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Abstract

Evaluating Large Language Models (LLMs) on
reasoning benchmarks demonstrates their abil-
ity to solve compositional questions. However,
little is known of whether these models engage
in genuine logical reasoning or simply rely on
implicit cues to generate answers. In this pa-
per, we investigate the transitive reasoning ca-
pabilities of two distinct LLM architectures,
LLaMA 2 and Flan-T5, by manipulating facts
within two compositional datasets: QASC and
Bamboogle. We controlled for potential cues
that might influence the models’ performance,
including (a) word/phrase overlaps across sec-
tions of test input; (b) models’ inherent knowl-
edge during pre-training or fine-tuning; and (c)
Named Entities. Our findings reveal that while
both models leverage (a), Flan-T5 shows more
resilience to experiments (b and c), having less
variance than LLaMA 2. This suggests that
models may develop an understanding of tran-
sitivity through fine-tuning on knowingly rele-
vant datasets, a hypothesis we leave to future
work1.

1 Introduction

At a high level, reasoning refers to the process of
an agent deriving information about its environ-
ment that extends beyond what is directly observ-
able or retrievable from memory. Large Language
Models (LLMs) have shown capabilities of solving
complex questions necessitating this very process
(Touvron et al., 2023; Brown et al., 2020). These
models can often solve these tasks in few-shot, such
as Chain-of-Thought (CoT) reasoning (Wei et al.,
2022b; Zhang et al., 2023; Zhou et al., 2023), or in
a zero-shot manner (Kojima et al., 2022). Scaling
up LLMs has demonstrated improvements across
various multi-step reasoning benchmarks, such as
arithmetic, commonsense, and symbolic reasoning
(Wei et al., 2022b; Lewkowycz et al., 2022; Wei

1The code and dataset can be found at our github page.

et al., 2022a). Nevertheless, the question of what
mechanisms underlie reasoning in these models
remains an open one (Prystawski et al., 2023; Ye
et al., 2023; Wang et al., 2023a). Perhaps more
pressingly, so does the question of whether exist-
ing reasoning benchmarks accurately reflect a
model’s capacity to reason.

One key aspect of such capabilities is the
model’s proficiency in Transitive Reasoning. This
involves the model’s ability to integrate and logi-
cally deduce conclusions from at least two perti-
nent facts when addressing a specific question (see
Figure 1). In this paper, we design a set of novel
diagnostic experiments using automatic and man-
ual re-annotations of two compositional datasets
–QASC (Khot et al., 2020) and Bamboogle (Press
et al., 2023b)– to control for the different sources
of information the LLMs, namely LLaMA 2 (Tou-
vron et al., 2023) and Flan-T5 (Chung et al., 2022),
might be exploiting in answering compositional
questions. Specifically, our experiments control
for (i) named entities in QA pairs; for example, a
model looks for dates in the facts when prompted
with “when” in the question, (ii) word/phrase asso-
ciations or overlaps across sections of the models’
input prompt, e.g., removing B, in the reasoning
chain of A → B, B → C ⇒ A → C, and (iii) the
model’s exposure to direct answers to the questions
during pre-training and/or fine-tuning by using the
Bamboogle dataset.

Our initial experiments (Section 4) establish that
LLMs perform well with intermediate facts pro-
vided (Figure 1), demonstrating some transitive
reasoning capabilities. Manipulations such as re-
moving overlapping words between facts and ques-
tions or shuffling word order within facts show no
significant impact on performance. However, re-
moving answer keywords notably decreases model
performance, indicating some reliance on these
keywords rather than purely relying on transitive
reasoning. Experiments controlling for the mod-
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Figure 1: (a) 3-shot In-Context Learning (ICL) prompt for the compositional question answering task. The
prompt begins with the instruction “Follow the demonstrations below to answer the given question” followed by 3
demonstrations. Each demonstration consists of a “Context” with a question, optionally a set of multiple-choice
(MC) answers for the QASC dataset (Khot et al., 2020), two supporting facts (fact 1, fact 2), and a set of “Steps”
including a “Deduction” and the correct answer. The test query contains only the “Context” and the LLM needs to
generate the “Steps”. (b) We perform a series of manipulations to either of the facts by shuffling words, removing
overlapping keywords, and gibbering Named Entities to control for different sources of exploitation of cues in the
input by the models.

els’ direct answer knowledge using Bamboogle
(Section 7) reveal dependency on specific named
entities like dates and names for answers. Unlike
LLaMA 2, Flan-T5 shows more resilience to inter-
ference with the named entities of answer tokens,
indicating that it engages in a process similar to
transitive reasoning due to being knowingly fine-
tuned on transitive datasets, though further research
is needed to confirm this.

