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Abstract

Parsing documents from pixels, such as pic-
tures and scanned PDFs, into hierarchical struc-
tures is extensively demanded in the daily rou-
tines of data storage, retrieval and understand-
ing. However, previously the research on this
topic has been largely hindered since most ex-
isting datasets are small-scale, or contain docu-
ments of only a single type, which are character-
ized by a lack of document diversity. Moreover,
there is a significant discrepancy in the anno-
tation standards across datasets. In this paper,
we introduce a large and diverse document hi-
erarchy parsing (DHP) dataset to compensate
for the data scarcity and inconsistency problem.
We aim to set a new standard as a more prac-
tical, long-standing benchmark. Meanwhile,
we present a new DHP framework designed to
grasp both fine-grained text content and coarse-
grained pattern at layout element level, enhanc-
ing the capacity of pre-trained text-layout mod-
els in handling the multi-page and multi-level
challenges in DHP. Through exhaustive exper-
iments, we validate the effectiveness of our
proposed dataset and method1.

1 Introduction

Nowadays, an overwhelming amount of informa-
tion is generated daily and stored in documents as
pixels, such as pictures and scanned PDFs, rather
than in hierarchically structured formats. It intro-
duces a significant challenge in practice, as struc-
tured formats are essential for efficient database
storage and standardized data handling (Johnson
et al., 2003; Clifton and Garcia-Molina, 2000), as
well as downstream tasks, such as information re-
trieval and natural language processing (Wilkinson,
1994; Dasigi et al., 2021). Particularly, it has been

* Equal contribution.
† Corresponding author.
1The dataset and code are available at https://github.

com/AlibabaResearch/AdvancedLiterateMachinery/
tree/main/DocumentUnderstanding/DocHieNet

Figure 1: Examples of various page layouts and struc-
tures in DocHieNet. Blue and green boxes represent
layout elements of titles and paragraphs. Red lines refer
to the hierarchical relations. Only part of the hierarchi-
cal relations are shown for clarity.

studied that documents with structural metadata
further enhance the capabilities of large language
models (LLMs), which has been outstanding across
various domains, in processing lengthy documents
and knowledge-intensive tasks (Saad-Falcon et al.,
2023; Gao et al., 2023).

Document hierarchy parsing (DHP) aims at re-
constructing the hierarchical relationships among
document layout elements (e.g., titles, paragraphs,
figures), as shown in Fig. 1 and thus organizing
the document in a machine-understandable, hier-
archically structured format. For documents as
pixels, the layout elements can be extracted by
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off-the-shelf document layout analysis systems
(Zhong et al., 2019b), and the DHP model focuses
on predicting the hierarchical relationship among
them. Issues on previous datasets have hindered
the progress of research and application. First, the
datasets struggle to reflect the complexity of real-
world documents. The arXivdocs (Rausch et al.,
2021) and E-Periodica (Rausch et al., 2023) are
considered small-scale, containing only hundreds
of single pages. Regarding HRDoc and Comp-
HRDoc (Ma et al., 2023; Wang et al., 2024), al-
though they are large-scale and exhibit various
lengths, they contain only monotonous scientific
articles, which share similar layout designs and hi-
erarchical structures, such as examples in the 3rd
row of Fig. 1. Second, the annotation standards are
inconsistent. For instance, the granularity of layout
element annotations varies among datasets, includ-
ing those based on text line level and layout block
level. Moreover, their definitions of hierarchical
relations also differ with the varying definitions of
layout elements.

Regarding the models, DHP presents two pri-
mary challenges: the handling of extended, multi-
page inputs and the comprehension of both textual
content and the high-level layout relationships. Pre-
vious works employ heuristic rules (Rausch et al.,
2021) and LSTM networks (Rausch et al., 2023)
for their efficiency with lengthy inputs. Ma et al.
(2023) utilize a pre-trained language model (PLM)
as the encoder to enhance the model performance.
But this model extracts the text features of each
layout element independently, thus overlooking the
fine-grained contexts of layout elements.

As a result of the issues with the dataset and
model design, existing DHP methods struggle to be
applicable in the real-world scenarios. In order to
promote the development of DHP in more complex
and realistic scenarios, we proposed DocHieNet, a
large-scale, multi-page, multi-domain, multi-layout
and bi-lingual dataset for DHP. DocHieNet con-
tains 1673 multi-page documents from different
scenarios including public sector, research, indus-
try, etc. The multi-page documents, up to 50 pages,
are characterized by large heterogeneity in their
presentation and thus complex document structures
(Fig. 1), which are close to real-world conditions.
The data collection of DocHieNet inherently en-
courages the development of models capable of ad-
dressing DHP on highly diverse documents. Statis-
tics of the datasets are summarized in Tab. 1.

