73) 4.51 (±2.82)

GPT-4o zeroshot 0.30 3.83 (±3.38) 4.22 (±2.65)

Idefics2 8B zeroshot Completions 0.00 3.74 (±1.95) 4.13 (±2.05)

R
ep

ai
rs

Instructions Idefics2 8B Default 0.21 4.19 (±2.75) 5.11 (±2.60)
Instructions Idefics2 8B User-turn 0.26 3.74 (±2.84) 4.68 (±2.12)
Instructions Idefics2 8B Completions 0.28 3.66 (±2.77) 3.98 (±2.58)
Repairs Idefics2 8B Default 0.58 2.19 (±3.06) 7.07 (±2.77)
Repairs Idefics2 8B User-turn 0.58 2.16 (±2.92) 6.45 (±2.22)
Repairs Idefics2 8B Completions 0.57 1.55 (±1.95) 7.35 (±2.02)
Full Idefics2 8B Default 0.26 3.43 (±2.40) 5.81 (±2.35)
Full Idefics2 8B User-turn 0.32 2.94 (±2.56) 6.00 (±1.95)
Full Idefics2 8B Completions 0.47 2.29 (±2.36) 5.90 (±2.71)

LLaVA v1.5 7B zeroshot Completions 0.13 3.29 (±2.09) 3.45 (±1.20)
Instructions LLaVA v1.5 7B Default 0.18 3.43 (±2.49) 3.49 (±1.34)
Instructions LLaVA v1.5 7B User-turn 0.16 3.47 (±2.42) 3.46 (±1.39)
Instructions LLaVA v1.5 7B Completions 0.25 2.79 (±2.47) 3.76 (±1.88)
Repairs LLaVA v1.5 7B Default 0.07 3.20 (±1.79) 3.67 (±1.31)
Repairs LLaVA v1.5 7B User-turn 0.13 3.28 (±2.05) 3.89 (±1.35)
Repairs LLaVA v1.5 7B Completions 0.50 2.33 (±2.64) 5.57 (±1.67)
Full LLaVA v1.5 7B Default 0.44 2.66 (±2.76) 3.69 (±2.18)
Full LLaVA v1.5 7B User-turn 0.37 2.69 (±2.48) 4.04 (±2.41)
Full LLaVA v1.5 7B Completions 0.54 2.01 (±2.47) 4.56 (±2.69)

GPT-4o zeroshot Default 0.41 2.75 (±3.06) 2.95 (±2.17)

Table 12: Model performance in source and target sub-tasks across all losses.
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