2 Related Work

Reasoning LLMs have exhibited certain emer-
gent abilities (Wei et al., 2022a) that can be trig-
gered by providing a few demonstrations of CoT
manually (Wei et al., 2022b), automatically (Zhang
et al., 2023), or entirely zero-shot with an instruc-
tion, e.g., ‘think step-by-step’ (Kojima et al., 2022;
Chung et al., 2022), leading to an increase in perfor-
mance in downstream tasks that require some form
of reasoning. Infusing code in either the pretraining
and/or fine-tuning stages has also been shown to
help (Madaan et al., 2022; Gao et al., 2023; Chen
et al., 2023; Lyu et al., 2023). Despite their effec-
tiveness in solving reasoning tasks, models usually

fail to explore different deductive paths to reach the
final answer (Saparov and He, 2023). This can be
resolved by oversampling different reasoning paths
in generation (Wang et al., 2023c).

On the models’ reasoning analysis, Prystawski
et al. (2023) investigate that CoT helps bridge
the gap between observations in the pretraining
data. Razeghi et al. (2022) finds that models ex-
hibit better numerical reasoning capabilities when
the prompt terms are more commonly encountered
in the pretraining data. Press et al. (2023b) and
Khot et al. (2023) introduced an iterative prompt-
ing method that further improves reasoning beyond
CoT. Finally, although increasing the model size
usually helps single-hop QA, it does not affect com-
positional reasoning much (Press et al., 2023b).

Reasoning datasets QASC (Khot et al., 2020),
one of the datasets we focus on in this work, is an
example of compositional deductive reasoning. It
contains science-related multiple-choice questions
supported by two statements (facts) that need to be
composed to deduce the answer. The answers can-
not be directly obtained from a single fact. All the
facts follow a simple transitivity rule (Section 3.1).
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Bamboogle (Press et al., 2023b), the second
dataset of interest, also comprises compositional
questions that cannot be answered correctly by a
popular search engine. Crucially, it was released
after one of the models we experimented with
(Flan-T5) was pre-trained.

StrategyQA (Geva et al., 2021) also contains
multi-step boolean questions which require deduc-
ing from two or more facts to answer. However,
we exclude it from our benchmarks as preliminary
experiments revealed more than 50% accuracy in
answering the questions without the facts, hence
making it harder to pinpoint whether the model
knows the answers directly, or is required to rea-
son. HotpotQA (Yang et al., 2018) is a multi-hop
QA dataset that comprises questions with support-
ing passages that need to be ingested in a multi-
step manner to find the answer. This requires the
model to perform both extracting of information
and reasoning, again possibly hindering identifying
a direct link between the question and the answer
purely due to reasoning. Finally, GSM8K (Cobbe
et al., 2021), and SVAMP (Patel et al., 2021) are
popular mathematical datasets comprising grade
school math word problems accompanied by a se-
quence of deductive steps to solve them. Unlike
QASC and Bamboogle, GSM8K and SVAMP do
not follow the transitive reasoning style that we
aim to study in this paper. Instead, they target the
mathematical reasoning of the models. Note that
HotpotQA involves finding supporting facts which
is not the aim of this paper as we are only interested
in the transitive reasoning abilities of the models.

In-Context Learning (ICL) plays an important
role in the model’s reasoning capabilities (Wei
et al., 2022b). Min et al. (2022) concludes that
specifying both the input distribution and the la-
bel space in the input prompt is what matters for
ICL. Wang et al. (2023b) show that the labels pro-
vided within ICL serve as a reference point for the
model during inference. However, Yoo et al. (2022)
analyse that the correct input-label mappings could
have varying impacts depending on the task at hand.
Wei et al. (2023) show that model size matters in
how LLMs deal with ICL: larger models can over-
write their semantic priors if presented with contra-
dictory examples in the input prompt. Webson and
Pavlick (2022) find that training a model on cor-
rupted prompts has similar performance to models
trained on informative prompts.

Diagnosing Reasoning via Prompting Previous
works have also manipulated prompts to uncover
reasoning abilities. Ye et al. (2023) investigate ab-
lating or substituting the input prompt with wrong
values. Similarly, Wang et al. (2023a) show that
incorrect reasoning in the generated CoT steps does
not significantly impact model performance; the
order of the steps though is crucial. We also study
the compositional reasoning behaviour of LLMs in
multi-hop questions. We have gone a step further
by designing a unique set of experiments aimed at
dissecting the model’s reliance on linguistic con-
structs, individual tokens, and their underlying se-
mantics. In contrast to these studies, we are not
interested in the effect of ICL: the few-shot demon-
strations are kept in their original form. Instead,
our emphasis is on modifying the properties of the
test queries used to assess our model, allowing us
to evaluate its performance under varied conditions
without altering the context provided to it. These
experiments are designed to discern whether the
models engage in compositional deductive reason-
ing or whether they identify alternative patterns to
formulate answers.