With DocHieNet available, we propose a

transformer-based framework, DHFormer, which
effectively overcomes the multi-page and multi-
level challenges in DHP. It adopts a sparse text-
layout encoder, derived from the powerful layout-
aware language models (LMs) (Xu et al., 2021; Luo
et al., 2023) to represent the layout elements with
enriched fine-grained contexts. Subsequently, a lay-
out element-level reasoning decoder is exploited to
capture collective information from multiple pages
at the global range. Besides, DHFormer leverages
the page embeddings and inner-layout position em-
beddings in order to better depict the cross-page
and multi-level patterns. Experiments show that
the proposed method is highly competitive and out-
performs previous methods by a large margin.

Our main contributions can be summarized as
follows:

• We have created DocHieNet, a novel large-
scale, multi-page, multi-domain and multi-
layout dataset for facilitating the development
of generic DHP models.

• We propose DHFormer, which effectively
enhances text-layout models to better grasp
both text content and coarse-grained patterns
between layout elements in multi-page and
multi-level DHP scenarios.

• Statistical and experimental results vali-
date the challenging nature of the proposed
DocHieNet dataset and the effectiveness of the
DHFormer method. The dataset and model
are publicly available.

2 Related Work

2.1 Document AI

Document AI involves automated reading, under-
standing and extracting information from visually-
rich documents (VRDs) (Liu et al., 2019; Li et al.,
2020a; Cui et al., 2021; Xing et al., 2023; Shao
et al., 2023). As the world is going digital, it has re-
ceived a heightened focus on its impact and signifi-
cance. The Document Layout Analysis (DLA) task
(Namboodiri and Jain, 2007), which refers to the
detection and recognition of layout elements such
as text and table/figure region, has seen a surge of
research achievements (Li et al., 2020b; Pfitzmann
et al., 2022). Based on these works, datasets and
methods are proposed to further understand the se-
mantic relationships of layout elements and extract
their hierarchical structure (Rausch et al., 2021,
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Dataset #Docs #Pages #M.P. C.P.R&S A.M. Document Type Language

arXivdocs 362 362 1 (0%, 0) Manual Scientific papers En
HRDoc 2500 31651 35 (24.9%, 2.4) Automatic Scientific papers En

E-Periodica 542 542 1 (0%, 0) Manual Magazines En, DE, FR, IT

DocHieNet 1673 15610 50 (37.4%, 5.4) Manual Multiple Types En, Zh

Table 1: Statistics of Document Hierarchy Parsing Datasets. M.P. and A.M. denote the max pages and annotation
means respectively. C.P.R.& S. stands for the cross-page ratio and span, which consists of the macro-average of the
proportion and max page span of the cross-page hierarchical relations.

2023), i.e. document hierarchy parsing, which
plays an indispensable role in document AI.

2.2 Document Hierarchy Parsing
There are a handful number of datasets available
for DHP. Rausch et al. (2021) are the forerunners
for contributing the arXivdocs, which contains only
362 single pages randomly selected from arXiv. Ma
et al. (2023) propose the HRDoc dataset with 2500
multi-page documents from ACL/arXiv and Wang
et al. (2024) improve the labels. Nevertheless, they
are limited to scientific articles, which share similar
structures. Rausch et al. (2023) mitigate this ho-
mogeneity by introducing the E-Periodica, which
is comprised of 542 single pages from magazines.
However, E-Periodica still exhibits issues of lim-
ited pagination and small scale.

The DHP model requires accommodating long
document inputs, which has led prior models
(Rausch et al., 2021, 2023) to rely on heuristic rules
or LSTM networks (Hochreiter and Schmidhuber,
1997), for their reduced computational complex-
ity. In order to improve the performance, Ma et al.
(2023) employ a PLM to independently encode
each layout element. But the model fails to address
the multi-level challenge in DHP by overlooking
the fine-grained contexts of layout elements.

2.3 Long-document Transformers
Transformers (Vaswani et al., 2017) have become
the fundamental model for natural language pro-
cessing tasks, which requires quadratic space de-
pendency. Early works such as (Beltagy et al.,
2020) propose types of sparse attention to tackle
this challenge. Nonetheless, such approaches de-
mand additional pre-training. Ivgi et al. (2022); Xie
et al. (2023) show that building a sparse transformer
via document chunking, while keeping the attention
pattern unchanged, forgoes the extra pre-training
and effectively handles lengthy texts. Since the
long multi-page VRDs lack pre-training corpora,

Tito et al. (2022); Kang et al. (2024) follow the
chunk-based method to solve the multi-page docu-
ment VQA. However, their page-level design can-
not be directly implemented on DHP which fo-
cuses on finer-grained relationships among layout
elements.