3 Experimental Setup

3.1 Task Formulation
We manually inspected and selected datasets that
either inherently adhere to the transitive rule of rea-
soning, such as QASC (Khot et al., 2020), or can be
adjusted with minor re-annotation, like Bamboogle
(Press et al., 2023a), to follow:

A → B,B → C ⇒ A → C (1)

where A → B, B → C correspond to two facts
(henceforth referred to as fact 1 and fact 2, re-
spectively), and the deduction is represented by
A → C. This structure mirrors the logical pro-
gression inherent in transitive reasoning, with the
first two facts serving as premises that lead to the
conclusion outlined in the deduction. All prompts
can be found in Appendix C.

3.2 Datasets
QASC features multiple-choice questions (MCQ)
answerable through the integration of two facts,
leading to a “Deduction” (Figure 1). To clarify
the derivation from two facts, we prefixed each
Deduced Fact with [Therefore,]. Given that each
Deduced Fact is logically entailed by the two pre-
ceding facts (Khot et al., 2020), the addition of
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[Therefore,] at the start serves as a rational and
meaningful way to highlight this inferential step.
Refer to Appendix B for further details.
Bamboogle controls for the models’ prior knowl-
edge of the questions and eliminates the biases in-
troduced by an MCQ structured dataset (Section 7).
To align with the QASC format, we manually de-
composed each question into two related facts by
referencing Wikipedia. Questions not found in
Wikipedia were omitted, leaving 112 out of the 125
original questions. One of the authors rigorously
checked each decomposition to ensure adherence
to the transitive rule. For each pair, we then gener-
ated a Deduced Fact that maintained the principle
of transitivity. Figure 1 shows an instance of each
of the datasets.

3.3 Models

We choose instruction-tuned models that can follow
our prompt structure without further fine-tuning. In
particular, we used LLaMA 2 chat (decoder-only
architecture; 7B and 13B parameters; Touvron et al.
2023), and Flan-T5 XXL (encoder-decoder; 11B
parameters; Chung et al. 2022). Flan-T5 XXL is
already fine-tuned on the QASC dataset, allow-
ing us to study whether fine-tuning on a reasoning
dataset permits the model to perform some form
of transitive reasoning under our diagnostic experi-
ments2. We stick to open-source models for their
reproducibility and transparency. For further de-
tails refer to Appendix A.

3.4 Metrics

QASC (MCQ) Evaluation Our evaluation
method checks the correctness of the final answer
generated by the model. After generating the re-
sponse, we extract the deductions (if any) and the
final answer from the generated response. We use
exact matching between the answer choices to cal-
culate accuracy. For instance, if the correct answer
is “(A) matter” and the model has predicted “(B)
keratin”, we would compare “(B)” against “(A)”.

Bamboogle (non-MCQ) Evaluation We assess
performance on the Bamboogle dataset (Section 7
below) using ROUGE-1 (Lin, 2004), since it de-
viates from the MCQ format. This metric eval-
uates the overlap of unigrams between the gold
standard answer and the generated response. We

2We limited our experiments with LLaMA 2 up to 13B
parameters, to keep comparisons fair with the largest model
from the Flan-T5 family.

refrained from going beyond ROUGE-1 as some
models tended to rearrange tokens in certain exper-
iments (for example, generating “April 30, 1789”
as “30 April 1789”) or not corresponding with the
full answer (generating “1953” instead of “July 27,
1953”); metrics based on n-grams larger than one
would fail to take this into account.

4 QASC and Transitivity

To investigate transitive reasoning (Section 3.1) in
LLMs, we designed several experiments to anal-
yse their behaviour. Firstly, we explore the per-
formance when provided with factual information
and demonstrations of deduction. Subsequently,
we investigate the extent to which knowledge is
inherently present within these models, essentially
gauging how many answers are pre-existing due
to pretraining. We also aim to examine the signif-
icance of deductions within these demonstrations.
Finally, we inspect the impact of individual facts
on the models’ ability to deduce the final answer.
In all experiments, we used 3-shot ICL 3.

The prompts comprise three sections, beginning
with the instruction “Follow the demonstrations
below to answer the given question”, followed by
3-Shot ICL demonstrations, and ending with the
Test Query which prompts the model to generate
the response. The overall structure of the prompt is
depicted in Figure 1. Depending on the diagnostic
experiments, this prompt is modified accordingly
(refer to Tables 5, 6, and 7 in Appendix C). Be-
low is the description of prompts for the diagnostic
experiments carried out to analyse the models’ be-
haviour dealing with transitivity.