3 Problem Definition

In this paper, we consider the DHP as recognizing
the hierarchical structure among layout elements.
Specifically, the input is given as a multi-page doc-
ument along with M extracted layout elements
E = {E1, E2, ..., EM} in traversal order, which
can be obtained by the off-the-shelf optical charac-
ter recognition (OCR) and document layout anal-
ysis system (Cheng et al., 2023). The output is
the hierarchical structure of the elements (E,R),
where R is the relation set which captures relation-
ships between layout elements. Relation Rj is de-
fined as a tuple (Eparent, Echild) which represents
a hierarchical relation between elements.

The definitions of the layout elements and their
relationships vary among datasets. Fig. 2 depicts
a document image, with annotations visualized ac-
cording to labeling systems of different datasets.
E-Periodica (See Fig. 2 (b)), defines layout ele-
ments as multi-granular content blocks with hier-
archical relations which exist between elements
of different granularities, and sequential relations
which indicate reading order. This setup imposes
stringent requisites on the layout analysis module
for multi-granular elements, and it also results in
semantically incomplete elements by annotating
single pages separately. In HRDoc, annotations
are based on text lines, simplifying issues of multi-
granularity by requiring the model to additionally
identify text lines belonging to the same layout
block (See green lines of ‘connect’ relationship in
Fig. 2 (c)). This approach neglects the advanced
document layout analysis models. Besides, the

1131



(a) Origin (b) Labels in E-periodica

(c) Labels in HRDoc (d) Labels in DocHieNet

Figure 2: Illustration of the label systems in different
datasets. Red and blue lines denote ‘hierarchical’ and
‘sequential’ relationships, and green lines indicate ‘con-
nect’ relationships. The point at the top of the document
represents the root of document.

prevalence of the ‘connect’ relationship far exceeds
other relations, making line-level evaluation a poor
reflection of prediction quality due to the simplic-
ity of the ‘connect’ pattern compared to the more
complex hierarchical relationship.

Integrating the merits of different definitions
and referencing prevailing works in the document
layout analysis, we design the labeling system of
DocHieNet to annotate only fine-grained layout
blocks and capture both hierarchical and sequential
relationships, as illustrated in Fig. 2 (d).

4 Dataset

The DocHieNet contains a total of 1673 documents,
of which 1110 are in English and 563 are in Chi-
nese. It covers a wide range of domains includ-
ing legal, financial, educational, technical, and sci-
entific documents. Furthermore, as illustrated in
Fig. 1, the documents are of diversified layout.

4.1 Document Collection
The documents of the DocHieNet dataset are se-
lected from diverse data sources including com-
prehensive document VQA datasets (Tito et al.,
2022; Landeghem et al., 2023), government pub-

（a）Distribution of number of pages

（b）Distribution of max hierarchical depths

Figure 3: Distribution of number of pages and max
hierarchical depths of the four datasets shown in Tab. 1.

lic release, data directory services for financial re-
ports and other aggregate websites. Information
on the search procedure and resources of data is
distributed as a part of the DocHieNet dataset. We
manually select representative documents of their
type while preventing too many samples gathered
in a single type. Extra caution is exercised in ensur-
ing that all samples are free to use and eliminating
samples that could potentially raise complications
pertaining to privacy considerations.

4.2 Annotation Process

The campaign begins with annotating layout ele-
ments. Based on the observation of common layout
features in the collected data and previous defini-
tions of layout element classes, we define a tax-
onomy of 19 types: {title, sub-title, section-title,
text, formula, TOC-title, TOC, figure, fig-title, fig-
caption, table, tab-title, tab-caption, header, footer,
page-number, footnote, endnote, sidebar}. The
statistics of layout elements are summarized in Ap-
pendix A.1. In this phase, the layout elements are
annotated with their categories, positions and text
content, organized in reading order across pages.

Given the diversity in document themes and lay-
outs, the hierarchical relationship annotation be-
comes complex. We thus supply precise annotation
guidelines and plenty of examples for typical docu-
ment types. Twelve experienced annotators under-
take this task adhering strictly to these guidelines,
with three specialists in the document understand-
ing area performing three rounds of quality checks.
Within our corpus, many documents are lengthy,
with recurring layout patterns. To improve annota-
tion efficiency and reduce pattern redundancy, we
have truncated half of the documents (totaling 835).
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Figure 4: An overview of DHFormer. The sparse text-layout encoder efficiently enriches the input representations
with fine-grained contexts. Then the decoder takes as input the pooled layout features of the document and reasons
at global range. Finally the relations are predicted based on features of layout elements.

4.3 Data Split and Statistics

We carefully split the annotated documents into a
train-set of 1512 documents and a test-set of 161
documents. To prevent over-fitting to a particular
pattern, we regulate the balance of documents from
diverse sources within the splits. Additionally, the
documents in the test-set encompass fully anno-
tated documents exclusively, and thus DocHieNet
is able to gauge the generalization ability of models
across documents of varying lengths. More details
of the splits are summarized in Appendix A.2.