Full As illustrated in Figure 1, each demonstra-
tion contains a “Context” that includes the Ques-
tion, and a set of multiple-choice (MC) Answers,
accompanied by two supporting facts (fact 1,
fact 2), and a set of “Steps” that crucially com-
prises a “Deduction” before the final Answer. The
rationale of the Full prompt is to encourage the
model to deduce from the facts verbatim before
reaching the final answer.

QA The demonstrations contain only the Ques-
tion, the MC Answers, and only the correct Answer
as part of the “Steps”. This prompt aims to check
the prior knowledge of the model in answering
these questions without any extra information.

3For QASC we used the dev set to evaluate performance
and chose the ICL instances randomly from the training set.
For more details on ICL refer to Appendix C.
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QA (step-by-step) Similar to QA, this prompt
contains the “Think step by step” Instruction at the
beginning, but similarly does not contain any facts
in the “Context”, or a “Deduction“ step. Inspired
by Kojima et al. (2022) this diagnostic experiment
helps identify whether the model does any internal
reasoning without explicitly being shown how to
do so, e.g., via a “Deduction” step.

QAF Similar to the Full prompt, the model is
provided with the facts in the “Context” but not
the “Deduction” step. Therefore, it is tasked with
predicting the final answer without generating ver-
batim any form of reasoning from the facts. This
prompt highlights the importance of the deduction
step in answering the questions.

QAF (Fact 1/Fact 2 only) Identical to the QAF
prompt, the only difference is that it omits either
of the facts. This outlines which fact carries more
weight for the model’s reasoning to reach the final
answer. Generally, fact 1 is closer to the question,
and fact 2 contains the answer (A → B and
B → C in Equation 1, respectively).

QASC Dataset

Prompt LLaMA 2-13b LLaMA 2-7b Flan-T5

Full 90 74 97
QA 55 43 79
QA (step-by-step) 46 37 79
QAF 77 56 99
QAF (fact 1 only) 71 46 94
QAF (fact 2 only) 60 44 95

Table 1: Accuracy of LLaMA 2-13b, LLaMA 2-7b,
and Flan-T5 XXL on QASC with different diagnostic
prompts. Full and QAF indicate the models’ reliance on
facts or the deduction step for answering questions. QA
demonstrates the degree to which the models depend on
their inherent knowledge.

4.1 Results
The results from these experiments are depicted
in Table 1. The first two rows show that Flan-
T5 surpasses both LLaMA 2-7b and -13b, likely be-
cause it has been directly fine-tuned on the QASC
dataset. Consistent with the observations made by
Wei et al. (2022a), the size of the models signifi-
cantly influences their performance on reasoning
tasks. The LLaMA 2 models using the QA (step-by-
step) prompt perform worse than with QA, despite
being provided with identical in-context and infer-
ence prompts. This could be because the instruc-
tion “Think step by step” can initiate a different

reasoning process more suitable for reasoning tasks
other than transitivity. On the other hand, Flan-
T5 has been fine-tuned on a series of tasks (includ-
ing QASC) with the same instruction hence, the
prompt objective aligns closely with the model’s
fine-tuning process (Chung et al., 2022; Wei et al.,
2022b).

Finally, the results with the QAF prompt indicate
that the LLaMA 2 models struggle with reasoning
in the absence of deductions within the demonstra-
tions. However, Flan-T5 performs on par with the
Full prompt, which again could be down to fine-
tuning. The last two rows denote that the presence
of fact 1 is more important in the final answer for
the LLaMA 2 models but not so much for Flan-T5.
Without both facts, executing transitive reasoning
becomes unfeasible. This surprising result leads to
an intriguing inquiry: what information are the
models extracting from the facts so that they are
able to outperform the QA prompt?

5 Does Word Order Matter?

Previous experiments showed that models benefit
significantly when the intermediate facts are pro-
vided. This does not mean that the models are
engaging in reasoning – for example, they may be
exploiting word overlaps or associations across the
questions, facts, and the answers. Reasoning can
only proceed from fine-grained, structured mean-
ings of the question, and those of the facts. There-
fore, if the models are reasoning over the facts, we
would expect them to do significantly worse when
the word order in the facts is randomly shuffled
(leading essentially to ungrammatical, nonsensical
word sequences). We use the following prompt for
this experiment:

Shuffled Facts This prompt follows the Full
prompt in Section 4. However, we randomly shuf-
fle every word in fact 1 and fact 2 delimited by
white space (see the first and third instance of Fact
Manipulation in Figure 1b).

Figure 2 shows that shuffling the word order in
the facts has minimal impact on the models’ perfor-
mance, one might argue that LLMs are powerful
enough to internally restore word order before gen-
erating an output. In the following section, we
analyse this behaviour in further detail.
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QASC Dataset

Prompt LLaMA 2-13b LLaMA 2-7b Flan-T5

F1Q Connecting Words Ablation 85 (-5) 45 (-29) 93 (-4)
F2Q Connecting Words Ablation 86 (-4) 49 (-25) 95 (-2)
F1F2 Connecting Words Ablation 88 (-2) 47 (-27) 90 (-7)
F1F2A Keyword Ablation 75 (-15) 40 (-34) 83 (-14)

Table 2: Accuracy of LLaMA 2-13b, LLaMA 2-7b, and Flan-T5 XXL on QASC with different ablation prompts.
The number in the parentheses represents the delta between the accuracy on the specified prompt and the Full
prompt. Models are most reliant on the Answer keywords within the facts to answer the questions.

Figure 2: Accuracy of models prompted with the Shuf-
fled Facts and Full diagnostic prompts. Results show
that models are insensitive to word order within facts.

5.1 Can LLMs Restore Word Order
Internally?

To test this, we conducted an experiment, where
we prompted our models just to restore the word
order of the shuffled facts without performing any
question-answering or reasoning task. We hypothe-
sise that if the model is capable of internally restor-
ing the word order of the facts, it should be able
to do so when prompted. We begin the experiment
with 3-shot ICL demonstrations, where we start
with an instruction and provide the shuffled sen-
tence along with the original sentence as the label.
The results showed that both models struggled with
restoring word order, LLaMA 2 and Flan-T5 scor-
ing 10% and 21% respectively.

By taking a closer look at the results, the models
often generated the wrong sequence order, which
was not close to the meaning of the original sen-
tence, or generated something that did not have
the same words as the original sentence. The ones
that the models did restore the word order correctly
were the ones that had a short sequence length (e.g.

“a stopwatch is used to measure time”). This find-
ing confirms that the models are in fact not able to
restore the word order of sentences with complex
syntactical structures.

Another explanation could be the models’ inter-
nal knowledge of solving reasoning tasks, making
them insensitive to word order. Taking the QA
experiment (1) into account, helps us understand
how much knowledge is inherent within the model.
The difference in the model’s performance between
the QA and Full experiments indicates that some
answers are not inherent in the model, and it relies
on external facts to answer these questions. Nev-
ertheless, as shown in Figure 2 the models were
still capable of answering the questions with facts
that made no sense, which we showed were not
inherent within the model. This intriguing result
calls for further investigation into the underlying
mechanisms of the models, particularly focusing
on how they make transitive deductions. Our next
step is to examine whether specific tokens play a
pivotal role in the models’ ability to reason.

6 Word/Phrase Associations and
Overlaps

A prominent pattern observed within the QASC
dataset is the overlap of words or phrases between
the questions and the corresponding facts, as well
as among the facts themselves (e.g., the question
“Climate is generally described in terms of what?”
and the fact “Climate is generally described in
terms of temperature and moisture”). Deliberately
omitting connecting words between facts effec-
tively disrupts the basis for transitive reasoning,
which is designed to impair the model’s perfor-
mance if it depends on this reasoning process. To
understand how models depend on these linking
tokens, we designed the following experiments that
manipulate the Full prompt in systematic ways.:

F1Q Connecting Words Ablation The mutual
words between the Question and fact 1 are re-
moved from the latter. As an example, fact 1 in
Figure 1 would be “the particles”, but the Question
would remain the same.
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F2Q Connecting Words Ablation This prompt
is similar to F1Q Connecting Words Ablation but
with the tokens of fact 2 removed.

F1F2 Connecting Words Ablation All mutual
words between fact 1 and fact 2 are removed.

F1F2A Keyword Ablation This prompt is cre-
ated to analyse the influence of answer choices in
the facts on the final generated Answer. In other
words, in most cases, the correct answer (choice) is
present in one of the facts. In the QASC example
from Figure 1, fact 2 contains “matter” from the
choices. As a result, we remove this sequence from
fact 2 (see the second instance of Fact Manipu-
lation in Figure 1b) to analyse whether the model
heavily relies on keywords (this is equivalent to
removing C in B → C; Equation 1).

Table 2 shows that the smaller LLaMA 2 model
is more susceptible to the Connecting Token Abla-
tion. This suggests that larger models may utilise
alternative patterns that enable them to sustain their
performance despite the ablation. Additionally,
the results suggest that removing all shared tokens
from the facts has a minimal effect, even when
done in a straightforward manner. This implies that
no individual connecting token plays a significant
role in influencing model performance. However,
the most significant impact on performance is ob-
served when the keyword answer is removed from
the facts. This implies that for certain questions, the
models may identify a matching sequence within
the answer options and leverage it to generate the
answer. Essentially, the models depend on the pres-
ence of answer keywords as a means to simulate
the reasoning process. Nevertheless, the accuracy
of the models on this dataset can still be attributed
to their prior knowledge of the questions.