Our research entails statistical evaluations of the
datasets, which reveals that DocHieNet is of higher
diversity compared with previous DHP datasets.
We present the principal statistical data of the
dataset in Tab. 1. It is evident that DocHieNet
represents the largest manually annotated dataset
and is the sole dataset with multiple types of docu-
ments.

In terms of document length, as depicted in
Fig. 3 (a), DocHieNet exhibits a more extensive and
varied distribution of page numbers. Pertaining to
the complexity of document hierarchy, DocHieNet
also demonstrates significant diversity. It encom-
passes a larger proportion and a broader span of
cross-page relationships, as summarized in Tab. 1.
Furthermore, in the aspect of the depth of the docu-
ment hierarchy tree, DocHieNet is also more diver-
sified. Previous datasets, due to the homogeneity
of the documents, exhibit a more concentrated dis-
tribution as shown in Fig. 3 (b).

5 Method

The proposed DHFormer framework, as illustrated
in Fig. 4, leveraging both fine-grained and holis-
tic information, and making full use of pre-trained
layout-aware LMs, effectively tackles the multi-
page and multi-level challenges in DHP. Firstly,
the entire document, including tokens and their 2D
positions, is fed into a sparse text-layout encoder
Esp to create a fine-grained contextualized repre-
sentation for each token. Then, through pooling,
the information is input into a layout element-level
decoder D. The decoder captures collective in-
formation from higher-level and global contexts
to obtain representations of layout elements. We
specially equip the text-layout model with addi-
tional page embeddings and inner-layout position
embeddings to enhance the capacity of modeling
cross-page and multi-level relations. Finally, the
contextualized layout features are fed into the rela-
tion prediction head to get the final output.

5.1 Sparse Text-layout Encoder

Layout-aware LMs (Xu et al., 2019, 2021; Luo
et al., 2023) can be taken as the text-layout en-
coder. In multi-page VRDs, the number of tokens
N usually exceeds the input limitations l of the
pre-trained encoder. There are various strategies
to extend their attention mechanism to handle long
inputs 2. In this section, we employ a chunk-based
sparse transformer which keeps the dense atten-

2Discussion on different sparse transformer strategies is
provided in the experiments.
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tion within chunks and thus better exploits the LMs
pre-trained on single pages (Ivgi et al., 2022; Xie
et al., 2023). We break down the document to K
chunks C = {C1, ..., CK}. Each chunk contains
the maximum number of layout elements such that
the total number of their tokens does not exceed
l. The chunks are encoded distributively, so the
attention map in the encoder Esp is factorized into
dense attention only within chunks :

X̃ = Att(X,C) = (a(xi, Cki))i∈1,...,N (1)

a(xi, Cki) = softmax(
(Wqxi)K

T
ki√

d
)Vki (2)

Where X is the input embeddings and Cki is the
chunk to which xi belongs, and :

Kki = (Wkxj)xj∈Cki
, Vki = (Wvxj)xj∈Cki

(3)

Wq, Wk, and Wv represent the weight matrices and
d is the hidden size of the model.

In this way, we enrich the fine-grained contexts
of tokens rather than only within layout elements,
while keeping computational cost in check. The
vanilla self-attention complexity of the entire doc-
ument is O(N2). The attention factorized within
chunks has the complexity of O(|C1|2 + |C2|2 +
...+ |Ck|2). Supposing that the size of chunks are
all of l for estimation, then there is N = l ·K and
the complexity of the factorized attention in the
sparse text-layout encoder is O(l ·N).

5.2 Position Embeddings
We further add two types of embeddings to the text-
layout models, which are specially designed for the
multi-page and multi-level settings in DHP:

Page embeddings denote the page location on
which the input is located. It is computed as
epg = Linear(sinPE(pni)), where pni is the abso-
lute page number of ith input, sinPE is the sinu-
soidal positional encoding. It can connect layouts
from the same page and distinguish layouts from
different pages. The 2D position embeddings alone
can be confusing in the multi-page scenario since
layouts from different pages may overlap.

Inner-layout position embeddings are calculated
by ein = PosEmb1D(rpi), where rpi is the rela-
tive position of ith input within its corresponding
layout element, and PosEmb1D is the 1D position
embedding function of the encoder. It helps the
model obtain the awareness of the boundaries of
layout elements in text sequences, which facilitates
better representation of layout elements.

Formally, the ith input embedding is computed
as xi = ti + epgi + eini , where ti is the original
text-layout embedding of the encoder.

5.3 Global Layout Element Decoder
For each layout element Ei, its representation Hi is
derived by pooling the feature of its first token. An
additional learnable root embedding H0 is utilized
since some layouts have the root node as the parent.
The features of layouts are concatenated and passed
into a transformer-based decoder D, producing the
final representations Ĥi of layouts as :

{Ĥi}i=0,...,M = D({Hi}i=0,...,M ) (4)

This module refines the layout features at the global
range and further breaks down the barriers between
chunks. Considering that the number of layouts is
also unlimited in real cases, shifted sparse attention
(SSA) (Chen et al., 2023) is utilized to efficiently
support a greater number of layout elements.