7 Models’ exposure to direct answers

7.1 Baselines

To mitigate the impact of models’ inherent knowl-
edge of direct answers to questions, we choose the
Bamboogle dataset. This dataset consists of ques-
tions, which can be decomposed into two questions,
the answers to which are provided as facts. To ob-
tain the final answer, the models need to engage
in transitive reasoning based on these two facts.
Through our initial QA experiment, we find that
the models have not been exposed to the questions
during pre-training or fine-tuning. Moreover, since
Bamboogle was released after Flan-T5, it is evi-

dent that it has not been fine-tuned on this dataset,
ensuring that any performance observed is not the
result of prior exposure to the questions. Therefore,
it is an ideal dataset to thoroughly examine whether
the model is capable of employing transitivity to
derive the final answer. The non-multiple choice
question (non-MCQ) nature of the dataset further
ensures that the model cannot rely on recognising
patterns between the choices and the answers to
inform its responses. We repeat all the diagnostic
prompts on the Bamboogle dataset (Table 3).4

Bamboogle Dataset

Prompt LLaMA 2-13b Flan-T5

Full 74 96
QA 6 22
QA (step-by-step) 11 6
QAF 56 94
QAF (fact 1 only) 28 37
QAF (fact 2 only) 10 95
Full (both facts shuffled) 63 77
F1Q Connecting Words Ablation 62 96
F2Q Connecting Words Ablation 71 92
F1F2 Connecting Words Ablation 70 84

Table 3: Rouge-1 score of LLaMA 2-13b, and
Flan-T5 XXL on Bamboogle with different ablation
prompts. The Bamboogle dataset controls for the mod-
els’ prior knowledge to questions. The QA experiment
results confirm that both models have not been previ-
ously exposed to the questions.

The low Rouge-1 scores on the QA row confirm
that the models have not seen much of the dataset,
either in part (i.e., the individual facts) or the full
question, during pre-training or fine-tuning. The
Full prompt indicates the models can deduce the
correct answers from the facts. The QAF prompt
also confirms the same findings from the QASC
dataset, i.e., LLaMA 2-13b needs the deductions
within the demonstrations to perform better. When
the models are provided with just one of the facts,
Flan-T5 demonstrates performance comparable to
that achieved with the Full prompt when only fact
2 is given. Probably fact 2 invariably contains
the answer to the question, in contrast to fact 1,
which does not directly provide the answer. Inter-
estingly, LLaMA 2-13b is not as good as Flan-T5 in
identifying the answer from fact 2.

The results of ablation experiments on
Bamboogle closely align with those observed in

4We excluded LLaMA 2-7b from the results because it
mirrors LLaMA 2-13b’s behaviour; this time we aimed to
compare similarly sized models to clarify only the impact of
fine-tuning on knowingly relevant reasoning datasets, includ-
ing e.g., QASC. Note that unlike Flan-T5 we are not aware of
the exact dataset LLaMA 2 was instruction fine-tuned on.
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Bamboogle Dataset

Prompt LLaMA 2-13b Flan-T5

Gibberish
Full 49 97
Both Facts Shuffled 10 59

Original
Full 74 96
Both Facts Shuffled 63 77

Table 4: Rouge-1 for LLaMA 2-13b and Flan-T5 on the
Bamboogle Gibberish dataset with Full and Shuffling
experiments. The second half includes results on the
original Bamboogle Dataset for comparison.

QASC. However, removing the connecting words
between fact 2 and fact 1 from both facts
impairs Flan-T5’s performance to a greater extent
than was the case in QASC.

The Full (both facts shuffled) results aligned
with the observations from QASC dataset, show-
ing that shuffling the tokens within the facts has
minimal impact on the final results. Notably, al-
though shuffling disrupts the transitive structure of
the facts, the models, particularly Flan-T5 more so
than LLaMA 2-13b, are still able to find a pattern
(distinct from following transitivity) to arrive at
the correct answer. Therefore, we search for other
patterns the models exploit to sustain performance.

7.2 Controlling for Patterns of Named Entities
To counteract the possibility that models are merely
leveraging semantic relationships between ques-
tions and answers – such as seeking out dates when
a question starts with “When” – we have lower-
cased and shuffled the characters of Proper Names
that are answers to questions, and transformed
dates into gibberish words within the Bamboogle
dataset. The dataset consists exclusively of dates,
numbers, or names, all of which have been gibber-
ished (building up 96% of the dataset), with the
exception of four responses: one boolean and three
nouns. The gibbering targeted numbers, names,
and dates specifically to address potential model
biases; we name this dataset as “Bamboogle Gib-
berish”. We then repeat the Full and Both Facts
Shuffled experiments and compare them with the
experiments on the original dataset (Table 4).