5.4 Prediction
Finally, the relations between layout elements are
predicted as dependency parsing following (Luo
et al., 2023), where a bilinear layer is applied:

pij = Sigmoid(Bilinear(Ĥi, Ĥj)) (5)

Then the parent of Ei, in terms of hierarchical re-
lationships, is predicted by argmax({pij}j=0,..,M )
to obtain the relation pair. During training, the
cross-entropy loss is used.

6 Experiment

6.1 Implementation Details
We employ pre-trained GeoLayoutLM (Luo et al.,
2023) as the basic text-layout encoder and a 2-layer
SSA with a window size of 48 as the decoder. The
AdamW optimizer (Loshchilov and Hutter, 2017)
is employed for training with a base learning rate of
4e-5. The training epoch is set to 100 as the default,
where the learning rates progressively decrease to
1e-6. During training, we set the max tokens of the
text-layout encoder as 512 with the max number of
chunks, as 32 (128 for testing). All the experiments
of DHFormer are performed on the platform with
2 NVIDIA Tesla V100 GPUs.

6.2 Evaluation Protocols
We employ both F1-score to measure the correct-
ness of predicted relation triples (Rausch et al.,

1134



Dataset arXivdocs HRDS HRDH E-Periodica DocHieNet
metric F-1 TEDS F-1 TEDS F-1 TEDS F-1 TEDS F-1 TEDS

DocParser 58.14 29.11 56.84 28.71 47.36 22.39 35.20 18.67 23.31 6.81
DSPS - - - 81.74 - 69.71 - - - -
DOC - - - 95.10 - 85.48 - - - -
DSG 81.17 72.47 84.78 83.24 74.04 64.33 67.17 60.14 53.51 33.90

DHFormer 98.45 95.04 99.34 98.69 93.40 89.14 92.53 84.85 77.82 57.64

Table 2: Summary of performance of document hierarchy parsing methods across different datasets. Bold figures
indicate the best results of all models.

Anno. Format arXivdocs HRDS HRDH E-Periodica
Settings Train Test F-1 TEDS F-1 TEDS F-1 TEDS F-1 TEDS

1 DHN DHN 98.45 95.04 99.34 98.69 93.40 89.14 92.53 84.85
2 DHN origin - - 99.87 99.73 98.36 97.31 - -
3 origin origin 99.70 97.42 99.57 97.98 96.69 92.63 95.76 93.09

Table 3: Summary of performance of DHFormer on different datasets with their original annotation formats. ‘DHN’
and ‘origin’ refer to the annotation format of DocHieNet and the original dataset respectively.

2023) and Tree-Edit-Distance based Similarity
(TEDS) to assess the entire document tree structure
(Zhong et al., 2019a; Hu et al., 2022). More details
of evaluation are introduced in the Appendix A.3.

6.3 Comparison of Document Hierarchy
Parsing Models across Datasets

We assess a group of DHP models to investigate
their performance across different datasets, includ-
ing DocParser (Rausch et al., 2021), DSPS (Ma
et al., 2023), DOC (Wang et al., 2024) and DSG
(Rausch et al., 2023). The baselines are summa-
rized with more details in Appendix A.4. As men-
tioned in Sec. 3, there exists inconsistency across
different datasets. To facilitate a comprehensive
comparison, we map the labels of previous datasets
onto the DocHieNet format. For DocParser, we
do not alter the data containing multi-granularity
layout elements, as its empirical rules are predi-
cated on such annotations. Regarding the DSPS
and DOC model, we refer to the reported evalua-
tion results, specifically the evaluation conducted
on the text line level. The results are in Tab. 2.

An analysis of each row reveals the notably
higher complexity of DocHieNet compared to other
datasets. For example, DHFormer achieves com-
mendable results on previous datasets, but its per-
formance on DocHieNet indicates substantial room
for enhancement. A vertical comparison in each
column illustrates the superiority of DHFormer.

Despite DSG integration of multi-modal features,
the absence of document-specific pre-training lim-
its its effectiveness in the data-scarce scenario. Al-
though the DSPS model employs the PLM, the lay-
out elements are encoded separately with only lim-
ited contexts. DHFormer overcomes the drawbacks
of previous model with the specially designed ar-
chitecture to better exploit the pre-trained layout-
aware LMs on the multi-page and multi-level DHP
setting. We also investigate the performance of
DHFormer on documents of different languages in
Appendix A.5.

6.4 Model Performance on Different
Annotation Formats

In order to provide a more comprehensive assess-
ment of the proposed model, we evaluate the per-
formance of DHFormer on different datasets with
their original annotation formats as shown in Tab. 3.
Setting 1 is the same as that in Tab. 2. In setting
2 the model is trained with labels of DocHieNet
standard, while the results are transformed back
into the original standards for evaluation. Note
that we have manually transformed the E-Periodica
and arXivdocs into DocHieNet standard, so the pre-
dicted results can not be directly transformed back.
In setting 3, the model is trained and evaluated on
the original annotations of the datasets.

For results on HRDoc datasets, the results in set-
ting 2 become obviously higher than in setting 1. It
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Encoder F1 TEDS

XLM-RoBERTa 69.13 50.61
BROS 74.10 53.39
LayoutLMv3 75.83 56.40
GeoLayoutLM 77.82 57.64

Table 4: The model performance of DHFormer with
different encoders.

ID Model Train Eval HRDS HRDH

1 DSPS Line Line 81.74 69.71

2a DHFormer Line Line 97.98 92.63
2b DHFormer Line Layout 91.69 83.91
2c DHFormer Layout Line 99.73 97.31

3a DHFormer Layout Layout 98.69 89.14
3b DHFormer* Layout Layout 94.32 86.87

Table 5: Experiment results on HRDoc with different
annotation granularity. DHFormer* refers to the end-to-
end results with a layout analysis system.

is because the backward transformation splits the
layout element into text lines and adds ‘connect’ re-
lations among them, which are exactly ground-truth
relations. For E-Periodica and arXivdocs datasets,
the performance in setting 3 is higher, mainly be-
cause the layout information provides strong clues
for the relationships defined in these datasets. In
setting 3, directly training and testing the model
on the original datasets also shows commendable
results, which indicates the effectiveness and flexi-
bility of DHFormer.

6.5 Model Performance with Different
Pre-trained Encoders

We conduct additional experiments by replacing
GeoLayoutLM in the encoder with other represen-
tative layout-aware LMs, including BROS (Hong
et al., 2022) and LayoutLMv3 (Huang et al., 2022)
along with a plain-text LM XLM-RoBERTa (Con-
neau et al., 2019) of equal parameter size. The
results are summarized in Tab. 4. It shows that the
performance fluctuates slightly according to dif-
ferent pre-trained models, while consistently out-
performing previous methods. It demonstrates the
flexibility and robustness of the framework.

6.6 Discussion on Paradigms of Annotations

In this section, we conduct an analysis of differ-
ent annotation paradigms through statistical data

Figure 5: Comparison of the DHFormer and LLMs, in
terms of model performance in relation to variations in
document length.

and experimental results. As mentioned in Sec. 3,
the layout element defined in E-Periodica is solely
applicable to single-page documents. It fails to en-
compass cross-page relationships, which constitute
a significant proportion in multi-page documents,
as summarized in Tab. 1. The limitations of this
annotation paradigm are self-evident.

The HRDoc annotation system, by establishing
relations among text lines, integrates the tasks of
layout analysis and hierarchy parsing. Experiment
results indicate that this setting is not as ideal as
it appears. We train DHFormer with the original
HRDoc annotations and conducted evaluations on
both text line (2a), and layout block level (2b) by
merging lines into blocks according to the predic-
tions. We also break down the results of DHFormer
trained with block-level annotations into text lines
to make a thorough comparison (2c). The evalua-
tion results based on layout blocks are significantly
lower, which indicates that text line-level evalua-
tions inadequately reflect the actual quality of the
predicted hierarchy as mentioned in Sec. 3.

We further compare the end-to-end inference
outcomes based on layout blocks detected by a
layout analysis system using CenterNet (Zhou et al.,
2019). Employing the results of the layout analysis
model as input demonstrated a decline (from 3a
to 3b), albeit still surpassing the outcomes of line-
level prediction after merging text lines into layout
blocks for evaluation (2b), which further indicates
the merit of the annotation paradigm of DocHieNet.

6.7 Discussion on Large Language Models

Recently, large language models have been gaining
adoption in different domains and accommodate
more extensive text inputs, such as 128K tokens.
The GPT-4 represents one of the state-of-the-art
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ID STS WinS F-1 TEDS

a chunk layout 62.41 46.75
b chunk page 75.66 55.07
c stride 512 73.98 54.38
d chunk 512 77.82 57.64

Table 6: The comparison of different sparse transformer
strategies (STSs) and window size (WinS).

LLMs and Llama2 is a prevalent open-source large
model in academia. We take them as baselines to
evaluate LLMs on DocHieNet. The prompt for
GPT-4 employs in-context learning (ICL) (Brown
et al., 2020) , while Llama2 is fine-tuned on our
dataset. Further details of the APIs, prompt and
fine-tuning process are provided in Appendix A.6.