LLaMA 2-13b relies on named entities
(significant Rouge-1 drop of 25%), whereas
Flan-T5 shows remarkable robustness to our ma-
nipulations, thus potentially exhibiting transitive
reasoning ability. This could be down to the fact
that fine-tuning helps models generalise to out-of-
domain instances (Mosbach et al., 2023): explic-

itly fine-tuning on reasoning datasets –as is defi-
nitely the case for Flan-T5– induces transitive rea-
soning in the model even with gibberish tokens
in the prompt, rather than this behaviour being
emergent. Adding the shuffling permutation on
the Bamboogle gibberish dataset reveals that a por-
tion of the models’ ability to identify the correct
answer is attributed to the recognition of named
entities in the answers. Once these entities were
obscured, the models’ performance experienced a
significant decline across the board (39% and 38%
for LLaMA 2-13b and Flan-T55, respectively).

8 Discussion

Our initial experiments on QASC suggest that
LLMs may exhibit a form of reasoning, as shown
by strong baseline performances. Specifically, the
fact that Flan-T5 has been explicitly fine-tuned
on this dataset, explains its performance without
demonstrations, hinting at internal reasoning abili-
ties. However, further experiments reveal that these
models primarily rely on spotting answer keywords
rather than true reasoning. Their correct answers
often stem from prior knowledge and the MCQ
format of QASC.

We attempt to overcome some of the previous
limitation with the use of Bamboogle. When evalu-
ated without supporting facts, the models demon-
strate limited prior knowledge, as expected. No-
tably, Flan-T5 performs well with only fact 2,
indicating dependence on specific cues. Like in
QASC, shuffling tokens in Bamboogle has mini-
mal impact, suggesting that models may exploit
named entities as shortcuts. When controlling for
this, Flan-T5 that has knowingly been fine-tuned
on relevant reasoning datasets shows capabilities in
transitive reasoning, unlike LLaMA 2-13b, which
relies heavily on named entities. Finally, these find-
ings highlight that the ability of models to answer
correctly with shuffled word orders largely stems
from recognising and using named entities, rather
than genuine transitive reasoning.

9 Conclusion and Future Work

In this paper, we set out to better understand the
underlying processes of LLMs’ transitive reason-
ing through a series of experiments involving the

5Note that the moderate performance of Flan-T5 (59%)
is probably due to the use of Rouge-1 metric, which is less
strict than exact match accuracy. Manual inspection of results
paints a worse picture.

11654



re-annotation of available compositional Question
Answering datasets. Experiments revealed that:
(a) models not fine-tuned on datasets focused on
compositional deductive reasoning perform better
when demonstrations include example deductions;
(b) there is a noticeable dependence on answer
keywords within the facts for question answering,
suggesting that performance on reasoning bench-
marks should not be taken at face value; and (c)
while non-fine-tuned models predominantly rely
on named entities to answer questions, models fine-
tuned on transitive reasoning tasks demonstrate
stronger reasoning capabilities.

While we identified potential cues that models
might exploit when answering transitive questions,
we defer a detailed analysis of how specific datasets
and task objectives influence transitive reasoning
during pre-training and fine-tuning to future re-
search. Given that most models can answer com-
plex questions using few-shot ICL, exploring differ-
ences between fine-tuning and ICL regarding rea-
soning abilities would be interesting future work.

10 Limitations

Scope: The scope of the deductive rules that are
needed to answer questions in both the QASC and
Bamboogle datasets is very limited: all the ques-
tions involve the application of modus ponens twice
in a row; i.e. they exclude all other deductive rules
such as modus tollens. Any conclusions we draw
here are by extension limited in the same way.
Mechanisms: This paper does not address the
question of why LLMs behave as they do. For
this, we would need full ablative control over train-
ing data and the models themselves. We speculate
about the reason behind Flan-T5’s robustness to our
experimental manipulations; namely that it is be-
cause it has been fine-tuned on reasoning datasets.
This hypothesis remains to be tested in future work.
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A Implementation Details

We used transformers from the HuggingFace li-
brary to use the models mentioned in the paper.
We also used evaluate from the same library to
report the ROUGE-1 scores of the models on the
Bamboogle dataset. The accuracy was calculated
with the method mentioned in Section 3.4.