The comparison in terms of relation F-1 is shown
in Fig. 5. As illustrated, DHFormer outperforms
GPT-4 based on ICL or fine-tuned Llama2. More-
over, with the increment in the length of the docu-
ments evaluated, DHFormer only exhibits a slight
decline. This can be attributed to its adeptly balanc-
ing detailed and holistic information, enhancing its
overall performance. Besides, the decoder reasons
at above-token level with collective information,
which prevents the model from being overwhelmed
by excessive details and consequently bolsters the
model on lengthy documents.

6.8 Ablations of Design Choices

First, we assess the impact of different sparse trans-
former strategies (STS). We conducted experiments
with chunks of varying sizes, and implemented a
sliding window attention mechanism (Beltagy et al.,
2020) with the same initialization. Chunking at the
layout level evidently suffers from inadequate con-
text according to the comparison of Tab. 6 (a) and
Tab. 6 (d). Chunking at the page level, as shown
in Tab. 6 (b), also leads to slight information loss
due to the frequent cross-page relationships among
layout elements. Employing the sliding window ob-
viates the need for chunking. However, it modifies
the attention pattern, and thus often necessitates
further pre-training (Ivgi et al., 2022). In the sce-
nario of multi-page long VRDs with a scarcity of
pre-training data, the chunk-based method shows
its superiority, which is indicated by the difference
between Tab. 6 (c) and Tab. 6 (d).

Then we evaluate the effectiveness of the page
embeddings and inner-layout position embeddings
in Tab. 7. Results indicate that a performance boost

ID PageE. InnerE. F-1 TEDS

a w/o w/o 73.66 52.54
b w w/o 75.77 55.14
c w/o w 75.14 54.41
d w w 77.82 57.64

Table 7: Ablations of the page embeddings and inner-
layout position embeddings.

can be achieved by adding one type of embedding
respectively, while the concurrent use of both em-
beddings results in the best model performance.

7 Conclusion

In this paper, we present DocHieNet, a DHP dataset
featuring large-scale, multi-page, multi-domain,
multi-layout and bi-lingual documents. We carry
out detailed analyses of data statistics, annotation
paradigms and evaluation using various baselines.
Our findings demonstrate the challenging nature
of the DocHieNet and the advantage of its anno-
tations format. Furthermore, we introduce an ef-
fective framework, DHFormer, which consistently
improves the model performance, particularly on
the complex DocHieNet dataset. We hope this work
could not only advance the understanding of DHP
task but also set a foundation for future exploration.

Limitations

Despite the significant effectiveness that our pro-
posed dataset DocHieNet and method DHFormer
represent, we acknowledge the limitations that
while the dataset includes a vast array of document
types and layouts, it may not encompass all possi-
ble variations seen in the wild. Future work could
expand the dataset to include even more diverse
and challenging documents, ensuring that models
are more robust against more types of documents
encountered in the real-world applications.
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A Appendix

A.1 Statistics of Layout Elements

DocHieNet contains 1673 documents with 15610
pages and more than 187K layout elements. Tab. 8
summarizes the overall frequency and distribution
of different types of layout elements in DocHieNet.

class count % class count %

title 2686 1.43 sidebar 383 0.20
sub-title 1435 0.76 table-title 944 0.50
section-title 20452 10.9 table 2244 1.20
text 116172 61.8 table-caption 1013 0.54
formula 709 0.38 header 8837 4.71
TOC-title 262 0.14 footer 6614 3.52
TOC 2011 1.07 footnote 3429 1.83
figure-title 1495 0.80 endnote 3402 1.81
figure 4547 2.42 page-number 9269 4.94
figure-caption 1694 0.90

Table 8: Overview of the class of layout elements in
DocHieNet. Along with the numbers of each class label,
we present the relative occurrence

A.2 Details of Data Splits

Below are the detailed statistics of the data splits
(See Tab. 9). As described in Sec. 4.3, the docu-
ments in the test set are fully annotated, whereas in
the training set, 835 documents are only partially
annotated. Consequently, the average number of
pages per document in the training set is less than
that in the test set. By establishing such a scenario,
DocHieNet encourages DHP models to consider ad-
dressing the document inputs with various lengths
encountered in real-world scenarios.

A.3 Details of Evaluation

We employ both F1-score to measure the correct-
ness of predicted relation triples (Rausch et al.,
2023) and Tree-Edit-Distance based Similarity
(TEDS) to assess the entire document tree structure
(Zhong et al., 2019a; Hu et al., 2022). Specifi-
cally, suppose Rgt = {(Eparent, Echild, rgt)} and

Split #Docs #En #Zh #Pages #A.P.

train 1512 990 522 13299 8.8
test 161 120 41 2311 14.4

Table 9: Data split counts of DocHieNet. #En and
#Zh respectively denote the quantities of English and
Chinese documents, while A.P. signifies the average
number of pages per document.