We ran our experiments with different seeds and
found no inconsistencies in the results. Hence, we
ran all experiments with a single seed (a single seed
for all potential randomness in the experiments) to
control for randomness in the comparisons. We
ran our experiments with the following hyper- pa-
rameters: temperature = 0.7, top_p = 0.75,
top_k = 40, and num_beams = 4. We find that
these hyper-parameters are best for our generation
task. It is worth noting that we aim to investigate
the emerging reasoning ability, rather than to opti-
mise for downstream task performance.

Depending on the model we run our experiments
in different batch sizes, but since the experiments
are inference only, the batch size does not impact
the results. We used batch sizes of 3, 5 and 2 for
LLaMA 2-13b, -7b, and Flan-T5 respectively. All
experiments reported are performed with a single
seed, thereby alleviating randomness in compar-
isons.

B Datasets

In this section we provide further details on our
chosen datasets.

QASC The test set of this dataset does not in-
clude the supporting facts, which are necessary to
our diagnostic experiments, therefore we chose the
dev set. We only use the train set to pick our 3-shot
ICL demonstrations, and omit the rest. We use
the dev set to make sure the models have not seen
the questions during training. The total number of
samples within this dataset is 926.

C Prompts

The first three instances within a dataset were cho-
sen for in-context learning, and they were omitted
from the evaluation. Tables 5, 6, 7, 8, and 9 outline
the prompt structures used in all experiments.
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Experiment Prompt Details

QA

Demonstrations

Context:

Question: What type of water formation is formed by clouds?
Answers: (A) pearls (B) beads ...

Steps:
Answer: (B) beads

Test

Context:

Question: What is described in terms of temperature
and water in the air?
Answers: (A) storms (B) climate ...

Steps:

QAF

Demonstrations

Context:

Question: [...]
Answers: [...]
Fact 1: Beads of water are formed by water vapor condensing.
Fact 2: Clouds are made of water vapor.

Steps:
Answer: (B) beads

Test

Context:

Question: [...]
Answers: [...]
Fact 1: Climate is generally described in terms of
temperature and moisture.
Fact 2: Clouds are made of moisture and the moisture
is from the water evaporating.

Steps:

QAF (fact 1 only)

Demonstrations

Context:

Question: [...]
Answers: [...]
Fact 1: [...]

Steps:
Answer: (B) beads

Test

Context:

Question: [...]
Answers: [...]
Fact 1: [...]

Steps:

Table 5: Prompts for QA, QAF, QAF (Fact 1 only), and QAF (Fact 2 only) experiments.
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Experiment Prompt Details

F1Q Ablation

Demonstrations

Context:

Question: [...]
Answers: [...]
Fact 1: [...]
Fact 2: [...]

Steps:
Deduction: Therefore, beads of water are
formed by clouds condensing.
Answer: (B) beads

Test

Context:

Question: What is described in terms of temperature
and water in the air?
Answers: [...]
Fact 1: Climate generally moisture.
Fact 2: [...]

Steps:

F1F2A Keyword
Ablation

Demonstrations

Context:

Question: [...]
Answers: [...]
Fact 1: [...]
Fact 2: [...]

Steps:
Deduction: [...]
Answer: (B) beads

Test

Context:

Question: [...]
Answers: (A) storm (B) climate ...
Fact 1: is generally described in terms of
temperature and moisture.
Fact 2: [...]

Steps:

Table 6: Prompts for Keyword ablation
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Experiment Prompt Details

Both Facts
Shuffled

Demonstrations

Context:

Question: [...]
Answers: [...]
Fact 1: [...]
Fact 2: [...]

Steps:
Deduction: [...]
Answer: (B) beads

Test

Context:

Question: [...]
Answers: (A) storm (B) climate ...
Fact 1: generally described is temperature in terms of
climate moisture and.
Fact 2: moisture are made clouds of and the moisture
water evaporating is from the.

Steps:

Table 7: Prompts for Shuffled Facts

Experiment Prompt Details

Bamboogle
Gibberish

Demonstrations

Context:

Question: Who was president of the United States in
the year that Citibank was founded?
Fact 1: Citibank was founded in 1812.
Fact 2: The President of the United States in 1812 was
James Madison.

Steps:
Deduction: The President of the United States was
James Madison when Citibank was founded.
Answer: James Madison

Test

Context:

Question: Who was the first African American mayor of
the most populous city in the United States?
Fact 1: The most populous city in the United States is
New York City.
Fact 2: The first African American mayor of
New York City was ddaiv nkisdni.

Steps:

Table 8: Prompts for Bamboogle Gibberish
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Restore Word
Order

Prompt Details

Restore Word
Order

Demonstrations

Context:

Shuffled sentence: of by water formed are water
condensing beads vapor
Original sentence: beads of water are formed by
water vapor condensing

Test

Context:

Shuffled Sentence: varies altitude to climate
according
Original Sentence:

Table 9: Prompt for the Restore Word Order Experiment
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