Rpred = {(Êparent, Êchild, r̂pred)}, then the F1-
score is computed from the precision pscore and
recall rscore as following:

pscore =
|Rgt ∩Rpred|

|Rpred|
,rscore =

|Rgt ∩Rpred|
|Rgt|

Regarding TEDS, for the document D, a tree-
like representation TD can be obtained according
to the hierarchical relations R, similar to a table of
contents. Subsequently, the TEDS associated with
the predicted structure T̂D is calculated as follows:

TEDS(TD, T̂D) = 1− EditDist(TD, T̂D)

max(|TD|, |T̂D|)
(6)

A.4 Details of Baselines
We assess a group of DHP models to investigate
their performance across different datasets. Doc-
Parser (Rausch et al., 2021) uses heuristics to con-
vert a list of elements into hierarchical relations.
It takes into account multi-column layouts but ig-
nores most meta-information such as text content
of elements. DSPS (Ma et al., 2023) employs a
multi-modal encoder and a GRU (Chung et al.,
2014) decoder for hierarchical organization. The
textual embeddings of layouts are extracted seper-
ately. And DOC (Wang et al., 2024) employs uni-
fied relation predictions to perform document lay-
out analysis and hierarchy parsing from text lines.
DSG (Rausch et al., 2023) leverages a bidirectional
LSTM for relation prediction of the layout ele-
ments, employing features extracted from FPN for
image regions and the GLoVe (Pennington et al.,
2014) word embeddings of their layout element
type.

A.5 Model Performance on Document of
Different Languages

We have examined the performance of DHFormer
on documents in languages of both English and
Chinese, as illustrated in the Tab. 10. DHFormer
exhibits stable performance on documents across
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Split DocHieNet-en DocHieNet-zh
metric F-1 TEDS F-1 TEDS

DHFormer 78.13 58.02 76.92 56.53

Table 10: The model performance on subsets of English
and Chinese documents

different languages, though its performance on Chi-
nese documents is slightly inferior. This is re-
sulted by the fact that the pre-training data for the
text-layout encoder of DHFormer is predominantly
composed of English documents. Nevertheless,
the layout knowledge acquired during pre-training
proves effective for documents in both languages.

A.6 Details of LLM Implementations

A.6.1 APIs and Pre-trained Models
We employ two baselines for the discussion on
LLMs: GPT-4-turbo-128K and Llama2 (Touvron
et al., 2023). GPT-4 represents one of the current
state-of-the-art LLMs and is accessible via the Ope-
nAI API3. Llama2 is a prevalent open-source large
model in academia. The specific pre-trained model
weight we utilize, Llama-2-7b-chat-hf, is available
on Huggingface4. It has the original context length
of 4096, and we extend it to 32K with position
interpolation for the long document inputs.

A.6.2 Prompt for LLMs
To evaluate LLM on DocHieNet of document hier-
archy parsing task, we define the prompt template
as shown in Tab. 11. For fine-tuning Llama2, the
ICL demonstrations are removed.

A.6.3 Fine-tuning Process of Llama2
Here we provide a detailed description of the fine-
tuning process of Llama2. To cater for ability of
Llama2 gained from pre-training, the DocHieNet
dataset is transformed into a prompt-based format
as illustrated in Tab. 11. The input document is
organized as a list of layout elements arranged in
reading order; and thus, the task is transformed into
predicting the parent node of each element. The
answer is organized as a list of relation pairs (i:j)
as in Tab. 11. During training, the input is spliced
into sub-documents within 10K tokens, and during
testing, the input is the whole document. We follow
the training hyper-parameters as demonstrated in

3https://platform.openai.com/
4https://huggingface.co/meta-llama/Llama-2-7b-chat

llama-recipes 5. We employ LoRA (Hu et al., 2021)
for parameter-efficient fine-tuning, where we set
the rank as 8, alpha as 32, dropout as 0.05, and the
target modules are the query and value projections
in the attention mechanism. The fine-tuning is done
on 2 NVIDIA A100 GPUs for 1 epoch. We parse
relationship pairs from the output, and reconstruct
the document hierarchy trees based on these pairs.
Essentially, all outputs are automatically parsable
except for a handful of cases for which we make
modifications manually.

5https://github.com/meta-llama/llama-recipes
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Prompt Here is a list whose elements represent the content blocks of a
document, and the indication of keys are as following:
"text": A string representing the text in the content block.
"page": An integer indicating the page number on which the content block
appears.
"id": An integer that uniquely identifies the content block.
"box": the layout information of the content block.
Documents are organized as a tree-like structure. Please find the parent element
of each content block based on the text and layout of them.
The format of your reply: [{id1 : parent_id1},...,{idn : parent_idn}] . And
do not reply other content.
Here are some demonstration:
{Demonstrates}
Here is the input document:{Input}
—
reply:

Slots Input List of document layout entities from DocHieNet.
Demonstrates The selected demonstration with ground truth response.

Table 11: The prompt for evaluating LLMs on DocHieNet.
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